Sample records for transfers node information

  1. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  2. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  3. Deterministic quantum state transfer and remote entanglement using microwave photons.

    PubMed

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  4. Complex network construction based on user group attention sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.

  5. Towards understanding the behavior of physical systems using information theory

    NASA Astrophysics Data System (ADS)

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M. A.

    2013-09-01

    One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

  6. Noise enhances information transfer in hierarchical networks.

    PubMed

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  7. Noise enhances information transfer in hierarchical networks

    PubMed Central

    Czaplicka, Agnieszka; Holyst, Janusz A.; Sloot, Peter M. A.

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor. PMID:23390574

  8. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    PubMed

    Gibbs, David L; Shmulevich, Ilya

    2017-06-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  9. Self-pacing direct memory access data transfer operations for compute nodes in a parallel computer

    DOEpatents

    Blocksome, Michael A

    2015-02-17

    Methods, apparatus, and products are disclosed for self-pacing DMA data transfer operations for nodes in a parallel computer that include: transferring, by an origin DMA on an origin node, a RTS message to a target node, the RTS message specifying an message on the origin node for transfer to the target node; receiving, in an origin injection FIFO for the origin DMA from a target DMA on the target node in response to transferring the RTS message, a target RGET descriptor followed by a DMA transfer operation descriptor, the DMA descriptor for transmitting a message portion to the target node, the target RGET descriptor specifying an origin RGET descriptor on the origin node that specifies an additional DMA descriptor for transmitting an additional message portion to the target node; processing, by the origin DMA, the target RGET descriptor; and processing, by the origin DMA, the DMA transfer operation descriptor.

  10. Controlling data transfers from an origin compute node to a target compute node

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2011-06-21

    Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.

  11. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node

    PubMed Central

    Srinivasan, Swetha; Vannberg, Fredrik O.; Dixon, J. Brandon

    2016-01-01

    It is well documented that cells secrete exosomes, which can transfer biomolecules that impact recipient cells’ functionality in a variety of physiologic and disease processes. The role of lymphatic drainage and transport of exosomes is as yet unknown, although the lymphatics play critical roles in immunity and exosomes are in the ideal size-range for lymphatic transport. Through in vivo near-infrared (NIR) imaging we have shown that exosomes are rapidly transported within minutes from the periphery to the lymph node by lymphatics. Using an in vitro model of lymphatic uptake, we have shown that lymphatic endothelial cells actively enhanced lymphatic uptake and transport of exosomes to the luminal side of the vessel. Furthermore, we have demonstrated a differential distribution of exosomes in the draining lymph nodes that is dependent on the lymphatic flow. Lastly, through endpoint analysis of cellular distribution of exosomes in the node, we identified macrophages and B-cells as key players in exosome uptake. Together these results suggest that exosome transfer by lymphatic flow from the periphery to the lymph node could provide a mechanism for rapid exchange of infection-specific information that precedes the arrival of migrating cells, thus priming the node for a more effective immune response. PMID:27087234

  12. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node.

    PubMed

    Srinivasan, Swetha; Vannberg, Fredrik O; Dixon, J Brandon

    2016-04-18

    It is well documented that cells secrete exosomes, which can transfer biomolecules that impact recipient cells' functionality in a variety of physiologic and disease processes. The role of lymphatic drainage and transport of exosomes is as yet unknown, although the lymphatics play critical roles in immunity and exosomes are in the ideal size-range for lymphatic transport. Through in vivo near-infrared (NIR) imaging we have shown that exosomes are rapidly transported within minutes from the periphery to the lymph node by lymphatics. Using an in vitro model of lymphatic uptake, we have shown that lymphatic endothelial cells actively enhanced lymphatic uptake and transport of exosomes to the luminal side of the vessel. Furthermore, we have demonstrated a differential distribution of exosomes in the draining lymph nodes that is dependent on the lymphatic flow. Lastly, through endpoint analysis of cellular distribution of exosomes in the node, we identified macrophages and B-cells as key players in exosome uptake. Together these results suggest that exosome transfer by lymphatic flow from the periphery to the lymph node could provide a mechanism for rapid exchange of infection-specific information that precedes the arrival of migrating cells, thus priming the node for a more effective immune response.

  13. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  14. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  15. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN

    2011-05-24

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local direct put transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  16. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-02-15

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local memory FIFO data transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  17. Chaining direct memory access data transfer operations for compute nodes in a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2010-09-28

    Methods, systems, and products are disclosed for chaining DMA data transfer operations for compute nodes in a parallel computer that include: receiving, by an origin DMA engine on an origin node in an origin injection FIFO buffer for the origin DMA engine, a RGET data descriptor specifying a DMA transfer operation data descriptor on the origin node and a second RGET data descriptor on the origin node, the second RGET data descriptor specifying a target RGET data descriptor on the target node, the target RGET data descriptor specifying an additional DMA transfer operation data descriptor on the origin node; creating, by the origin DMA engine, an RGET packet in dependence upon the RGET data descriptor, the RGET packet containing the DMA transfer operation data descriptor and the second RGET data descriptor; and transferring, by the origin DMA engine to a target DMA engine on the target node, the RGET packet.

  18. Low latency, high bandwidth data communications between compute nodes in a parallel computer

    DOEpatents

    Blocksome, Michael A

    2014-04-01

    Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.

  19. Low latency, high bandwidth data communications between compute nodes in a parallel computer

    DOEpatents

    Blocksome, Michael A

    2014-04-22

    Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.

  20. Low latency, high bandwidth data communications between compute nodes in a parallel computer

    DOEpatents

    Blocksome, Michael A

    2013-07-02

    Methods, systems, and products are disclosed for data transfers between nodes in a parallel computer that include: receiving, by an origin DMA on an origin node, a buffer identifier for a buffer containing data for transfer to a target node; sending, by the origin DMA to the target node, a RTS message; transferring, by the origin DMA, a data portion to the target node using a memory FIFO operation that specifies one end of the buffer from which to begin transferring the data; receiving, by the origin DMA, an acknowledgement of the RTS message from the target node; and transferring, by the origin DMA in response to receiving the acknowledgement, any remaining data portion to the target node using a direct put operation that specifies the other end of the buffer from which to begin transferring the data, including initiating the direct put operation without invoking an origin processing core.

  1. Pacing a data transfer operation between compute nodes on a parallel computer

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-09-13

    Methods, systems, and products are disclosed for pacing a data transfer between compute nodes on a parallel computer that include: transferring, by an origin compute node, a chunk of an application message to a target compute node; sending, by the origin compute node, a pacing request to a target direct memory access (`DMA`) engine on the target compute node using a remote get DMA operation; determining, by the origin compute node, whether a pacing response to the pacing request has been received from the target DMA engine; and transferring, by the origin compute node, a next chunk of the application message if the pacing response to the pacing request has been received from the target DMA engine.

  2. Direct memory access transfer completion notification

    DOEpatents

    Archer, Charles J. , Blocksome; Michael A. , Parker; Jeffrey, J [Rochester, MN

    2011-02-15

    Methods, systems, and products are disclosed for DMA transfer completion notification that include: inserting, by an origin DMA on an origin node in an origin injection FIFO, a data descriptor for an application message; inserting, by the origin DMA, a reflection descriptor in the origin injection FIFO, the reflection descriptor specifying a remote get operation for injecting a completion notification descriptor in a reflection injection FIFO on a reflection node; transferring, by the origin DMA to a target node, the message in dependence upon the data descriptor; in response to completing the message transfer, transferring, by the origin DMA to the reflection node, the completion notification descriptor in dependence upon the reflection descriptor; receiving, by the origin DMA from the reflection node, a completion packet; and notifying, by the origin DMA in response to receiving the completion packet, the origin node's processing core that the message transfer is complete.

  3. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  4. User's manual for CNVUFAC, the general dynamics heat-transfer radiation view factor program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, R. L.

    CNVUFAC, the General Dynamics heat-transfer radiation veiw factor program, has been adapted for use on the LLL CDC 7600 computer system. The input and output have been modified, and a node incrementing logic was included to make the code compatible with the TRUMP thermal analyzer and related codes. The program performs the multiple integration necessary to evaluate the geometric black-body radiaton node to node view factors. Card image output that contains node number and view factor information is generated for input into the related program GRAY. Program GRAY is then used to include the effects of gray-body emissivities and multiplemore » reflections, generating the effective gray-body view factors usable in TRUMP. CNVUFAC uses an elemental area summation scheme to evaluate the multiple integrals. The program permits shadowing and self-shadowing. The basic configuration shapes that can be considered are cylinders, cones, spheres, ellipsoids, flat plates, disks, toroids, and polynomials of revolution. Portions of these shapes can also be considered.« less

  5. Low latency, high bandwidth data communications between compute nodes in a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-11-02

    Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.

  6. Effective network inference through multivariate information transfer estimation

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Carl-Henrik; Gnabo, Jean-Yves

    2018-06-01

    Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called "global silencing" approach of Barzel and Barabasi or "network deconvolution" of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank's centrality measurements relate to bank's systemic vulnerability.

  7. Asynchronous broadcast for ordered delivery between compute nodes in a parallel computing system where packet header space is limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sameer

    Disclosed is a mechanism on receiving processors in a parallel computing system for providing order to data packets received from a broadcast call and to distinguish data packets received at nodes from several incoming asynchronous broadcast messages where header space is limited. In the present invention, processors at lower leafs of a tree do not need to obtain a broadcast message by directly accessing the data in a root processor's buffer. Instead, each subsequent intermediate node's rank id information is squeezed into the software header of packet headers. In turn, the entire broadcast message is not transferred from the rootmore » processor to each processor in a communicator but instead is replicated on several intermediate nodes which then replicated the message to nodes in lower leafs. Hence, the intermediate compute nodes become "virtual root compute nodes" for the purpose of replicating the broadcast message to lower levels of a tree.« less

  8. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  9. Kinetic: A system code for analyzing nuclear thermal propulsion rocket engine transients

    NASA Astrophysics Data System (ADS)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    The topics are presented in viewgraph form and include the following: outline of kinetic code; a kinetic information flow diagram; kinetic neutronic equations; turbopump/nozzle algorithm; kinetic heat transfer equations per node; and test problem diagram.

  10. Generalized Tavis-Cummings models and quantum networks

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  11. Development of an Exchange Format for the European Environmental Chemical Data and Information Network (ECDIN).

    ERIC Educational Resources Information Center

    And Others; Proctor, David, J.

    1978-01-01

    Uses collection and storage of data in an environmental chemicals data bank to develop an exchange format of hierarchical tree structure between network partners. Rules identify and process the nodes in the tree in such a way that information is neither lost nor degraded upon transfer between network partners. (CWM)

  12. Fault tolerant hypercube computer system architecture

    NASA Technical Reports Server (NTRS)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node operably connected to the first multiplexer whereby the second watch dog node can selectively communicate with individual ones of the computing nodes through the second and fourth networks. The branch is completed by a first load balancing node; and a second multiplexer connected between the first load balancing node and the first and second watch dog nodes, allowing the first load balancing node to selectively communicate with the first and second watch dog nodes.

  13. Direct memory access transfer completion notification

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN

    2011-02-15

    DMA transfer completion notification includes: inserting, by an origin DMA engine on an origin node in an injection first-in-first-out (`FIFO`) buffer, a data descriptor for an application message to be transferred to a target node on behalf of an application on the origin node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying a packet header for a completion notification packet; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; sending, by the origin DMA engine, the completion notification packet to a local reception FIFO buffer using a local memory FIFO transfer operation; and notifying, by the origin DMA engine, the application that transfer of the message is complete in response to receiving the completion notification packet in the local reception FIFO buffer.

  14. Error recovery to enable error-free message transfer between nodes of a computer network

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.

    2016-01-26

    An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.

  15. Supplying the power requirements to a sensor network using radio frequency power transfer.

    PubMed

    Percy, Steven; Knight, Chris; Cooray, Francis; Smart, Ken

    2012-01-01

    Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system's base station monitors the node's energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of -31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.

  16. Concurrent hypercube system with improved message passing

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Tuazon, Jesus O. (Inventor); Lieberman, Don (Inventor); Pniel, Moshe (Inventor)

    1989-01-01

    A network of microprocessors, or nodes, are interconnected in an n-dimensional cube having bidirectional communication links along the edges of the n-dimensional cube. Each node's processor network includes an I/O subprocessor dedicated to controlling communication of message packets along a bidirectional communication link with each end thereof terminating at an I/O controlled transceiver. Transmit data lines are directly connected from a local FIFO through each node's communication link transceiver. Status and control signals from the neighboring nodes are delivered over supervisory lines to inform the local node that the neighbor node's FIFO is empty and the bidirectional link between the two nodes is idle for data communication. A clocking line between neighbors, clocks a message into an empty FIFO at a neighbor's node and vica versa. Either neighbor may acquire control over the bidirectional communication link at any time, and thus each node has circuitry for checking whether or not the communication link is busy or idle, and whether or not the receive FIFO is empty. Likewise, each node can empty its own FIFO and in turn deliver a status signal to a neighboring node indicating that the local FIFO is empty. The system includes features of automatic message rerouting, block message transfer and automatic parity checking and generation.

  17. Heterotopic vascularized lymph node transfer to the medial calf without a skin paddle for restoration of lymphatic function: Proof of concept.

    PubMed

    Smith, Mark L; Molina, Bianca J; Dayan, Erez; Saint-Victor, Diane S; Kim, Julie N; Kahn, Eugene S; Kagen, Alexander; Dayan, Joseph H

    2017-01-01

    The use of heterotopic vascularized lymph node transfer (HVLNT) for the treatment of lower extremity lymphedema is still evolving. Current techniques, either place the lymph nodes in the thigh without a skin paddle or at the ankle requiring an unsightly and often bulky skin paddle for closure. We explored the feasibility of doing a below-knee transfer without a skin paddle using the medial sural vessels as recipient vessels and report our experience in 21 patients. A retrospective review of all patients who underwent HVLNT to the medial calf was performed. Postoperative magnetic resonance angiography (MRA) and lymphoscintigraphy (LS) were analyzed to assess lymph node viability and function after transfer. Twenty-one patients underwent HVLNT to the medial calf. Postoperative imaging was performed at an average of 11 months after surgery. Thirteen patients had postoperative MRA, of whom 12 demonstrated viable lymph nodes. Seven patients underwent postoperative LS, of whom three demonstrated uptake in the transferred nodes. In the other four patients, the injectate failed to reach the level of the proximal calf. We provide proof of concept that HVLNT to the lower leg using the medial sural vessels without a skin paddle can result in viable and functional lymph nodes in the setting of lower extremity lymphedema. J. Surg. Oncol. 2017;115:90-95. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A quantitative approach to measure road network information based on edge diversity

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  19. Direct memory access transfer completion notification

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Parker, Jeffrey J.

    2010-08-17

    Methods, apparatus, and products are disclosed for DMA transfer completion notification that include: inserting, by an origin DMA engine on an origin compute node in an injection FIFO buffer, a data descriptor for an application message to be transferred to a target compute node on behalf of an application on the origin compute node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying an address of a completion notification field in application storage for the application; transferring, by the origin DMA engine to the target compute node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that the transfer of the message is complete, including performing a local direct put operation to store predesignated notification data at the address of the completion notification field.

  20. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  1. Information transfer and information modification to identify the structure of cardiovascular and cardiorespiratory networks.

    PubMed

    Faes, Luca; Nollo, Giandomenico; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Javorka, Michal

    2017-07-01

    To fully elucidate the complex physiological mechanisms underlying the short-term autonomic regulation of heart period (H), systolic and diastolic arterial pressure (S, D) and respiratory (R) variability, the joint dynamics of these variables need to be explored using multivariate time series analysis. This study proposes the utilization of information-theoretic measures to measure causal interactions between nodes of the cardiovascular/cardiorespiratory network and to assess the nature (synergistic or redundant) of these directed interactions. Indexes of information transfer and information modification are extracted from the H, S, D and R series measured from healthy subjects in a resting state and during postural stress. Computations are performed in the framework of multivariate linear regression, using bootstrap techniques to assess on a single-subject basis the statistical significance of each measure and of its transitions across conditions. We find patterns of information transfer and modification which are related to specific cardiovascular and cardiorespiratory mechanisms in resting conditions and to their modification induced by the orthostatic stress.

  2. Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates.

    PubMed

    Asano, K; Okamoto, K

    1992-01-15

    Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.

  3. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder.

    PubMed

    Hamada, Hiroshi; Tam, Patrick P L

    2014-01-01

    The establishment of a left-right (LR) organizer in the form of the ventral node is an absolute prerequisite for patterning the tissues on contralateral sides of the body of the mouse embryo. The experimental findings to date are consistent with a mechanistic paradigm that the laterality information, which is generated in the ventral node, elicits asymmetric molecular activity and cellular behaviour in the perinodal tissues. This information is then relayed to the cells in the lateral plate mesoderm (LPM) when the left-specific signal is processed and translated into LR body asymmetry. Here, we reflect on our current knowledge and speculate on the following: (a) what are the requisite anatomical and functional attributes of an LR organizer, (b) what asymmetric information is emanated from this organizer, and (c) how this information is transferred across the paraxial tissue compartment and elicits a molecular response specifically in the LPM.

  4. Information dynamics of brain-heart physiological networks during sleep

    NASA Astrophysics Data System (ADS)

    Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.

    2014-10-01

    This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.

  5. A multi-node model for transient heat transfer analysis of stratospheric airships

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Irfan; Pant, Rajkumar S.

    2017-06-01

    This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.

  6. Node-controlled allocation of mineral elements in Poaceae.

    PubMed

    Yamaji, Naoki; Ma, Jian Feng

    2017-10-01

    Mineral elements taken up by the roots will be delivered to different organs and tissues depending on their requirements. In Poaceae, this selective distribution is mainly mediated in the nodes, which have highly developed and fully organized vascular systems. Inter-vascular transfer of mineral elements from enlarged vascular bundles to diffuse vascular bundles is required for their preferential distribution to developing tissues and reproductive organs. A number of transporters involved in this inter-vascular transfer processes have been identified mainly in rice. They are localized at the different cell layers and form an efficient machinery within the node. Furthermore, some these transporters show rapid response to the environmental changes of mineral elements at the protein level. In addition to the node-based transporters, distinct nodal structures including enlarged xylem area, folded plasma membrane of xylem transfer cells and presence of an apoplastic barrier are also required for the efficient inter-vascular transfer. Manipulation of node-based transporters will provide a novel breeding target to improve nutrient use efficiency, productivity, nutritional value and safety in cereal crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  8. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    NASA Astrophysics Data System (ADS)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  9. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  10. Effects of Reflection Prompts when Learning with Hypermedia

    ERIC Educational Resources Information Center

    Bannert, Maria

    2006-01-01

    In this study the assumption was tested experimentally, whether prompting for reflection will enhance hypermedia learning and transfer. Students of the experimental group were prompted at each navigation step in a hypermedia system to say the reasons why they chose this specific information node out loud whereas the students of the control group…

  11. GFSSP Training Course Lectures

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.

    2008-01-01

    GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.

  12. Moving target tracking through distributed clustering in directional sensor networks.

    PubMed

    Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-12-18

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  13. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    PubMed Central

    Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-01-01

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205

  14. Number-theoretic nature of communication in quantum spin systems.

    PubMed

    Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie

    2012-08-03

    The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.

  15. Modeling single event induced crosstalk in nanometer technologies

    NASA Astrophysics Data System (ADS)

    Boorla, Vijay K.

    Radiation effects become more important in combinational logic circuits with newer technologies. When a high energetic particle strikes at the sensitive region within the combinational logic circuit a voltage pulse called Single Event Transient is created. Recently, researchers reported Single Event Crosstalk because of increasing coupling effects. In this work, the closed form expression for SE crosstalk noise is formulated for the first time. For all calculations, 4-pi model is used in this work. The crosstalk model uses a reduced transfer function between aggressor coupling node and victim node to reduce information loss. Aggressor coupling node waveform is obtained and then applied to transfer function between the coupling node and the victim output to obtain victim noise voltage. This work includes both effect of passive aggressor loading on victim and victim loading on aggressor by considering resistive shielding effect. Noise peak expressions derived in this work show very good results in comparison to HSPICE results. Results show that average error for noise peak is 3.794% while allowing for very fast analysis. Once the SE crosstalk noise is calculated, one can hire mitigation techniques such as driver sizing. A standard DTMOS technique along with sizing is proposed in this work to mitigate SE crosstalk. This combined approach can saves in some areas compared to driver sizing alone. Key Words: Crosstalk Noise, Closed Form Modeling, Standard DTMOS

  16. Information Transfer in the Brain: Insights from a Unified Approach

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Wu, Guorong; Pellicoro, Mario; Stramaglia, Sebastiano

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. In this chapter we propose some approaches rooted in this framework for the analysis of neuroimaging data. First we will explore how the transfer of information depends on the network structure, showing how for hierarchical networks the information flow pattern is characterized by exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a signature of the law of diminishing marginal returns. This was reported to be true also for effective connectivity networks from human EEG data. Then we address the problem of partial conditioning to a limited subset of variables, chosen as the most informative ones for the driver node.We will then propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be associated to the sign of the contribution. Applications are reported for EEG and fMRI data.

  17. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    PubMed Central

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  18. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    PubMed

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  19. Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.

    PubMed

    Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin

    2017-09-13

    Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.

  20. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  1. Image sensor with motion artifact supression and anti-blooming

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)

    2006-01-01

    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

  2. High speed CMOS imager with motion artifact supression and anti-blooming

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)

    2001-01-01

    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

  3. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  4. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  5. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    PubMed

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  6. Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes

    PubMed Central

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-01-01

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808

  7. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  8. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  9. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  10. Assessing transfer property and reliability of urban bus network based on complex network theory

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhuge, Cheng-Xiang; Zhao, Xiang; Song, Wen-Bo

    Transfer reliability has an important impact on the urban bus network. The proportion of zero and one transfer time is a key indicator to measure the connectivity of bus networks. However, it is hard to calculate the transfer time between nodes because of the complicated network structure. In this paper, the topological structures of urban bus network in Jinan are constructed by space L and space P. A method to calculate transfer times between stations has been proposed by reachable matrix under space P. The result shows that it is efficient to calculate the transfer time between nodes in large networks. In order to test the transfer reliability, a node failure process has been built according to degree, clustering coefficient and betweenness centrality under space L and space P. The results show that the deliberate attack by betweenness centrality under space P is more effective compared with other five attack modes. This research could provide a power tool to find hub stations in bus networks and give a help for traffic manager to guarantee the normal operation of urban bus systems.

  11. New scaling relation for information transfer in biological networks

    PubMed Central

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-01-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  12. Research of Hubs Location Method for Weighted Brain Network Based on NoS-FA.

    PubMed

    Weng, Zhengkui; Wang, Bin; Xue, Jie; Yang, Baojie; Liu, Hui; Xiong, Xin

    2017-01-01

    As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.

  13. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  14. Process connectivity in a naturally prograding river delta

    NASA Astrophysics Data System (ADS)

    Sendrowski, Alicia; Passalacqua, Paola

    2017-03-01

    River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.

  15. Engineering and Probing Topological Properties of Dirac Semimetal Films by Asymmetric Charge Transfer.

    PubMed

    Villanova, John W; Barnes, Edwin; Park, Kyungwha

    2017-02-08

    Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.

  16. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  17. File Transfers from Peregrine to the Mass Storage System - Gyrfalcon |

    Science.gov Websites

    login node or data-transfer queue node. Below is an example to access data-tranfer queue Interactively number of container files using the tar command. For example, $ cd /scratch//directory1 tar files. The rsync command is convenient for handling a large number of files. For example, make

  18. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  19. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  20. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  1. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.

    PubMed

    Rekhi, Angad S; Khuri-Yakub, Butrus T; Arbabian, Amin

    2017-10-01

    We propose the use of airborne ultrasound for wireless power transfer to mm-sized nodes, with intended application in the next generation of the Internet of Things (IoT). We show through simulation that ultrasonic power transfer can deliver 50 [Formula: see text] to a mm-sized node 0.88 m away from a ~ 50-kHz, 25-cm 2 transmitter array, with the peak pressure remaining below recommended limits in air, and with load power increasing with transmitter area. We report wireless power recovery measurements with a precharged capacitive micromachined ultrasonic transducer, demonstrating a load power of 5 [Formula: see text] at a simulated distance of 1.05 m. We present aperture efficiency, dynamic range, and bias-free operation as key metrics for the comparison of transducers meant for wireless power recovery. We also argue that long-range wireless charging at the watt level is extremely challenging with existing technology and regulations. Finally, we compare our acoustic powering system with cutting edge electromagnetically powered nodes and show that ultrasound has many advantages over RF as a vehicle for power delivery. Our work sets the foundation for further research into ultrasonic wireless power transfer for the IoT.

  2. Minimally buffered data transfers between nodes in a data communications network

    DOEpatents

    Miller, Douglas R.

    2015-06-23

    Methods, apparatus, and products for minimally buffered data transfers between nodes in a data communications network are disclosed that include: receiving, by a messaging module on an origin node, a storage identifier, a origin data type, and a target data type, the storage identifier specifying application storage containing data, the origin data type describing a data subset contained in the origin application storage, the target data type describing an arrangement of the data subset in application storage on a target node; creating, by the messaging module, origin metadata describing the origin data type; selecting, by the messaging module from the origin application storage in dependence upon the origin metadata and the storage identifier, the data subset; and transmitting, by the messaging module to the target node, the selected data subset for storing in the target application storage in dependence upon the target data type without temporarily buffering the data subset.

  3. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  4. The vascularized groin lymph node flap (VGLN): Anatomical study and flap planning using multi-detector CT scanner. The golden triangle for flap harvesting.

    PubMed

    Zeltzer, Assaf A; Anzarut, Alexander; Braeckmans, Delphine; Seidenstuecker, Katrin; Hendrickx, Benoit; Van Hedent, Eddy; Hamdi, Moustapha

    2017-09-01

    A growing number of surgeons perform lymph node transfers for the treatment of lymphedema. When harvesting a vascularized lymph node groin flap (VGLNF) one of the major concerns is the potential risk of iatrogenic lymphedema of the donor-site. This article helps understanding of the lymph node distribution of the groin in order to minimize this risk. Fifty consecutive patients undergoing abdominal mapping by multi-detector CT scanner were included and 100 groins analyzed. The groin was divided in three zones (of which zone II is the safe zone) and lymph nodes were counted and mapped with their distances to anatomic landmarks. Further node units were plotted and counted. The average age was 48 years. A mean number of nodes of 6.5/groin was found. In zone II, which is our zone of interest a mean of 3.1 nodes were counted with a mean size of 7.8 mm. In three patients no nodes were found in zone II. In five patients nodes were seen in zone II but were not sufficient in size or number to be considered a lymph node unit. On average the lymph node unit in zone II was found to be 48.3 mm from the pubic tubercle when projected on a line from the pubic tubercle to the anterior superior iliac spine, 16.0 mm caudal to this line, and 20.4 mm above the groin crease. On average the lymph node unit was a mean of 41.7 mm lateral to the SCIV-SIEV confluence. This study provides increased understanding of the lymphatic anatomy in zone II of the groin flap and suggests a refined technique for designing the VGLNF. As with any flap there is a degree of individual patient variability. However, having information on the most common anatomy and flap design is of great value. © 2017 Wiley Periodicals, Inc.

  5. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks

    PubMed Central

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-01-01

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636

  6. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.

    PubMed

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-07-04

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  7. Data transfer nodes and demonstration of 100-400 Gbps wide area throughput using the Caltech SDN testbed

    NASA Astrophysics Data System (ADS)

    Mughal, A.; Newman, H.

    2017-10-01

    We review and demonstrate the design of efficient data transfer nodes (DTNs), from the perspective of the highest throughput over both local and wide area networks, as well as the highest performance per unit cost. A careful system-level design is required for the hardware, firmware, OS and software components. Furthermore, additional tuning of these components, and the identification and elimination of any remaining bottlenecks is needed once the system is assembled and commissioned, in order to obtain optimal performance. For high throughput data transfers, specialized software is used to overcome the traditional limits in performance caused by the OS, file system, file structures used, etc. Concretely, we will discuss and present the latest results using Fast Data Transfer (FDT), developed by Caltech. We present and discuss the design choices for three generations of Caltech DTNs. Their transfer capabilities range from 40 Gbps to 400 Gbps. Disk throughput is still the biggest challenge in the current generation of available hardware. However, new NVME drives combined with RDMA and a new NVME network fabric are expected to improve the overall data-transfer throughput and simultaneously reduce the CPU load on the end nodes.

  8. Delay and cost performance analysis of the diffie-hellman key exchange protocol in opportunistic mobile networks

    NASA Astrophysics Data System (ADS)

    Soelistijanto, B.; Muliadi, V.

    2018-03-01

    Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.

  9. Tetrahedral node for Transmission-Line Modeling (TLM) applied to Bio-heat Transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, parallelepipeds are used to discretize three-dimensional problems. The drawback in using parallelepiped shapes is that instead of refining only the domain of interest, a large additional domain would also have to be refined, which results in increased computational time and memory space. In this paper, we developed a tetrahedral node for TLM applied to bio-heat transfer that does not have the drawback associated with the parallelepiped node. The model includes heat source, blood perfusion, boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. The predicted temperature and heat flux were compared against results from an analytical solution and the results agreed within 2% for a mesh size of 69,941 nodes and a time step of 5ms. The method was further validated against published results of maximum skin-surface temperature difference in a breast with and without tumor and the results agreed within 6%. The published results were obtained from a model that used parallelepiped TLM node. An open source software, TLMBHT, was written using the theory developed herein and is available for download free-of-charge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    PubMed

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  11. Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis.

    PubMed

    Fenn, Daniel J; Porter, Mason A; McDonald, Mark; Williams, Stacy; Johnson, Neil F; Jones, Nick S

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.

  12. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-28

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.

  13. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007-2008 credit crisis

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel J.; Porter, Mason A.; McDonald, Mark; Williams, Stacy; Johnson, Neil F.; Jones, Nick S.

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.

  14. A Decentralized Framework for Multi-Agent Robotic Systems

    PubMed Central

    2018-01-01

    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849

  15. Modeling and Simulation of Bus Dispatching Policy for Timed Transfers on Signalized Networks

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lin, Guey-Shii

    2007-12-01

    The major work of this study is to formulate the system cost functions and to integrate the bus dispatching policy with signal control. The integrated model mainly includes the flow dispersion model for links, signal control model for nodes, and dispatching control model for transfer terminals. All such models are inter-related for transfer operations in one-center transit network. The integrated model that combines dispatching policies with flexible signal control modes can be applied to assess the effectiveness of transfer operations. It is found that, if bus arrival information is reliable, an early dispatching decision made at the mean bus arrival times is preferable. The costs for coordinated operations with slack times are relatively low at the optimal common headway when applying adaptive route control. Based on such findings, a threshold function of bus headway for justifying an adaptive signal route control under various time values of auto drivers is developed.

  16. Complex networks under dynamic repair model

    NASA Astrophysics Data System (ADS)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  17. The effect of transfer factor on lymph node morphology in murine toxoplasmosis.

    PubMed Central

    Dundas, S. A.; Clark, A.

    1986-01-01

    Mice were infected intraperitoneally with a low virulence strain of Toxoplasma gondii (TO) and transfer factor (TF) was prepared from the spleens of infected (TFT) and uninfected control mice (TFC). Three experimental groups of 12 mice were given either saline, TFC or TFT, by intraperitoneal injection. After 24 h half of each group of these animals were infected by intraperitoneal injection of TO cysts. In three separate experiments animals were killed at 11, 28 and 35 days and the flank and axillary nodes removed for histological examination. There was generalized lymph node enlargement with cortical and paracortical expansion. In most animals there was diffuse infiltration of the nodes by clusters of histiocytes. Administration of TFC alone led to a mild increase in node size at 11 and 28 days. Administration of TFT alone had a moderate stimulatory effect on the mouse lymph nodes with a significant increase in size at 11 days due predominantly to expansion of the paracortex. Administration of TFT and TFC followed by inoculation of TO led to an increased and more consistent histiocyte response and an increased number of paracortical T blasts compared with animals given TO alone. TFT and TFC had no demonstrable protective effect in experimental murine toxoplasmosis as assessed by quantitation of toxoplasma brain cysts. The effect of transfer factor was not antigen specific in this system. Images Fig. 4 Fig. 5 Fig. 2 Fig. 3 Fig. 1 Fig. 6 PMID:2423107

  18. Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity.

    PubMed Central

    Nash, A A; Ashford, N P

    1982-01-01

    Mice simultaneously injected intravenously and subcutaneously with herpes simplex virus fail to adoptively transfer delayed hypersensitivity (DH) to syngeneic recipients. The transferred lymph node cells also failed to rapidly eliminate infectious herpes from the pinna, despite the presence of cytotoxic T cells in the transferred suspension. Both primary and secondary cytotoxic cell responses in the draining lymph node were unaffected by the inhibition of DH. The lymph nodes from DH tolerized mice also contain lymphocytes capable of undergoing a proliferative response in vitro to herpes antigens. In addition, a neutralizing antibody response with IgG antibodies against herpes are also present in DH tolerized mice. These data suggest a form of split T-cell tolerance in which only DH responses are directly compromised. The implication of these findings for the pathogenesis of herpes simplex virus is discussed. PMID:6279490

  19. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  20. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.

  1. The Hazard Notification System (HANS)

    NASA Astrophysics Data System (ADS)

    Snedigar, S. F.; Venezky, D. Y.

    2009-12-01

    The Volcano Hazards Program (VHP) has developed a Hazard Notification System (HANS) for distributing volcanic activity information collected by scientists to airlines, emergency services, and the general public. In the past year, data from HANS have been used by airlines to make decisions about diverting or canceling flights during the eruption of Mount Redoubt. HANS was developed to provide a single system that each of the five U.S. volcano observatories could use for communicating and storing volcanic information about the 160+ potentially active U.S. volcanoes. The data that cover ten tables and nearly 100 fields are now stored in similar formats, and the information can be released in styles requested by our agency partners, such as the International Civil Aviation Organization (ICAO). Currently, HANS has about 4500 reports stored; on average, two - three reports are added daily. HANS (at its most basic form) consists of a user interface for entering data into one of many release types (Daily Status Reports, Weekly Updates, Volcano Activity Notifications, etc.); a database holding previous releases as well as observatory information such as email address lists and volcano boilerplates; and a transmission system for formatting releases and sending them out by email or other web related system. The user interface to HANS is completely web based, providing access to our observatory scientists from any online PC. The underlying database stores the observatory information and drives the observatory and program websites' dynamic updates and archived information releases. HANS also runs scripts for generating several different feeds including the program home page Volcano Status Map. Each observatory has the capability of running an instance of HANS. There are currently three instances of HANS and each instance is synchronized to all other instances using a master-slave environment. Information can be entered on any node; slave nodes transmit data to the master node, and the master retransmits that data to all slave nodes. All data transfer between instances uses the Simple Object Access Protocol (SOAP) as the envelope in which data are transmitted between nodes. The HANS data synchronization not only works as a backup feature, but also acts as a simple fault-tolerant system. Information from any observatory can be entered on any instance, and still be transmitted to the specified observatory's distribution list, which provides added flexibility if there is a disruption in access from an area that needs to send an update. Additionally, having the same information available on our multiple websites is necessary for communicating our scientists' most up-to-date information.

  2. T2AR: trust-aware ad-hoc routing protocol for MANET.

    PubMed

    Dhananjayan, Gayathri; Subbiah, Janakiraman

    2016-01-01

    Secure data transfer against the malicious attacks is an important issue in an infrastructure-less independent network called mobile ad-hoc network (MANET). Trust assurance between MANET nodes is the key parameter in the high-security provision under dynamic topology variations and open wireless constraints. But, the malicious behavior of nodes reduces the trust level of the nodes that leads to an insecure data delivery. The increase in malicious attacks causes the excessive energy consumption that leads to a reduction of network lifetime. The lack of positional information update of the nodes in ad-hoc on-demand vector (AODV) protocol during the connection establishment offers less trust level between the nodes. Hence, the trust rate computation using energy and mobility models and its update are the essential tasks for secure data delivery. This paper proposes a trust-aware ad-hoc routing (T2AR) protocol to improve the trust level between the nodes in MANET. The proposed method modifies the traditional AODV routing protocol with the constraints of trust rate, energy, mobility based malicious behavior prediction. The packet sequence ID matching from the log reports of neighbor nodes determine the trust rate that avoids the malicious report generation. Besides, the direct and indirect trust observation schemes utilization increases the trust level. Besides, the received signal strength indicator utilization determines the trusted node is within the communication range or not. The comparative analysis between the proposed T2AR with the existing methods such as TRUNCMAN, RBT, GR, FBR and DICOTIDS regarding the average end-to-end delay, throughput, false positives, packet delivery ratio shows the effectiveness of T2AR in the secure MANET environment design.

  3. Time and frequency transfer by the Master-Slave Returnable Timing System technique - Application to solar power transmission

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1979-01-01

    The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.

  4. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Data communications in a parallel active messaging interface ('PAMI') or a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution of a compute node, including specification of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications instruction, the instruction characterized by instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance witht the instruction type, the transfer data from the origin endpoin to the target endpoint.

  5. Fencing data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-06-02

    Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.

  6. Fencing data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-06-09

    Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.

  7. Fencing data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-08-11

    Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint comprising a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI and through data communications resources including a deterministic data communications network, including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.

  8. Fencing data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-06-30

    Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint comprising a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI and through data communications resources including a deterministic data communications network, including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.

  9. Interferon-α acutely impairs whole-brain functional connectivity network architecture - A preliminary study.

    PubMed

    Dipasquale, Ottavia; Cooper, Ella A; Tibble, Jeremy; Voon, Valerie; Baglio, Francesca; Baselli, Giuseppe; Cercignani, Mara; Harrison, Neil A

    2016-11-01

    Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis C infection. Though clinically effective, IFN-α rapidly impairs mood, motivation and cognition, effects that can appear indistinguishable from major depression and provide powerful empirical support for the inflammation theory of depression. Though inflammation has been shown to modulate activity within discrete brain regions, how it affects distributed information processing and the architecture of whole brain functional connectivity networks have not previously been investigated. Here we use a graph theoretic analysis of resting state functional magnetic resonance imaging (rfMRI) to investigate acute effects of systemic interferon-alpha (IFN-α) on whole brain functional connectivity architecture and its relationship to IFN-α-induced mood change. Twenty-two patients with Hepatitis-C infection, initiating IFN-α-based therapy were scanned at baseline and 4h after their first IFN-α dose. The whole brain network was parcellated into 110 cortical and sub-cortical nodes based on the Oxford-Harvard Atlas and effects assessed on higher-level graph metrics, including node degree, betweenness centrality, global and local efficiency. IFN-α was associated with a significant reduction in global network connectivity (node degree) (p=0.033) and efficiency (p=0.013), indicating a global reduction of information transfer among the nodes forming the whole brain network. Effects were similar for highly connected (hub) and non-hub nodes, with no effect on betweenness centrality (p>0.1). At a local level, we identified regions with reduced efficiency of information exchange and a sub-network with decreased functional connectivity after IFN-α. Changes in local and particularly global functional connectivity correlated with associated changes in mood measured on the Profile of Mood States (POMS) questionnaire. IFN-α rapidly induced a profound shift in whole brain network structure, impairing global functional connectivity and the efficiency of parallel information exchange. Correlations with multiple indices of mood change support a role for global changes in brain functional connectivity architecture in coordinated behavioral responses to IFN-α. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1996-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 for 43 sites in the upper Missouri River Basin upstream from Fort Peck Lake in Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation. Recorded and historical flows at most sites have been affected by human activities including reservoir storage, diversions for irrigation, and municipal use. Natural flows at the sites were synthesized by eliminating the effects of these activities. Recorded data at some sites do not include the entire study period. The missing flows at these sites were estimated using a statistical procedure. The methods of synthesis varied, depending on upstream activities and information available. Recorded flows were transferred to nodes that did not have streamflow-gaging stations from the nearest station with a sufficient length of record. The flows at one node were computed as the sum of flows from three upstream tributaries. Monthly changes in reservoir storage were computed from monthend contents. The changes in storage were corrected for the effects of evaporation and precipitation using pan-evaporation and precipitation data from climate stations. Irrigation depletions and consumptive use by the three largest municipalities were computed. Synthesized natural flow at most nodes was computed by adding algebraically the upstream depletions and changes in reservoir storage to recorded or historical flow at the nodes.

  11. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array

    PubMed Central

    Matsuda, Eiko; Mita, Takeshi; Hubert, Julien; Bakkum, Douglas; Frey, Urs; Hierlemann, Andreas; Takahashi, Hirokazu; Ikegami, Takashi

    2017-01-01

    Spontaneous development of neuronal cells was recorded around 4–34 days in vitro (DIV) with high-density CMOS array, which enables detailed study of the spatio-temporal activity of neuronal culture. We used the CMOS array to characterize the evolution of the inter-spike interval (ISI) distribution from putative single neurons, and estimate the network structure based on transfer entropy analysis, where each node corresponds to a single neuron. We observed that the ISI distributions gradually obeyed the power law with maturation of the network. The amount of information transferred between neurons increased at the early stage of development, but decreased as the network matured. These results suggest that both ISI and transfer entropy were very useful for characterizing the dynamic development of cultured neural cells over a few weeks. PMID:24109870

  12. Hyperswitch Network For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  13. A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Samanta, Soumen

    Teleportation processes over long distances become affected by the almost inevitable existence of noise which interferes with the entangled quantum channels. In view of this, intermediate nodes are introduced in the scheme. These nodes are connected in series through quantum entanglement. In this paper, we present a protocol for transferring an entangled four-particle cluster-type state in an integrated manner through the intermediate nodes. Its efficiency and advantage over the corresponding part by part teleportation process is discussed.

  14. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  15. Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand V. (Inventor); Monacos, Steve P. (Inventor)

    2015-01-01

    A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.

  16. Remote direct memory access

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  17. Direct memory access transfer completion notification

    DOEpatents

    Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos

    2010-07-27

    Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.

  18. Dynamic Contrast-enhanced Magnetic Resonance Imaging for Differentiating Between Primary Tumor, Metastatic Node and Normal Tissue in Head and Neck Cancer.

    PubMed

    Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng

    2018-06-01

    To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.

  19. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  20. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  1. Fem Formulation for Heat and Mass Transfer in Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  2. Peregrine Job Queues and Scheduling Policies | High-Performance Computing |

    Science.gov Websites

    batch batch-h long bigmem data-transfer feature Max wall time 1 hour 4 hours 2 days 2 days 10 days 10 # nodes per job 2 8 288 576 120 46 1 # of 24 core 64 GB Haswell nodes 2 8 0 1228 0 0 0 haswell # of 24core 32 GB nodes 2 16 576 0 126 0 0 24core # of 16core 32 GB nodes 2 8 195 0 162 0 5 16core, # of 24core

  3. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  4. Information spreading in Delay Tolerant Networks based on nodes' behaviors

    NASA Astrophysics Data System (ADS)

    Wu, Yahui; Deng, Su; Huang, Hongbin

    2014-07-01

    Information spreading in DTNs (Delay Tolerant Networks) adopts a store-carry-forward method, and nodes receive the message from others directly. However, it is hard to judge whether the information is safe in this communication mode. In this case, a node may observe other nodes' behaviors. At present, there is no theoretical model to describe the varying rule of the nodes' trusting level. In addition, due to the uncertainty of the connectivity in DTN, a node is hard to get the global state of the network. Therefore, a rational model about the node's trusting level should be a function of the node's own observing result. For example, if a node finds k nodes carrying a message, it may trust the information with probability p(k). This paper does not explore the real distribution of p(k), but instead presents a unifying theoretical framework to evaluate the performance of the information spreading in above case. This framework is an extension of the traditional SI (susceptible-infected) model, and is useful when p(k) conforms to any distribution. Simulations based on both synthetic and real motion traces show the accuracy of the framework. Finally, we explore the impact of the nodes' behaviors based on certain special distributions through numerical results.

  5. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  6. Scalable Node Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drotar, Alexander P.; Quinn, Erin E.; Sutherland, Landon D.

    2012-07-30

    Project description is: (1) Build a high performance computer; and (2) Create a tool to monitor node applications in Component Based Tool Framework (CBTF) using code from Lightweight Data Metric Service (LDMS). The importance of this project is that: (1) there is a need a scalable, parallel tool to monitor nodes on clusters; and (2) New LDMS plugins need to be able to be easily added to tool. CBTF stands for Component Based Tool Framework. It's scalable and adjusts to different topologies automatically. It uses MRNet (Multicast/Reduction Network) mechanism for information transport. CBTF is flexible and general enough to bemore » used for any tool that needs to do a task on many nodes. Its components are reusable and 'EASILY' added to a new tool. There are three levels of CBTF: (1) frontend node - interacts with users; (2) filter nodes - filters or concatenates information from backend nodes; and (3) backend nodes - where the actual work of the tool is done. LDMS stands for lightweight data metric servies. It's a tool used for monitoring nodes. Ltool is the name of the tool we derived from LDMS. It's dynamically linked and includes the following components: Vmstat, Meminfo, Procinterrupts and more. It works by: Ltool command is run on the frontend node; Ltool collects information from the backend nodes; backend nodes send information to the filter nodes; and filter nodes concatenate information and send to a database on the front end node. Ltool is a useful tool when it comes to monitoring nodes on a cluster because the overhead involved with running the tool is not particularly high and it will automatically scale to any size cluster.« less

  7. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo.

    PubMed

    Katsu, Kenjiro; Tokumori, Daisuke; Tatsumi, Norifumi; Suzuki, Atsushi; Yokouchi, Yuji

    2012-03-01

    During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node. Copyright © 2012. Published by Elsevier Inc.

  8. Secure message authentication system for node to node network

    NASA Astrophysics Data System (ADS)

    Sindhu, R.; Vanitha, M. M.; Norman, J.

    2017-10-01

    The Message verification remains some of the best actual methods for prevent the illegal and dis honored communication after presence progressed to WSNs (Wireless Sensor Networks). Intend for this purpose, several message verification systems must stand established, created on both symmetric key cryptography otherwise public key cryptosystems. Best of them will have some limits for great computational then statement above in count of deficiency of climb ability then flexibility in node settlement occurrence. In a polynomial based system was newly presented for these problems. Though, this system then situations delay will must the dimness of integral limitation firm in the point of polynomial: once the amount of message transferred remains the greater than the limitation then the opponent will completely improve the polynomial approaches. This paper suggests using ECC (Elliptic Curve Cryptography). Though using the node verification the technique in this paper permits some nodes to transfer a limitless amount of messages lacking misery in the limit problem. This system will have the message cause secrecy. Equally theoretic study then model effects show our planned system will be effective than the polynomial based method in positions of calculation then statement above in privacy points though message basis privacy.

  9. Research on centrality of urban transport network nodes

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Fu, Xiufen

    2017-05-01

    Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.

  10. System and method for merging clusters of wireless nodes in a wireless network

    DOEpatents

    Budampati, Ramakrishna S [Maple Grove, MN; Gonia, Patrick S [Maplewood, MN; Kolavennu, Soumitri N [Blaine, MN; Mahasenan, Arun V [Kerala, IN

    2012-05-29

    A system includes a first cluster having multiple first wireless nodes. One first node is configured to act as a first cluster master, and other first nodes are configured to receive time synchronization information provided by the first cluster master. The system also includes a second cluster having one or more second wireless nodes. One second node is configured to act as a second cluster master, and any other second nodes configured to receive time synchronization information provided by the second cluster master. The system further includes a manager configured to merge the clusters into a combined cluster. One of the nodes is configured to act as a single cluster master for the combined cluster, and the other nodes are configured to receive time synchronization information provided by the single cluster master.

  11. NEAMS-IPL MOOSE Framework Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, Andrew Edward; Permann, Cody James; Kong, Fande

    The Multiapp Picard iteration Milestone’s purpose was to support a framework level “tight-coupling” method within the hierarchical Multiapp’s execution scheme. This new solution scheme gives developers new choices for running multiphysics applications, particularly those with very strong nonlinear effects or those requiring coupling across disparate time or spatial scales. Figure 1 shows a typical Multiapp setup in MOOSE. Each node represents a separate simulation containing a separate equation system. MOOSE solves the equation system on each node in turn, in a user-controlled manner. Information can be aggregated or split and transferred from parent to child or child to parent asmore » needed between solves. Performing a tightly coupled execution scheme using this method wasn’t possible in the original implementation. This is was due to the inability to back up to a previous state once a converged solution was accepted at a particular Multiapp level.« less

  12. Multiplexing technique for computer communications via satellite channels

    NASA Technical Reports Server (NTRS)

    Binder, R.

    1975-01-01

    Multiplexing scheme combines technique of dynamic allocation with conventional time-division multiplexing. Scheme is designed to expedite short-duration interactive or priority traffic and to delay large data transfers; as result, each node has effective capacity of almost total channel capacity when other nodes have light traffic loads.

  13. Checkpointing for a hybrid computing node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  14. Intersection of transfer cells with phloem biology—broad evolutionary trends, function, and induction

    PubMed Central

    Andriunas, Felicity A.; Zhang, Hui-Ming; Xia, Xue; Patrick, John W.; Offler, Christina E.

    2013-01-01

    Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals. PMID:23847631

  15. The epidemic spreading model and the direction of information flow in brain networks.

    PubMed

    Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P

    2017-05-15

    The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-29

    Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.

  17. A wireless energy transfer platform, integrated at the bedside.

    PubMed

    De Clercq, Hans; Puers, Robert

    2013-01-01

    This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.

  18. Spatial correlation analysis of urban traffic state under a perspective of community detection

    NASA Astrophysics Data System (ADS)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  19. Intelligent Data Transfer for Multiple Sensor Networks over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael (Inventor)

    2018-01-01

    A sensor network may be configured to operate in extreme temperature environments. A sensor may be configured to generate a frequency carrier, and transmit the frequency carrier to a node. The node may be configured to amplitude modulate the frequency carrier, and transmit the amplitude modulated frequency carrier to a receiver.

  20. Protocol Architecture Model Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.

  1. Identifying influential nodes in complex networks: A node information dimension approach

    NASA Astrophysics Data System (ADS)

    Bian, Tian; Deng, Yong

    2018-04-01

    In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.

  2. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  3. Single-node orbit analsyis with radiation heat transfer only

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1977-01-01

    The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.

  4. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  5. [A case of leptomeningeal melanomatosis with acute paraplegia and multiple cranial nerve palsies].

    PubMed

    Hattori, Kasumi; Matsuda, Nozomu; Murakami, Takenobu; Ito, Eiichi; Ugawa, Yoshikazu

    2017-12-27

    A 62-year-old man with acute paraplegia was transferred to our hospital. He had flaccid paraplegia and multiple cranial nerve palsies, such as mydriasis of the left pupil, abduction palsy of the left eye, hoarseness and dysphagia, but no meningeal irritation signs. MRI of the spinal canal showed swellings of the conus medullaris and the cauda equine, and also contrast enhancement of the spinal meninges. The cerebrospinal fluid (CSF) showed pleocytosis and protein increment. The lymph node was swollen in his right axilla. The biopsy specimen from the right axillary lymph node revealed metastasis of malignant melanoma histologically. Careful check-up of his whole body found a malignant melanoma in the subungual region of the right ring finger. Repeated cytological examination revealed melanoma cells in the CSF, confirming the diagnosis of leptomeningeal melanomatosis. His consciousness was gradually deteriorated. His family members chose supportive care instead of chemotherapy or surgical therapy after full information about his conditions. Finally, he died 60 days after transfer to our hospital. This is a rare case of leptomenigeal melanomatosis presenting with acute paraplegia and multiple cranial nerve palsies. Careful follow-up and repeated studies are vital for the early diagnosis of leptomenigeal melanomatosis in spite of atypical clinical presentation.

  6. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    PubMed Central

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  7. Information transmission on hybrid networks

    NASA Astrophysics Data System (ADS)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  8. A hierarchical stress release model for synthetic seismicity

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark

    1997-06-01

    We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to use the model for forward prediction.

  9. Decentralized session initiation protocol solution in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Han, Lu; Jin, Zhigang; Shu, Yantai; Dong, Linfang

    2006-10-01

    With the fast development of ad hoc networks, SIP has attracted more and more attention in multimedia service. This paper proposes a new architecture to provide SIP service for ad hoc users, although there is no centralized SIP server deployed. In this solution, we provide the SIP service by the introduction of two nodes: Designated SIP Server (DS) and its Backup Server (BDS). The nodes of ad hoc network designate DS and BDS when they join the session nodes set and when some pre-defined events occur. A new sip message type called REGISTRAR is presented so nodes can send others REGISTRAR message to declare they want to be DS. According to the IP information taken in the message, an algorithm works like the election of DR and BDR in OSPF protocol is used to vote DS and BDS SIP servers. Naturally, the DS will be replaced by BDS when the DS is down for predicable or unpredictable reasons. To facilitate this, the DS should register to the BDS and transfer a backup of the SIP users' database. Considering the possibility DS or BDS may abruptly go down, a special policy is given. When there is no DS and BDS, a new election procedure is triggered just like the startup phase. The paper also describes how SIP works normally in the decentralized model as well as the evaluation of its performance. All sessions based on SIP in ad hoc such as DS voting have been tested in the real experiments within a 500m*500m square area where about 30 random nodes are placed.

  10. Dynamic resource allocation scheme for distributed heterogeneous computer systems

    NASA Technical Reports Server (NTRS)

    Liu, Howard T. (Inventor); Silvester, John A. (Inventor)

    1991-01-01

    This invention relates to a resource allocation in computer systems, and more particularly, to a method and associated apparatus for shortening response time and improving efficiency of a heterogeneous distributed networked computer system by reallocating the jobs queued up for busy nodes to idle, or less-busy nodes. In accordance with the algorithm (SIDA for short), the load-sharing is initiated by the server device in a manner such that extra overhead in not imposed on the system during heavily-loaded conditions. The algorithm employed in the present invention uses a dual-mode, server-initiated approach. Jobs are transferred from heavily burdened nodes (i.e., over a high threshold limit) to low burdened nodes at the initiation of the receiving node when: (1) a job finishes at a node which is burdened below a pre-established threshold level, or (2) a node is idle for a period of time as established by a wakeup timer at the node. The invention uses a combination of the local queue length and the local service rate ratio at each node as the workload indicator.

  11. An Extraction Method of an Informative DOM Node from a Web Page by Using Layout Information

    NASA Astrophysics Data System (ADS)

    Tsuruta, Masanobu; Masuyama, Shigeru

    We propose an informative DOM node extraction method from a Web page for preprocessing of Web content mining. Our proposed method LM uses layout data of DOM nodes generated by a generic Web browser, and the learning set consists of hundreds of Web pages and the annotations of informative DOM nodes of those Web pages. Our method does not require large scale crawling of the whole Web site to which the target Web page belongs. We design LM so that it uses the information of the learning set more efficiently in comparison to the existing method that uses the same learning set. By experiments, we evaluate the methods obtained by combining one that consists of the method for extracting the informative DOM node both the proposed method and the existing methods, and the existing noise elimination methods: Heur removes advertisements and link-lists by some heuristics and CE removes the DOM nodes existing in the Web pages in the same Web site to which the target Web page belongs. Experimental results show that 1) LM outperforms other methods for extracting the informative DOM node, 2) the combination method (LM, {CE(10), Heur}) based on LM (precision: 0.755, recall: 0.826, F-measure: 0.746) outperforms other combination methods.

  12. Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David

    2003-09-01

    As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less

  13. Space physics analysis network node directory (The Yellow Pages): Fourth edition

    NASA Technical Reports Server (NTRS)

    Peters, David J.; Sisson, Patricia L.; Green, James L.; Thomas, Valerie L.

    1989-01-01

    The Space Physics Analysis Network (SPAN) is a component of the global DECnet Internet, which has over 17,000 host computers. The growth of SPAN from its implementation in 1981 to its present size of well over 2,500 registered SPAN host computers, has created a need for users to acquire timely information about the network through a central source. The SPAN Network Information Center (SPAN-NIC) an online facility managed by the National Space Science Data Center (NSSDC) was developed to meet this need for SPAN-wide information. The remote node descriptive information in this document is not currently contained in the SPAN-NIC database, but will be incorporated in the near future. Access to this information is also available to non-DECnet users over a variety of networks such as Telenet, the NASA Packet Switched System (NPSS), and the TCP/IP Internet. This publication serves as the Yellow Pages for SPAN node information. The document also provides key information concerning other computer networks connected to SPAN, nodes associated with each SPAN routing center, science discipline nodes, contacts for primary SPAN nodes, and SPAN reference information. A section on DECnet Internetworking discusses SPAN connections with other wide-area DECnet networks (many with thousands of nodes each). Another section lists node names and their disciplines, countries, and institutions in the SPAN Network Information Center Online Data Base System. All remote sites connected to US-SPAN and European-SPAN (E-SPAN) are indexed. Also provided is information on the SPAN tail circuits, i.e., those remote nodes connected directly to a SPAN routing center, which is the local point of contact for resolving SPAN-related problems. Reference material is included for those who wish to know more about SPAN. Because of the rapid growth of SPAN, the SPAN Yellow Pages is reissued periodically.

  14. An MPA-IO interface to HPSS

    NASA Technical Reports Server (NTRS)

    Jones, Terry; Mark, Richard; Martin, Jeanne; May, John; Pierce, Elsie; Stanberry, Linda

    1996-01-01

    This paper describes an implementation of the proposed MPI-IO (Message Passing Interface - Input/Output) standard for parallel I/O. Our system uses third-party transfer to move data over an external network between the processors where it is used and the I/O devices where it resides. Data travels directly from source to destination, without the need for shuffling it among processors or funneling it through a central node. Our distributed server model lets multiple compute nodes share the burden of coordinating data transfers. The system is built on the High Performance Storage System (HPSS), and a prototype version runs on a Meiko CS-2 parallel computer.

  15. Triangular node for Transmission-Line Modeling (TLM) applied to bio-heat transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, rectangles are used to discretize two-dimensional problems. The drawback in using rectangular shapes is that instead of refining only the domain of interest, a large additional domain will also be refined in the x and y axes, which results in increased computational time and memory space. In this paper, we developed a triangular node for TLM applied to bio-heat transfer that does not have the drawback associated with the rectangular nodes. The model includes heat source, blood perfusion (advection), boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. A matrix equation for TLM, which simplifies the solution of time-domain problems or solves steady-state problems, was also developed. The predicted results were compared against results obtained from the solution of a simplified two-dimensional problem, and they agreed within 1% for a mesh length of triangular faces of 59µm±9µm (mean±standard deviation) and a time step of 1ms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. High Speed All-Optical Data Distribution Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Hodara, Henri

    2017-11-01

    This article describes the performance and capabilities of an all-optical network featuring low latency, high speed file transfer between serially connected optical nodes. A basic component of the network is a network interface card (NIC) implemented through a unique planar lightwave circuit (PLC) that performs add/drop data and optical signal amplification. The network uses a linear bus topology with nodes in a "T" configuration, as described in the text. The signal is sent optically (hence, no latency) to all nodes via wavelength division multiplexing (WDM), with each node receiver tuned to wavelength of choice via an optical de-multiplexer. Each "T" node routes a portion of the signal to/from the bus through optical couplers, embedded in the network interface card (NIC), to each of the 1 through n computers.

  17. Strategies for synchronisation in an evolving telecommunications network

    NASA Astrophysics Data System (ADS)

    Avery, Rob

    1992-06-01

    The achievement of precise synchronization in the telecommunications environment is addressed. Transmitting the timing from node to node has been the inherent problem for all digital networks. Traditional network equipment used to transfer synchronization, such as digital switching ststems, adds impairments to the once traceable signal. As the synchronization signals are passed from node to node, they lose stability by passing through intervening clocks. Timing would be an integrated part of all new network and service deployments. New transmission methods, such as the Synchronous Digital Hierarchy (SDH), survivable network topologies and the issues that arise from them, necessitate a review of current network synchronization strategies. Challenges that face the network are itemized. A demonstration of why localized Primary Reference Clocks (PRC) in key nodes and the Synchronization Supply Unit (SSU) clock architecture of transit and local node clocks is a technically and economically viable solution to the issues facing network planners today is given.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    A Randon Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed r. They analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only one informed node. Then in each round, each informed node chooses a neighbor uniformly at random and informs it. They prove that this algorithm informs every node in the largest component of a RGG in {Omicron}({radical}n/r) rounds with high probability. This holds for any value of r larger than the criticalmore » value for the emergence of a giant component. In particular, the result implies that the diameter of the giant component is {Theta}({radical}n/r).« less

  19. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  20. Lattice QCD calculation using VPP500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Ohta, Shigemi

    1995-02-01

    A new vector parallel supercomputer, Fujitsu VPP500, was installed at RIKEN earlier this year. It consists of 30 vector computers, each with 1.6 GFLOPS peak speed and 256 MB memory, connected by a crossbar switch with 400 MB/s peak data transfer rate each way between any pair of nodes. The authors developed a Fortran lattice QCD simulation code for it. It runs at about 1.1 GFLOPS sustained per node for Metropolis pure-gauge update, and about 0.8 GFLOPS sustained per node for conjugate gradient inversion of staggered fermion matrix.

  1. Dynamic node immunization for restraint of harmful information diffusion in social networks

    NASA Astrophysics Data System (ADS)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-08-01

    To restrain the spread of harmful information is crucial for the healthy and sustainable development of social networks. We address the problem of restraining the spread of harmful information by immunizing nodes in the networks. Previous works have developed methods based on the network topology or studied how to immunize nodes in the presence of initial infected nodes. These static methods, in which nodes are immunized at once, may have poor performance in the certain situation due to the dynamics of diffusion. To tackle this problem, we introduce a new dynamic immunization problem of immunizing nodes during the process of the diffusion in this paper. We formulate the problem and propose a novel heuristic algorithm by dealing with two sub-problems: (1) how to select a node to achieve the best immunization effect at the present time? (2) whether the selected node should be immunized right now? Finally, we demonstrate the effectiveness of our algorithm through extensive experiments on various real datasets.

  2. A spread willingness computing-based information dissemination model.

    PubMed

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  3. A Spread Willingness Computing-Based Information Dissemination Model

    PubMed Central

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  4. Knowledge diffusion of dynamical network in terms of interaction frequency.

    PubMed

    Liu, Jian-Guo; Zhou, Qing; Guo, Qiang; Yang, Zhen-Hua; Xie, Fei; Han, Jing-Ti

    2017-09-07

    In this paper, we present a knowledge diffusion (SKD) model for dynamic networks by taking into account the interaction frequency which always used to measure the social closeness. A set of agents, which are initially interconnected to form a random network, either exchange knowledge with their neighbors or move toward a new location through an edge-rewiring procedure. The activity of knowledge exchange between agents is determined by a knowledge transfer rule that the target node would preferentially select one neighbor node to transfer knowledge with probability p according to their interaction frequency instead of the knowledge distance, otherwise, the target node would build a new link with its second-order neighbor preferentially or select one node in the system randomly with probability 1 - p. The simulation results show that, comparing with the Null model defined by the random selection mechanism and the traditional knowledge diffusion (TKD) model driven by knowledge distance, the knowledge would spread more fast based on SKD driven by interaction frequency. In particular, the network structure of SKD would evolve as an assortative one, which is a fundamental feature of social networks. This work would be helpful for deeply understanding the coevolution of the knowledge diffusion and network structure.

  5. FloCon 2008 Proceedings

    DTIC Science & Technology

    2008-01-01

    anomalous traffic of the node ÷ total anomalous traffic – Make parent nodes by merging child node information. prefix/length coverage/collateral...A T A U P L O A D F L O W S E N S O R 5. DATA DOWNLOAD FLOW SENSOR 1. RECON SNORT: KICKASS_PORN DRAGON: PORN HARDCORE SOURCEDEST SOURCE SOURCE...traffic • Make parent nodes by merging child node information. prefix/length coverage/collateral 0.0.0.0/0 100/100 depth=0 non divided 0.0.0.0/1 50/30

  6. Data driven CAN node reliability assessment for manufacturing system

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  7. Network-based study of Lagrangian transport and mixing

    NASA Astrophysics Data System (ADS)

    Padberg-Gehle, Kathrin; Schneide, Christiane

    2017-10-01

    Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows - the Bickley jet as well as the Antarctic stratospheric polar vortex.

  8. Social relevance: toward understanding the impact of the individual in an information cascade

    NASA Astrophysics Data System (ADS)

    Hall, Robert T.; White, Joshua S.; Fields, Jeremy

    2016-05-01

    Information Cascades (IC) through a social network occur due to the decision of users to disseminate content. We define this decision process as User Diffusion (UD). IC models typically describe an information cascade by treating a user as a node within a social graph, where a node's reception of an idea is represented by some activation state. The probability of activation then becomes a function of a node's connectedness to other activated nodes as well as, potentially, the history of activation attempts. We enrich this Coarse-Grained User Diffusion (CGUD) model by applying actor type logics to the nodes of the graph. The resulting Fine-Grained User Diffusion (FGUD) model utilizes prior research in actor typing to generate a predictive model regarding the future influence a user will have on an Information Cascade. Furthermore, we introduce a measure of Information Resonance that is used to aid in predictions regarding user behavior.

  9. A Hop-Sensitive Mechanism to Establish Route Optimization in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Gnanaraj, J. Isac; Newton, P. Calduwel; Arockiam, L.; Kim, Tai-Hoon

    The mobile network plays a vital role in mobile communications. It supports both host mobility and network mobility. The mobile network which supports network mobility can be called as NEMO. The NEMO refers to NEtwork MObility or mobile network that moves. Though NEMO provides many supports, it also suffers due to Quality of Service (QoS) issues. One such issue is Route Optimization (RO). When a Mobile Node (MN) is away from Home Network (HN), it will send a binding update to Home Agent (HA) in HN to inform its movement. If the Correspondent Node (CN) wants to send data to MN, it will send data through HA. In this scenario, three networks such as HN, Foreign Network (FN) and Correspondent Network are involved in data transfer. The involvement of these three networks affects the QoS. This paper concentrates on some of the QoS parameters to propose a QoS mechanism to establish RO among these three networks and significantly increases performance of the mobile network.

  10. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  11. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  12. Alignment of dynamic networks

    PubMed Central

    Vijayan, V.; Critchlow, D.; Milenković, T.

    2017-01-01

    Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980

  13. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  14. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  15. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  16. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  17. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  18. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    PubMed

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  19. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing

    PubMed Central

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-01

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level. PMID:28075372

  20. High speed polling protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.

  1. Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Caldarelli, Guido; Squartini, Tiziano

    2018-06-01

    Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.

  2. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-01-01

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  3. Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-03-10

    This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  4. Empirical Research of Micro-blog Information Transmission Range by Guard nodes

    NASA Astrophysics Data System (ADS)

    Chen, Shan; Ji, Ling; Li, Guang

    2018-03-01

    The prediction and evaluation of information transmission in online social networks is a challenge. It is significant to solve this issue for monitoring public option and advertisement communication. First, the prediction process is described by a set language. Then with Sina Microblog system as used as the case object, the relationship between node influence and coverage rate is analyzed by using the topology structure of information nodes. A nonlinear model is built by a statistic method in a specific, bounded and controlled Microblog network. It can predict the message coverage rate by guard nodes. The experimental results show that the prediction model has higher accuracy to the source nodes which have lower influence in social network and practical application.

  5. Delayed grafting for banked skin graft in lymph node flap transfer.

    PubMed

    Ciudad, Pedro; Date, Shivprasad; Orfaniotis, Georgios; Dower, Rory; Nicoli, Fabio; Maruccia, Michele; Lin, Shu-Ping; Chuang, Chu-Yi; Chuang, Tsan-Yu; Wang, Gou-Jen; Chen, Hung-Chi

    2017-02-01

    Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases. The need to prevent graft loss on these iatrogenic wounds made us explore the possibility of attempting delayed skin grafting. We have herein reported our experience with delayed grafting with autologous banked split skin grafts in cases of LNF transfer for lymphoedema of the extremities. Ten patients with International Society of Lymphology stage II-III lymphoedema of upper or lower extremity were included in this study over an 8-month period. All patients were thoroughly evaluated and subjected to lymph node flap transfer. The split skin graft was harvested and banked at the donor site, avoiding immediate resurfacing over the flap. The same was carried out in an aseptic manner as a bedside procedure after confirming flap viability and allowing flap swelling to subside. Patients were followed up to evaluate long-term outcomes. Flap survival was 100%. Successful delayed skin grafting was done between the 4th and 6th post-operative day as a bedside procedure under local anaesthesia. The split thickness skin grafts (STSG) takes more than 97%. One patient needed additional medications during the bedside procedure. All patients had minimal post-operative pain and skin graft requirement. The patients were also reported to be satisfied with the final aesthetic results. There were no complications related to either the skin grafts or donor sites during the entire period of follow-up. Delayed split skin grafting is a reliable method of resurfacing lymph node flaps and has been shown to reduce the possibility of flap complications as well as the operative time and costs. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. The Road to DLCZ Protocol in Rubidium Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Chang; Pu, Yunfei; Jiang, Nan; Chang, Wei; Zhang, Sheng; CenterQuantum Information, InstituteInterdisciplinary Information Sciences, Tsinghua Univ Team

    2017-04-01

    Quantum communication is the powerful approach achieving a fully secure information transferal. The DLCZ protocol ensures that photon linearly decays with transferring distance increasing, which improves the success potential and shortens the time to build up an entangled channel. Apart from that, it provides an advanced idea that building up a quantum internet based on different nodes connected to different sites and themselves. In our laboratory, three sets of laser-cooled Rubidium 87 ensemble have been built. Two of them serve as the single photon emitter, which generate the entanglement between ensemble and photon. What's more, crossed AODs are equipped to multiplex and demultiplex optical circuit so that ensemble is divided into 2 hundred of 2D sub-memory cells. And the third ensemble is used as quantum telecommunication, which converts 780nm photon into telecom-wavelength one. And we have been building double-MOT system, which provides more atoms in ensemble and larger optical density.

  7. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  8. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  9. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  10. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  11. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  12. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  13. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    PubMed

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  14. Weighted compactness function based label propagation algorithm for community detection

    NASA Astrophysics Data System (ADS)

    Zhang, Weitong; Zhang, Rui; Shang, Ronghua; Jiao, Licheng

    2018-02-01

    Community detection in complex networks, is to detect the community structure with the internal structure relatively compact and the external structure relatively sparse, according to the topological relationship among nodes in the network. In this paper, we propose a compactness function which combines the weight of nodes, and use it as the objective function to carry out the node label propagation. Firstly, according to the node degree, we find the sets of core nodes which have great influence on the network. The more the connections between the core nodes and the other nodes are, the larger the amount of the information these kernel nodes receive and transform. Then, according to the similarity of the nodes between the core nodes sets and the nodes degree, we assign weights to the nodes in the network. So the label of the nodes with great influence will be the priority in the label propagation process, which effectively improves the accuracy of the label propagation. The compactness function between nodes and communities in this paper is based on the nodes influence. It combines the connections between nodes and communities with the degree of the node belongs to its neighbor communities based on calculating the node weight. The function effectively uses the information of nodes and connections in the network. The experimental results show that the proposed algorithm can achieve good results in the artificial network and large-scale real networks compared with the 8 contrast algorithms.

  15. Dynamic storage in resource-scarce browsing multimedia applications

    NASA Astrophysics Data System (ADS)

    Elenbaas, Herman; Dimitrova, Nevenka

    1998-10-01

    In the convergence of information and entertainment there is a conflict between the consumer's expectation of fast access to high quality multimedia content through narrow bandwidth channels versus the size of this content. During the retrieval and information presentation of a multimedia application there are two problems that have to be solved: the limited bandwidth during transmission of the retrieved multimedia content and the limited memory for temporary caching. In this paper we propose an approach for latency optimization in information browsing applications. We proposed a method for flattening hierarchically linked documents in a manner convenient for network transport over slow channels to minimize browsing latency. Flattening of the hierarchy involves linearization, compression and bundling of the document nodes. After the transfer, the compressed hierarchy is stored on a local device where it can be partly unbundled to fit the caching limits at the local site while giving the user availability to the content.

  16. Information loss method to measure node similarity in networks

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Luo, Peng; Wu, Chong

    2014-09-01

    Similarity measurement for the network node has been paid increasing attention in the field of statistical physics. In this paper, we propose an entropy-based information loss method to measure the node similarity. The whole model is established based on this idea that less information loss is caused by seeing two more similar nodes as the same. The proposed new method has relatively low algorithm complexity, making it less time-consuming and more efficient to deal with the large scale real-world network. In order to clarify its availability and accuracy, this new approach was compared with some other selected approaches on two artificial examples and synthetic networks. Furthermore, the proposed method is also successfully applied to predict the network evolution and predict the unknown nodes' attributions in the two application examples.

  17. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency (ESA) and NASA. Shaking hands after the signing are Alan Thirkettle (center), International Space Station Program manager for Node 2, ESA; and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At ceremony highlighting the arrival of two major components of the International Space Station, Node 2 and the Japanese Experiment Module (JEM), ownership of Node 2 was officially transferred between the European Space Agency and NASA. Shaking hands after the signing are Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA). At right is NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. Effects of individual popularity on information spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  20. Management of lymphatic malformations in children.

    PubMed

    Bagrodia, Naina; Defnet, Ann M; Kandel, Jessica J

    2015-06-01

    To review the literature on lymphatic malformations and to provide current opinion about the management of these lesions. Current treatment options include nonoperative management, surgery, sclerotherapy, radiofrequency ablation, and laser therapy. New therapies are emerging, including sildenafil, propranolol, sirolimus, and vascularized lymph node transfer. The primary focus of management centers on the patient's quality of life. Multimodal treatment of lymphatic malformations continues to expand as new information about the biology and genetics of these lesions is discovered, in addition to knowledge gained from clinical practice. A patient-centered approach should guide timing and modality of treatment. Continued study of lymphatic malformations will increase and solidify a treatment algorithm for these complicated lesions.

  1. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  2. Double autologous lymph node transplantation (ALNT) at the level of the knee and inguinal region for advanced lymphoedema of the lower limb (elephantiasis).

    PubMed

    Gómez Martín, C; Murillo, C; Maldonado, A A; Cristóbal, L; Fernández-Cañamaque, J L

    2014-02-01

    Primary lower-limb lymphoedema is a chronic, progressive and debilitating condition with a difficult management, especially in advanced cases (elephantiasis). Recently, autologous lymph node transplantation (ALNT) appears to be a promising treatment for extremity lymphoedema. A case of a double ALNT for an advanced primary lower-limb lymphoedema is here reported: a contralateral inguinal lymph node flap was transferred to the knee and, in a second surgery, a thoracic lymph node flap was transplanted to the inguinal region. Clinical outcomes at 5 months postoperatively are very satisfactory with reduction in limb circumferences and improvement in skin quality and social impairment. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymph node of cows during the initial response after intramammary challenge with E. coli endotoxin.

    PubMed

    Ostensson, Karin; Lun, Shichun

    2008-07-02

    The first hours after antigen stimulation, interactions occur influencing the outcome of the immunological reaction. Immunoglobulins originate in blood and/or are locally synthesized. The transfer of Ig isotypes (Igs) in the udder has been studied previously but without the possibility to distinguish between the endothelium and the epithelium. The purpose of this study was to map the Ig transfer through each barrier, separately, and Ig transfer in the local lymph nodes of the bovine udder during the initial innate immune response. The content of IgG1, IgG2, IgM, IgA and albumin (BSA) was examined in peripheral/afferent mammary lymph and lymph leaving the supramammary lymph nodes, and in blood and milk before (0 h) and during 4 hours after intramammary challenge with Esherichia coli endotoxin in 5 cows. Igs increased most rapidly in afferent lymph resulting in higher concentrations than in efferent lymph at postinfusion hour (PIH) 2, contrary to before challenge. Ig concentrations in milk were lower than in lymph; except for IgA at 0 h; and they increased more slowly. Afferent lymph:serum and efferent lymph:serum concentration ratios (CR) of Igs were similar to those of BSA but slightly lower. Milk:afferent lymph (M:A) CRs of each Ig, except for IgG2, showed strikingly different pattern than those of BSA. The M:A CR of IgG1, IgM and IgA were higher than that of BSA before challenge and the CR of IgA and IgG1 remained higher also thereafter. At PIH 2 there was a drop in Ig CRs, except for IgG2, in contrast to the BSA CR which gradually increased. The M:A CR of IgM and Ig A decreased from 0 h to PIH 4, in spite of increasing permeability. The transfer of Igs through the endothelium appeared to be merely a result of diffusion although their large molecular size may hamper the diffusion. The transfer through the epithelium and the Ig concentrations in milk seemed more influenced by selective mechanisms and local sources, respectively. Our observations indicate a selective mechanism in the transfer of IgG1 through the epithelium also in lactating glands, not previously shown; a local synthesis of IgA and possibly of IgM, released primarily into milk, not into tissue fluid; that IgG2 transfer through both barriers is a result of passive diffusion only and that the content of efferent lymph is strongly influenced by IgG1, IgM and IgA in the mammary tissue, brought to the lymph node by afferent lymph.

  4. Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymph node of cows during the initial response after intramammary challenge with E. coli endotoxin

    PubMed Central

    Östensson, Karin; Lun, Shichun

    2008-01-01

    Background The first hours after antigen stimulation, interactions occur influencing the outcome of the immunological reaction. Immunoglobulins originate in blood and/or are locally synthesized. The transfer of Ig isotypes (Igs) in the udder has been studied previously but without the possibility to distinguish between the endothelium and the epithelium. The purpose of this study was to map the Ig transfer through each barrier, separately, and Ig transfer in the local lymph nodes of the bovine udder during the initial innate immune response. Methods The content of IgG1, IgG2, IgM, IgA and albumin (BSA) was examined in peripheral/afferent mammary lymph and lymph leaving the supramammary lymph nodes, and in blood and milk before (0 h) and during 4 hours after intramammary challenge with Esherichia coli endotoxin in 5 cows. Results Igs increased most rapidly in afferent lymph resulting in higher concentrations than in efferent lymph at postinfusion hour (PIH) 2, contrary to before challenge. Ig concentrations in milk were lower than in lymph; except for IgA at 0 h; and they increased more slowly. Afferent lymph:serum and efferent lymph:serum concentration ratios (CR) of Igs were similar to those of BSA but slightly lower. Milk:afferent lymph (M:A) CRs of each Ig, except for IgG2, showed strikingly different pattern than those of BSA. The M:A CR of IgG1, IgM and IgA were higher than that of BSA before challenge and the CR of IgA and IgG1 remained higher also thereafter. At PIH 2 there was a drop in Ig CRs, except for IgG2, in contrast to the BSA CR which gradually increased. The M:A CR of IgM and Ig A decreased from 0 h to PIH 4, in spite of increasing permeability. Conclusion The transfer of Igs through the endothelium appeared to be merely a result of diffusion although their large molecular size may hamper the diffusion. The transfer through the epithelium and the Ig concentrations in milk seemed more influenced by selective mechanisms and local sources, respectively. Our observations indicate a selective mechanism in the transfer of IgG1 through the epithelium also in lactating glands, not previously shown; a local synthesis of IgA and possibly of IgM, released primarily into milk, not into tissue fluid; that IgG2 transfer through both barriers is a result of passive diffusion only and that the content of efferent lymph is strongly influenced by IgG1, IgM and IgA in the mammary tissue, brought to the lymph node by afferent lymph. PMID:18597683

  5. Electronic Resources for Security Related Information, CIAC-2307 R.1

    DTIC Science & Technology

    1994-12-01

    administrators NETwork - Statistics about the network NODEntry node1 <node2 <…>> - BITEARN NODES entry for the specified node(s) NODEntry node1 / abc */xyz...Just the “:xyz.” tag and all tags whose name starts with “ abc ” PATHs snode node1 <node2 <…>> - BITNET path between “snode” and the specified node(s...protect their data and sytems . The mention of vendors or product names does not imply criticism or endorsement by the National Institute of Standards

  6. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist

    PubMed Central

    Katz, Laura A.

    2015-01-01

    While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages. PMID:26323756

  7. Nyberg in Node 1

    NASA Image and Video Library

    2013-06-14

    ISS036-E-008126 (14 June 2013) --- Expedition 36 Flight Engineer Karen Nyberg of NASA puts together a meal in the Unity node of the International Space Station on the eve of a special but busy day for the six person crew aboard the outpost. The European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein” is scheduled to dock to the orbital outpost June 15, 2013, following a ten-day period of free-flight.

  8. The improvement and simulation for LEACH clustering routing protocol

    NASA Astrophysics Data System (ADS)

    Ji, Ai-guo; Zhao, Jun-xiang

    2017-01-01

    An energy-balanced unequal multi-hop clustering routing protocol LEACH-EUMC is proposed in this paper. The candidate cluster head nodes are elected firstly, then they compete to be formal cluster head nodes by adding energy and distance factors, finally the date are transferred to sink through multi-hop. The results of simulation show that the improved algorithm is better than LEACH in network lifetime, energy consumption and the amount of data transmission.

  9. Merced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedstrom, Gerald; Beck, Bret; Mattoon, Caleb

    2016-10-01

    Merced performs a multi-dimensional integral tl generate so-called 'transfer matrices' for use in deterministic radiation transport applications. It produces transfer matrices on the user-defind energy grid. The angular dependence of outgoing products is captured in a Legendre expansion, up to a user-specified maximun Legendre order. Merced calculations can use multi-threading for enhanced performance on a single compute node.

  10. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  11. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  12. Trust index based fault tolerant multiple event localization algorithm for WSNs.

    PubMed

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  13. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    PubMed Central

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972

  14. Extension of analog network coding in wireless information exchange

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Huang, Jiaqing

    2012-01-01

    Ever since the concept of analog network coding(ANC) was put forward by S.Katti, much attention has been focused on how to utilize analog network coding to take advantage of wireless interference, which used to be considered generally harmful, to improve throughput performance. Previously, only the case of two nodes that need to exchange information has been fully discussed while the issue of extending analog network coding to more than three nodes remains undeveloped. In this paper, we propose a practical transmission scheme to extend analog network coding to more than two nodes that need to exchange information among themselves. We start with the case of three nodes that need to exchange information and demonstrate that through utilizing our algorithm, the throughput can achieve 33% and 20% increase compared with that of traditional transmission scheduling and digital network coding, respectively. Then, we generalize the algorithm so that it can fit for occasions with any number of nodes. We also discuss some technical issues and throughput analysis as well as the bit error rate.

  15. High Performance Data Transfer for Distributed Data Intensive Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin; Cottrell, R 'Les' A.; Hanushevsky, Andrew B.

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp andmore » GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.« less

  16. RoCoMAR: robots' controllable mobility aided routing and relay architecture for mobile sensor networks.

    PubMed

    Le, Duc Van; Oh, Hoon; Yoon, Seokhoon

    2013-07-05

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  17. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  18. A Mobile Asset Tracking System Architecture under Mobile-Stationary Co-Existing WSNs

    PubMed Central

    Kim, Tae Hyon; Jo, Hyeong Gon; Lee, Jae Shin; Kang, Soon Ju

    2012-01-01

    The tracking of multiple wireless mobile nodes is not easy with current legacy WSN technologies, due to their inherent technical complexity, especially when heavy traffic and frequent movement of mobile nodes are encountered. To enable mobile asset tracking under these legacy WSN systems, it is necessary to design a specific system architecture that can manage numerous mobile nodes attached to mobile assets. In this paper, we present a practical system architecture including a communication protocol, a three-tier network, and server-side middleware for mobile asset tracking in legacy WSNs consisting of mobile-stationary co-existing infrastructures, and we prove the functionality of this architecture through careful evaluation in a test bed. Evaluation was carried out in a microwave anechoic chamber as well as on a straight road near our office. We evaluated communication mobility performance between mobile and stationary nodes, location-awareness performance, system stability under numerous mobile node conditions, and the successful packet transfer rate according to the speed of the mobile nodes. The results indicate that the proposed architecture is sufficiently robust for application in realistic mobile asset tracking services that require a large number of mobile nodes. PMID:23242277

  19. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity

    PubMed Central

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-01-01

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075

  20. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.

    PubMed

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-09-20

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  1. Microbiological Horticultural Internship Final Abstract

    NASA Technical Reports Server (NTRS)

    Palmer, Shane R.; Spencer, Lashelle (Editor)

    2017-01-01

    GMO dwarf plum (Prunus domestica) is being evaluated as a candidate food crop for long duration space flight missions. A project was undertaken to develop a protocol for transferring selected genetic lines of GMO plum (previously maintained in pots and propagated by cuttings at NASA's Kennedy Space Center in Florida) into in vitro tissue culture. In vitro culture may reduce the space, materials, and labor required to maintain the current lines of GMO plum and better preserve them for future study. Fresh plant material from three selected GMO plum lines (NASA-5, NASA-10, and NASA-11) and a non-modified control line (Control-5) were processed aseptically into in vitro culture on four separate occasions. The impact of multiple treatments on the successful growth of GMO plum tissue in vitro were tested: Parent explant tissue type (leaf petioles, stem nodes containing buds and internodes without buds), tissue sterilization method [soaking in 10 bleach only (5 min for petioles or 10 min for nodesinternodes), or soaking in 70 EtOH (30 sec) followed by 10 bleach (5 min for petioles and 10 min for nodesinternodes)], and media type [three Murashige and Skoog-based medias (SGM, SRM, and SRM+2,4-D) and one recipe containing woody plant media (WPM)]. 22.2 of the plates containing tissue sterilized with bleach alone developed microbial contamination after two weeks, while only 11.8 of plates containing tissue sterilized sequentially with EtOH and bleach developed contamination. Node bud tissue from all four genetic lines of plum produced leafy plantlets on SGM and SRM media after 4-6 weeks. The most numerous and well-developed plantlets were present on SGM. Upon reaching suitable size, plantlets were transferred to larger media containers for further growth. Some node bud growth occurred on SRM+2,4-D and WPM 2.5 weeks after plating, however as of yet no pieces on SRM+2,4-D have adequate development for transferring. Tissue pieces from NASA-5 plated on WPM are developing leaves and will be ready for transferring soon. Petioles and internode tissue lacking bud meristem failed to produce any plantlets on any plates, however petioles developed large masses of undifferentiated callus tissue on SRM+2,4-D media. These callused pieces were then transferred to SRM+TDZ media, which resulted in even larger callus growth but no differentiation. All four selected plum lines were successfully transitioned into in vitro culture. Nodes from NASA-5 and NASA-10 lines produced the most numerous and well-developed leafy plantlets in vitro, while those from NASA-11 and Control-5 were generally smaller, slower growing and less numerous. The best method overall was to use young stem node tissue with buds, surface sterilize the pieces sequentially with 70 EtOH and 10 bleach, and then plate them onto SGM media. Future areas of study will include introducing additional genetic lines of GMO plum into in vitro culture, attempting to induce shoot growth in petiole callus tissue, testing methods (such as cold storage) that extend the time interval between transferring explants into new media, and testing viability of plantlets transferred from in vitro culture back to traditional pot culture.

  2. An experimental study addressing the use of geoforensic analysis for the exploitation of improvised explosive devices (IEDs).

    PubMed

    Wilks, Beth; Morgan, Ruth M; Rose, Neil L

    2017-09-01

    The use of geoforensic analysis in criminal investigations is continuing to develop, with the diversification of analytical techniques, many of which are semi-automated, facilitating prompt analysis of large sample sets at a relatively low cost. Whilst micro-scale geoforensic analysis has been shown to assist criminal investigations including homicide (Concheri et al., 2011 [1]), wildlife crime (Morgan et al., 2006 [2]), illicit drug distribution (Stanley, 1992 [3]), and burglary (Mildenhall, 2006 [4]), its application to the pressing international security threat posed by Improvised Explosive Devices (IEDs) is yet to be considered. This experimental study simulated an IED supply chain from the sourcing of raw materials through to device emplacement. Mineralogy, quartz grain surface texture analysis (QGSTA) and particle size analysis (PSA) were used to assess whether environmental materials were transferred and subsequently persisted on the different components of three pressure plate IEDs. The research also addressed whether these samples were comprised of material from single or multiple geographical provenances that represented supply chain activity nodes. The simulation demonstrated that material derived from multiple activity nodes, was transferred and persisted on device components. The results from the mineralogy and QGSTA illustrated the value these techniques offer for the analysis of mixed provenance samples. The results from the PSA, which produces a bulk signature of the sample, failed to distinguish multiple provenances. The study also considered how the environmental material recovered could be used to generate information regarding the geographical locations the device had been in contact with, in an intelligence style investigation, and demonstrated that geoforensic analysis has the potential to be of value to international counter-IED efforts. It is a tool that may be used to prevent the distribution of large quantities of devices, by aiding the identification of the geographical location of key activity nodes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks

    PubMed Central

    Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan

    2017-01-01

    Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320

  4. High speed polling protocol for multiple node network with sequential flooding of a polling message and a poll-answering message

    NASA Technical Reports Server (NTRS)

    Marvit, Maclen (Inventor); Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by sequentially flooding the network with a poll-answering informational message and with the polling message.

  5. Exploring the Epileptic Brain Network Using Time-Variant Effective Connectivity and Graph Theory.

    PubMed

    Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Khan, Sehresh; Manganotti, Paolo; Menegaz, Gloria

    2017-09-01

    The application of time-varying measures of causality between source time series can be very informative to elucidate the direction of communication among the regions of an epileptic brain. The aim of the study was to identify the dynamic patterns of epileptic networks in focal epilepsy by applying multivariate adaptive directed transfer function (ADTF) analysis and graph theory to high-density electroencephalographic recordings. The cortical network was modeled after source reconstruction and topology modulations were detected during interictal spikes. First a distributed linear inverse solution, constrained to the individual grey matter, was applied to the averaged spikes and the mean source activity over 112 regions, as identified by the Harvard-Oxford Atlas, was calculated. Then, the ADTF, a dynamic measure of causality, was used to quantify the connectivity strength between pairs of regions acting as nodes in the graph, and the measure of node centrality was derived. The proposed analysis was effective in detecting the focal regions as well as in characterizing the dynamics of the spike propagation, providing evidence of the fact that the node centrality is a reliable feature for the identification of the epileptogenic zones. Validation was performed by multimodal analysis as well as from surgical outcomes. In conclusion, the time-variant connectivity analysis applied to the epileptic patients can distinguish the generator of the abnormal activity from the propagation spread and identify the connectivity pattern over time.

  6. Collective navigation of complex networks: Participatory greedy routing.

    PubMed

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  7. Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Sameer; Schatz, George C.

    For electrochemical device applications metal organic frameworks (MOFs) must exhibit suitable conduction properties. To this end, we have performed computational studies of intermolecular charge transfer in MOFs consisting of hexa-ZrIV nodes and tetratopic carboxylate linkers. This includes an examination of the electronic structure of linkers that are derived from tetraphenyl benzene 1, tetraphenyl pyrene 2, and tetraphenyl porphyrin 3 molecules. These results are used to determine charge transfer propensities in MOFs, within the framework of Marcus theory, including an analysis of the key parameters (charge transfer integral t, reorganization energy λ, and free energy change ΔG0) and evaluation of figuresmore » of merit for charge transfer based on the chemical structures of the linkers. This qualitative analysis indicates that delocalization of the HOMO/LUMO on terminal substituents increases t and decreases λ, while weaker binding to counterions decreases ΔG0, leading to better charge transfer propensity. Subsequently, we study hole transfer in the linker 2 containing MOFs, NU-901 and NU-1000, in detail and describe mechanisms (hopping and superexchange) that may be operative under different electrochemical conditions. Comparisons with experiment are provided where available. On the basis of the redox and catalytic activity of nodes and linkers, we propose three possible schemes for constructing electrochemical devices for catalysis. We believe that the results of this study will lay the foundation for future experimental work on this topic.« less

  8. Performance evaluation of distributed wavelength assignment in WDM optical networks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  9. Improving Service Management in the Internet of Things

    PubMed Central

    Sammarco, Chiara; Iera, Antonio

    2012-01-01

    In the Internet of Things (IoT) research arena, many efforts are devoted to adapt the existing IP standards to emerging IoT nodes. This is the direction followed by three Internet Engineering Task Force (IETF) Working Groups, which paved the way for research on IP-based constrained networks. Through a simplification of the whole TCP/IP stack, resource constrained nodes become direct interlocutors of application level entities in every point of the network. In this paper we analyze some side effects of this solution, when in the presence of large amounts of data to transmit. In particular, we conduct a performance analysis of the Constrained Application Protocol (CoAP), a widely accepted web transfer protocol for the Internet of Things, and propose a service management enhancement that improves the exploitation of the network and node resources. This is specifically thought for constrained nodes in the abovementioned conditions and proves to be able to significantly improve the node energetic performance when in the presence of large resource representations (hence, large data transmissions).

  10. Implementation of bipartite or remote unitary gates with repeater nodes

    NASA Astrophysics Data System (ADS)

    Yu, Li; Nemoto, Kae

    2016-08-01

    We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.

  11. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    PubMed Central

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  12. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    PubMed

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  13. Multiple Factors-Aware Diffusion in Social Networks

    DTIC Science & Technology

    2015-05-22

    Multiple Factors-Aware Diffusion in Social Networks Chung-Kuang Chou(B) and Ming-Syan Chen Department of Electrical Engineering, National Taiwan...propagates from nodes to nodes over a social network . The behavior that a node adopts an information piece in a social network can be affected by...Twitter dataset. Keywords: Social networks · Diffusion models 1 Introduction Information diffusion in social networks has been an active research field

  14. Aggregating job exit statuses of a plurality of compute nodes executing a parallel application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.

    Aggregating job exit statuses of a plurality of compute nodes executing a parallel application, including: identifying a subset of compute nodes in the parallel computer to execute the parallel application; selecting one compute node in the subset of compute nodes in the parallel computer as a job leader compute node; initiating execution of the parallel application on the subset of compute nodes; receiving an exit status from each compute node in the subset of compute nodes, where the exit status for each compute node includes information describing execution of some portion of the parallel application by the compute node; aggregatingmore » each exit status from each compute node in the subset of compute nodes; and sending an aggregated exit status for the subset of compute nodes in the parallel computer.« less

  15. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    PubMed

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  16. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    PubMed Central

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  17. Surgical management of sentinel lymph node biopsy outside major nodal basin in patients with cutaneous melanoma.

    PubMed

    Caracò, Corrado; Marone, Ugo; Di Monta, Gianluca; Aloj, Luigi; Caracò, Corradina; Anniciello, Annamaria; Lastoria, Secondo; Botti, Gerardo; Mozzillo, Nicola

    2014-01-01

    To assess the incidence of nonmajor lymphatic basin sentinel nodes in patients with cutaneous melanoma in order to propose a correct nomenclature and inform appropriate surgical management. This was a retrospective review of 1,045 consecutive patients with cutaneous melanoma who underwent sentinel lymph node biopsy and dynamic lymphoscintigraphy to identify sentinel node site. Nonmajor drainage sites were classified as uncommon (located in a minor lymphatic basin along the lymphatic drainage to a major classical nodal basin) or interval (located anywhere along the lymphatics between the primary tumor site and the nearest lymphatic basin) sentinel nodes. Nonclassical sentinel nodes were identified in 32 patients (3.0 %). Uncommon sentinel nodes were identified in 3.2 % (n = 17) of trunk melanoma primary disease and in 1.5 % (n = 7) of upper and lower extremity sites. Interval sentinel nodes were identified in 1.3 % (n = 7) of trunk primary lesions, with none from upper and lower extremities melanomas. The incidence of tumor-positive sentinel nodes was 24.1 % (245 of 1,013) in classical sites and 12.5 % (4 of 32) in uncommon/interval sites. The definition of uncommon and interval sentinel nodes allows the identification of different lymphatic pathways and inform appropriate surgical treatment. Wider experience with uncommon/interval sentinel nodes will better clarify the clinical implications and surgical management to be adopted in the management of uncommon and interval sentinel node sites.

  18. An energy-efficient and secure hybrid algorithm for wireless sensor networks using a mobile data collector

    NASA Astrophysics Data System (ADS)

    Dayananda, Karanam Ravichandran; Straub, Jeremy

    2017-05-01

    This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.

  19. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2007-12-04

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  20. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    2010-02-23

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  1. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  2. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  3. EXTENSIBLE DATABASE FRAMEWORK FOR MANAGEMENT OF UNSTRUCTURED AND SEMI-STRUCTURED DOCUMENTS

    NASA Technical Reports Server (NTRS)

    Gawdiak, Yuri O. (Inventor); La, Tracy T. (Inventor); Lin, Shu-Chun Y. (Inventor); Malof, David A. (Inventor); Tran, Khai Peter B. (Inventor)

    2005-01-01

    Method and system for querying a collection of Unstructured or semi-structured documents to identify presence of, and provide context and/or content for, keywords and/or keyphrases. The documents are analyzed and assigned a node structure, including an ordered sequence of mutually exclusive node segments or strings. Each node has an associated set of at least four, five or six attributes with node information and can represent a format marker or text, with the last node in any node segment usually being a text node. A keyword (or keyphrase) is specified. and the last node in each node segment is searched for a match with the keyword. When a match is found at a query node, or at a node determined with reference to a query node, the system displays the context andor the content of the query node.

  4. Information spreading on mobile communication networks: A new model that incorporates human behaviors

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Li, Sai-Ping; Liu, Chuang

    2017-03-01

    Recently, there is a growing interest in the modeling and simulation based on real social networks among researchers in multi-disciplines. Using an empirical social network constructed from the calling records of a Chinese mobile service provider, we here propose a new model to simulate the information spreading process. This model takes into account two important ingredients that exist in real human behaviors: information prevalence and preferential spreading. The fraction of informed nodes when the system reaches an asymptotically stable state is primarily determined by information prevalence, and the heterogeneity of link weights would slow down the information diffusion. Moreover, the sizes of blind clusters which consist of connected uninformed nodes show a power-law distribution, and these uninformed nodes correspond to a particular portion of nodes which are located at special positions in the network, namely at the edges of large clusters or inside the clusters connected through weak links. Since the simulations are performed on a real world network, the results should be useful in the understanding of the influences of social network structures and human behaviors on information propagation.

  5. An Obstacle-Tolerant Path Planning Algorithm for Mobile-Anchor-Node-Assisted Localization

    PubMed Central

    Tsai, Rong-Guei

    2018-01-01

    The location information obtained using a sensor is a critical requirement in wireless sensor networks. Numerous localization schemes have been proposed, among which mobile-anchor-node-assisted localization (MANAL) can reduce costs and overcome environmental constraints. A mobile anchor node (MAN) provides its own location information to assist the localization of sensor nodes. Numerous path planning schemes have been proposed for MANAL, but most scenarios assume the absence of obstacles in the environment. However, in a realistic environment, sensor nodes cannot be located because the obstacles block the path traversed by the MAN, thereby rendering the sensor incapable of receiving sufficient three location information from the MAN. This study proposes the obstacle-tolerant path planning (OTPP) approach to solve the sensor location problem owing to obstacle blockage. OTPP can approximate the optimum beacon point number and path planning, thereby ensuring that all the unknown nodes can receive the three location information from the MAN and reduce the number of MAN broadcast packet times. Experimental results demonstrate that OTPP performs better than Z-curves because it reduces the total number of beacon points utilized and is thus more suitable in an obstacle-present environment. Compared to the Z-curve, OTPP can reduce localization error and improve localization coverage. PMID:29547582

  6. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  7. Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error

    PubMed Central

    Sahoo, Prasan Kumar; Hwang, I-Shyan

    2011-01-01

    Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region. PMID:22163738

  8. Visualizing weighted networks: a performance comparison of adjacency matrices versus node-link diagrams

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.

  9. HTV-4 hatch closing

    NASA Image and Video Library

    2013-09-03

    ISS036-E-039129 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, closes the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.

  10. HTV-4 hatch closing

    NASA Image and Video Library

    2013-09-03

    ISS036-E-039132 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano and NASA astronaut Karen Nyberg, both Expedition 36 flight engineers, close the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.

  11. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010473 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  12. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010464 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  13. View of HTV3 berthed to Node 2

    NASA Image and Video Library

    2012-07-27

    ISS032-E-010476 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  14. Classifying Infrastructure in an Urban Battlespace Using Thermal IR Signatures

    DTIC Science & Technology

    2006-11-01

    Huntsville, Alabama for sharing their ATLAS data for Atlanta. REFERENCES Bentz , D . P . (2000). A Computer Model to Predict the Surface Temperature...10: 2 2 xt α Δ Δ ≤ (10) 2.2 Implementing the Model Bentz uses a 1- D finite difference grid with a varying number of nodes. The nodes are equally...and rooftops were modeled as a function of time and environmental conditions using 1- D heat transfer theory. The model was implemented in MATLAB

  15. A data management proposal to connect in a hierarchical way nodes of the Spanish Long Term Ecological Research (LTER) network

    NASA Astrophysics Data System (ADS)

    Fuentes, Daniel; Pérez-Luque, Antonio J.; Bonet García, Francisco J.; Moreno-LLorca, Ricardo A.; Sánchez-Cano, Francisco M.; Suárez-Muñoz, María

    2017-04-01

    The Long Term Ecological Research (LTER) network aims to provide the scientific community, policy makers, and society with the knowledge and predictive understanding necessary to conserve, protect, and manage the ecosystems. LTER is organized into networks ranging from the global to national scale. In the top of network, the International Long Term Ecological Research (ILTER) Network coordinates among ecological researchers and LTER research networks at local, regional and global scales. In Spain, the Spanish Long Term Ecological Research (LTER-Spain) network was built to foster the collaboration and coordination between longest-lived ecological researchers and networks on a local scale. Currently composed by nine nodes, this network facilitates the data exchange, documentation and preservation encouraging the development of cross-disciplinary works. However, most nodes have no specific information systems, tools or qualified personnel to manage their data for continued conservation and there are no harmonized methodologies for long-term monitoring protocols. Hence, the main challenge is to place the nodes in its correct position in the network, providing the best tools that allow them to manage their data autonomously and make it easier for them to access information and knowledge in the network. This work proposes a connected structure composed by four LTER nodes located in southern Spain. The structure is built considering hierarchical approach: nodes that create information which is documented using metadata standards (such as Ecological Metadata Language, EML); and others nodes that gather metadata and information. We also take into account the capacity of each node to manage their own data and the premise that the data and metadata must be maintained where it is generated. The current state of the nodes is a follows: two of them have their own information management system (Sierra Nevada-Granada and Doñana Long-Term Socio-ecological Research Platform) and another has no infrastructure to maintain their data (The Arid Iberian South East LTSER Platform). The last one (Environmental Information Network of Andalusia-REDIAM) acts as the coordinator, providing physical and logical support to other nodes and also gathers and distributes the information "uphill" to the rest of the network (LTER Europe and ILTER). The development of the network has been divided in three stages. First, existing resources and data management requirements are identified in each node. Second, the necessary software tools and interoperable standards to manage and exchange the data have been selected, installed and configured in each participant. Finally, once the network has been set up completely, it is expected to expand it all over Spain with new nodes and its connection to others LTER and similar networks. This research has been funded by ADAPTAMED (Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems) Life EU project, Sierra Nevada Global Change Observatory (LTER-site) and eLTER (Integrated European Long Term Ecosystem & Socio-Ecological Research Infrastructure).

  16. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    NASA Technical Reports Server (NTRS)

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  17. Opportunistic Sensor Data Collection with Bluetooth Low Energy

    PubMed Central

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-01

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios. PMID:28124987

  18. Opportunistic Sensor Data Collection with Bluetooth Low Energy.

    PubMed

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-23

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  19. Enhancing PC Cluster-Based Parallel Branch-and-Bound Algorithms for the Graph Coloring Problem

    NASA Astrophysics Data System (ADS)

    Taoka, Satoshi; Takafuji, Daisuke; Watanabe, Toshimasa

    A branch-and-bound algorithm (BB for short) is the most general technique to deal with various combinatorial optimization problems. Even if it is used, computation time is likely to increase exponentially. So we consider its parallelization to reduce it. It has been reported that the computation time of a parallel BB heavily depends upon node-variable selection strategies. And, in case of a parallel BB, it is also necessary to prevent increase in communication time. So, it is important to pay attention to how many and what kind of nodes are to be transferred (called sending-node selection strategy). In this paper, for the graph coloring problem, we propose some sending-node selection strategies for a parallel BB algorithm by adopting MPI for parallelization and experimentally evaluate how these strategies affect computation time of a parallel BB on a PC cluster network.

  20. UTCI-Fiala multi-node model of human heat transfer and temperature regulation

    NASA Astrophysics Data System (ADS)

    Fiala, Dusan; Havenith, George; Bröde, Peter; Kampmann, Bernhard; Jendritzky, Gerd

    2012-05-01

    The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.

  1. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  2. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  3. Expandable and reconfigurable instrument node arrays

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)

    2012-01-01

    An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.

  4. Node Deployment with k-Connectivity in Sensor Networks for Crop Information Full Coverage Monitoring

    PubMed Central

    Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun

    2016-01-01

    Wireless sensor networks (WSNs) are suitable for the continuous monitoring of crop information in large-scale farmland. The information obtained is great for regulation of crop growth and achieving high yields in precision agriculture (PA). In order to realize full coverage and k-connectivity WSN deployment for monitoring crop growth information of farmland on a large scale and to ensure the accuracy of the monitored data, a new WSN deployment method using a genetic algorithm (GA) is here proposed. The fitness function of GA was constructed based on the following WSN deployment criteria: (1) nodes must be located in the corresponding plots; (2) WSN must have k-connectivity; (3) WSN must have no communication silos; (4) the minimum distance between node and plot boundary must be greater than a specific value to prevent each node from being affected by the farmland edge effect. The deployment experiments were performed on natural farmland and on irregular farmland divided based on spatial differences of soil nutrients. Results showed that both WSNs gave full coverage, there were no communication silos, and the minimum connectivity of nodes was equal to k. The deployment was tested for different values of k and transmission distance (d) to the node. The results showed that, when d was set to 200 m, as k increased from 2 to 4 the minimum connectivity of nodes increases and is equal to k. When k was set to 2, the average connectivity of all nodes increased in a linear manner with the increase of d from 140 m to 250 m, and the minimum connectivity does not change. PMID:27941704

  5. SBDN: an information portal on small bodies and interplanetary dust inside the Europlanet Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; de Sanctis, Maria Cristina; Carraro, Francesco; Fonte, Sergio; Giacomini, Livia; Politi, Romolo

    In the framework of the Sixth Framework Programme (FP6) for Research and Technological Development of the European Community, the Europlanet project started the Integrated and Distributed Information Service (IDIS) initiative. The goal of this initiative was to "...offer to the planetary science community a common and user-friendly access to the data and infor-mation produced by the various types of research activities: earth-based observations, space observations, modelling and theory, laboratory experiments...". Four scientific nodes, repre-sentative of a significant fraction of the scientific themes covered by planetary sciences, were created: the Interiors and Surfaces node, the Atmospheres node, the Plasma node and the Small Bodies and Dust node. The original Europlanet program evolved into the Europlanet Research Infrastructure project, funded by the Seventh Framework Programme (FP7) for Research and Technological Development, and the IDIS initiative has been renewed with the addiction of a new scientific node, the Planetary Dynamics node. Here we present the Small Bodies and Dust node (SBDN) and the services it already provides to the scientific community, i.e. a searchable database of resources related to its thematic domains, an online and searchable cat-alogue of emission lines observed in the visible spectrum of comet 153P/2002 C1 Ikeya-Zhang supplemented by a visualization facility, a set of models of the simulated evolution of comet 67P/Churyumov-Gerasimenko with a particular focus on the effects of the distribution of dust and a information system on meteors through the Virtual Meteor Observatory. We will also introduce the new services that will be implemented and made available in the course of the Europlanet Research Infrastructure project.

  6. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  7. SpicyNodes Radial Map Engine

    NASA Astrophysics Data System (ADS)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  8. Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments

    NASA Astrophysics Data System (ADS)

    Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz

    2018-02-01

    This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

  9. Running Batch Jobs on Peregrine | High-Performance Computing | NREL

    Science.gov Websites

    Using Resource Feature to Request Different Node Types Peregrine has several types of compute nodes incompatibility and get the job running. More information about requesting different node types in Peregrine is available. Queues In order to meet the needs of different types of jobs, nodes on Peregrine are available

  10. Broadcasting Topology and Routing Information in Computer Networks

    DTIC Science & Technology

    1985-05-01

    DOWN\\ linki inki FIgwre 1.2.1: Topology Problem Example messages from node 2 before receiving the first DOWN message from node 3. Now assume that before...node to each of the link’s end nodes. 54 link.1 cc 4 1 -. distances to linki Figue 3.4.2: SPTA Port Distance Table Example An example of these

  11. Secure remote synchronization and secure key distribution in electro-optic networks revealed by symmetries

    NASA Astrophysics Data System (ADS)

    Xu, Mingfeng; Pan, Wei; Zhang, Liyue

    2018-07-01

    Despite the intuition that synchronization of different nodes in coupled oscillator networks results from information exchange between them, it has recently been shown that remote nodes could be partially synchronous even when they are separated by intermediately unsynchronized nodes. Here based on electro-optic system, we report on a more stronger form of such synchronization pattern that is termed as secure remote synchronization, in which two remotely separated nodes could have identically synchronized dynamical behaviors while the rest of the network are both statistically and information-theoretically incoherent relative to the two synchronized nodes. The generalized form of mirror symmetry in the network structure is identified to be a key mechanism allowing for secure remote synchronization. Moreover, this synchronization mode is robust against a wild range of system parameters and noise perturbing the intermediary dynamics. The lack of information about the synchronized dynamics in the rest of the network suggests that our results could potentially lead to network-based solutions for secure key distribution and secure communication.

  12. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  13. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  14. KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  15. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  16. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  17. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  1. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  2. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  4. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  5. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  6. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    PubMed

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  7. Data oriented job submission scheme for the PHENIX user analysis in CCJ

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; En'yo, H.; Ichihara, T.; Watanabe, Y.; Yokkaichi, S.

    2011-12-01

    The RIKEN Computing Center in Japan (CCJ) has been developed to make it possible analyzing huge amount of data corrected by the PHENIX experiment at RHIC. The corrected raw data or reconstructed data are transferred via SINET3 with 10 Gbps bandwidth from Brookheaven National Laboratory (BNL) by using GridFTP. The transferred data are once stored in the hierarchical storage management system (HPSS) prior to the user analysis. Since the size of data grows steadily year by year, concentrations of the access request to data servers become one of the serious bottlenecks. To eliminate this I/O bound problem, 18 calculating nodes with total 180 TB local disks were introduced to store the data a priori. We added some setup in a batch job scheduler (LSF) so that user can specify the requiring data already distributed to the local disks. The locations of data are automatically obtained from a database, and jobs are dispatched to the appropriate node which has the required data. To avoid the multiple access to a local disk from several jobs in a node, techniques of lock file and access control list are employed. As a result, each job can handle a local disk exclusively. Indeed, the total throughput was improved drastically as compared to the preexisting nodes in CCJ, and users can analyze about 150 TB data within 9 hours. We report this successful job submission scheme and the feature of the PC cluster.

  8. System for solving diagnosis and hitting set problems

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh (Inventor); Fijany, Amir (Inventor)

    2007-01-01

    The diagnosis problem arises when a system's actual behavior contradicts the expected behavior, thereby exhibiting symptoms (a collection of conflict sets). System diagnosis is then the task of identifying faulty components that are responsible for anomalous behavior. To solve the diagnosis problem, the present invention describes a method for finding the minimal set of faulty components (minimal diagnosis set) that explain the conflict sets. The method includes acts of creating a matrix of the collection of conflict sets, and then creating nodes from the matrix such that each node is a node in a search tree. A determination is made as to whether each node is a leaf node or has any children nodes. If any given node has children nodes, then the node is split until all nodes are leaf nodes. Information gathered from the leaf nodes is used to determine the minimal diagnosis set.

  9. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-07-01

    Send-side matching of data communications messages includes a plurality of compute nodes organized for collective operations, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  10. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-06-17

    Send-side matching of data communications messages in a distributed computing system comprising a plurality of compute nodes, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  11. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less

  12. State transfer in highly connected networks and a quantum Babinet principle

    NASA Astrophysics Data System (ADS)

    Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.

    2008-12-01

    The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.

  13. Cooperative Learning for Distributed In-Network Traffic Classification

    NASA Astrophysics Data System (ADS)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  14. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  15. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.

  16. Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

    NASA Astrophysics Data System (ADS)

    Zhou, Zongzheng; Tordesillas, Antoinette

    2017-06-01

    The underlying microstructure and dynamics of a dense granular material as it evolves towards the "critical state", a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r) by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r). The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r). At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio), G(r) encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.

  17. The model of microblog message diffusion based on complex social network

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bai, Shu-Ying; Jin, Rui

    2014-05-01

    Microblog is a micromessage communication network in which users are the nodes and the followship between users are the edges. Sina Weibo is a typical case of these microblog service websites. As the enormous scale of nodes and complex links in the network, we choose a sample network crawled in Sina Weibo as the base of empirical analysis. The study starts with the analysis of its topological features, and brings in epidemiological SEIR model to explore the mode of message spreading throughout the microblog network. It is found that the network is obvious small-world and scale-free, which made it succeed in transferring messages and failed in resisting negative influence. In addition, the paper focuses on the rich nodes as they constitute a typical feature of Sina Weibo. It is also found that whether the message starts with a rich node will not account for its final coverage. Actually, the rich nodes always play the role of pivotal intermediaries who speed up the spreading and make the message known by much more people.

  18. CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks †

    PubMed Central

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-01-01

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712

  19. CENTERA: a centralized trust-based efficient routing protocol with authentication for wireless sensor networks.

    PubMed

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-02-02

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.

  20. Two-dimensional materials based transparent flexible electronics

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  1. Investigation of Hot Streak Migration and Film Cooling Effects on the Heat Transfer in Rotor/Stator Interacting Flows.

    DTIC Science & Technology

    1991-07-15

    Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade," Journal of Engineering for Power, Vol. 102, No. 2, April...the turbine passage and along the surface of where d6 is the distance from the blade surface to a given node, the airfoil . In addition, a specified...effects on the passage flow and blade surface heat transfer for an axial flow turbine stage. These objectives are part of an overall plan to extend the

  2. Training of Attentional Filtering, but Not of Memory Storage, Enhances Working Memory Efficiency by Strengthening the Neuronal Gatekeeper Network.

    PubMed

    Schmicker, Marlen; Schwefel, Melanie; Vellage, Anne-Katrin; Müller, Notger G

    2016-04-01

    Memory training (MT) in older adults with memory deficits often leads to frustration and, therefore, is usually not recommended. Here, we pursued an alternative approach and looked for transfer effects of 1-week attentional filter training (FT) on working memory performance and its neuronal correlates in young healthy humans. The FT effects were compared with pure MT, which lacked the necessity to filter out irrelevant information. Before and after training, all participants performed an fMRI experiment that included a combined task in which stimuli had to be both filtered based on color and stored in memory. We found that training induced processing changes by biasing either filtering or storage. FT induced larger transfer effects on the untrained cognitive function than MT. FT increased neuronal activity in frontal parts of the neuronal gatekeeper network, which is proposed to hinder irrelevant information from being unnecessarily stored in memory. MT decreased neuronal activity in the BG part of the gatekeeper network but enhanced activity in the parietal storage node. We take these findings as evidence that FT renders working memory more efficient by strengthening the BG-prefrontal gatekeeper network. MT, on the other hand, simply stimulates storage of any kind of information. These findings illustrate a tight connection between working memory and attention, and they may open up new avenues for ameliorating memory deficits in patients with cognitive impairments.

  3. Node, Node-Link, and Node-Link-Group Diagrams: An Evaluation.

    PubMed

    Saket, Bahador; Simonetto, Paolo; Kobourov, Stephen; Börner, Katy

    2014-12-01

    Effectively showing the relationships between objects in a dataset is one of the main tasks in information visualization. Typically there is a well-defined notion of distance between pairs of objects, and traditional approaches such as principal component analysis or multi-dimensional scaling are used to place the objects as points in 2D space, so that similar objects are close to each other. In another typical setting, the dataset is visualized as a network graph, where related nodes are connected by links. More recently, datasets are also visualized as maps, where in addition to nodes and links, there is an explicit representation of groups and clusters. We consider these three Techniques, characterized by a progressive increase of the amount of encoded information: node diagrams, node-link diagrams and node-link-group diagrams. We assess these three types of diagrams with a controlled experiment that covers nine different tasks falling broadly in three categories: node-based tasks, network-based tasks and group-based tasks. Our findings indicate that adding links, or links and group representations, does not negatively impact performance (time and accuracy) of node-based tasks. Similarly, adding group representations does not negatively impact the performance of network-based tasks. Node-link-group diagrams outperform the others on group-based tasks. These conclusions contradict results in other studies, in similar but subtly different settings. Taken together, however, such results can have significant implications for the design of standard and domain snecific visualizations tools.

  4. Automatic detection of pelvic lymph nodes using multiple MR sequences

    NASA Astrophysics Data System (ADS)

    Yan, Michelle; Lu, Yue; Lu, Renzhi; Requardt, Martin; Moeller, Thomas; Takahashi, Satoru; Barentsz, Jelle

    2007-03-01

    A system for automatic detection of pelvic lymph nodes is developed by incorporating complementary information extracted from multiple MR sequences. A single MR sequence lacks sufficient diagnostic information for lymph node localization and staging. Correct diagnosis often requires input from multiple complementary sequences which makes manual detection of lymph nodes very labor intensive. Small lymph nodes are often missed even by highly-trained radiologists. The proposed system is aimed at assisting radiologists in finding lymph nodes faster and more accurately. To the best of our knowledge, this is the first such system reported in the literature. A 3-dimensional (3D) MR angiography (MRA) image is employed for extracting blood vessels that serve as a guide in searching for pelvic lymph nodes. Segmentation, shape and location analysis of potential lymph nodes are then performed using a high resolution 3D T1-weighted VIBE (T1-vibe) MR sequence acquired by Siemens 3T scanner. An optional contrast-agent enhanced MR image, such as post ferumoxtran-10 T2*-weighted MEDIC sequence, can also be incorporated to further improve detection accuracy of malignant nodes. The system outputs a list of potential lymph node locations that are overlaid onto the corresponding MR sequences and presents them to users with associated confidence levels as well as their sizes and lengths in each axis. Preliminary studies demonstrates the feasibility of automatic lymph node detection and scenarios in which this system may be used to assist radiologists in diagnosis and reporting.

  5. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  6. Measures of node centrality in mobile social networks

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxiang; Shi, Yan; Chen, Shanzhi

    2015-02-01

    Mobile social networks exploit human mobility and consequent device-to-device contact to opportunistically create data paths over time. While links in mobile social networks are time-varied and strongly impacted by human mobility, discovering influential nodes is one of the important issues for efficient information propagation in mobile social networks. Although traditional centrality definitions give metrics to identify the nodes with central positions in static binary networks, they cannot effectively identify the influential nodes for information propagation in mobile social networks. In this paper, we address the problems of discovering the influential nodes in mobile social networks. We first use the temporal evolution graph model which can more accurately capture the topology dynamics of the mobile social network over time. Based on the model, we explore human social relations and mobility patterns to redefine three common centrality metrics: degree centrality, closeness centrality and betweenness centrality. We then employ empirical traces to evaluate the benefits of the proposed centrality metrics, and discuss the predictability of nodes' global centrality ranking by nodes' local centrality ranking. Results demonstrate the efficiency of the proposed centrality metrics.

  7. Implementation of data node in spatial information grid based on WS resource framework and WS notification

    NASA Astrophysics Data System (ADS)

    Zhang, Dengrong; Yu, Le

    2006-10-01

    Abstract-An approach of constructing a data node in spatial information grid (SIG) based on Web Service Resource Framework (WSRF) and Web Service Notification (WSN) is described in this paper. Attentions are paid to construct and implement SIG's resource layer, which is the most important part. A study on this layer find out, it is impossible to require persistent interaction with the clients of the services in common SIG architecture because of inheriting "stateless" and "not persistent" limitations of Web Service. A WSRF/WSN-based data node is designed to hurdle this short comes. Three different access modes are employed to test the availability of this node. Experimental results demonstrate this service node can successfully respond to standard OGC requests and returns specific spatial data in different network environment, also is stateful, dynamic and persistent.

  8. Using LTI Dynamics to Identify the Influential Nodes in a Network

    PubMed Central

    Jorswieck, Eduard; Scheunert, Christian

    2016-01-01

    Networks are used for modeling numerous technical, social or biological systems. In order to better understand the system dynamics, it is a matter of great interest to identify the most important nodes within the network. For a large set of problems, whether it is the optimal use of available resources, spreading information efficiently or even protection from malicious attacks, the most important node is the most influential spreader, the one that is capable of propagating information in the shortest time to a large portion of the network. Here we propose the Node Imposed Response (NiR), a measure which accurately evaluates node spreading power. It outperforms betweenness, degree, k-shell and h-index centrality in many cases and shows the similar accuracy to dynamics-sensitive centrality. We utilize the system-theoretic approach considering the network as a Linear Time-Invariant system. By observing the system response we can quantify the importance of each node. In addition, our study provides a robust tool set for various protective strategies. PMID:28030548

  9. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  10. Neural node network and model, and method of teaching same

    DOEpatents

    Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.

    1995-12-26

    The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.

  11. Neural node network and model, and method of teaching same

    DOEpatents

    Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.

    1995-01-01

    The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.

  12. Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications.

    PubMed

    Xie, Guosen; Mo, Zhongxi

    2011-01-21

    In this article, we introduce three 3D graphical representations of DNA primary sequences, which we call RY-curve, MK-curve and SW-curve, based on three classifications of the DNA bases. The advantages of our representations are that (i) these 3D curves are strictly non-degenerate and there is no loss of information when transferring a DNA sequence to its mathematical representation and (ii) the coordinates of every node on these 3D curves have clear biological implication. Two applications of these 3D curves are presented: (a) a simple formula is derived to calculate the content of the four bases (A, G, C and T) from the coordinates of nodes on the curves; and (b) a 12-component characteristic vector is constructed to compare similarity among DNA sequences from different species based on the geometrical centers of the 3D curves. As examples, we examine similarity among the coding sequences of the first exon of beta-globin gene from eleven species and validate similarity of cDNA sequences of beta-globin gene from eight species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Compression of deep convolutional neural network for computer-aided diagnosis of masses in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    Deep-learning models are highly parameterized, causing difficulty in inference and transfer learning. We propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in DBT while maintaining the classification accuracy. Two-stage transfer learning was used to adapt the ImageNet-trained DCNN to mammography and then to DBT. In the first-stage transfer learning, transfer learning from ImageNet trained DCNN was performed using mammography data. In the second-stage transfer learning, the mammography-trained DCNN was trained on the DBT data using feature extraction from fully connected layer, recursive feature elimination and random forest classification. The layered pathway evolution encapsulates the feature extraction to the classification stages to compress the DCNN. Genetic algorithm was used in an iterative approach with tournament selection driven by count-preserving crossover and mutation to identify the necessary nodes in each convolution layer while eliminating the redundant nodes. The DCNN was reduced by 99% in the number of parameters and 95% in mathematical operations in the convolutional layers. The lesion-based area under the receiver operating characteristic curve on an independent DBT test set from the original and the compressed network resulted in 0.88+/-0.05 and 0.90+/-0.04, respectively. The difference did not reach statistical significance. We demonstrated a DCNN compression approach without additional fine-tuning or loss of performance for classification of masses in DBT. The approach can be extended to other DCNNs and transfer learning tasks. An ensemble of these smaller and focused DCNNs has the potential to be used in multi-target transfer learning.

  14. Data Delivery Method Based on Neighbor Nodes' Information in a Mobile Ad Hoc Network

    PubMed Central

    Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow. PMID:24672371

  15. Data delivery method based on neighbor nodes' information in a mobile ad hoc network.

    PubMed

    Kashihara, Shigeru; Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow.

  16. A new range-free localisation in wireless sensor networks using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing

    2018-02-01

    Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.

  17. Analysis of metro network performance from a complex network perspective

    NASA Astrophysics Data System (ADS)

    Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.

    2018-02-01

    In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.

  18. HTV4 Hatch opening

    NASA Image and Video Library

    2013-08-09

    ISS036-E-030213 (9 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, prepares to open the hatch to the newly attached Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) docked to the International Space Station's Harmony node.

  19. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  20. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, D.B.

    1994-07-19

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.

  1. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, Dario B.

    1994-01-01

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.

  2. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  3. Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method

    NASA Astrophysics Data System (ADS)

    Al-garadi, Mohammed Ali; Varathan, Kasturi Dewi; Ravana, Sri Devi

    2017-02-01

    Online social networks (OSNs) have become a vital part of everyday living. OSNs provide researchers and scientists with unique prospects to comprehend individuals on a scale and to analyze human behavioral patterns. Influential spreaders identification is an important subject in understanding the dynamics of information diffusion in OSNs. Targeting these influential spreaders is significant in planning the techniques for accelerating the propagation of information that is useful for various applications, such as viral marketing applications or blocking the diffusion of annoying information (spreading of viruses, rumors, online negative behaviors, and cyberbullying). Existing K-core decomposition methods consider links equally when calculating the influential spreaders for unweighted networks. Alternatively, the proposed link weights are based only on the degree of nodes. Thus, if a node is linked to high-degree nodes, then this node will receive high weight and is treated as an important node. Conversely, the degree of nodes in OSN context does not always provide accurate influence of users. In the present study, we improve the K-core method for OSNs by proposing a novel link-weighting method based on the interaction among users. The proposed method is based on the observation that the interaction of users is a significant factor in quantifying the spreading capability of user in OSNs. The tracking of diffusion links in the real spreading dynamics of information verifies the effectiveness of our proposed method for identifying influential spreaders in OSNs as compared with degree centrality, PageRank, and original K-core.

  4. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    PubMed Central

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-01-01

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416

  5. A Green Media Access Method for IEEE 802.15.6 Wireless Body Area Network.

    PubMed

    Jacob, Anil K; Jacob, Lillykutty

    2017-09-30

    It is of utmost importance to conserve battery energy to the maximum possible extent in WBAN nodes while collecting and transferring medical data. The IEEE 802.15.6 WBAN standard does not specify any method to conserve energy. This paper focuses on a method to conserve energy in IEEE 802.15.6 WBAN nodes when using CSMA/CA, while simultaneously restricting data delivery delay to the required value as specified in medical applications. The technique is to allow the nodes to sleep all the times except for receiving beacons and for transmitting data frames whenever a data frame enters an empty buffer. The energy consumed by the nodes and the average latency of data frame for periodical arrival of data are found out analytically. The analytical results are validated and also the proposed method is compared with other energy conserving schemes, using Castalia simulation studies. The proposed method shows superior performance in both device lifetime and latency of emergency medical data.

  6. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.

    PubMed

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-05-04

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  7. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.

  8. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  9. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE PAGES

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    2016-06-15

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  10. Prediction of potential disease-associated microRNAs based on random walk.

    PubMed

    Xuan, Ping; Han, Ke; Guo, Yahong; Li, Jin; Li, Xia; Zhong, Yingli; Zhang, Zhaogong; Ding, Jian

    2015-06-01

    Identifying microRNAs associated with diseases (disease miRNAs) is helpful for exploring the pathogenesis of diseases. Because miRNAs fulfill function via the regulation of their target genes and because the current number of experimentally validated targets is insufficient, some existing methods have inferred potential disease miRNAs based on the predicted targets. It is difficult for these methods to achieve excellent performance due to the high false-positive and false-negative rates for the target prediction results. Alternatively, several methods have constructed a network composed of miRNAs based on their associated diseases and have exploited the information within the network to predict the disease miRNAs. However, these methods have failed to take into account the prior information regarding the network nodes and the respective local topological structures of the different categories of nodes. Therefore, it is essential to develop a method that exploits the more useful information to predict reliable disease miRNA candidates. miRNAs with similar functions are normally associated with similar diseases and vice versa. Therefore, the functional similarity between a pair of miRNAs is calculated based on their associated diseases to construct a miRNA network. We present a new prediction method based on random walk on the network. For the diseases with some known related miRNAs, the network nodes are divided into labeled nodes and unlabeled nodes, and the transition matrices are established for the two categories of nodes. Furthermore, different categories of nodes have different transition weights. In this way, the prior information of nodes can be completely exploited. Simultaneously, the various ranges of topologies around the different categories of nodes are integrated. In addition, how far the walker can go away from the labeled nodes is controlled by restarting the walking. This is helpful for relieving the negative effect of noisy data. For the diseases without any known related miRNAs, we extend the walking on a miRNA-disease bilayer network. During the prediction process, the similarity between diseases, the similarity between miRNAs, the known miRNA-disease associations and the topology information of the bilayer network are exploited. Moreover, the importance of information from different layers of network is considered. Our method achieves superior performance for 18 human diseases with AUC values ranging from 0.786 to 0.945. Moreover, case studies on breast neoplasms, lung neoplasms, prostatic neoplasms and 32 diseases further confirm the ability of our method to discover potential disease miRNAs. A web service for the prediction and analysis of disease miRNAs is available at http://bioinfolab.stx.hk/midp/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. A Heterogeneous Wireless Identification Network for the Localization of Animals Based on Stochastic Movements

    PubMed Central

    Gutiérrez, Álvaro; González, Carlos; Jiménez-Leube, Javier; Zazo, Santiago; Dopico, Nelson; Raos, Ivana

    2009-01-01

    The improvement in the transmission range in wireless applications without the use of batteries remains a significant challenge in identification applications. In this paper, we describe a heterogeneous wireless identification network mostly powered by kinetic energy, which allows the localization of animals in open environments. The system relies on radio communications and a global positioning system. It is made up of primary and secondary nodes. Secondary nodes are kinetic-powered and take advantage of animal movements to activate the node and transmit a specific identifier, reducing the number of batteries of the system. Primary nodes are battery-powered and gather secondary-node transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. The system allows tracking based on contextual information obtained from statistical data. PMID:22412344

  12. A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.

    PubMed

    Luo, Junhai; Fan, Liying

    2017-03-30

    Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.

  13. A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks

    PubMed Central

    Luo, Junhai; Fan, Liying

    2017-01-01

    Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342

  14. Structured pedigree information for distributed fusion systems

    NASA Astrophysics Data System (ADS)

    Arambel, Pablo O.

    2008-04-01

    One of the most critical challenges in distributed data fusion is the avoidance of information double counting (also called "data incest" or "rumor propagation"). This occurs when a node in a network incorporates information into an estimate - e.g. the position of an object - and the estimate is injected into the network. Other nodes fuse this estimate with their own estimates, and continue to propagate estimates through the network. When the first node receives a fused estimate from the network, it does not know if it already contains its own contributions or not. Since the correlation between its own estimate and the estimate received from the network is not known, the node can not fuse the estimates in an optimal way. If it assumes that both estimates are independent from each other, it unknowingly double counts the information that has already being used to obtain the two estimates. This leads to overoptimistic error covariance matrices. If the double-counting is not kept under control, it may lead to serious performance degradation. Double counting can be avoided by propagating uniquely tagged raw measurements; however, that forces each node to process all the measurements and precludes the propagation of derived information. Another approach is to fuse the information using the Covariance Intersection (CI) equations, which maintain consistent estimates irrespective of the cross-correlation among estimates. However, CI does not exploit pedigree information of any kind. In this paper we present an approach that propagates multiple covariance matrices, one for each uncorrelated source in the network. This is a way to compress the pedigree information and avoids the need to propagate raw measurements. The approach uses a generalized version of the Split CI to fuse different estimates with appropriate weights to guarantee the consistency of the estimates.

  15. A bioinformatics knowledge discovery in text application for grid computing

    PubMed Central

    Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco

    2009-01-01

    Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749

  16. A bioinformatics knowledge discovery in text application for grid computing.

    PubMed

    Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco

    2009-06-16

    A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.

  17. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  18. Monitoring Traffic Information with a Developed Acceleration Sensing Node.

    PubMed

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-12-05

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  19. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  20. Monitoring Traffic Information with a Developed Acceleration Sensing Node

    PubMed Central

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-01-01

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring. PMID:29206169

  1. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu.

    PubMed

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-12-01

    Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  2. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  3. Spreading gossip in social networks.

    PubMed

    Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  4. Spreading gossip in social networks

    NASA Astrophysics Data System (ADS)

    Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  5. Application Level Processing for Long-Lived and Information Rich Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wilkins, R.; Gaura, E.; Brusey, J.

    2013-12-01

    A primary design goal in Wireless Sensor Networks (WSNs) is to ensure the longest possible node lifetime with the available power budget while still meeting application requirements. Since radio transmissions often consume the most power in WSN devices, it follows that a node should aim to maximise its lifetime by transmitting only the data or information required to enable the motivating application. Full raw data streams are often not required since summaries of data are sufficient to meet application needs summaries are often performed at a central point after collection). When raw data is not a requirement, it makes sense to perform as much application-specific processing on-node as possible to minimise the amount of transmissions a node must make. For example, in home environment monitoring, the amount of time a room spends within an acceptable temperature range is more important than the raw stream of temperature measurements. The work presents Bare Necessities (BN) which implements the calculation of application-specific summaries on-node. In the case of knowing the amount time a room spends within an acceptable temperature range, BN encodes the raw signal as a distribution over bins (e.g. a bin might comprise temperatures between 18 °C and 22 °C). BN conserves power by only transmitting when changes to the distribution occur only sending the bare necessities of information the end user is interested in (thus the algorithm name). In the case of home monitoring it has been shown that BN can lead to a packet transmission reduction of 99.98%, increasing a nodes lifetime by a factor of 14 when compared to sense-and-send nodes. A summary of the Bare Necessities process at the node.

  6. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes.

    PubMed

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-12-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.

  7. On-demand information retrieval in sensor networks with localised query and energy-balanced data collection.

    PubMed

    Teng, Rui; Zhang, Bing

    2011-01-01

    On-demand information retrieval enables users to query and collect up-to-date sensing information from sensor nodes. Since high energy efficiency is required in a sensor network, it is desirable to disseminate query messages with small traffic overhead and to collect sensing data with low energy consumption. However, on-demand query messages are generally forwarded to sensor nodes in network-wide broadcasts, which create large traffic overhead. In addition, since on-demand information retrieval may introduce intermittent and spatial data collections, the construction and maintenance of conventional aggregation structures such as clusters and chains will be at high cost. In this paper, we propose an on-demand information retrieval approach that exploits the name resolution of data queries according to the attribute and location of each sensor node. The proposed approach localises each query dissemination and enable localised data collection with maximised aggregation. To illustrate the effectiveness of the proposed approach, an analytical model that describes the criteria of sink proxy selection is provided. The evaluation results reveal that the proposed scheme significantly reduces energy consumption and improves the balance of energy consumption among sensor nodes by alleviating heavy traffic near the sink.

  8. Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data.

    PubMed

    Bayer, Jason; Prassl, Anton J; Pashaei, Ali; Gomez, Juan F; Frontera, Antonio; Neic, Aurel; Plank, Gernot; Vigmond, Edward J

    2018-04-01

    Being able to map a particular set of cardiac ventricles to a generic topologically equivalent representation has many applications, including facilitating comparison of different hearts, as well as mapping quantities and structures of interest between them. In this paper we describe Universal Ventricular Coordinates (UVC), which can be used to describe position within any biventricular heart. UVC comprise four unique coordinates that we have chosen to be intuitive, well defined, and relevant for physiological descriptions. We describe how to determine these coordinates for any volumetric mesh by illustrating how to properly assign boundary conditions and utilize solutions to Laplace's equation. Using UVC, we transferred scalar, vector, and tensor data between four unstructured ventricular meshes from three different species. Performing the mappings was very fast, on the order of a few minutes, since mesh nodes were searched in a KD tree. Distance errors in mapping mesh nodes back and forth between meshes were less than the size of an element. Analytically derived fiber directions were also mapped across meshes and compared, showing  < 5° difference over most of the ventricles. The ability to transfer gradients was also demonstrated. Topologically variable structures, like papillary muscles, required further definition outside of the UVC framework. In conclusion, UVC can aid in transferring many types of data between different biventricular geometries. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Europlanet - Joining the European Planetary Research Information Service

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Chanteur, G.; Schmidt, W.

    2009-04-01

    The "Europlanet Research Infrastructure - Europlanet RI", supported by the European Commission's Framework Program 7, aims at integrating major parts of the distributed European Planetary Research infrastructure with as diverse components as space exploration, ground-based observations, laboratory experiments and numerical model-ling teams. A central part of Europlanet RI is the "Integrated and Distributed Information Service" or Europlanet-IDIS which intends to provide easy Web-based access to information about scientists and teams working in related fields, observatories or laboratories with capabilities possibly beneficial to planetary research, modelling expertise useful for planetary science and observations from space-based, ground-based or laboratory measurements. As far as the type of data and their access methods allow, IDIS will provide Virtual Observatory (VO) like access to a variety of data from distributed sources and tools to compare and integrate this information to further data analysis and re-search. IDIS itself is providing a platform for information and data sharing and for data mining. It is structured as a network of thematic nodes each concentrating on a sub-set of research areas in planetary sciences. But the most important elements of IDIS and the whole Europlanet RI are the single scientists, institutes, laboratories, observatories and mission project teams. Without them the whole effort would remain an empty shell. How can an interested individual or team join this activity and what are the benefits to be expected from the related effort? The poster gives detailed answers to these questions. Here some highlights: 1. Locate from the Europlanet web pages (addresses see below) the thematic node best related to the own field of expertise. This might be more than one. 2. Define which services you want to offer to the community: just the contact address, field of competence, off-line access to data on request or even on-line searchable access to data to be integrated into the VO features of IDIS? Any combination and many more alternatives are possible. 3. Contact the staff of the selected node(s) to go through the details 4. The node's expert team will evaluate the information to ensure that it is compliant with the minimum requirements for Europlanet information providers like correct address, related field of competence, quality of data if any etc. 5. The new resource meta data (addresses, contents etc) will be added to the IDIS system including update of the search facilities 6. If data are offered for on-line access, the IDIS team will provide tools to generate a network-compatible generic interface. This one-time effort will make it possible to search the new data sets and combine them with related in-formation from other sources. Benefits for the information provider: - wide advertisement for the own resources and capabilities with increase in scientific references to the own activities and publications - new co-operation possibilities with so far unknown teams. Team exchange might be financially supported by other segments of the Europlanet RI - strong arguments for new funding applications and many more aspects List of contact web-sites: Technical node for support and management aspects: http://www.europlanet-idis.fi/ Planetary Surfaces and Interiors node: http://europlanet.dlr.de/ Planetary Plasma node: http://europlanet-plasmanode.oeaw.ac.at/ Planetary Atmospheres node: http://idis.ipsl.jussieu.fr/ Virtual Observatory Paris Data Centre: http://vo.obspm.fr/ Small Bodies and Dust node: http://www.ifsi-roma.inaf.it/europlanet/

  10. A New Measure of Centrality for Brain Networks

    PubMed Central

    Joyce, Karen E.; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru

    2010-01-01

    Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network. PMID:20808943

  11. Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks

    PubMed Central

    Liu, Jun; Jiang, Peng; Wu, Feng; Yu, Shanen; Song, Chunyue

    2016-01-01

    During the underwater sensor networks (UWSNs) operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime. PMID:28029124

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, T

    Currently, the problem at hand is in distributing identical copies of OEP and filter software to a large number of farm nodes. One of the common methods used to transfer these softwares is through unicast. Unicast protocol faces the problem of repetitiously sending the same data over the network. Since the sending rate is limited, this process poses to be a bottleneck. Therefore, one possible solution to this problem lies in creating a reliable multicast protocol. A specific type of multicast protocol is the Bulk Multicast Protocol [4]. This system consists of one sender distributing data to many receivers. Themore » sender delivers data at a given rate of data packets. In response to that, the receiver replies to the sender with a status packet which contains information about the packet loss in terms of Negative Acknowledgment. The probability of the status packet sent back to the sender is+, where N is the number of receivers. The protocol is designed to have approximately 1 status packet for each data packet sent. In this project, we were able to show that the time taken for the complete transfer of a file to multiple receivers was about 12 times faster with multicast than by the use of unicast. The implementation of this experimental protocol shows remarkable improvement in mass data transfer to a large number of farm machines.« less

  13. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  14. Can Satellite Geodesy Disentangle Holocene Rebound and Present-Day Glacier Balance Signatures?

    NASA Technical Reports Server (NTRS)

    Irvins, E.; James, T.; Yoder, C.

    1995-01-01

    The secular drift of the precession of the ascending node of the LAGOES -1 satellite is apparently linked to the Earth s paleoclimate through the slow viscous response of the mantle to ice sheet/ocean mass transfer during the last great continental deglaciation . The secular node acceleration is particularly sensitive to the longest wavelengths of the paleo -surface loading that have been memorized by the mantle glacio -isostatic flow. Tide gauge records for the last 130 years show a post-glacial rebound-corrected sea-level rise of 2.4 n 0.9 mm yr-1.

  15. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  16. A novel approach to characterize information radiation in complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao

    2016-06-01

    The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.

  17. Method and apparatus for analyzing error conditions in a massively parallel computer system by identifying anomalous nodes within a communicator set

    DOEpatents

    Gooding, Thomas Michael [Rochester, MN

    2011-04-19

    An analytical mechanism for a massively parallel computer system automatically analyzes data retrieved from the system, and identifies nodes which exhibit anomalous behavior in comparison to their immediate neighbors. Preferably, anomalous behavior is determined by comparing call-return stack tracebacks for each node, grouping like nodes together, and identifying neighboring nodes which do not themselves belong to the group. A node, not itself in the group, having a large number of neighbors in the group, is a likely locality of error. The analyzer preferably presents this information to the user by sorting the neighbors according to number of adjoining members of the group.

  18. Ranking influential spreaders is an ill-defined problem

    NASA Astrophysics Data System (ADS)

    Gu, Jain; Lee, Sungmin; Saramäki, Jari; Holme, Petter

    2017-06-01

    Finding influential spreaders of information and disease in networks is an important theoretical problem, and one of considerable recent interest. It has been almost exclusively formulated as a node-ranking problem —methods for identifying influential spreaders output a ranking of the nodes. In this work, we show that such a greedy heuristic does not necessarily work: the set of most influential nodes depends on the number of nodes in the set. Therefore, the set of n most important nodes to vaccinate does not need to have any node in common with the set of n + 1 most important nodes. We propose a method for quantifying the extent and impact of this phenomenon. By this method, we show that it is a common phenomenon in both empirical and model networks.

  19. The value of naked eye examination of biopsied lymph nodes in the diagnosis of tuberculous lymphadenitis.

    PubMed

    Bem, C

    1996-01-01

    Tuberculous lymphadenitis is common in Central Africa, where diagnosis by histological examination of a biopsied node is often delayed. In the present study, the naked eye appearance of the cut surface of 306 consecutive biopsied lymph nodes was compared with the histological diagnosis. One hundred and eight-eight nodes showed tuberculosis on histology (including two with coexisting second pathology). One hundred and forty-eight (79%) cases of tuberculous lymphadenitis (including both with coexisting second pathology) showed noncaseating tuberculomata or caseation visible on naked eye examination. Such signs were not seen in other nodes. Other signs were seen in another 18 (10%) tuberculous nodes. It is concluded that naked eye examination of nodes provides useful information for the diagnosis of tuberculous lymphadenitis, pending confirmation by histology.

  20. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  1. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  2. Network resiliency through memory health monitoring and proactive management

    DOEpatents

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-11-21

    A method for managing a network queue memory includes receiving sensor information about the network queue memory, predicting a memory failure in the network queue memory based on the sensor information, and outputting a notification through a plurality of nodes forming a network and using the network queue memory, the notification configuring communications between the nodes.

  3. NATIONAL WATER INFORMATION SYSTEM OF THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Edwards, Melvin D.

    1985-01-01

    National Water Information System (NWIS) has been designed as an interactive, distributed data system. It will integrate the existing, diverse data-processing systems into a common system. It will also provide easier, more flexible use as well as more convenient access and expanded computing, dissemination, and data-analysis capabilities. The NWIS is being implemented as part of a Distributed Information System (DIS) being developed by the Survey's Water Resources Division. The NWIS will be implemented on each node of the distributed network for the local processing, storage, and dissemination of hydrologic data collected within the node's area of responsibility. The processor at each node will also be used to perform hydrologic modeling, statistical data analysis, text editing, and some administrative work.

  4. IDIS Small Bodies and Dust Node

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    The EuroPlaNet information service provides access to lists of researchers, laboratories and data archives relevant to many aspects of planetary and space physics. Information can be accessed through EuroPlaNet website or, for advanced searches, via web-services available at the different thematic nodes. The goal of IDIS is to provide easy-to-use access to resources like people, laboratories, modeling activities and data archives related to planetary sciences. The development of IDIS is an international effort started under the European Commission's 6th Framework Programme and which will expand its capabilities during the 7th Framework Programme, as part of the Capacities Specific Programme/Research Infrastructures. IDIS is complemented by a set of other EuroPlaNet web-services maintained under the responsibility of separate institutions. Each activity maintains its own web-portal with cross-links pointing to the other elements of EuroPlaNet. General access is provided via the EuroPlaNet Homepage. IDIS is not a repository of original data but rather supports the access to various data sources. The final goal of IDIS is to provide Virtual Observatory tools for the access to data from laboratory measurements and ground- and spaced-based observations to modeling results, allowing the combination of as divergent data sources as feasible. IDIS is built around four scientific nodes located in different European countries. Each node deals with a subset of the disciplines related to planetary sciences and, working in cooperation with international experts in these fields, provides a wealth of information to the international planetary science community. The EuroPlaNet IDIS thematic node "Small Bodies and Dust Node" is hosted by the Istituto di Fisica dello Spazio Interplanetario and is established in close cooperation with the Istituto di Astrofisica Spaziale. Both these institutes are part of the Istituto Nazionale di Astrofisica (INAF). The IDIS Small Bodies and Dust Node aims at becoming a focus point in the fields of Solar System's minor bodies and interplanetary dust by providing the community with a central, user friendly resource and service inventory and contact point. The main aim of the Small Bodies and Dust Node will be to: • support collaborative work in the field of Small Bodies and Dust • provide information about databases and scientific tools in this field • establish a scientific information management system • define and develop Science Cases regarding IDIS

  5. Parmitano in HTV-4

    NASA Image and Video Library

    2013-08-09

    ISS036-E-030115 (9 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) docked to the International Space Station's Harmony node.

  6. Temporal effects in trend prediction: identifying the most popular nodes in the future.

    PubMed

    Zhou, Yanbo; Zeng, An; Wang, Wei-Hong

    2015-01-01

    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail.

  7. Improvement of the SEP protocol based on community structure of node degree

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  8. Vascularized Jejunal Mesenteric Lymph Node Transfer: A Novel Surgical Treatment for Extremity Lymphedema.

    PubMed

    Coriddi, Michelle; Wee, Corrine; Meyerson, Joseph; Eiferman, Daniel; Skoracki, Roman

    2017-11-01

    Vascularized lymph node transfer (VLNT) is a surgical treatment for lymphedema. Multiple donor sites have been described and each has significant disadvantages. We propose the jejunal mesentery as a novel donor site for VLNT. We performed a cadaveric anatomic study analyzing jejunal lymph nodes (LNs) and describe outcomes from the first patients who received jejunal mesenteric VLNT for treatment of lymphedema. In 5 cadavers, the average numbers of total LNs and peripheral LNs were identified in the proximal, middle, and distal segments of jejunum. Totals counted were 19.2/13.8/9.6, (SD 7.0/4.4/1.1), respectively; of those, 10.4/6.8/3.4 (SD 3.6/2.3/2.6), respectively, were in the periphery. There were significantly more total and peripheral lymph nodes in the proximal segment compared with the middle and distal segments (p = 0.027 and p = 0.008, respectively). The jejunal VLNT was used in 15 patients for treatment of upper (n = 8) or lower (n = 7) extremity lymphedema. Average follow-up was 9.1 (±6.4) months (range 1 to 19 months). Of 14 patients with viable flaps (93.3%), 12 had subjective improvement (87.5%). Ten patients had preoperative measurements, and of those, 7 had objective improvement in lymphedema (70%). The jejunal mesenteric VLNT is an excellent option for lymphedema treatment because there is no risk of donor site lymphedema or nerve damage, and the scar is easily concealed. Harvest from the periphery of the proximal jejunum is optimal. Improvement from lymphedema can be expected in a majority of patients. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Mastering Lymphatic Microsurgery: A New Training Model in Living Tissue.

    PubMed

    Campisi, Corrado Cesare; Jiga, Lucian P; Ryan, Melissa; di Summa, Pietro G; Campisi, Corradino; Ionac, Mihai

    2017-09-01

    Advanced microsurgical techniques have emerged as a promising approach for the treatment of lymphedema, but achieving international standards is limited by a scarcity of adequate training models. The purpose of this report is to describe our in vivo porcine training model for microsurgery. Five female common-breed pigs (Sus scrofa domesticus) weighing 20 to 28 kg were placed under general anesthesia, and blue patent violet dye was injected to highlight lymphatic structures and prepare the pigs for anatomical exploration and microsurgery. The number and type of patent anastomoses achieved and lymph node flaps created and any anatomical differences between porcine and human vessels were noted, in light of evaluating the use of pigs as a training model for microsurgery in living tissue. Multiple lymphatic-venous anastomoses were created at the site of a single incision made at the subinguinal region, running medial and parallel to the saphenous vessels. Ten multiple lymphatic-venous anastomoses were created in total, and all were demonstrated to be patent. Four lymph node flaps were prepared for lymph node transfer. The superficial lymphatic collector system in the caudal limb of the pig was identified and described with particular reference to the superficial, medial (dominant), and lateral branches along the saphenous vein and its accessory. The authors present a safe and adaptable in vivo experimental microsurgical porcine model that provides the opportunity to practice several advanced lymphatic microsurgical techniques in the same animal. The ideal lymph node transfer training model can be developed from this anatomical detail, giving the opportunity to use it for artery-to-artery anastomoses, vein-to-vein anastomoses, and lymphatic-to-lymphatic anastomoses.

  10. Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Krishnamachari, Bhaskar

    2008-08-01

    Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.

  11. Analytic Modeling of Pressurization and Cryogenic Propellant

    NASA Technical Reports Server (NTRS)

    Corpening, Jeremy H.

    2010-01-01

    An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.

  12. A new service-oriented grid-based method for AIoT application and implementation

    NASA Astrophysics Data System (ADS)

    Zou, Yiqin; Quan, Li

    2017-07-01

    The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.

  13. Fault-tolerant bandwidth reservation strategies for data transfers in high-performance networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Liudong; Zhu, Michelle M.; Wu, Chase Q.

    2016-11-22

    Many next-generation e-science applications need fast and reliable transfer of large volumes of data with guaranteed performance, which is typically enabled by the bandwidth reservation service in high-performance networks. One prominent issue in such network environments with large footprints is that node and link failures are inevitable, hence potentially degrading the quality of data transfer. We consider two generic types of bandwidth reservation requests (BRRs) concerning data transfer reliability: (i) to achieve the highest data transfer reliability under a given data transfer deadline, and (ii) to achieve the earliest data transfer completion time while satisfying a given data transfer reliabilitymore » requirement. We propose two periodic bandwidth reservation algorithms with rigorous optimality proofs to optimize the scheduling of individual BRRs within BRR batches. The efficacy of the proposed algorithms is illustrated through extensive simulations in comparison with scheduling algorithms widely adopted in production networks in terms of various performance metrics.« less

  14. Structure, Function, and Propagation of Information across Living Two, Four, and Eight Node Degree Topologies.

    PubMed

    Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B

    2016-01-01

    In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.

  15. XML-based information system for planetary sciences

    NASA Astrophysics Data System (ADS)

    Carraro, F.; Fonte, S.; Turrini, D.

    2009-04-01

    EuroPlaNet (EPN in the following) has been developed by the planetological community under the "Sixth Framework Programme" (FP6 in the following), the European programme devoted to the improvement of the European research efforts through the creation of an internal market for science and technology. The goal of the EPN programme is the creation of a European network aimed to the diffusion of data produced by space missions dedicated to the study of the Solar System. A special place within the EPN programme is that of I.D.I.S. (Integrated and Distributed Information Service). The main goal of IDIS is to offer to the planetary science community a user-friendly access to the data and information produced by the various types of research activities, i.e. Earth-based observations, space observations, modeling, theory and laboratory experiments. During the FP6 programme IDIS development consisted in the creation of a series of thematic nodes, each of them specialized in a specific scientific domain, and a technical coordination node. The four thematic nodes are the Atmosphere node, the Plasma node, the Interiors & Surfaces node and the Small Bodies & Dust node. The main task of the nodes have been the building up of selected scientific cases related with the scientific domain of each node. The second work done by EPN nodes have been the creation of a catalogue of resources related to their main scientific theme. Both these efforts have been used as the basis for the development of the main IDIS goal, i.e. the integrated distributed service. An XML-based data model have been developed to describe resources using meta-data and to store the meta-data within an XML-based database called eXist. A search engine has been then developed in order to allow users to search resources within the database. Users can select the resource type and can insert one or more values or can choose a value among those present in a list, depending on selected resource. The system searches for all the resources containing the inserted values within the resources descriptions. An important facility of the IDIS search system is the multi-node search capability. This is due to the capacity of eXist to make queries on remote databases. This allows the system to show all resources which satisfy the search criteria on local node and to show how many resources are found on remote nodes, giving also a link to open the results page on remote nodes. During FP7 the development of the IDIS system will have the main goal to make the service Virtual Observatory compliant.

  16. Iterative Neighbour-Information Gathering for Ranking Nodes in Complex Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Wang, Pei; Lü, Jinhu

    2017-01-01

    Designing node influence ranking algorithms can provide insights into network dynamics, functions and structures. Increasingly evidences reveal that node’s spreading ability largely depends on its neighbours. We introduce an iterative neighbourinformation gathering (Ing) process with three parameters, including a transformation matrix, a priori information and an iteration time. The Ing process iteratively combines priori information from neighbours via the transformation matrix, and iteratively assigns an Ing score to each node to evaluate its influence. The algorithm appropriates for any types of networks, and includes some traditional centralities as special cases, such as degree, semi-local, LeaderRank. The Ing process converges in strongly connected networks with speed relying on the first two largest eigenvalues of the transformation matrix. Interestingly, the eigenvector centrality corresponds to a limit case of the algorithm. By comparing with eight renowned centralities, simulations of susceptible-infected-removed (SIR) model on real-world networks reveal that the Ing can offer more exact rankings, even without a priori information. We also observe that an optimal iteration time is always in existence to realize best characterizing of node influence. The proposed algorithms bridge the gaps among some existing measures, and may have potential applications in infectious disease control, designing of optimal information spreading strategies.

  17. Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages

    NASA Astrophysics Data System (ADS)

    Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio

    Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.

  18. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria. PMID:18485189

  19. A distributed transmit beamforming synchronization strategy for multi-element radar systems

    NASA Astrophysics Data System (ADS)

    Xiao, Manlin; Li, Xingwen; Xu, Jikang

    2017-02-01

    The distributed transmit beamforming has recently been discussed as an energy-effective technique in wireless communication systems. A common ground of various techniques is that the destination node transmits a beacon signal or feedback to assist source nodes to synchronize signals. However, this approach is not appropriate for a radar system since the destination is a non-cooperative target of an unknown location. In our paper, we propose a novel synchronization strategy for a distributed multiple-element beamfoming radar system. Source nodes estimate parameters of beacon signals transmitted from others to get their local synchronization information. The channel information of the phase propagation delay is transmitted to nodes via the reflected beacon signals as well. Next, each node generates appropriate parameters to form a beamforming signal at the target. Transmit beamforming signals of all nodes will combine coherently at the target compensating for different propagation delay. We analyse the influence of the local oscillation accuracy and the parameter estimation errors on the performance of the proposed synchronization scheme. The results of numerical simulations illustrate that this synchronization scheme is effective to enable the transmit beamforming in a distributed multi-element radar system.

  20. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    PubMed Central

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  1. Multi-Disciplinary, Multi-Fidelity Discrete Data Transfer Using Degenerate Geometry Forms

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    In a typical multi-fidelity design process, different levels of geometric abstraction are used for different analysis methods, and transitioning from one phase of design to the next often requires a complete re-creation of the geometry. To maintain consistency between lower-order and higher-order analysis results, Vehicle Sketch Pad (OpenVSP) recently introduced the ability to generate and export several degenerate forms of the geometry, representing the type of abstraction required to perform low- to medium-order analysis for a range of aeronautical disciplines. In this research, the functionality of these degenerate models was extended, so that in addition to serving as repositories for the geometric information that is required as input to an analysis, the degenerate models can also store the results of that analysis mapped back onto the geometric nodes. At the same time, the results are also mapped indirectly onto the nodes of lower-order degenerate models using a process called aggregation, and onto higher-order models using a process called disaggregation. The mapped analysis results are available for use by any subsequent analysis in an integrated design and analysis process. A simple multi-fidelity analysis process for a single-aisle subsonic transport aircraft is used as an example case to demonstrate the value of the approach.

  2. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    PubMed

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  3. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.

    PubMed

    Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser

    2016-03-11

    The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

  4. A QoS-guaranteed coverage precedence routing algorithm for wireless sensor networks.

    PubMed

    Jiang, Joe-Air; Lin, Tzu-Shiang; Chuang, Cheng-Long; Chen, Chia-Pang; Sun, Chin-Hong; Juang, Jehn-Yih; Lin, Jiun-Chuan; Liang, Wei-Wen

    2011-01-01

    For mission-critical applications of wireless sensor networks (WSNs) involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. WSNs have been applied to various types of mission-critical applications. Coverage preservation is one of the most essential functions to guarantee quality of service (QoS) in WSNs. However, a tradeoff exists between sensing coverage and network lifetime due to the limited energy supplies of sensor nodes. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The energy consumption for radio transmissions and the residual energy over the network are taken into account when the proposed protocol determines an energy-efficient route for a packet. The simulation results demonstrate that the proposed protocol is able to increase the duration of the on-duty network and provide up to 98.3% and 85.7% of extra service time with 100% sensing coverage ratio comparing with LEACH and the LEACH-Coverage-U protocols, respectively.

  5. An improved label propagation algorithm based on node importance and random walk for community detection

    NASA Astrophysics Data System (ADS)

    Ma, Tianren; Xia, Zhengyou

    2017-05-01

    Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits. Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability. Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.

  6. Securing Collaborative Spectrum Sensing against Untrustworthy Secondary Users in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Wang, Wenkai; Li, Husheng; Sun, Yan(Lindsay); Han, Zhu

    2009-12-01

    Cognitive radio is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In cognitive radio networks, collaborative spectrum sensing is considered as an effective method to improve the performance of primary user detection. For current collaborative spectrum sensing schemes, secondary users are usually assumed to report their sensing information honestly. However, compromised nodes can send false sensing information to mislead the system. In this paper, we study the detection of untrustworthy secondary users in cognitive radio networks. We first analyze the case when there is only one compromised node in collaborative spectrum sensing schemes. Then we investigate the scenario that there are multiple compromised nodes. Defense schemes are proposed to detect malicious nodes according to their reporting histories. We calculate the suspicious level of all nodes based on their reports. The reports from nodes with high suspicious levels will be excluded in decision-making. Compared with existing defense methods, the proposed scheme can effectively differentiate malicious nodes and honest nodes. As a result, it can significantly improve the performance of collaborative sensing. For example, when there are 10 secondary users, with the primary user detection rate being equal to 0.99, one malicious user can make the false alarm rate [InlineEquation not available: see fulltext.] increase to 72%. The proposed scheme can reduce it to 5%. Two malicious users can make [InlineEquation not available: see fulltext.] increase to 85% and the proposed scheme reduces it to 8%.

  7. A wireless medical monitoring over a heterogeneous sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai

    2007-01-01

    This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  8. Structural action recognition in body sensor networks: distributed classification based on string matching.

    PubMed

    Ghasemzadeh, Hassan; Loseu, Vitali; Jafari, Roozbeh

    2010-03-01

    Mobile sensor-based systems are emerging as promising platforms for healthcare monitoring. An important goal of these systems is to extract physiological information about the subject wearing the network. Such information can be used for life logging, quality of life measures, fall detection, extraction of contextual information, and many other applications. Data collected by these sensor nodes are overwhelming, and hence, an efficient data processing technique is essential. In this paper, we present a system using inexpensive, off-the-shelf inertial sensor nodes that constructs motion transcripts from biomedical signals and identifies movements by taking collaboration between the nodes into consideration. Transcripts are built of motion primitives and aim to reduce the complexity of the original data. We then label each primitive with a unique symbol and generate a sequence of symbols, known as motion template, representing a particular action. This model leads to a distributed algorithm for action recognition using edit distance with respect to motion templates. The algorithm reduces the number of active nodes during every classification decision. We present our results using data collected from five normal subjects performing transitional movements. The results clearly illustrate the effectiveness of our framework. In particular, we obtain a classification accuracy of 84.13% with only one sensor node involved in the classification process.

  9. An Energy-Efficient Cluster-Based Vehicle Detection on Road Network Using Intention Numeration Method

    PubMed Central

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221

  10. An energy-efficient cluster-based vehicle detection on road network using intention numeration method.

    PubMed

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  11. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    PubMed

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  12. N7 logic via patterning using templated DSA: implementation aspects

    NASA Astrophysics Data System (ADS)

    Bekaert, J.; Doise, J.; Gronheid, R.; Ryckaert, J.; Vandenberghe, G.; Fenger, G.; Her, Y. J.; Cao, Y.

    2015-07-01

    In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern.

  13. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  14. Monitoring the Earth System Grid Federation through the ESGF Dashboard

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Bell, G. M.; Drach, B.; Williams, D.; Aloisio, G.

    2012-12-01

    The Climate Model Intercomparison Project, phase 5 (CMIP5) is a global effort coordinated by the World Climate Research Programme (WCRP) involving tens of modeling groups spanning 19 countries. It is expected the CMIP5 distributed data archive will total upwards of 3.5 petabytes, stored across several ESGF Nodes on four continents (North America, Europe, Asia, and Australia). The Earth System Grid Federation (ESGF) provides the IT infrastructure to support the CMIP5. In this regard, the monitoring of the distributed ESGF infrastructure represents a crucial part carried out by the ESGF Dashboard. The ESGF Dashboard is a software component of the ESGF stack, responsible for collecting key information about the status of the federation in terms of: 1) Network topology (peer-groups composition), 2) Node type (host/services mapping), 3) Registered users (including their Identity Providers), 4) System metrics (e.g., round-trip time, service availability, CPU, memory, disk, processes, etc.), 5) Download metrics (both at the Node and federation level). The last class of information is very important since it provides a strong insight of the CMIP5 experiment: the data usage statistics. In this regard, CMCC and LLNL have developed a data analytics management system for the analysis of both node-level and federation-level data usage statistics. It provides data usage statistics aggregated by project, model, experiment, variable, realm, peer node, time, ensemble, datasetname (including version), etc. The back-end of the system is able to infer the data usage information of the entire federation, by carrying out: - at node level: a 18-step reconciliation process on the peer node databases (i.e. node manager and publisher DB) which provides a 15-dimension datawarehouse with local statistics and - at global level: an aggregation process which federates the data usage statistics into a 16-dimension datawarehouse with federation-level data usage statistics. The front-end of the Dashboard system exploits a web desktop approach, which joins the pervasivity of a web application with the flexibility of a desktop one.

  15. Immunosuppression induced by talc granulomatosis in the rat.

    PubMed Central

    Radić, I; Vucak, I; Milosević, J; Marusić, A; Vukicević, S; Marusić, M

    1988-01-01

    Granulomatosis caused by four subcutaneous talc powder-suspension injections induced strong immunosuppression in rats. The disturbance included reduction of mononuclear white blood cell count in the peripheral blood, atrophy of the thymic cortex, spleen enlargement with predominance of red over the white pulp, increase in the number of lymph node germinal centres and a significant delay of the first-set and second-set allograft rejection. Neither phagocytic function of reticuloendothelial system nor erythrocyte count and humoral immune response were found to be altered. Indomethacin suppression of prostaglandin production did not normalize the allograft rejection dynamics. In contrast, splenectomy completely abolished the immunosuppressive effects of granulomatosis. In splenectomized, talc-treated animals WBC counts were not altered and the rejection of allografts was not delayed. Suppression of immune response to alloantigens was transferred to normal and splenectomized recipients by both serum and spleen cells of talc-injected animals. Also, in a cell mixture-transfer experiment, spleen cells from talc-granulomatosis-bearing donors suppressed the immune response induced by lymph node cells from immune donors in T cell-deficient rats. The inability of serum from splenectomized talc-injected rats to transfer the suppression suggested the crucial role of the spleen in the mechanisms leading to suppression in rats bearing talc-granulomatosis. PMID:3052948

  16. Photonic quantum state transfer between a cold atomic gas and a crystal.

    PubMed

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  17. Adoptive transfer of nontransgenic mesenteric lymph node cells induces colitis in athymic HLA-B27 transgenic nude rats

    PubMed Central

    Hoentjen, F; Tonkonogy, S L; Liu, B; Sartor, R B; Taurog, J D; Dieleman, L A

    2006-01-01

    HLA-B27 transgenic (TG) rats develop spontaneous colitis when colonized with intestinal bacteria, whereas athymic nude (rnu/rnu) HLA-B27 TG rats remain disease free. The present study was designed to determine whether or not HLA-B27 expression on T cells is required for development of colitis after transfer of mesenteric lymph node (MLN) cells into rnu/rnu HLA-B27 recipients. Athymic nontransgenic (non-TG) and HLA-B27 TG recipients received MLN cells from either TG or non-TG rnu/+ heterozygous donor rats that contain T cells. HLA-B27 TG rnu/rnu recipients receiving either non-TG or TG MLN cells developed severe colitis and had higher caecal MPO and IL-1β levels, and their MLN cells produced more IFN-γ and less IL-10 after in vitro stimulation with caecal bacterial lysate compared to rnu/rnu non-TG recipients that remained disease free after receiving either TG or non-TG cells. Interestingly, proliferating donor TG T cells were detectable one week after adoptive transfer into rnu/rnu TG recipients but not after transfer into non-TG recipients. T cells from either non-TG or TG donors induce colitis in rnu/rnu TG but not in non-TG rats, suggesting that activation of effector T cells by other cell types that express HLA-B27 is pivotal for the pathogenesis of colitis in this model. PMID:16487247

  18. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  19. A Family of Algorithms for Computing Consensus about Node State from Network Data

    PubMed Central

    Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

    2013-01-01

    Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. PMID:23874167

  20. Lymph node staging of oral and maxillofacial neoplasms in 31 dogs and cats.

    PubMed

    Herring, Erin S; Smith, Mark M; Robertson, John L

    2002-09-01

    A retrospective study was performed to report the histologic examination results of regional lymph nodes of dogs and cats with oral or maxillofacial neoplasms. Twenty-eight dogs and 3 cats were evaluated. Histologic examination results of standard and serial tissue sectioning of regional lymph nodes were recorded. When available, other clinical parameters including mandibular lymph node palpation, thoracic radiographs, and pre- and postoperative fine needle aspiration of lymph nodes were compared with the histologic results. Squamous cell carcinoma, fibrosarcoma, and melanoma were the most common neoplasms diagnosed in dogs. Squamous cell carcinoma and fibrosarcoma were diagnosed in cats. Of the palpably enlarged mandibular lymph nodes, 17.0% had metastatic disease histologically. Radiographically evident thoracic metastatic disease was present in 7.4% of cases. Preoperative cytologic evaluation of the mandibular lymph node based on fine needle aspiration concurred with the histologic results in 90.5% of lymph nodes examined. Postoperative cytologic evaluation of fine needle aspirates of regional lymph nodes concurred with the histologic results in 80.6% of lymph nodes examined. Only 54.5% of cases with metastatic disease to regional lymph nodes had metastasis that included the mandibular lymph node. Serial lymph node sectioning provided additional information or metastasis detection. Cytologic evaluation of the mandibular lymph node correlates positively with histology, however results may fail to indicate the presence of regional metastasis. Assessment of all regional lymph nodes in dogs and cats with oral or maxillofacial neoplasms will detect more metastatic disease than assessing the mandibular lymph node only.

  1. Method for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E.; Elmore, Mark Thomas; Reed, Joel Wesley; Treadwell, Jim N.; Samatova, Nagiza Faridovna

    2010-04-06

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  2. System for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E.; Elmore, Mark Thomas; Reed, Joel Wesley; Treadwell, Jim N.; Samatova, Nagiza Faridovna

    2006-07-04

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  3. Method for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E [Oak Ridge, TN; Elmore, Mark Thomas [Oak Ridge, TN; Reed, Joel Wesley [Knoxville, TN; Treadwell, Jim N [Louisville, TN; Samatova, Nagiza Faridovna [Oak Ridge, TN

    2008-01-01

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  4. Energy-aware scheduling of surveillance in wireless multimedia sensor networks.

    PubMed

    Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao

    2010-01-01

    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.

  5. Impact of sentinel lymphadenectomy on survival in a murine model of melanoma.

    PubMed

    Rebhun, Robert B; Lazar, Alexander J F; Fidler, Isaiah J; Gershenwald, Jeffrey E

    2008-01-01

    Lymphatic mapping and sentinel lymph node biopsy-also termed sentinel lymphadenectomy (SL)-has become a standard of care for patients with primary invasive cutaneous melanoma. This technique has been shown to provide accurate information about the disease status of the regional lymph node basins at risk for metastasis, provide prognostic information, and provide durable regional lymph node control. The potential survival benefit afforded to patients undergoing SL is controversial. Central to this controversy is whether metastasis to regional lymph nodes occurs independent of or prior to widespread hematogenous dissemination. A related area of uncertainty is whether tumor cells residing within regional lymph nodes have increased metastatic potential. We have used a murine model of primary invasive cutaneous melanoma based on injection of B16-BL6 melanoma cells into the pinna to address two questions: (1) does SL plus wide excision of the primary tumor result in a survival advantage over wide excision alone; and (2) do melanoma cells growing within lymph nodes produce a higher incidence of hematogenous metastases than do cells growing at the primary tumor site? We found that SL significantly improved the survival of mice with small primary tumors. We found no difference in the incidence of lung metastases produced by B16-BL6 melanoma cells growing exclusively within regional lymph nodes and cells growing within the pinna.

  6. Supporting Adaptive Ubiquitous Applications With the Solar System

    DTIC Science & Technology

    2001-05-31

    stackable operators to manage ubiqui- tous information sources. After developing a set of di - verse adaptive applications, we expect to identify fun...performance. Solar provides flexibility by allowing applications to define and interconnect op- erator objects. Solar provides scalability by dis ...children by publishing events. (Static directory nodes are sources and dynamic di - rectory nodes are operators.) Alias nodes are pub- lishers that announce

  7. Information Selection in Intelligence Processing

    DTIC Science & Technology

    2011-12-01

    given. Edges connecting nodes representing irrelevant persons with either relevant or irrelevant persons are added randomly, as in an Erdos- Renyi ...graph (Erdos at Renyi , 1959): For each irrelevant node i , and another node j (either relevant or irrelevant) there is a predetermined probability that...statistics for engineering and the sciences (7th ed.). Boston: Duxbury Press. Erdos, P., & Renyi , A. (1959). “On Random Graphs,” Publicationes

  8. View of Expedition 32 FE Hoshide during HTV3 Ingress

    NASA Image and Video Library

    2012-07-28

    ISS032-E-011406 (28 July 2012) --- Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, Expedition 32 flight engineer, using a Russian AK-1M absorber, samples the air in the newly attached JAXA H-II Transfer Vehicle (HTV-3) docked to the International Space Station?s Harmony node.

  9. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  10. Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity.

    PubMed

    Hoffmann, M; Saleh-Ebrahimi, L; Zwicker, F; Haering, P; Schwahofer, A; Debus, J; Huber, P E; Roeder, F

    2015-12-04

    To report our long-term results with postoperative intensity-modulated radiation therapy (IMRT) in patients suffering from squamous-cell carcinoma (SCC) of the oral cavity or oropharynx. Seventy five patients were retrospectively analyzed. Median age was 58 years and 84 % were male. 76 % of the primaries were located in the oropharynx. Surgery resulted in negative margins (R0) in 64 % of the patients while 36 % suffered from positive margins (R1). Postoperative stages were as follows: stage 1:4 %, stage 2:9 %, stage 3:17 %, stage 4a:69 % with positive nodes in 84 %. Perineural invasion (Pn+) and extracapsular extension (ECE) were present in 7 % and 29 %, respectively. All patients received IMRT using the step-and-shoot approach with a simultaneously integrated boost (SIB) in 84 %. Concurrent systemic therapy was applied to 53 patients, mainly cisplatin weekly. Median follow-up was 55 months (5-150). 13 patients showed locoregional failures (4 isolated local, 4 isolated neck, 5 combined) transferring into 5-year-LRC rates of 85 %. Number of positive lymph nodes (n > 2) and presence of ECE were significantly associated with decreased LRC in univariate analysis, but only the number of nodes remained significant in multivariate analysis. Overall treatment failures occurred in 20 patients (9 locoregional only, 7 distant only, 4 combined), transferring into 3-and 5-year-FFTF rates of 77 % and 75 %, respectively. The 3-and 5-year-OS rates were 80 % and 72 %, respectively. High clinical stage, high N stage, number of positive nodes (n > 2), ECE and Pn1 were significantly associated with worse FFTF and OS in univariate analysis, but only number of nodes remained significant for FFTF in multivariate analysis. Maximum acute toxicity was grade 3 in 64 % and grade 4 in 1 %, mainly hematological or mucositis/dysphagia. Maximum late toxicity was grade 3 in 23 % of the patients, mainly long-term tube feeding dependency. Postoperative IMRT achieved excellent LRC and good OS with acceptable acute and low late toxicity rates. The number of positive nodes (n > 2) was a strong prognostic factor for all endpoints in univariate and the only significant factor for LRC and FFTF in multivariate analysis. Patients with feeding tubes due to postoperative complications had an increased risk for long-term feeding tube dependency.

  11. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks.

    PubMed

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-02-19

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.

  12. Design of nodes for embedded and ultra low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin

    2008-10-01

    Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.

  13. Automatic abdominal lymph node detection method based on local intensity structure analysis from 3D x-ray CT images

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku

    2013-03-01

    This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.

  14. Sentinel Lymph Nodes for Breast Carcinoma: A Paradigm Shift.

    PubMed

    Maguire, Aoife; Brogi, Edi

    2016-08-01

    -Sentinel lymph node biopsy has been established as the new standard of care for axillary staging in most patients with invasive breast carcinoma. Historically, all patients with a positive sentinel lymph node biopsy result underwent axillary lymph node dissection. Recent trials show that axillary lymph node dissection can be safely omitted in women with clinically node negative, T1 or T2 invasive breast cancer treated with breast-conserving surgery and whole-breast radiotherapy. This change in practice also has implications on the pathologic examination and reporting of sentinel lymph nodes. -To review recent clinical and pathologic studies of sentinel lymph nodes and explore how these findings influence the pathologic evaluation of sentinel lymph nodes. -Sources were published articles from peer-reviewed journals in PubMed (US National Library of Medicine) and published guidelines from the American Joint Committee on Cancer, the Union for International Cancer Control, the American Society of Clinical Oncology, and the National Comprehensive Cancer Network. -The main goal of sentinel lymph node examination should be to detect all macrometastases (>2 mm). Grossly sectioning sentinel lymph nodes at 2-mm intervals and evaluation of one hematoxylin-eosin-stained section from each block is the preferred method of pathologic evaluation. Axillary lymph node dissection can be safely omitted in clinically node-negative patients with negative sentinel lymph nodes, as well as in a selected group of patients with limited sentinel lymph node involvement. The pathologic features of the primary carcinoma and its sentinel lymph node metastases contribute to estimate the extent of non-sentinel lymph node involvement. This information is important to decide on further axillary treatment.

  15. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  16. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  17. CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks

    PubMed Central

    Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang

    2016-01-01

    In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols. PMID:26907293

  18. Secure Localization in the Presence of Colluders in WSNs

    PubMed Central

    Barbeau, Michel; Corriveau, Jean-Pierre; Garcia-Alfaro, Joaquin; Yao, Meng

    2017-01-01

    We address the challenge of correctly estimating the position of wireless sensor network (WSN) nodes in the presence of malicious adversaries. We consider adversarial situations during the execution of node localization under three classes of colluding adversaries. We describe a decentralized algorithm that aims at determining the position of nodes in the presence of such colluders. Colluders are assumed to either forge or manipulate the information they exchange with the other nodes of the WSN. This algorithm allows location-unknown nodes to successfully detect adversaries within their communication range. Numeric simulation is reported to validate the approach. Results show the validity of the proposal, both in terms of localization and adversary detection. PMID:28817077

  19. A Deep-towed Digital Multichannel Seismic Streamer For Very High-resolution Studies Of Marine Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Inggas Working Group

    A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All deep-towed and laboratory components are synchronized by DGPS time based trigger signals. This deep-towed system will first be tested during the SO162 cruise of RV Sonne (21.2. - 12.3.02) off Peru and Ecuador along profile lines where conventional multi- channel seismic reflection data have already been collected during a fomer cruise.

  20. Comparison of the current AJCC-TNM numeric-based with a new anatomical location-based lymph node staging system for gastric cancer: A western experience.

    PubMed

    Galizia, Gennaro; Lieto, Eva; Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele

    2017-01-01

    In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system.

  1. Counter-Based Broadcast Scheme Considering Reachability, Network Density, and Energy Efficiency for Wireless Sensor Networks.

    PubMed

    Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun

    2018-01-04

    A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.

  2. A telemedicine model for integrating point-of-care testing into a distributed health-care environment.

    PubMed

    Villalar, J L; Arredondo, M T; Meneu, T; Traver, V; Cabrera, M F; Guillen, S; Del Pozo, F

    2002-01-01

    Centralized testing demands costly laboratories, which are inefficient and may provide poor services. Recent advances make it feasible to move clinical testing nearer to patients and the requesting physicians, thus reducing the time to treatment. Internet technologies can be used to create a virtual laboratory information system in a distributed health-care environment. This allows clinical testing to be transferred to a cooperative scheme of several point-of-care testing (POCT) nodes. Two pilot virtual laboratories were established, one in Italy (AUSL Modena) and one in Greece (Athens Medical Centre). They were constructed on a three-layer model to allow both technical and clinical verification. Different POCT devices were connected. The pilot sites produced good preliminary results in relation to user acceptance, efficiency, convenience and costs. Decentralized laboratories can be expected to become cost-effective.

  3. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  4. Libration-point staging concepts for Earth-Mars transportation

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Dunham, David

    1986-01-01

    The use of libration points as transfer nodes for an Earth-Mars transportation system is briefly described. It is assumed that a reusable Interplanetary Shuttle Vehicle (ISV) operates between the libration point and Mars orbit. Propellant for the round-trip journey to Mars and other supplies would be carried from low Earth orbit (LEO) to the ISV by additional shuttle vehicles. Different types of trajectories between LEO and libration points are presented, and approximate delta-V estimates for these transfers are given. The possible use of lunar gravity-assist maneuvers is also discussed.

  5. Evaluating the transport layer of the ALFA framework for the Intel® Xeon Phi™ Coprocessor

    NASA Astrophysics Data System (ADS)

    Santogidis, Aram; Hirstius, Andreas; Lalis, Spyros

    2015-12-01

    The ALFA framework supports the software development of major High Energy Physics experiments. As part of our research effort to optimize the transport layer of ALFA, we focus on profiling its data transfer performance for inter-node communication on the Intel Xeon Phi Coprocessor. In this article we present the collected performance measurements with the related analysis of the results. The optimization opportunities that are discovered, help us to formulate the future plans of enabling high performance data transfer for ALFA on the Intel Xeon Phi architecture.

  6. Japanese Kounotori HTV-2 Transfer Vehicle

    NASA Image and Video Library

    2011-01-27

    ISS026-E-020932 (27 Jan. 2011) --- Backdropped by Earth?s horizon and the blackness of space, the International Space Station's Canadarm2 grapples the unpiloted Japanese Kounotori2 H-II Transfer Vehicle (HTV2) as it approaches the station. NASA astronaut Catherine (Cady) Coleman and European Space Agency astronaut Paolo Nespoli, both Expedition 26 flight engineers, used the station?s robotic arm to attach the HTV2 to the Earth-facing port of the station?s Harmony node. The attachment was completed at 9:51 a.m. (EST) on Jan. 27, 2011.

  7. Greedy Gossip With Eavesdropping

    NASA Astrophysics Data System (ADS)

    Ustebay, Deniz; Oreshkin, Boris N.; Coates, Mark J.; Rabbat, Michael G.

    2010-07-01

    This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed computation of the average consensus problem. In gossip algorithms, nodes in the network randomly communicate with their neighbors and exchange information iteratively. The algorithms are simple and decentralized, making them attractive for wireless network applications. In general, gossip algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require nodes to have any location information. Instead, greedy updates are made possible by exploiting the broadcast nature of wireless communications. During the operation of GGE, when a node decides to gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the node which has the value most different from its own. In order to make this selection, nodes need to know their neighbors' values. Therefore, we assume that all transmissions are wireless broadcasts and nodes keep track of their neighbors' values by eavesdropping on their communications. We show that the convergence of GGE is guaranteed for connected network topologies. We also study the rates of convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random geometric graph topologies.

  8. Hybrid Techniques for Optimizing Complex Systems

    DTIC Science & Technology

    2009-12-01

    Service , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of...These vectors are randomly generated, and conventional functional simulation propagates signatures to the internal and output nodes. In a typical...instance, if two internal nodes x and y satisfy the property (y = 1) ⇒ (x = 1), where ⇒ denotes “implies”, then y gives information about x whenever y = 1

  9. An improved spatial contour tree constructed method

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  10. Frequency of an accessory popliteal efferent lymphatic pathway in dogs.

    PubMed

    Mayer, Monique N; Sweet, Katherine A; Patsikas, Michael N; Sukut, Sally L; Waldner, Cheryl L

    2018-05-01

    Staging and therapeutic planning for dogs with malignant disease in the popliteal lymph node are based on the expected patterns of lymphatic drainage from the lymph node. The medial iliac lymph nodes are known to receive efferent lymph from the popliteal lymph node; however, an accessory popliteal efferent pathway with direct connection to the sacral lymph nodes has also been less frequently reported. The primary objective of this prospective, anatomic study was to describe the frequency of various patterns of lymphatic drainage of the popliteal lymph node. With informed client consent, 50 adult dogs with no known disease of the lymphatic system underwent computed tomographic lymphography after ultrasound-guided, percutaneous injection of 350 mg/ml iohexol into a popliteal lymph node. In all 50 dogs, the popliteal lymph node drained directly to the ipsilateral medial iliac lymph node through multiple lymphatic vessels that coursed along the medial thigh. In 26% (13/50) of dogs, efferent vessels also drained from the popliteal lymph node directly to the internal iliac and/or sacral lymph nodes, coursing laterally through the gluteal region and passing over the dorsal aspect of the pelvis. Lymphatic connections between the right and left medial iliac and right and left internal iliac lymph nodes were found. Based on our findings, the internal iliac and sacral lymph nodes should be considered when staging or planning therapy for dogs with malignant disease in the popliteal lymph node. © 2018 American College of Veterinary Radiology.

  11. A Node Localization Algorithm Based on Multi-Granularity Regional Division and the Lagrange Multiplier Method in Wireless Sensor Networks.

    PubMed

    Shang, Fengjun; Jiang, Yi; Xiong, Anping; Su, Wen; He, Li

    2016-11-18

    With the integrated development of the Internet, wireless sensor technology, cloud computing, and mobile Internet, there has been a lot of attention given to research about and applications of the Internet of Things. A Wireless Sensor Network (WSN) is one of the important information technologies in the Internet of Things; it integrates multi-technology to detect and gather information in a network environment by mutual cooperation, using a variety of methods to process and analyze data, implement awareness, and perform tests. This paper mainly researches the localization algorithm of sensor nodes in a wireless sensor network. Firstly, a multi-granularity region partition is proposed to divide the location region. In the range-based method, the RSSI (Received Signal Strength indicator, RSSI) is used to estimate distance. The optimal RSSI value is computed by the Gaussian fitting method. Furthermore, a Voronoi diagram is characterized by the use of dividing region. Rach anchor node is regarded as the center of each region; the whole position region is divided into several regions and the sub-region of neighboring nodes is combined into triangles while the unknown node is locked in the ultimate area. Secondly, the multi-granularity regional division and Lagrange multiplier method are used to calculate the final coordinates. Because nodes are influenced by many factors in the practical application, two kinds of positioning methods are designed. When the unknown node is inside positioning unit, we use the method of vector similarity. Moreover, we use the centroid algorithm to calculate the ultimate coordinates of unknown node. When the unknown node is outside positioning unit, we establish a Lagrange equation containing the constraint condition to calculate the first coordinates. Furthermore, we use the Taylor expansion formula to correct the coordinates of the unknown node. In addition, this localization method has been validated by establishing the real environment.

  12. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  13. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    PubMed Central

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  14. Privacy Vulnerability of Published Anonymous Mobility Traces

    DOE PAGES

    Ma, Chris Y. T.; Yau, David K. Y.; Yip, Nung Kwan; ...

    2013-06-01

    Mobility traces of people and vehicles have been collected and published to assist the design and evaluation of mobile networks, such as large-scale urban sensing networks. Although the published traces are often made anonymous in that the true identities of nodes are replaced by random identifiers, the privacy concern remains. This is because in real life, nodes are open to observations in public spaces, or they may voluntarily or inadvertently disclose partial knowledge of their whereabouts. Thus, snapshots of nodes’ location information can be learned by interested third parties, e.g., directly through chance/engineered meetings between the nodes and their observers,more » or indirectly through casual conversations or other information sources about people. In this paper, we investigate how an adversary, when equipped with a small amount of the snapshot information termed as side information, can infer an extended view of the whereabouts of a victim node appearing in an anonymous trace. Our results quantify the loss of victim nodes’ privacy as a function of the nodal mobility, the inference strategies of adversaries, and any noise that may appear in the trace or the side information. Generally, our results indicate that the privacy concern is significant in that a relatively small amount of side information is sufficient for the adversary to infer the true identity (either uniquely or with high probability) of a victim in a set of anonymous traces. For instance, an adversary is able to identify the trace of 30%-50% of the victims when she has collected 10 pieces of side information about a victim.« less

  15. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update

    PubMed Central

    Krop, Ian; Ismaila, Nofisat; Andre, Fabrice; Bast, Robert C.; Barlow, William; Collyar, Deborah E.; Hammond, M. Elizabeth; Kuderer, Nicole M.; Liu, Minetta C.; Mennel, Robert G.; Van Poznak, Catherine; Wolff, Antonio C.; Stearns, Vered

    2018-01-01

    Purpose This focused update addresses the use of MammaPrint (Agendia, Irvine, CA) to guide decisions on the use of adjuvant systemic therapy. Methods ASCO uses a signals approach to facilitate guideline updates. For this focused update, the publication of the phase III randomized MINDACT (Microarray in Node-Negative and 1 to 3 Positive Lymph Node Disease May Avoid Chemotherapy) study to evaluate the MammaPrint assay in 6,693 women with early-stage breast cancer provided a signal. An expert panel reviewed the results of the MINDACT study along with other published literature on the MammaPrint assay to assess for evidence of clinical utility. Recommendations If a patient has hormone receptor–positive, human epidermal growth factor receptor 2 (HER2)–negative, node-negative breast cancer, the MammaPrint assay may be used in those with high clinical risk to inform decisions on withholding adjuvant systemic chemotherapy due to its ability to identify a good-prognosis population with potentially limited chemotherapy benefit. Women in the low clinical risk category did not benefit from chemotherapy regardless of genomic MammaPrint risk group. Therefore, the MammaPrint assay does not have clinical utility in such patients. If a patient has hormone receptor–positive, HER2-negative, node-positive breast cancer, the MammaPrint assay may be used in patients with one to three positive nodes and a high clinical risk to inform decisions on withholding adjuvant systemic chemotherapy. However, such patients should be informed that a benefit from chemotherapy cannot be excluded, particularly in patients with greater than one involved lymph node. The clinician should not use the MammaPrint assay to guide decisions on adjuvant systemic therapy in patients with hormone receptor–positive, HER2-negative, node-positive breast cancer at low clinical risk, nor any patient with HER2-positive or triple-negative breast cancer, because of the lack of definitive data in these populations. Additional information can be found at www.asco.org/breast-cancer-guidelines and www.asco.org/guidelineswiki. PMID:28692382

  16. Information slows down hierarchy growth

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A.

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  17. Information slows down hierarchy growth.

    PubMed

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  18. A novel information cascade model in online social networks

    NASA Astrophysics Data System (ADS)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  19. Sentinel Lymph Nodes for Breast Carcinoma A Paradigm Shift

    PubMed Central

    Maguire, Aoife; Brogi, Edi

    2016-01-01

    Context Sentinel lymph node biopsy has been established as the new standard of care for axillary staging in most patients with invasive breast carcinoma. Historically, all patients with a positive sentinel lymph node biopsy result underwent axillary lymph node dissection. Recent trials show that axillary lymph node dissection can be safely omitted in women with clinically node negative, T1 or T2 invasive breast cancer treated with breast-conserving surgery and whole-breast radiotherapy. This change in practice also has implications on the pathologic examination and reporting of sentinel lymph nodes. Objective To review recent clinical and pathologic studies of sentinel lymph nodes and explore how these findings influence the pathologic evaluation of sentinel lymph nodes. Data Sources Sources were published articles from peer-reviewed journals in PubMed (US National Library of Medicine) and published guidelines from the American Joint Committee on Cancer, the Union for International Cancer Control, the American Society of Clinical Oncology, and the National Comprehensive Cancer Network. Conclusions The main goal of sentinel lymph node examination should be to detect all macrometastases (>2 mm). Grossly sectioning sentinel lymph nodes at 2-mm intervals and evaluation of one hematoxylin-eosin–stained section from each block is the preferred method of pathologic evaluation. Axillary lymph node dissection can be safely omitted in clinically node-negative patients with negative sentinel lymph nodes, as well as in a selected group of patients with limited sentinel lymph node involvement. The pathologic features of the primary carcinoma and its sentinel lymph node metastases contribute to estimate the extent of non–sentinel lymph node involvement. This information is important to decide on further axillary treatment. PMID:27472237

  20. Effects in the network topology due to node aggregation: Empirical evidence from the domestic maritime transportation in Greece

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Polyzos, Serafeim

    2018-02-01

    This article studies the topological consistency of spatial networks due to node aggregation, examining the changes captured between different network representations that result from nodes' grouping and they refer to the same socioeconomic system. The main purpose of this study is to evaluate what kind of topological information remains unalterable due to node aggregation and, further, to develop a framework for linking the data of an empirical network with data of its socioeconomic environment, when the latter are available for hierarchically higher levels of aggregation, in an effort to promote the interdisciplinary research in the field of complex network analysis. The research question is empirically tested on topological and socioeconomic data extracted from the Greek Maritime Network (GMN) that is modeled as a non-directed multilayer (bilayer) graph consisting of a port-layer, where nodes represent ports, and a prefecture-layer, where nodes represent coastal and insular prefectural groups of ports. The analysis highlights that the connectivity (degree) of the GMN is the most consistent aspect of this multilayer network, which preserves both the topological and the socioeconomic information through node aggregation. In terms of spatial analysis and regional science, such effects illustrate the effectiveness of the prefectural administrative division for the functionality of the Greek maritime transportation system. Overall, this approach proposes a methodological framework that can enjoy further applications about the grouping effects induced on the network topology, providing physical, technical, socioeconomic, strategic or political insights.

  1. Numerical Modeling of Self-Pressurization and Pressure Control by Thermodynamic Vent System in a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff

    2015-01-01

    This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.

  2. Reiter conducts EVA tool config in Node 1 / Unity module

    NASA Image and Video Library

    2006-11-16

    ISS014-E-08055 (16 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, takes inventory of hardware during an Information Management System (IMS) update in the Unity node of the International Space Station.

  3. Theory and computation of optimal low- and medium-thrust transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1993-01-01

    This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points.

  4. SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit

    NASA Image and Video Library

    2010-10-31

    ISS025-E-010145 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.

  5. SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit

    NASA Image and Video Library

    2010-10-31

    ISS025-E-010146 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.

  6. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  7. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  8. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  9. Multiple network alignment via multiMAGNA+.

    PubMed

    Vijayan, Vipin; Milenkovic, Tijana

    2017-08-21

    Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.

  10. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph

    NASA Astrophysics Data System (ADS)

    Feng, Lv; Chunlin, Gao; Kaiyang, Ma

    2017-05-01

    With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.

  11. Scaleable wireless web-enabled sensor networks

    NASA Astrophysics Data System (ADS)

    Townsend, Christopher P.; Hamel, Michael J.; Sonntag, Peter A.; Trutor, B.; Arms, Steven W.

    2002-06-01

    Our goal was to develop a long life, low cost, scalable wireless sensing network, which collects and distributes data from a wide variety of sensors over the internet. Time division multiple access was employed with RF transmitter nodes (each w/unique16 bit address) to communicate digital data to a single receiver (range 1/3 mile). One thousand five channel nodes can communicate to one receiver (30 minute update). Current draw (sleep) is 20 microamps, allowing 5 year battery life w/one 3.6 volt Li-Ion AA size battery. The network nodes include sensor excitation (AC or DC), multiplexer, instrumentation amplifier, 16 bit A/D converter, microprocessor, and RF link. They are compatible with thermocouples, strain gauges, load/torque transducers, inductive/capacitive sensors. The receiver (418 MHz) includes a single board computer (SBC) with Ethernet capability, internet file transfer protocols (XML/HTML), and data storage. The receiver detects data from specific nodes, performs error checking, records the data. The web server interrogates the SBC (from Microsoft's Internet Explorer or Netscape's Navigator) to distribute data. This system can collect data from thousands of remote sensors on a smart structure, and be shared by an unlimited number of users.

  12. Carnation (Dianthus caryophylus L.).

    PubMed

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2006-01-01

    Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.

  13. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes

    PubMed Central

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-01-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes’ mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network. PMID:26633405

  14. Perpendicular STT_RAM cell in 8 nm technology node using Co1/Ni3(1 1 1)||Gr2||Co1/Ni3(1 1 1) structure as magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Varghani, Ali; Peiravi, Ali; Moradi, Farshad

    2018-04-01

    The perpendicular anisotropy Spin-Transfer Torque Random Access Memory (P-STT-RAM) is considered to be a promising candidate for high-density memories. Many distinct advantages of Perpendicular Magnetic Tunnel Junction (P-MTJ) compared to the conventional in-plane MTJ (I-MTJ) such as lower switching current, circular cell shape that facilitates manufacturability in smaller technology nodes, large thermal stability, smaller cell size, and lower dipole field interaction between adjacent cells make it a promising candidate as a universal memory. However, for small MTJ cell sizes, the perpendicular technology requires new materials with high polarization and low damping factor as well as low resistance area product of a P-MTJ in order to avoid a high write voltage as technology is scaled down. A new graphene-based STT-RAM cell for 8 nm technology node that uses high perpendicular magnetic anisotropy cobalt/nickel (Co/Ni) multilayer as magnetic layers is proposed in this paper. The proposed junction benefits from enough Tunneling Magnetoresistance Ratio (TMR), low resistance area product, low write voltage, and low power consumption that make it suitable for 8 nm technology node.

  15. Angle and Context Free Grammar Based Precarious Node Detection and Secure Data Transmission in MANETs.

    PubMed

    Veerasamy, Anitha; Madane, Srinivasa Rao; Sivakumar, K; Sivaraman, Audithan

    2016-01-01

    Growing attractiveness of Mobile Ad Hoc Networks (MANETs), its features, and usage has led to the launching of threats and attacks to bring negative consequences in the society. The typical features of MANETs, especially with dynamic topology and open wireless medium, may leave MANETs vulnerable. Trust management using uncertain reasoning scheme has previously attempted to solve this problem. However, it produces additional overhead while securing the network. Hence, a Location and Trust-based secure communication scheme (L&TS) is proposed to overcome this limitation. Since the design securing requires more than two data algorithms, the cost of the system goes up. Another mechanism proposed in this paper, Angle and Context Free Grammar (ACFG) based precarious node elimination and secure communication in MANETs, intends to secure data transmission and detect precarious nodes in a MANET at a comparatively lower cost. The Elliptic Curve function is used to isolate a malicious node, thereby incorporating secure data transfer. Simulation results show that the dynamic estimation of the metrics improves throughput by 26% in L&TS when compared to the TMUR. ACFG achieves 33% and 51% throughput increase when compared to L&TS and TMUR mechanisms, respectively.

  16. A Random Walk Approach to Query Informative Constraints for Clustering.

    PubMed

    Abin, Ahmad Ali

    2017-08-09

    This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.

  17. Nodes

    NASA Technical Reports Server (NTRS)

    Hanson, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    Nodes is a technology demonstration mission that is scheduled for launch to the International SpaceStation no earlier than Nov.19, 2015. The two Nodes satellites will be deployed from the Station in early 2016 todemonstrate new network capabilities critical to the operation of swarms of spacecraft. They will demonstrate the ability ofmulti spacecraft swarms to receive and distribute ground commands, exchange information periodically, andautonomously configure the network by determining which spacecraft should communicate with the ground each day ofthe mission.

  18. Energy-Efficient Querying of Wireless Sensor Networks

    DTIC Science & Technology

    2007-09-01

    will fail to locate the desired information. Depending on the rate of node movement , this data exchange will be costly in terms of total network...nodes is best accomplished using a small time window to reduce errors introduced by the node’s movement (i.e., older measurements are less likely to...embedded processor or input from upper layer applications,” nodes which detect their own movement transmit an alert signal over a “wake-up” channel

  19. View of Anderson and Yurchikhin working in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-08-30

    ISS015-E-25420 (30 Aug. 2007) --- Astronaut Clay Anderson (left), Expedition 15 flight engineer, works the controls of the station's robotic arm, Canadarm2; while cosmonaut Fyodor N. Yurchikhin, commander representing Russia's Federal Space Agency, works with docking systems in the Destiny laboratory of the International Space Station during Pressurized Mating Adapter-3 (PMA-3) transfer operations. Using the Canadarm2, the PMA-3 was undocked from the Unity node's left side at 7:18 a.m. (CDT) and docked to Unity's lower port at 8:07 a.m. to prepare for the arrival of Node 2, the Harmony module, on the STS-120 flight of Space Shuttle Discovery in October 2007.

  20. Visualising large hierarchies with Flextree

    NASA Astrophysics Data System (ADS)

    Song, Hongzhi; Curran, Edwin P.; Sterritt, Roy

    2003-05-01

    One of the main tasks in Information Visualisation research is creating visual tools to facilitate human understanding of large and complex information spaces. Hierarchies, being a good mechanism in organising such information, are ubiquitous. Although much research effort has been spent on finding useful representations for hierarchies, visualising large hierarchies is still a difficult topic. One of the difficulties is how to show both tructure and node content information in one view. Another is how to achieve multiple foci in a focus+context visualisation. This paper describes a novel hierarchy visualisation technique called FlexTree to address these problems. It contains some important features that have not been exploited so far. In this visualisation, a profile or contour unique to the hierarchy being visualised can be gained in a histogram-like layout. A normalised view of a common attribute of all nodes can be acquired, and selection of this attribute is controllable by the user. Multiple foci are consistently accessible within a global context through interaction. Furthermore it can handle a large hierarchy that contains several thousand nodes in a PC environment. In addition results from an informal evaluation are also presented.

  1. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).

  2. Validation of sentinel lymph node biopsy in breast cancer women N1-N2 with complete axillary response after neoadjuvant chemotherapy. Multicentre study in Tarragona.

    PubMed

    Carrera, D; de la Flor, M; Galera, J; Amillano, K; Gomez, M; Izquierdo, V; Aguilar, E; López, S; Martínez, M; Martínez, S; Serra, J M; Pérez, M; Martin, L

    2016-01-01

    The aim of our study was to evaluate sentinel lymph node biopsy as a diagnostic test for assessing the presence of residual metastatic axillary lymph nodes after neoadjuvant chemotherapy, replacing the need for a lymphadenectomy in negative selective lymph node biopsy patients. A multicentre, diagnostic validation study was conducted in the province of Tarragona, on women with T1-T3, N1-N2 breast cancer, who presented with a complete axillary response after neoadjuvant chemotherapy. Study procedures consisted of performing an selective lymph node biopsy followed by lymphadenectomy. A total of 53 women were included in the study. Surgical detection rate was 90.5% (no sentinel node found in 5 patients). Histopathological analysis of the lymphadenectomy showed complete disease regression of axillary nodes in 35.4% (17/48) of the patients, and residual axillary node involvement in 64.6% (31/48) of them. In lymphadenectomy positive patients, 28 had a positive selective lymph node biopsy (true positive), while 3 had a negative selective lymph node biopsy (false negative). Of the 28 true selective lymph node biopsy positives, the sentinel node was the only positive node in 10 cases. All lymphadenectomy negative cases were selective lymph node biopsy negative. These data yield a sensitivity of 93.5%, a false negative rate of 9.7%, and a global test efficiency of 93.7%. Selective lymph node biopsy after chemotherapy in patients with a complete axillary response provides valid and reliable information regarding axillary status after neoadjuvant treatment, and might prevent lymphadenectomy in cases with negative selective lymph node biopsy. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  3. Understanding the biology of ex vivo-expanded CD8 T cells for adoptive cell therapy: role of CD62L.

    PubMed

    Díaz-Montero, C Marcela; Zidan, Abdel-Aziz; Pallin, Maria F; Anagnostopoulos, Vasileios; Salem, Mohamed L; Wieder, Eric; Komanduri, Krishna; Montero, Alberto J; Lichtenheld, Mathias G

    2013-12-01

    CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L(-/-) CD8(+) T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L(-/-) CD8(+) T cells were functionally indistinguishable from CD62L(+/+) CD8(+) T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8(+) T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT(-/-) animals), CD8(+) T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8(+) T cells.

  4. Serving by local consensus in the public service location game.

    PubMed

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-09-02

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems.

  5. Spreading to localized targets in complex networks

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu

    2016-12-01

    As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.

  6. A Search Strategy of Level-Based Flooding for the Internet of Things

    PubMed Central

    Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian

    2012-01-01

    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594

  7. Serving by local consensus in the public service location game

    PubMed Central

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-01-01

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems. PMID:27586793

  8. Serving by local consensus in the public service location game

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-09-01

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems.

  9. The use of nodes attributes in social network analysis with an application to an international trade network

    NASA Astrophysics Data System (ADS)

    de Andrade, Ricardo Lopes; Rêgo, Leandro Chaves

    2018-02-01

    The social network analysis (SNA) studies the interactions among actors in a network formed through some relationship (friendship, cooperation, trade, among others). The SNA is constantly approached from a binary point of view, i.e., it is only observed if a link between two actors is present or not regardless of the strength of this link. It is known that different information can be obtained in weighted and unweighted networks and that the information extracted from weighted networks is more accurate and detailed. Another rarely discussed approach in the SNA is related to the individual attributes of the actors (nodes), because such analysis is usually focused on the topological structure of networks. Features of the nodes are not incorporated in the SNA what implies that there is some loss or misperception of information in those analyze. This paper aims at exploring more precisely the complexities of a social network, initially developing a method that inserts the individual attributes in the topological structure of the network and then analyzing the network in four different ways: unweighted, edge-weighted and two methods for using both edge-weights and nodes' attributes. The international trade network was chosen in the application of this approach, where the nodes represent the countries, the links represent the cash flow in the trade transactions and countries' GDP were chosen as nodes' attributes. As a result, it is possible to observe which countries are most connected in the world economy and with higher cash flows, to point out the countries that are central to the intermediation of the wealth flow and those that are most benefited from being included in this network. We also made a principal component analysis to study which metrics are more influential in describing the data variability, which turn out to be mostly the weighted metrics which include the nodes' attributes.

  10. Comparison of the current AJCC-TNM numeric-based with a new anatomical location-based lymph node staging system for gastric cancer: A western experience

    PubMed Central

    Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele

    2017-01-01

    Background In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Study design Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. Results More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. Conclusions This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system. PMID:28380037

  11. The sentinel lymph node spread determines quantitatively melanoma seeding to non-sentinel lymph nodes and survival.

    PubMed

    Ulmer, Anja; Dietz, Klaus; Werner-Klein, Melanie; Häfner, Hans-Martin; Schulz, Claudia; Renner, Philipp; Weber, Florian; Breuninger, Helmut; Röcken, Martin; Garbe, Claus; Fierlbeck, Gerhard; Klein, Christoph A

    2018-03-01

    Complete lymph node dissection (CLND) after a positive sentinel node (SN) biopsy provides important prognostic information in melanoma patients but has been questioned for therapeutic use recently. We explored whether quantification of the tumour spread to SNs may replace histopathology of non-sentinel nodes (NSNs) for staging purposes. We quantified melanoma spread in SNs and NSNs in 128 patients undergoing CLND for a positive SN. In addition to routine histopathology, one-half of each of all 1496 SNs and NSNs was disaggregated into a single cell suspension and stained immunocytochemically to determine the number of melanoma cells per 10 6 lymph node cells, i.e. the disseminated cancer cell density (DCCD). We uncovered melanoma spread to NSNs in the majority of patients; however, the tumour load and the proportion of positive nodes were significantly lower in NSNs than in SNs. The relation between SN and NSN spread could be described by a mathematical function with DCCD NSN  = DCCD SN c /10 1 - c (c = 0.69; 95% confidence interval [CI]: 0.62-0.76). At a median follow-up of 67 months, multivariable Cox regression analyses revealed that DCCD SN (p = 0.02; HR 1.34, 95% CI: 1.05-1.71) and the total number of pathologically positive nodes (p = 0.02; HR 1.53, 95% CI: 1.07-2.22) were significant risk factors after controlling for age, gender, thickness of melanoma and ulceration status. A prognostic model based on DCCD SN and melanoma thickness predicted outcome as accurately as a model including pathological information of both SNs and NSNs. The assessment of DCCD SN renders CLND for staging purposes unnecessary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Exosomal tumor microRNA modulates premetastatic organ cells.

    PubMed

    Rana, Sanyukta; Malinowska, Kamilla; Zöller, Margot

    2013-03-01

    Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery system.

  13. Time Synchronization/Stamping Method with Visible Light Communication and Energy Harvesting Methods for Wireless Sensor Network Inside Ariane 5 Vehicle Equipment Bay

    NASA Astrophysics Data System (ADS)

    Kesuma, Hendra; Niederkleine, Kris; Schmale, Sebastian; Ahobala, Tejas; Paul, Steffen; Sebald, Johannes

    2016-08-01

    In this work we design and implement efficient time synchronization/stamping method for Wireless Sensor Network inside the Vehicle Equipment Bay (VEB) of the ARIANE 5. The sensor nodes in the network do not require real time clock (RTC) hardware to store and stamp each measurement data performed by the sensors. There will be only the measurement sequence information, previous time (clock) information, measurement data and its related data protocol information sent back to the Access Point (AP). This lead to less data transmission, less energy and less time required by the sensor nodes to operate and also leads to longer battery life time. The Visible Light Communication (VLC) is used, to provide energy, to synchronize time and to deliver the commands to the sensor nodes in the network. By employing star network topology, a part of solar cell as receiver, the conventional receiver (RF/Infrared) is neglected to reduce amount of hardware and energy consumption. The infrared transmitter on the sensor node is deployed to minimize the electromagnetic interference in the launcher and does not require a complicated circuit in comparison to a RF transmitter.

  14. Parallel multi-join query optimization algorithm for distributed sensor network in the internet of things

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    2015-03-01

    Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.

  15. Influence of Time-Series Normalization, Number of Nodes, Connectivity and Graph Measure Selection on Seizure-Onset Zone Localization from Intracranial EEG.

    PubMed

    van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge

    2018-04-26

    We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.

  16. Isolated perifacial lymph node metastasis in oral squamous cell carcinoma with clinically node-negative neck.

    PubMed

    Agarwal, Sangeet Kumar; Arora, Sowrabh Kumar; Kumar, Gopal; Sarin, Deepak

    2016-10-01

    The incidence of occult perifacial nodal disease in oral cavity squamous cell carcinoma is not well reported. The purpose of this study was to evaluate the incidence of isolated perifacial lymph node metastasis in patients with oral squamous cell carcinoma with a clinically node-negative neck. The study will shed light on current controversies and will provide valuable clinical and pathological information in the practice of routine comprehensive removal of these lymph node pads in selective neck dissection in the node-negative neck. Prospective analysis. This study was started in August 2011 when intraoperatively we routinely separated the lymph node levels from the main specimen for evaluation of the metastatic rate to different lymph node levels in 231 patients of oral squamous cell cancer with a clinically node-negative neck. The current study demonstrated that 19 (8.22%) out of 231 patients showed ipsilateral isolated perifacial lymph node involvement. The incidence of isolated perifacial nodes did not differ significantly between the oral tongue (7.14%) and buccal mucosa (7.75%). Incidence was statistically significant in cases with lower age group (<45 years), advanced T stage, and higher depth of tumor invasion. Isolated perifacial node metastasis is high in oral squamous cell carcinoma with a clinically node-negative neck. The incidence of isolated perifacial involvement is high in cases of buccal mucosal and tongue cancers. A meticulous dissection of the perifacial nodes seems prudent when treating the neck in oral cavity squamous cell carcinoma. 4 Laryngoscope, 126:2252-2256, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    PubMed

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  18. Europlanet-RI IDIS - A Data Network in Support of Planetary Research

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gérard

    2010-05-01

    The "Europlanet Research Infrastructure - Europlanet RI", supported by the European Commission's Framework Program 7, aims at integrating major parts of the distributed European Planetary Research infrastructure with as diverse components as space exploration, ground-based observations, laboratory experiments and numerical modeling teams. A central part of Europlanet RI is the "Integrated and Distributed Information Service" (IDIS), a network of data and information access facilities in Europe via which information relevant for planetary research can be easily found and retrieved. This covers the wide range from contact addresses of possible research partners, laboratories and test facilities to the access of data collected with space missions or during laboratory or simulation tests and to model software useful for their interpretation. During the following three years the capabilities of the network will be extended to allow the combination of many different data sources for comperative studies including the results of modeling calculations and simulations of instrument observations. Together with the access to complex databases for spectra of atmospheric molecules and planetary surface material IDIS will offer a versatile working environment for making the scientific exploitation of the resources put into planetary research in the past and future more effective. Many of the mentioned capabilities are already available now. List of contact web-sites: Technical node for support and management aspects: http://www.idis.europlanet-ri.eu/ Planetary Surfaces and Interiors node: http://www.idis-interiors.europlanet-ri.eu/ Planetary Plasma node: http://www.idis-plasma.europlanet-ri.eu/ Planetary Atmospheres node: http://www.idis-atmos.europlanet-ri.eu/ Small Bodies and Dust node: http://www.idis-sbdn.europlanet-ri.eu/ Planetary Dynamics and Extraterrestrial Matter node: http://www.idis-dyn.europlanet-ri.eu/

  19. A Distributed Energy-Aware Trust Management System for Secure Routing in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Stelios, Yannis; Papayanoulas, Nikos; Trakadas, Panagiotis; Maniatis, Sotiris; Leligou, Helen C.; Zahariadis, Theodore

    Wireless sensor networks are inherently vulnerable to security attacks, due to their wireless operation. The situation is further aggravated because they operate in an infrastructure-less environment, which mandates the cooperation among nodes for all networking tasks, including routing, i.e. all nodes act as “routers”, forwarding the packets generated by their neighbours in their way to the sink node. This implies that malicious nodes (denying their cooperation) can significantly affect the network operation. Trust management schemes provide a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use this information to avoid cooperating with them either for data forwarding, data aggregation or any other cooperative function. We propose a secure routing solution based on a novel distributed trust management system, which allows for fast detection of a wide set of attacks and also incorporates energy awareness.

  20. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  1. A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.

    PubMed

    Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang

    2016-04-01

    Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.

  2. An Energy Balanced and Lifetime Extended Routing Protocol for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi

    2018-05-17

    Energy limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an energy balanced and efficient routing protocol, called energy balanced and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only balances traffic loads according to the residual energy, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual energy level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual energy and relatively low-cost paths are selected based on the cost function and residual energy level information. We also introduce detailed analysis of optimal energy consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and energy efficiency.

  3. Identification of influential nodes in complex networks: Method from spreading probability viewpoint

    NASA Astrophysics Data System (ADS)

    Bao, Zhong-Kui; Ma, Chuang; Xiang, Bing-Bing; Zhang, Hai-Feng

    2017-02-01

    The problem of identifying influential nodes in complex networks has attracted much attention owing to its wide applications, including how to maximize the information diffusion, boost product promotion in a viral marketing campaign, prevent a large scale epidemic and so on. From spreading viewpoint, the probability of one node propagating its information to one other node is closely related to the shortest distance between them, the number of shortest paths and the transmission rate. However, it is difficult to obtain the values of transmission rates for different cases, to overcome such a difficulty, we use the reciprocal of average degree to approximate the transmission rate. Then a semi-local centrality index is proposed to incorporate the shortest distance, the number of shortest paths and the reciprocal of average degree simultaneously. By implementing simulations in real networks as well as synthetic networks, we verify that our proposed centrality can outperform well-known centralities, such as degree centrality, betweenness centrality, closeness centrality, k-shell centrality, and nonbacktracking centrality. In particular, our findings indicate that the performance of our method is the most significant when the transmission rate nears to the epidemic threshold, which is the most meaningful region for the identification of influential nodes.

  4. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    PubMed

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.

  5. KeyWare: an open wireless distributed computing environment

    NASA Astrophysics Data System (ADS)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  6. Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales

    NASA Astrophysics Data System (ADS)

    Traxl, Dominik; Boers, Niklas; Kurths, Jürgen

    2016-06-01

    Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.

  7. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.

    PubMed

    Traxl, Dominik; Boers, Niklas; Kurths, Jürgen

    2016-06-01

    Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.

  8. OPEX: Optimized Eccentricity Computation in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Keith

    2011-11-14

    Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlikemore » its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).« less

  9. An object-oriented design for automated navigation of semantic networks inside a medical data dictionary.

    PubMed

    Ruan, W; Bürkle, T; Dudeck, J

    2000-01-01

    In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.

  10. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search.

    PubMed

    Liu, Meiqin; Zhang, Duo; Zhang, Senlin; Zhang, Qunfei

    2017-12-04

    Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.

  11. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search

    PubMed Central

    Zhang, Senlin; Zhang, Qunfei

    2017-01-01

    Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme. PMID:29207541

  12. Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.

    PubMed

    Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua

    2018-05-08

    The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.

  13. Implementing an SIG based platform of application and service for city spatial information in Shanghai

    NASA Astrophysics Data System (ADS)

    Yu, Bailang; Wu, Jianping

    2006-10-01

    Spatial Information Grid (SIG) is an infrastructure that has the ability to provide the services for spatial information according to users' needs by means of collecting, sharing, organizing and processing the massive distributed spatial information resources. This paper presents the architecture, technologies and implementation of the Shanghai City Spatial Information Application and Service System, a SIG based platform, which is an integrated platform that serves for administration, planning, construction and development of the city. In the System, there are ten categories of spatial information resources, including city planning, land-use, real estate, river system, transportation, municipal facility construction, environment protection, sanitation, urban afforestation and basic geographic information data. In addition, spatial information processing services are offered as a means of GIS Web Services. The resources and services are all distributed in different web-based nodes. A single database is created to store the metadata of all the spatial information. A portal site is published as the main user interface of the System. There are three main functions in the portal site. First, users can search the metadata and consequently acquire the distributed data by using the searching results. Second, some spatial processing web applications that developed with GIS Web Services, such as file format conversion, spatial coordinate transfer, cartographic generalization and spatial analysis etc, are offered to use. Third, GIS Web Services currently available in the System can be searched and new ones can be registered. The System has been working efficiently in Shanghai Government Network since 2005.

  14. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors

    DTIC Science & Technology

    2009-09-01

    TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4   3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7  4 . RESULTS

  15. Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future

    PubMed Central

    Zhou, Yanbo; Zeng, An; Wang, Wei-Hong

    2015-01-01

    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes’ recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail. PMID:25806810

  16. A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks

    NASA Astrophysics Data System (ADS)

    Carrilho, Sergio; Esaki, Hiroshi

    Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.

  17. Software-defined Quantum Networking Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Sadlier, Ronald

    The software enables a user to perform modeling and simulation of software-defined quantum networks. The software addresses the problem of how to synchronize transmission of quantum and classical signals through multi-node networks and to demonstrate quantum information protocols such as quantum teleportation. The software approaches this problem by generating a graphical model of the underlying network and attributing properties to each node and link in the graph. The graphical model is then simulated using a combination of discrete-event simulators to calculate the expected state of each node and link in the graph at a future time. A user interacts withmore » the software by providing an initial network model and instantiating methods for the nodes to transmit information with each other. This includes writing application scripts in python that make use of the software library interfaces. A user then initiates the application scripts, which invokes the software simulation. The user then uses the built-in diagnostic tools to query the state of the simulation and to collect statistics on synchronization.« less

  18. Identifying hub stations and important lines of bus networks: A case study in Xiamen, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhuge, Chengxiang; Yu, Xiaohua

    2018-07-01

    Hub stations and important lines play key roles in transfers between stations. In this paper, a node failure model is proposed to identify hub stations. In the model, we introduce two new indicators called neighborhood degree ratio and transfer index to evaluate the importance of stations, which consider neighborhood stations' degree of station and the initial transfer times between stations. Moreover, line accessibility is developed to measure the importance of lines in the bus network. Xiamen bus network in 2016 is utilized to test the model. The results show that the two introduced indicators are more effective to identify hub stations compared with traditional complex network indicators such as degree, clustering coefficient and betweenness.

  19. Adoptive cell transfer of resistance to Mycobacterium leprae infections in mice.

    PubMed Central

    Lowe, C; Brett, S J; Rees, R J

    1985-01-01

    Cells were transferred from mice intradermally vaccinated with killed Mycobacterium leprae to sublethally irradiated recipients. Unseparated cells from lymph nodes or spleens of M. leprae vaccinated mice were found to cause significant inhibition of the growth of a subsequent M. leprae challenge in mouse footpads for up to 26 weeks after vaccination. Vaccination with live BCG and cells transferred from BCG-vaccinated mice caused no significant inhibition of M. leprae growth in mouse footpads. Cell separation into fractions containing predominantly B and T lymphocytes showed that the inhibition of growth was due to M. leprae-sensitized T lymphocytes. M. leprae vaccinated mice were also skin tested with soluble M. leprae antigen and showed maximum delayed hypersensitivity responses 4 weeks after vaccination. PMID:3876183

  20. Significance and interest of dense seismic arrays for understanding the mechanics of clayey landslides: a test case of 150 nodes at Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme

    2017-04-01

    Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.

Top