Learning linear transformations between counting-based and prediction-based word embeddings
Hayashi, Kohei; Kawarabayashi, Ken-ichi
2017-01-01
Despite the growing interest in prediction-based word embedding learning methods, it remains unclear as to how the vector spaces learnt by the prediction-based methods differ from that of the counting-based methods, or whether one can be transformed into the other. To study the relationship between counting-based and prediction-based embeddings, we propose a method for learning a linear transformation between two given sets of word embeddings. Our proposal contributes to the word embedding learning research in three ways: (a) we propose an efficient method to learn a linear transformation between two sets of word embeddings, (b) using the transformation learnt in (a), we empirically show that it is possible to predict distributed word embeddings for novel unseen words, and (c) empirically it is possible to linearly transform counting-based embeddings to prediction-based embeddings, for frequent words, different POS categories, and varying degrees of ambiguities. PMID:28926629
3-D surface profilometry based on modulation measurement by applying wavelet transform method
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao
2017-01-01
A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-02-18
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-01-01
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
The Coordinate Transformation Method of High Resolution dem Data
NASA Astrophysics Data System (ADS)
Yan, Chaode; Guo, Wang; Li, Aimin
2018-04-01
Coordinate transformation methods of DEM data can be divided into two categories. One reconstruct based on original vector elevation data. The other transforms DEM data blocks by transforming parameters. But the former doesn't work in the absence of original vector data, and the later may cause errors at joint places between adjoining blocks of high resolution DEM data. In view of this problem, a method dealing with high resolution DEM data coordinate transformation is proposed. The method transforms DEM data into discrete vector elevation points, and then adjusts positions of points by bi-linear interpolation respectively. Finally, a TIN is generated by transformed points, and the new DEM data in target coordinate system is reconstructed based on TIN. An algorithm which can find blocks and transform automatically is given in this paper. The method is tested in different terrains and proved to be feasible and valid.
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.
Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin
2014-09-01
l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
Federico, Alejandro; Kaufmann, Guillermo H
2008-10-01
We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
NASA Astrophysics Data System (ADS)
Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin
2015-03-01
Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm
NASA Technical Reports Server (NTRS)
Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.
1991-01-01
The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889
Invariant object recognition based on the generalized discrete radon transform
NASA Astrophysics Data System (ADS)
Easley, Glenn R.; Colonna, Flavia
2004-04-01
We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.
A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM
NASA Astrophysics Data System (ADS)
Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan
2018-03-01
In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.
A method to analyze molecular tagging velocimetry data using the Hough transform.
Sanchez-Gonzalez, R; McManamen, B; Bowersox, R D W; North, S W
2015-10-01
The development of a method to analyze molecular tagging velocimetry data based on the Hough transform is presented. This method, based on line fitting, parameterizes the grid lines "written" into a flowfield. Initial proof-of-principle illustration of this method was performed to obtain two-component velocity measurements in the wake of a cylinder in a Mach 4.6 flow, using a data set derived from computational fluid dynamics simulations. The Hough transform is attractive for molecular tagging velocimetry applications since it is capable of discriminating spurious features that can have a biasing effect in the fitting process. Assessment of the precision and accuracy of the method were also performed to show the dependence on analysis window size and signal-to-noise levels. The accuracy of this Hough transform-based method to quantify intersection displacements was determined to be comparable to cross-correlation methods. The employed line parameterization avoids the assumption of linearity in the vicinity of each intersection, which is important in the limit of drastic grid deformations resulting from large velocity gradients common in high-speed flow applications. This Hough transform method has the potential to enable the direct and spatially accurate measurement of local vorticity, which is important in applications involving turbulent flowfields. Finally, two-component velocity determinations using the Hough transform from experimentally obtained images are presented, demonstrating the feasibility of the proposed analysis method.
A method of power analysis based on piecewise discrete Fourier transform
NASA Astrophysics Data System (ADS)
Xin, Miaomiao; Zhang, Yanchi; Xie, Da
2018-04-01
The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.
Poisson denoising on the sphere
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
A transformed path integral approach for solution of the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Subramaniam, Gnana M.; Vedula, Prakash
2017-10-01
A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.
Category's analysis and operational project capacity method of transformation in design
NASA Astrophysics Data System (ADS)
Obednina, S. V.; Bystrova, T. Y.
2015-10-01
The method of transformation is attracting widespread interest in fields such contemporary design. However, in theory of design little attention has been paid to a categorical status of the term "transformation". This paper presents the conceptual analysis of transformation based on the theory of form employed in the influential essays by Aristotle and Thomas Aquinas. In the present work the transformation as a method of shaping design has been explored as well as potential application of this term in design has been demonstrated.
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
A Transfer Voltage Simulation Method for Generator Step Up Transformers
NASA Astrophysics Data System (ADS)
Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro
It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.
Wavelet based detection of manatee vocalizations
NASA Astrophysics Data System (ADS)
Gur, Berke M.; Niezrecki, Christopher
2005-04-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.
NASA Astrophysics Data System (ADS)
Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin
2018-04-01
Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
Super-Resolution for Color Imagery
2017-09-01
separately; however, it requires performing the super-resolution computation 3 times. We transform images in the default red, green, blue (RGB) color space...chrominance components based on ARL’s alias-free image upsampling using Fourier-based windowing methods. A reverse transformation is performed on... Transformation from sRGB to CIELAB............................................... 3 Fig. 2 YCbCr mathematical coordinate transformation
A method of real-time fault diagnosis for power transformers based on vibration analysis
NASA Astrophysics Data System (ADS)
Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie
2015-11-01
In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.
High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.
Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D
2018-05-30
NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Komorowski, Dariusz; Pietraszek, Stanislaw
2016-01-01
This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.
Development of 600 kV triple resonance pulse transformer.
Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou
2015-06-01
In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.
Fast frequency domain method to detect skew in a document image
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee
2015-12-01
In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.
A New Instantaneous Frequency Measure Based on The Stockwell Transform
NASA Astrophysics Data System (ADS)
yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.
2011-12-01
We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R.A., Lauzon, M.L. and Frayne, R. "General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly", IEEE Transactions on Signal Processing, 1:281-90 (2010).
Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.
Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui
2005-06-01
A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.
Enhanced image fusion using directional contrast rules in fuzzy transform domain.
Nandal, Amita; Rosales, Hamurabi Gamboa
2016-01-01
In this paper a novel image fusion algorithm based on directional contrast in fuzzy transform (FTR) domain is proposed. Input images to be fused are first divided into several non-overlapping blocks. The components of these sub-blocks are fused using directional contrast based fuzzy fusion rule in FTR domain. The fused sub-blocks are then transformed into original size blocks using inverse-FTR. Further, these inverse transformed blocks are fused according to select maximum based fusion rule for reconstructing the final fused image. The proposed fusion algorithm is both visually and quantitatively compared with other standard and recent fusion algorithms. Experimental results demonstrate that the proposed method generates better results than the other methods.
A simple and reliable multi-gene transformation method for switchgrass.
Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko
2014-07-01
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.
Research on the winding losses based on finite element method for transformer
NASA Astrophysics Data System (ADS)
Li, Wenpeng; Lai, Wenqing; Ye, Ligang; Luo, Hanwu; Luo, Changjiang; Cui, Shigang; Wang, Yongqiang
2018-04-01
Transformer loss can cause the transformer to overheat. Under the action of high frequency current, the loss of transformer windings will be aggravated due to proximity effect and skin effect. In this paper, a three-dimensional model of high frequency transformer windings is established. Considering of the proximity effect and skin effect, the eddy current effects loss in the transformer windings are simulated based on finite element method. And the winding losses of the transformer windings are obtained under different arrangements. The influence of the winding layout on the winding losses is given. Finally, the trend of winding loss with current frequency, winding thickness and inter layer spacing is obtained through calculation. The winding loss initially decreases as the thickness of the winding increases, but when it reaches a certain level, this reduction becomes insignificant.
Face recognition using slow feature analysis and contourlet transform
NASA Astrophysics Data System (ADS)
Wang, Yuehao; Peng, Lingling; Zhe, Fuchuan
2018-04-01
In this paper we propose a novel face recognition approach based on slow feature analysis (SFA) in contourlet transform domain. This method firstly use contourlet transform to decompose the face image into low frequency and high frequency part, and then takes technological advantages of slow feature analysis for facial feature extraction. We named the new method combining the slow feature analysis and contourlet transform as CT-SFA. The experimental results on international standard face database demonstrate that the new face recognition method is effective and competitive.
Towards discrete wavelet transform-based human activity recognition
NASA Astrophysics Data System (ADS)
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
Estimation of phase derivatives using discrete chirp-Fourier-transform-based method.
Gorthi, Sai Siva; Rastogi, Pramod
2009-08-15
Estimation of phase derivatives is an important task in many interferometric measurements in optical metrology. This Letter introduces a method based on discrete chirp-Fourier transform for accurate and direct estimation of phase derivatives, even in the presence of noise. The method is introduced in the context of the analysis of reconstructed interference fields in digital holographic interferometry. We present simulation and experimental results demonstrating the utility of the proposed method.
Zhonggang, Liang; Hong, Yan
2006-10-01
A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.
Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.
Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing
2009-06-01
Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.
NASA Astrophysics Data System (ADS)
Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.
2017-02-01
Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.
Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia
2014-03-01
Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.
Unsupervised malaria parasite detection based on phase spectrum.
Fang, Yuming; Xiong, Wei; Lin, Weisi; Chen, Zhenzhong
2011-01-01
In this paper, we propose a novel method for malaria parasite detection based on phase spectrum. The method first obtains the amplitude spectrum and phase spectrum for blood smear images through Quaternion Fourier Transform (QFT). Then it gets the reconstructed image based on Inverse Quaternion Fourier transform (IQFT) on a constant amplitude spectrum and the original phase spectrum. The malaria parasite areas can be detected easily from the reconstructed blood smear images. Extensive experiments have demonstrated the effectiveness of this novel method.
Mathematics of Computed Tomography
NASA Astrophysics Data System (ADS)
Hawkins, William Grant
A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
The Radon cumulative distribution transform and its application to image classification
Kolouri, Soheil; Park, Se Rim; Rohde, Gustavo K.
2016-01-01
Invertible image representation methods (transforms) are routinely employed as low-level image processing operations based on which feature extraction and recognition algorithms are developed. Most transforms in current use (e.g. Fourier, Wavelet, etc.) are linear transforms, and, by themselves, are unable to substantially simplify the representation of image classes for classification. Here we describe a nonlinear, invertible, low-level image processing transform based on combining the well known Radon transform for image data, and the 1D Cumulative Distribution Transform proposed earlier. We describe a few of the properties of this new transform, and with both theoretical and experimental results show that it can often render certain problems linearly separable in transform space. PMID:26685245
Transformational Leadership: The Nexus between Faith and Classroom Leadership
ERIC Educational Resources Information Center
White, Bobbie Ann Adair; Pearson, Kerri; Bledsoe, Christie; Hendricks, Randy
2017-01-01
Transformational leadership is well documented in organizational and business literature. Classroom and faith-based applications are more recent phenomena. The authors of this mixed-methods study explored professor behaviors and characteristics perceived as transformational in students' faith and focused on transformational leadership in the…
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.
Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel
2016-07-01
Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.
Weighted least squares phase unwrapping based on the wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie
2015-09-01
Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.
Phase-based motion magnification video for monitoring of vital signals using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto
2017-11-01
In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.
Wheat (Triticum aestivum L.) transformation using mature embryos.
Medvecká, Eva; Harwood, Wendy A
2015-01-01
In most protocols for the Agrobacterium-mediated transformation of wheat, the preferred target tissues are immature embryos. However, transformation methods relying on immature embryos require the growth of plants under controlled conditions to provide a continuous supply of good-quality target tissue. The use of mature embryos as a target tissue has the advantage of only requiring good-quality seed as the starting material. Here we describe a transformation method based on the Agrobacterium-mediated transformation of callus cultures derived from mature wheat embryos of the genotype Bobwhite S56.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Dekkers, A L M; Slob, W
2012-10-01
In dietary exposure assessment, statistical methods exist for estimating the usual intake distribution from daily intake data. These methods transform the dietary intake data to normal observations, eliminate the within-person variance, and then back-transform the data to the original scale. We propose Gaussian Quadrature (GQ), a numerical integration method, as an efficient way of back-transformation. We compare GQ with six published methods. One method uses a log-transformation, while the other methods, including GQ, use a Box-Cox transformation. This study shows that, for various parameter choices, the methods with a Box-Cox transformation estimate the theoretical usual intake distributions quite well, although one method, a Taylor approximation, is less accurate. Two applications--on folate intake and fruit consumption--confirmed these results. In one extreme case, some methods, including GQ, could not be applied for low percentiles. We solved this problem by modifying GQ. One method is based on the assumption that the daily intakes are log-normally distributed. Even if this condition is not fulfilled, the log-transformation performs well as long as the within-individual variance is small compared to the mean. We conclude that the modified GQ is an efficient, fast and accurate method for estimating the usual intake distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.
Reed, George H; Poyner, Russell R
2015-01-01
An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.
Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan
2015-01-01
Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China’s steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities’ abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns. PMID:26422266
Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan
2015-01-01
Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns.
NASA Astrophysics Data System (ADS)
Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen
2013-08-01
We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.
USDA-ARS?s Scientific Manuscript database
A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...
Infrared and visible image fusion with spectral graph wavelet transform.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo
2015-09-01
Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung Shingyu, E-mail: masyleung@ust.h; Qian Jianliang, E-mail: qian@math.msu.ed
2010-11-20
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying themore » FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.« less
The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation
NASA Astrophysics Data System (ADS)
Leung, Shingyu; Qian, Jianliang
2010-11-01
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in [12]. In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Xin, Binjie
2016-08-01
Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.
Biomolecular surface construction by PDE transform
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2011-01-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140
[A wavelet-transform-based method for the automatic detection of late-type stars].
Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao
2005-07-01
The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.
NASA Astrophysics Data System (ADS)
Prigozhin, Leonid; Sokolovsky, Vladimir
2018-05-01
We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.
Discrete Fourier Transform in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current
NASA Astrophysics Data System (ADS)
Kitayama, Masashi
Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie
2017-01-01
Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065
Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui
2015-01-01
Introduction The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Methods Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. Results We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. Conclusions We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. PMID:25670753
Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin
2015-12-01
Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Comparison of pre-processing methods for multiplex bead-based immunoassays.
Rausch, Tanja K; Schillert, Arne; Ziegler, Andreas; Lüking, Angelika; Zucht, Hans-Dieter; Schulz-Knappe, Peter
2016-08-11
High throughput protein expression studies can be performed using bead-based protein immunoassays, such as the Luminex® xMAP® technology. Technical variability is inherent to these experiments and may lead to systematic bias and reduced power. To reduce technical variability, data pre-processing is performed. However, no recommendations exist for the pre-processing of Luminex® xMAP® data. We compared 37 different data pre-processing combinations of transformation and normalization methods in 42 samples on 384 analytes obtained from a multiplex immunoassay based on the Luminex® xMAP® technology. We evaluated the performance of each pre-processing approach with 6 different performance criteria. Three performance criteria were plots. All plots were evaluated by 15 independent and blinded readers. Four different combinations of transformation and normalization methods performed well as pre-processing procedure for this bead-based protein immunoassay. The following combinations of transformation and normalization were suitable for pre-processing Luminex® xMAP® data in this study: weighted Box-Cox followed by quantile or robust spline normalization (rsn), asinh transformation followed by loess normalization and Box-Cox followed by rsn.
Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man
2015-01-01
Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.
NASA Astrophysics Data System (ADS)
Strunin, M. A.; Hiyama, T.
2004-11-01
The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.
A three dimensional point cloud registration method based on rotation matrix eigenvalue
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Xiang; Fei, Zixuan; Gao, Xiaofei; Jin, Rui
2017-09-01
We usually need to measure an object at multiple angles in the traditional optical three-dimensional measurement method, due to the reasons for the block, and then use point cloud registration methods to obtain a complete threedimensional shape of the object. The point cloud registration based on a turntable is essential to calculate the coordinate transformation matrix between the camera coordinate system and the turntable coordinate system. We usually calculate the transformation matrix by fitting the rotation center and the rotation axis normal of the turntable in the traditional method, which is limited by measuring the field of view. The range of exact feature points used for fitting the rotation center and the rotation axis normal is approximately distributed within an arc less than 120 degrees, resulting in a low fit accuracy. In this paper, we proposes a better method, based on the invariant eigenvalue principle of rotation matrix in the turntable coordinate system and the coordinate transformation matrix of the corresponding coordinate points. First of all, we control the rotation angle of the calibration plate with the turntable to calibrate the coordinate transformation matrix of the corresponding coordinate points by using the least squares method. And then we use the feature decomposition to calculate the coordinate transformation matrix of the camera coordinate system and the turntable coordinate system. Compared with the traditional previous method, it has a higher accuracy, better robustness and it is not affected by the camera field of view. In this method, the coincidence error of the corresponding points on the calibration plate after registration is less than 0.1mm.
A dynamic integrated fault diagnosis method for power transformers.
Gao, Wensheng; Bai, Cuifen; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
Gao, Wensheng; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841
Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain
NASA Astrophysics Data System (ADS)
Nougarou, François; Massicotte, Daniel; Descarreaux, Martin
2012-12-01
The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.
Zheng, Hai-ming; Li, Guang-jie; Wu, Hao
2015-06-01
Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
Interpolating seismic data via the POCS method based on shearlet transform
NASA Astrophysics Data System (ADS)
Jicheng, Liu; Yongxin, Chou; Jianjiang, Zhu
2018-06-01
A method based on shearlet transform and the projection onto convex sets with L0-norm constraint is proposed to interpolate irregularly sampled 2D and 3D seismic data. The 2D directional filter of shearlet transform is constructed by modulating a low-pass diamond filter pair to minimize the effect of additional edges introduced by the missing traces. In order to abate the spatial aliasing and control the maximal gap between missing traces for a 3D data cube, a 2D separable jittered sampling strategy is discussed. Finally, numerical experiments on 2D and 3D synthetic and real data with different under-sampling rates prove the validity of the proposed method.
Geometric shapes inversion method of space targets by ISAR image segmentation
NASA Astrophysics Data System (ADS)
Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui
2017-11-01
The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.
Multiprocessor computer overset grid method and apparatus
Barnette, Daniel W.; Ober, Curtis C.
2003-01-01
A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.
Adachi, Takumi; Sahara, Takehiko; Okuyama, Hidetoshi; Morita, Naoki
2017-07-01
Here, we describe a new method for genetic transformation of thraustochytrids, well-known producers of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid, by combining mild glass (zirconia) bead treatment and electroporation. Because the cell wall is a barrier against transfer of exogenous DNA into cells, gentle vortexing of cells with glass beads was performed prior to electroporation for partial cell wall disruption. G418-resistant transformants of thraustochytrid cells (Aurantiochytrium limacinum strain SR21 and thraustochytrid strain 12B) were successfully obtained with good reproducibility. The method reported here is simpler than methods using enzymes to generate spheroplasts and may provide advantages for PUFA production by using genetically modified thraustochytrids.
Multipurpose image watermarking algorithm based on multistage vector quantization.
Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He
2005-06-01
The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.
Phase synchronization based on a Dual-Tree Complex Wavelet Transform
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.
2016-11-01
In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.
NASA Astrophysics Data System (ADS)
Bekkouche, Toufik; Bouguezel, Saad
2018-03-01
We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.
WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, K; Patton, T; Bayouth, J
Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhalemore » 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.« less
A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672
A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
NASA Technical Reports Server (NTRS)
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
Haux, Reinhold; Kuballa, Stefanie; Schulze, Mareike; Böhm, Claudia; Gefeller, Olaf; Haaf, Jan; Henning, Peter; Mielke, Corinna; Niggemann, Florian; Schürg, Andrea; Bergemann, Dieter
2016-12-07
Based on today's information and communication technologies the open access paradigm has become an important approach for adequately communicating new scientific knowledge. Summarizing the present situation for journal transformation. Presenting criteria for adequate transformation as well as a specific approach for it. Describing our exemplary implementation of such a journal transformation. Studying the respective literature as well as discussing this topic in various discussion groups and meetings (primarily of editors and publishers, but also of authors and readers), with long term experience as editors and /or publishers of scientific publications as prerequisite. There is a clear will, particularly of political and funding organizations, towards open access publishing. In spite of this, there is still a large amount of scientific knowledge, being communicated through subscription-based journals. For successfully transforming such journals into open access, sixteen criteria for a goal-oriented, stepwise, sustainable, and fair transformation are suggested. The Tandem Model as transformation approach is introduced. Our exemplary implementation is done in the Trans-O-MIM project. It is exploring strategies, models and evaluation metrics for journal transformation. As instance the journal Methods of Information in Medicine will apply the Tandem Model from 2017 onwards. Within Trans-O-MIM we will reach at least nine of the sixteen criteria for adequate transformation. It was positive to implement Trans-O-MIM as international research project. After first steps for transforming Methods have successfully been made, challenges will remain, among others, in identifying appropriate incentives for open access publishing in order to support its transformation.
NASA Astrophysics Data System (ADS)
Jiang, Zhuo; Xie, Chengjun
2013-12-01
This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-07-18
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-01-01
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409
Displaying radiologic images on personal computers: image storage and compression--Part 2.
Gillespy, T; Rowberg, A H
1994-02-01
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.
Fast and secure encryption-decryption method based on chaotic dynamics
Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.
1995-01-01
A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.
NASA Astrophysics Data System (ADS)
Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang
2017-10-01
Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.
SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform.
Lin, Jie; Wei, Jing; Adjeroh, Donald; Jiang, Bing-Hua; Jiang, Yue
2018-05-02
Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Jeppe, E-mail: jeppe@chem.au.dk
2014-07-21
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basismore » is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.« less
NASA Astrophysics Data System (ADS)
Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.
2014-10-01
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.
Multi-resolution analysis for ear recognition using wavelet features
NASA Astrophysics Data System (ADS)
Shoaib, M.; Basit, A.; Faye, I.
2016-11-01
Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.
Biomolecular surface construction by PDE transform.
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2012-03-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.
An improved KCF tracking algorithm based on multi-feature and multi-scale
NASA Astrophysics Data System (ADS)
Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye
2018-02-01
The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.
Horsch, Karla; Pesce, Lorenzo L.; Giger, Maryellen L.; Metz, Charles E.; Jiang, Yulei
2012-01-01
Purpose: The authors developed scaling methods that monotonically transform the output of one classifier to the “scale” of another. Such transformations affect the distribution of classifier output while leaving the ROC curve unchanged. In particular, they investigated transformations between radiologists and computer classifiers, with the goal of addressing the problem of comparing and interpreting case-specific values of output from two classifiers. Methods: Using both simulated and radiologists’ rating data of breast imaging cases, the authors investigated a likelihood-ratio-scaling transformation, based on “matching” classifier likelihood ratios. For comparison, three other scaling transformations were investigated that were based on matching classifier true positive fraction, false positive fraction, or cumulative distribution function, respectively. The authors explored modifying the computer output to reflect the scale of the radiologist, as well as modifying the radiologist’s ratings to reflect the scale of the computer. They also evaluated how dataset size affects the transformations. Results: When ROC curves of two classifiers differed substantially, the four transformations were found to be quite different. The likelihood-ratio scaling transformation was found to vary widely from radiologist to radiologist. Similar results were found for the other transformations. Our simulations explored the effect of database sizes on the accuracy of the estimation of our scaling transformations. Conclusions: The likelihood-ratio-scaling transformation that the authors have developed and evaluated was shown to be capable of transforming computer and radiologist outputs to a common scale reliably, thereby allowing the comparison of the computer and radiologist outputs on the basis of a clinically relevant statistic. PMID:22559651
[Analysis of scatterer microstructure feature based on Chirp-Z transform cepstrum].
Guo, Jianzhong; Lin, Shuyu
2007-12-01
The fundamental research field of medical ultrasound has been the characterization of tissue scatterers. The signal processing method is widely used in this research field. A new method of Chirp-Z Transform Cepstrum for mean spacing estimation of tissue scatterers using ultrasonic scattered signals has been developed. By using this method together with conventional AR cepstrum method, we processed the backscattered signals of mimic tissue and pig liver in vitro. The results illustrated that the Chirp-Z Transform Cepstrum method is effective for signal analysis of ultrasonic scattering and characterization of tissue scatterers, and it can improve the resolution for mean spacing estimation of tissue scatterers.
Use of Natural Transformation To Establish an Easy Knockout Method in Riemerella anatipestifer.
Liu, MaFeng; Zhang, Li; Huang, Li; Biville, Francis; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Sun, KunFeng; Yang, Qiao; Wu, Ying; Chen, XiaoYue; Cheng, AnChun
2017-05-01
Riemerella anatipestifer is a member of the family Flavobacteriaceae and a major causative agent of duck serositis. Little is known about its genetics and pathogenesis. Several bacteria are competent for natural transformation; however, whether R. anatipestifer is also competent for natural transformation has not been investigated. Here, we showed that R. anatipestifer strain ATCC 11845 can uptake the chromosomal DNA of R. anatipestifer strain RA-CH-1 in all growth phases. Subsequently, a natural transformation-based knockout method was established for R. anatipestifer ATCC 11845. Targeted mutagenesis gave transformation frequencies of ∼10 -5 transformants. Competition assay experiments showed that R. anatipestifer ATCC 11845 preferentially took up its own DNA rather than heterogeneous DNA, such as Escherichia coli DNA. Transformation was less efficient with the shuttle plasmid pLMF03 (transformation frequencies of ∼10 -9 transformants). However, the efficiency of transformation was increased approximately 100-fold using pLMF03 derivatives containing R. anatipestifer DNA fragments (transformation frequencies of ∼10 -7 transformants). Finally, we found that the R. anatipestifer RA-CH-1 strain was also naturally transformable, suggesting that natural competence is widely applicable for this species. The findings described here provide important tools for the genetic manipulation of R. anatipestifer IMPORTANCE Riemerella anatipestifer is an important duck pathogen that belongs to the family Flavobacteriaceae At least 21 different serotypes have been identified. Genetic diversity has been demonstrated among these serotypes. The genetic and pathogenic mechanisms of R. anatipestifer remain largely unknown because no genetic tools are available for this bacterium. At present, natural transformation has been found in some bacteria but not in R. anatipestifer For the first time, we showed that natural transformation occurred in R. anatipestifer ATCC 11845 and R. anatipestifer RA-CH-1. Then, we established an easy gene knockout method in R. anatipestifer based on natural transformation. This information is important for further studies of the genetic diversity and pathogenesis in R. anatipestifer . Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Shi, R.; Sun, Z.
2018-04-01
GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.
More on approximations of Poisson probabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, C
1980-05-01
Calculation of Poisson probabilities frequently involves calculating high factorials, which becomes tedious and time-consuming with regular calculators. The usual way to overcome this difficulty has been to find approximations by making use of the table of the standard normal distribution. A new transformation proposed by Kao in 1978 appears to perform better for this purpose than traditional transformations. In the present paper several approximation methods are stated and compared numerically, including an approximation method that utilizes a modified version of Kao's transformation. An approximation based on a power transformation was found to outperform those based on the square-root type transformationsmore » as proposed in literature. The traditional Wilson-Hilferty approximation and Makabe-Morimura approximation are extremely poor compared with this approximation. 4 tables. (RWR)« less
Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shouxian; Wang Detian; Li Tao
2011-02-15
The short time Fourier transform (STFT) cannot resolve rapid velocity changes in most photonic Doppler velocimetry (PDV) data. A practical analysis method based on the continuous wavelet transform (CWT) was presented to overcome this difficulty. The adaptability of the wavelet family predicates that the continuous wavelet transform uses an adaptive time window to estimate the instantaneous frequency of signals. The local frequencies of signal are accurately determined by finding the ridge in the spectrogram of the CWT and then are converted to target velocity according to the Doppler effects. A performance comparison between the CWT and STFT is demonstrated bymore » a plate-impact experiment data. The results illustrate that the new method is automatic and adequate for analysis of PDV data.« less
Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method. PMID:25133255
Method to eliminate flux linkage DC component in load transformer for static transfer switch.
He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.
NASA Astrophysics Data System (ADS)
Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2017-09-01
A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.
Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B
2012-05-01
A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.
Development of efficient time-evolution method based on three-term recurrence relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akama, Tomoko, E-mail: a.tomo---s-b-l-r@suou.waseda.jp; Kobayashi, Osamu; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function.more » Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost.« less
Blueberry (Vaccinium corymbosum L.).
Song, Guo-Qing; Sink, Kenneth C
2006-01-01
Recent advances in plant biotechnology have led to a reliable and reproductive method for genetic transformation of blueberry. These efforts built on previous attempts at transient and stable transformation of blueberry that demonstrated the potential of Agrobacterium tumefaciens-mediated transformation, and as well, the difficulties of selecting and regenerating transgenic plants. As a prerequisite for successful stable transformation, efficient regeneration systems were required despite many reports on factors controlling shoot regeneration from leaf explants. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining efficient regeneration methods and the results of A. tumefaciens-mediated transient transformation studies to optimize selected parameters for gene transfer. The protocol has led to successful regeneration of transgenic plants of four commercially important highbush blueberry cultivars.
Improved remote gaze estimation using corneal reflection-adaptive geometric transforms
NASA Astrophysics Data System (ADS)
Ma, Chunfei; Baek, Seung-Jin; Choi, Kang-A.; Ko, Sung-Jea
2014-05-01
Recently, the remote gaze estimation (RGE) technique has been widely applied to consumer devices as a more natural interface. In general, the conventional RGE method estimates a user's point of gaze using a geometric transform, which represents the relationship between several infrared (IR) light sources and their corresponding corneal reflections (CRs) in the eye image. Among various methods, the homography normalization (HN) method achieves state-of-the-art performance. However, the geometric transform of the HN method requiring four CRs is infeasible for the case when fewer than four CRs are available. To solve this problem, this paper proposes a new RGE method based on three alternative geometric transforms, which are adaptive to the number of CRs. Unlike the HN method, the proposed method not only can operate with two or three CRs, but can also provide superior accuracy. To further enhance the performance, an effective error correction method is also proposed. By combining the introduced transforms with the error-correction method, the proposed method not only provides high accuracy and robustness for gaze estimation, but also allows for a more flexible system setup with a different number of IR light sources. Experimental results demonstrate the effectiveness of the proposed method.
Orthogonal fast spherical Bessel transform on uniform grid
NASA Astrophysics Data System (ADS)
Serov, Vladislav V.
2017-07-01
We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.
A new method of converter transformer protection without commutation failure
NASA Astrophysics Data System (ADS)
Zhang, Jiayu; Kong, Bo; Liu, Mingchang; Zhang, Jun; Guo, Jianhong; Jing, Xu
2018-01-01
With the development of AC / DC hybrid transmission technology, converter transformer as nodes of AC and DC conversion of HVDC transmission technology, its reliable safe and stable operation plays an important role in the DC transmission. As a common problem of DC transmission, commutation failure poses a serious threat to the safe and stable operation of power grid. According to the commutation relation between the AC bus voltage of converter station and the output DC voltage of converter, the generalized transformation ratio is defined, and a new method of converter transformer protection based on generalized transformation ratio is put forward. The method uses generalized ratio to realize the on-line monitoring of the fault or abnormal commutation components, and the use of valve side of converter transformer bushing CT current characteristics of converter transformer fault accurately, and is not influenced by the presence of commutation failure. Through the fault analysis and EMTDC/PSCAD simulation, the protection can be operated correctly under the condition of various faults of the converter.
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-08-05
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan
2005-06-01
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.
Application of coordinate transform on ball plate calibration
NASA Astrophysics Data System (ADS)
Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei
2015-02-01
For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.
Bioluminescence-based system for rapid detection of natural transformation.
Santala, Ville; Karp, Matti; Santala, Suvi
2016-07-01
Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformation. This highly sensitive system allows the detection of a transformation event directly from a bacterial population without any separation step or selection of cells. The system is based on the bacterial luciferase operon from Photorhabdus luminescens The studied molecular tools consist of the functional modules luxCDE and luxAB, which involve a replicative plasmid and an integrative gene cassette. A well-established host for bacterial genetic investigations, Acinetobacter baylyi ADP1, is used as the model bacterium. We show that natural transformation followed by homologous recombination or plasmid recircularization can be readily detected in both actively growing and static biofilm-like cultures, including very rare transformation events. The system allows the detection of natural transformation within 1 h of introducing sample DNA into the culture. The introduced method provides a convenient means to study the kinetics of natural transformation under variable conditions and perturbations. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Peng, Zhike; Chen, Shiqian; Yang, Yang; Zhang, Wenming
2018-06-01
With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time-frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.
Barley Transformation Using Agrobacterium-Mediated Techniques
NASA Astrophysics Data System (ADS)
Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.
Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
Towards the construction of high-quality mutagenesis libraries.
Li, Heng; Li, Jing; Jin, Ruinan; Chen, Wei; Liang, Chaoning; Wu, Jieyuan; Jin, Jian-Ming; Tang, Shuang-Yan
2018-07-01
To improve the quality of mutagenesis libraries in directed evolution strategy. In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
Preventive overhaul time for power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmadi, M.; Rouhi, J.; Fayyaz, A.
Power transformers are the major piece of equipment in high-voltage substations. A considerable number of these transformers exist in Iran`s integrated network. Due to the climate diversity and improper usage, many of these transformers age rapidly, suffer failure and are taken out of service before half their useful life. At the present time the utility companies have no specific time-frame and plan for preventive overhaul. Detection of preventive overhaul time will increase the remaining life of transformers and improve the reliability of substations. An exact check of the remaining lifetime of transformers is not yet possible by available diagnostic techniques.more » In this paper, the authors present a method of identifying the right time for preventive overhaul in 63 kV power transformers. This method is developed based on 25 year transformer performance records in Northern Iran (subtropical climate) and with the utilization of studies done by electrical engineering communities world-wide.« less
NASA Astrophysics Data System (ADS)
Zhang, B.; Sang, Jun; Alam, Mohammad S.
2013-03-01
An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min
2018-02-01
Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.
NASA Astrophysics Data System (ADS)
Maghsoudi, Mastoureh; Bakar, Shaiful Anuar Abu
2017-05-01
In this paper, a recent novel approach is applied to estimate the threshold parameter of a composite model. Several composite models from Transformed Gamma and Inverse Transformed Gamma families are constructed based on this approach and their parameters are estimated by the maximum likelihood method. These composite models are fitted to allocated loss adjustment expenses (ALAE). In comparison to all composite models studied, the composite Weibull-Inverse Transformed Gamma model is proved to be a competitor candidate as it best fit the loss data. The final part considers the backtesting method to verify the validation of VaR and CTE risk measures.
NASA Astrophysics Data System (ADS)
Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey
2015-09-01
The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.
Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan
2016-06-01
This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.
Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method[S
Gowda, Siddabasave Gowda B.; Usuki, Seigo; Hammam, Mostafa A. S.; Murai, Yuta; Igarashi, Yasuyuki; Monde, Kenji
2016-01-01
Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond β-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield. PMID:26667669
NASA Astrophysics Data System (ADS)
Hu, Jinyan; Li, Li; Yang, Yunfeng
2017-06-01
The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.
NASA Astrophysics Data System (ADS)
Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.
2018-04-01
Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.
Seismic instantaneous frequency extraction based on the SST-MAW
NASA Astrophysics Data System (ADS)
Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping
2018-06-01
The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.
Feedback linearization of singularly perturbed systems based on canonical similarity transformations
NASA Astrophysics Data System (ADS)
Kabanov, A. A.
2018-05-01
This paper discusses the problem of feedback linearization of a singularly perturbed system in a state-dependent coefficient form. The result is based on the introduction of a canonical similarity transformation. The transformation matrix is constructed from separate blocks for fast and slow part of an original singularly perturbed system. The transformed singular perturbed system has a linear canonical form that significantly simplifies a control design problem. Proposed similarity transformation allows accomplishing linearization of the system without considering the virtual output (as it is needed for normal form method), a technique of a transition from phase coordinates of the transformed system to state variables of the original system is simpler. The application of the proposed approach is illustrated through example.
Constructing a Geology Ontology Using a Relational Database
NASA Astrophysics Data System (ADS)
Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.
2013-12-01
In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).
Reverse ray tracing for transformation optics.
Hu, Chia-Yu; Lin, Chun-Hung
2015-06-29
Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.
Wavelet-based analysis of circadian behavioral rhythms.
Leise, Tanya L
2015-01-01
The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.
Analysis of separation test for automatic brake adjuster based on linear radon transformation
NASA Astrophysics Data System (ADS)
Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi
2015-01-01
The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.
A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers
NASA Technical Reports Server (NTRS)
Campbell, Joel
2008-01-01
A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.
Performance comparison of ISAR imaging method based on time frequency transforms
NASA Astrophysics Data System (ADS)
Xie, Chunjian; Guo, Chenjiang; Xu, Jiadong
2013-03-01
Inverse synthetic aperture radar (ISAR) can image the moving target, especially the target in the air, so it is important in the air defence and missile defence system. Time-frequency Transform was applied to ISAR imaging process widely. Several time frequency transforms were introduced. Noise jamming methods were analysed, and when these noise jamming were added to the echo of the ISAR receiver, the image can become blur even can't to be identify. But the effect is different to the different time frequency analysis. The results of simulation experiment show the Performance Comparison of the method.
Detection technology of polarization target based on curvelet transform in turbid liquid
NASA Astrophysics Data System (ADS)
Zhang, Su; Duan, Jin; Fu, Qiang; Zhan, Juntong; Ma, Wanzhuo
2015-08-01
To suppress the interference of the target detecting in the turbid medium, a kind of polarization detection technology based on Curvelet transform was applied. This method firstly adjusts the angles of polarizing film to get the intensity images of the situations at 0°,60° and 120°, then deduces the images of Stokes vectors, degree of polarization (DOP) and polarization angle (PA) according to the Mueller matrix. At last the DOP and intensity images can be decomposed by Curvelet transform to realize the fusion of the high and low coefficients respectively, after the processed coefficients are reconstructed, the target which is easier to detect can be achieved. To prove this method, many targets in turbid medium have been detected by polarization method and fused their DOP and intensity images with Curvelet transform algorithm. As an example screws in moderate and high concentration liquid are presented respectively, from which we can see the unpolarized targets are less obvious in higher concentration liquid. When the DOP and intensity images are fused by Curvelet transform, the targets are emerged clearly out of the turbid medium, and the values of the quality evaluation parameters in clarity, degree of contract and spatial frequency are prominently enhanced comparing with the unpolarized images, which can show the feasibility of this method.
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
A broadband transformation-optics metasurface lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui
2014-04-14
We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.
Deciding Full Branching Time Logic by Program Transformation
NASA Astrophysics Data System (ADS)
Pettorossi, Alberto; Proietti, Maurizio; Senni, Valerio
We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic ω -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic ω-programs.
Quaternion-valued single-phase model for three-phase power system
NASA Astrophysics Data System (ADS)
Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin
2018-03-01
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230
Illias, Hazlee Azil; Zhao Liang, Wee
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.
Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong
2015-02-01
Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and -delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
Noniterative MAP reconstruction using sparse matrix representations.
Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J
2009-09-01
We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.
Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo
2018-05-03
Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
NASA Astrophysics Data System (ADS)
Pandey, Rishi Kumar; Mishra, Hradyesh Kumar
2017-11-01
In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.
A method based on IHS cylindrical transform model for quality assessment of image fusion
NASA Astrophysics Data System (ADS)
Zhu, Xiaokun; Jia, Yonghong
2005-10-01
Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
[Non-rigid medical image registration based on mutual information and thin-plate spline].
Cao, Guo-gang; Luo, Li-min
2009-01-01
To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.
Lenses that provide the transformation between two given wavefronts
NASA Astrophysics Data System (ADS)
Criado, C.; Alamo, N.
2016-12-01
We give an original method to design four types of lenses solving the following problems: focusing a given wavefront in a given point, and performing the transformation between two arbitrary incoming and outgoing wavefronts. The method to design the lenses profiles is based on the optical properties of the envelopes of certain families of Cartesian ovals of revolution.
Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides.
Nyilasi, I; Acs, K; Papp, T; Nagy, E; Vágvölgyi, C
2005-01-01
The Agrobacterium tumefaciens-mediated transformation of the zygomycetous fungus Mucor circinelloides is described. A method was also developed for the hygromycin B-based selection of Mucor transformants. Transformation with the hygromycin B phosphotransferase gene of Escherichia coli controlled by the heterologous Aspergillus nidulans trpC promoter resulted in hygromycin B-resistant clones. The presence of the hygromycin resistance gene in the genome of the transformants was verified by polymerase chain reaction and Southern hybridization: the latter analyses revealed integrations in the host genome at different sites in different transformants. The stability of transformants remained questionable during the latter analyses.
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang
2014-11-01
The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian
2018-06-01
Infrared (IR) small target enhancement plays a significant role in modern infrared search and track (IRST) systems and is the basic technique of target detection and tracking. In this paper, a coarse-to-fine grey level mapping method using improved sigmoid transformation and saliency histogram is designed to enhance IR small targets under different backgrounds. For the stage of rough enhancement, the intensity histogram is modified via an improved sigmoid function so as to narrow the regular intensity range of background as much as possible. For the part of further enhancement, a linear transformation is accomplished based on a saliency histogram constructed by averaging the cumulative saliency values provided by a saliency map. Compared with other typical methods, the presented method can achieve both better visual performances and quantitative evaluations.
Wavelet Filter Banks for Super-Resolution SAR Imaging
NASA Technical Reports Server (NTRS)
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica
Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of themore » bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the rigid transformation and nonrigid registration of all structures together (AST). Results: The rigid transformation achieved a good global alignment (mean outer anatomical correctness of 4.3 mm) but failed to align the deformed organs (mean inner anatomical correctness of 22.4 mm). Conversely, the AST registration produced a reasonable alignment for the organs (6.3 mm) but not for the surrounding region (16.9 mm). SW+VF registration achieved the best results for both regions (3.5 and 3.4 mm for the inner and outer anatomical correctness, respectively). All differences were significant (p < 0.02, Wilcoxon rank sum test). Additionally, optimization of the scope sizes determined that the method was robust for a large range of scope size values. Conclusions: The novel SW+VF method improved the mapping of large and complex deformations observed between EBRT and BT for cervical cancer patients. Future studies that quantify the mapping error in terms of dose errors are required to test the clinical applicability of dose accumulation by the SW+VF method.« less
A new method of Quickbird own image fusion
NASA Astrophysics Data System (ADS)
Han, Ying; Jiang, Hong; Zhang, Xiuying
2009-10-01
With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.
Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina
2006-02-01
A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.
NASA Technical Reports Server (NTRS)
Pawloski, Janice S.
2001-01-01
This project uses the integral transform technique to model the problem of nanotube behavior as an axially symmetric system of shells. Assuming that the nanotube behavior can be described by the equations of elasticity, we seek a stress function x which satisfies the biharmonic equation: del(exp 4) chi = [partial deriv(r(exp 2)) + partial deriv(r) + partial deriv(z(exp 2))] chi = 0. The method of integral transformations is used to transform the differential equation. The symmetry with respect to the z-axis indicates that we only need to consider the sine transform of the stress function: X(bar)(r,zeta) = integral(from 0 to infinity) chi(r,z)sin(zeta,z) dz.
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor); Smith, Jeffrey Scott (Inventor); Aronstein, David L. (Inventor)
2012-01-01
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for simulating propagation of an electromagnetic field, performing phase retrieval, or sampling a band-limited function. A system practicing the method generates transformed data using a discrete Fourier transform which samples a band-limited function f(x) without interpolating or modifying received data associated with the function f(x), wherein an interval between repeated copies in a periodic extension of the function f(x) obtained from the discrete Fourier transform is associated with a sampling ratio Q, defined as a ratio of a sampling frequency to a band-limited frequency, and wherein Q is assigned a value between 1 and 2 such that substantially no aliasing occurs in the transformed data, and retrieves a phase in the received data based on the transformed data, wherein the phase is used as feedback to an optical system.
NASA Astrophysics Data System (ADS)
Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei
2013-03-01
An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.
Approximation of the ruin probability using the scaled Laplace transform inversion
Mnatsakanov, Robert M.; Sarkisian, Khachatur; Hakobyan, Artak
2015-01-01
The problem of recovering the ruin probability in the classical risk model based on the scaled Laplace transform inversion is studied. It is shown how to overcome the problem of evaluating the ruin probability at large values of an initial surplus process. Comparisons of proposed approximations with the ones based on the Laplace transform inversions using a fixed Talbot algorithm as well as on the ones using the Trefethen–Weideman–Schmelzer and maximum entropy methods are presented via a simulation study. PMID:26752796
NASA Astrophysics Data System (ADS)
Liu, W. L.; Li, Y. W.
2017-09-01
Large-scale dimensional metrology usually requires a combination of multiple measurement systems, such as laser tracking, total station, laser scanning, coordinate measuring arm and video photogrammetry, etc. Often, the results from different measurement systems must be combined to provide useful results. The coordinate transformation is used to unify coordinate frames in combination; however, coordinate transformation uncertainties directly affect the accuracy of the final measurement results. In this paper, a novel method is proposed for improving the accuracy of coordinate transformation, combining the advantages of the best-fit least-square and radial basis function (RBF) neural networks. First of all, the configuration of coordinate transformation is introduced and a transformation matrix containing seven variables is obtained. Second, the 3D uncertainty of the transformation model and the residual error variable vector are established based on the best-fit least-square. Finally, in order to optimize the uncertainty of the developed seven-variable transformation model, we used the RBF neural network to identify the uncertainty of the dynamic, and unstructured, owing to its great ability to approximate any nonlinear function to the designed accuracy. Intensive experimental studies were conducted to check the validity of the theoretical results. The results show that the mean error of coordinate transformation decreased from 0.078 mm to 0.054 mm after using this method in contrast with the GUM method.
Kinetic Monte Carlo Method for Rule-based Modeling of Biochemical Networks
Yang, Jin; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.
2009-01-01
We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular components involved in a transformation, how these components change, conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method, unlike conventional simulation approaches, is independent of the number of possible reactions, which need not be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying cellular signaling systems and other physical systems involving aggregation phenomena. PMID:18851068
NASA Astrophysics Data System (ADS)
Gilev, S. D.; Prokopiev, V. S.
2017-07-01
A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.
The Filtered Abel Transform and Its Application in Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang
2003-01-01
Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.
Somasundaram, Karuppanagounder; Ezhilarasan, Kamalanathan
2015-01-01
To develop an automatic skull stripping method for magnetic resonance imaging (MRI) of human head scans. The proposed method is based on gray scale transformation and morphological operations. The proposed method has been tested with 20 volumes of normal T1-weighted images taken from Internet Brain Segmentation Repository. Experimental results show that the proposed method gives better results than the popular skull stripping methods Brain Extraction Tool and Brain Surface Extractor. The average value of Jaccard and Dice coefficients are 0.93 and 0.962 respectively. In this article, we have proposed a novel skull stripping method using intensity transformation and morphological operations. This is a low computational complexity method but gives competitive or better results than that of the popular skull stripping methods Brain Surface Extractor and Brain Extraction Tool.
Full-field optical coherence tomography image restoration based on Hilbert transformation
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2007-02-01
We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.
NASA Astrophysics Data System (ADS)
Labunets, Valeri G.; Labunets-Rundblad, Ekaterina V.; Astola, Jaakko T.
2001-12-01
Fast algorithms for a wide class of non-separable n-dimensional (nD) discrete unitary K-transforms (DKT) are introduced. They need less 1D DKTs than in the case of the classical radix-2 FFT-type approach. The method utilizes a decomposition of the nD K-transform into the product of a new nD discrete Radon transform and of a set of parallel/independ 1D K-transforms. If the nD K-transform has a separable kernel (e.g., the case of the discrete Fourier transform) our approach leads to decrease of multiplicative complexity by the factor of n comparing to the classical row/column separable approach. It is well known that an n-th order Volterra filter of one dimensional signal can be evaluated by an appropriate nD linear convolution. This work describes new superfast algorithm for Volterra filtering. New approach is based on the superfast discrete Radon and Nussbaumer polynomial transforms.
Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing
2015-01-01
In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.
NASA Astrophysics Data System (ADS)
Suproniuk, M.; Pawłowski, M.; Wierzbowski, M.; Majda-Zdancewicz, E.; Pawłowski, Ma.
2018-04-01
The procedure for determination of trap parameters by photo-induced transient spectroscopy is based on the Arrhenius plot that illustrates a thermal dependence of the emission rate. In this paper, we show that the Arrhenius plot obtained by the correlation method is shifted toward lower temperatures as compared to the one obtained with the inverse Laplace transformation. This shift is caused by the model adequacy error of the correlation method and introduces errors to a calculation procedure of defect center parameters. The effect is exemplified by comparing the results of the determination of trap parameters with both methods based on photocurrent transients for defect centers observed in tin-doped neutron-irradiated silicon crystals and in gallium arsenide grown with the Vertical Gradient Freeze method.
Transformation of the Fungal Soybean Pathogen Cercospora kikuchii with the Selectable Marker bar
Upchurch, Robert G.; Meade, Maura J.; Hightower, Robin C.; Thomas, Robert S.; Callahan, Terrence M.
1994-01-01
An improved transformation protocol, utilizing selection for resistance to the herbicide bialaphos, has been developed for the plant pathogenic fungus Cercospora kikuchii. Stable, bialaphos-resistant transformants are recovered at frequencies eight times higher than those achieved with the previous system that was based on selection for benomyl resistance. In addition to C. kikuchii, this improved method can also be used to transform other species of Cercospora. Images PMID:16349469
Optical chirp z-transform processor with a simplified architecture.
Ngo, Nam Quoc
2014-12-29
Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform
Tang, Guiji; Tian, Tian; Zhou, Chong
2018-01-01
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time–time (IHTT) transform, by combining a Hilbert time–time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures. PMID:29662013
Frequency-dependent FDTD methods using Z transforms
NASA Technical Reports Server (NTRS)
Sullivan, Dennis M.
1992-01-01
While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.
Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.
Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M
2015-10-05
The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.
Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform
NASA Astrophysics Data System (ADS)
Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li
2017-12-01
In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.
Motion magnification using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.
2015-12-01
We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.
Chosen-plaintext attack on a joint transform correlator encrypting system
NASA Astrophysics Data System (ADS)
Barrera, John Fredy; Vargas, Carlos; Tebaldi, Myrian; Torroba, Roberto
2010-10-01
We demonstrate that optical encryption methods based on the joint transform correlator architecture are vulnerable to chosen-plaintext attack. An unauthorized user, who introduces three chosen plaintexts in the accessible encryption machine, can obtain the security key code mask. In this contribution, we also propose an alternative method to eliminate ambiguities that allows obtaining the right decrypting key.
NASA Astrophysics Data System (ADS)
Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura
2016-09-01
The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.
Intelligent Automatic Classification of True and Counterfeit Notes Based on Spectrum Analysis
NASA Astrophysics Data System (ADS)
Matsunaga, Shohei; Omatu, Sigeru; Kosaka, Toshohisa
The purpose of this paper is to classify bank notes into “true” or “counterfeit” ones faster and more precisely compared with a conventional method. We note that thin lines are represented by direct lines in the images of true notes while they are represented in the counterfeit notes by dotted lines. This is due to properties of dot printers or scanner levels. To use the properties, we propose two method to classify a note into true or counterfeited one by checking whether there exist thin lines or dotted lines of the note. First, we use Fourier transform of the note to find quantity of features for classification and we classify a note into true or counterfeit one by using the features by Fourier transform. Then we propose a classification method by using wavelet transform in place of Fourier transform. Finally, some classification results are illustrated to show the effectiveness of the proposed methods.
A GPU-based symmetric non-rigid image registration method in human lung.
Haghighi, Babak; D Ellingwood, Nathan; Yin, Youbing; Hoffman, Eric A; Lin, Ching-Long
2018-03-01
Quantitative computed tomography (QCT) of the lungs plays an increasing role in identifying sub-phenotypes of pathologies previously lumped into broad categories such as chronic obstructive pulmonary disease and asthma. Methods for image matching and linking multiple lung volumes have proven useful in linking structure to function and in the identification of regional longitudinal changes. Here, we seek to improve the accuracy of image matching via the use of a symmetric multi-level non-rigid registration employing an inverse consistent (IC) transformation whereby images are registered both in the forward and reverse directions. To develop the symmetric method, two similarity measures, the sum of squared intensity difference (SSD) and the sum of squared tissue volume difference (SSTVD), were used. The method is based on a novel generic mathematical framework to include forward and backward transformations, simultaneously, eliminating the need to compute the inverse transformation. Two implementations were used to assess the proposed method: a two-dimensional (2-D) implementation using synthetic examples with SSD, and a multi-core CPU and graphics processing unit (GPU) implementation with SSTVD for three-dimensional (3-D) human lung datasets (six normal adults studied at total lung capacity (TLC) and functional residual capacity (FRC)). Success was evaluated in terms of the IC transformation consistency serving to link TLC to FRC. 2-D registration on synthetic images, using both symmetric and non-symmetric SSD methods, and comparison of displacement fields showed that the symmetric method gave a symmetrical grid shape and reduced IC errors, with the mean values of IC errors decreased by 37%. Results for both symmetric and non-symmetric transformations of human datasets showed that the symmetric method gave better results for IC errors in all cases, with mean values of IC errors for the symmetric method lower than the non-symmetric methods using both SSD and SSTVD. The GPU version demonstrated an average of 43 times speedup and ~5.2 times speedup over the single-threaded and 12-threaded CPU versions, respectively. Run times with the GPU were as fast as 2 min. The symmetric method improved the inverse consistency, aiding the use of image registration in the QCT-based evaluation of the lung.
Methods for performing fast discrete curvelet transforms of data
Candes, Emmanuel; Donoho, David; Demanet, Laurent
2010-11-23
Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
Deblocking of mobile stereo video
NASA Astrophysics Data System (ADS)
Azzari, Lucio; Gotchev, Atanas; Egiazarian, Karen
2012-02-01
Most of candidate methods for compression of mobile stereo video apply block-transform based compression based on the H-264 standard with quantization of transform coefficients driven by quantization parameter (QP). The compression ratio and the resulting bit rate are directly determined by the QP level and high compression is achieved for the price of visually noticeable blocking artifacts. Previous studies on perceived quality of mobile stereo video have revealed that blocking artifacts are the most annoying and most influential in the acceptance/rejection of mobile stereo video and can even completely cancel the 3D effect and the corresponding quality added value. In this work, we address the problem of deblocking of mobile stereo video. We modify a powerful non-local transform-domain collaborative filtering method originally developed for denoising of images and video. The method employs grouping of similar block patches residing in spatial and temporal vicinity of a reference block in filtering them collaboratively in a suitable transform domain. We study the most suitable way of finding similar patches in both channels of stereo video and suggest a hybrid four-dimensional transform to process the collected synchronized (stereo) volumes of grouped blocks. The results benefit from the additional correlation available between the left and right channel of the stereo video. Furthermore, addition sharpening is applied through an embedded alpha-rooting in transform domain, which improve the visual appearance of the deblocked frames.
NASA Astrophysics Data System (ADS)
Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping
2018-01-01
Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.
NASA Astrophysics Data System (ADS)
Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo
2018-03-01
The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Zhang, Jun; Tian, Jinwen
2015-12-01
Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.
Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C
2011-05-01
Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
2016-01-01
A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479
NASA Astrophysics Data System (ADS)
Du, Xiaofeng; Song, William; Munro, Malcolm
Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.
Designs for thermal harvesting with nonlinear coordinate transformation
NASA Astrophysics Data System (ADS)
Ji, Qingxiang; Fang, Guodong; Liang, Jun
2018-04-01
In this paper a thermal concentrating design method was proposed based on the concept of generating function without knowing the needed coordinate transformation beforehand. The thermal harvesting performance was quantitatively characterized by heat concentrating efficiency and external temperature perturbation. Nonlinear transformations of different forms were employed to design high order thermal concentrators, and corresponding harvesting performances were investigated by numerical simulations. The numerical results shows that the form of coordinate transformation directly influences the distributions of heat flows inside the concentrator, consequently, influences the thermal harvesting behaviors significantly. The concentrating performance can be actively controlled and optimized by changing the form of coordinate transformations. The analysis in this paper offers a beneficial method to flexibly tune the harvesting performance of the thermal concentrator according to the requirements of practical applications.
Improved image decompression for reduced transform coding artifacts
NASA Technical Reports Server (NTRS)
Orourke, Thomas P.; Stevenson, Robert L.
1994-01-01
The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.
NASA Astrophysics Data System (ADS)
Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.
2017-10-01
The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.
[An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].
Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang
2014-07-01
Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.
Innovative design method of automobile profile based on Fourier descriptor
NASA Astrophysics Data System (ADS)
Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei
2017-10-01
Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.
Generation of dark hollow beams by using a fractional radial Hilbert transform system
NASA Astrophysics Data System (ADS)
Xie, Qiansen; Zhao, Daomu
2007-07-01
The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.
Stable Nuclear Transformation System for the Coccolithophorid Alga Pleurochrysis carterae
Endo, Hirotoshi; Yoshida, Megumi; Uji, Toshiki; Saga, Naotsune; Inoue, Koji; Nagasawa, Hiromichi
2016-01-01
Of the three dominant marine microalgal groups, dinoflagellates and diatoms can undergo genetic transformation; however, no transformation method has been established for haptophytes to date. Here, we report the first stable genetic transformation of a coccolithophore, Pleurochrysis carterae, by means of polyethylene glycol (PEG)-mediated transfer of a bacterial hygromycin B-resistance gene. Together with the novel transient green fluorescent protein (GFP) expression system, this approach should facilitate further molecular-based research in this phylum. PMID:26947136
A new Watermarking System based on Discrete Cosine Transform (DCT) in color biometric images.
Dogan, Sengul; Tuncer, Turker; Avci, Engin; Gulten, Arif
2012-08-01
This paper recommend a biometric color images hiding approach An Watermarking System based on Discrete Cosine Transform (DCT), which is used to protect the security and integrity of transmitted biometric color images. Watermarking is a very important hiding information (audio, video, color image, gray image) technique. It is commonly used on digital objects together with the developing technology in the last few years. One of the common methods used for hiding information on image files is DCT method which used in the frequency domain. In this study, DCT methods in order to embed watermark data into face images, without corrupting their features.
NASA Astrophysics Data System (ADS)
Hu, Bingbing; Li, Bing
2016-02-01
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuss, M.; Markel, T.; Kramer, W.
Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly,more » some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.« less
A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation
NASA Astrophysics Data System (ADS)
Chen, Wenxiang; Hong, Baocai
2005-02-01
A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Mathematical approach to recover EEG brain signals with artifacts by means of Gram-Schmidt transform
NASA Astrophysics Data System (ADS)
Runnova, A. E.; Zhuravlev, M. O.; Koronovskiy, A. A.; Hramov, A. E.
2017-04-01
A novel method for removing oculomotor artifacts on electroencephalographical signals is proposed and based on the orthogonal Gram-Schmidt transform using electrooculography data. The method has shown high efficiency removal of artifacts caused by spontaneous movements of the eyeballs (about 95-97% correct remote oculomotor artifacts). This method may be recommended for multi-channel electroencephalography data processing in an automatic on-line in a variety of psycho-physiological experiments.
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian
2018-01-01
In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
NASA Astrophysics Data System (ADS)
Sayadi, Omid; Shamsollahi, Mohammad B.
2007-12-01
We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.
Broadband Time-Frequency Analysis Using a Multicomputer
2004-09-30
FFT 512 pt Waterfall WVD display 8© 2004 Mercury Computer Systems, Inc. Smoothed Pseudo Wigner - Ville Distribution One of many interference reduction...The Wigner - Ville distribution , the scalogram, and the discrete Gabor transform are among the most well-known of these methods. Due to specific...based upon FFT Accumulation Method • Continuous Wavelet Transform (Scalogram) • Discrete Wigner - Ville Distribution with a selected set of interference
Yang, Liyan; Cui, Guimei; Wang, Yixue; Hao, Yaoshan; Du, Jianzhong; Zhang, Hongmei; Wang, Changbiao; Zhang, Huanhuan; Wu, Shu-Biao; Sun, Yi
2017-01-01
Plant genetic transformation has arguably been the core of plant improvement in recent decades. Efforts have been made to develop in planta transformation systems due to the limitations present in the tissue-culture-based methods. Herein, we report an improved in planta transformation system, and provide the evidence of reporter gene expression in pollen tube, embryos and stable transgenicity of the plants following pollen-mediated plant transformation with optimized sonication treatment of pollen. The results showed that the aeration at 4°C treatment of pollen grains in sucrose prior to sonication significantly improved the pollen viability leading to improved kernel set and transformation efficiency. Scanning electron microscopy observation revealed that the removal of operculum covering pollen pore by ultrasonication might be one of the reasons for the pollen grains to become competent for transformation. Evidences have shown that the eGfp gene was expressed in the pollen tube and embryos, and the Cry1Ac gene was detected in the subsequent T 1 and T 2 progenies, suggesting the successful transfer of the foreign genes to the recipient plants. The Southern blot analysis of Cry1Ac gene in T 2 progenies and PCR-identified Apr gene segregation in T 2 seedlings confirmed the stable inheritance of the transgene. The outcome illustrated that the pollen-mediated genetic transformation system can be widely applied in the plant improvement programs with apparent advantages over tissue-culture-based transformation methods.
NASA Astrophysics Data System (ADS)
Al-Rabadi, Anas N.
2009-10-01
This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.
Smeared spectrum jamming suppression based on generalized S transform and threshold segmentation
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Chunyang; Tan, Ming; Fu, Xiaolong
2018-04-01
Smeared Spectrum (SMSP) jamming is an effective jamming in countering linear frequency modulation (LFM) radar. According to the time-frequency distribution difference between jamming and echo, a jamming suppression method based on Generalized S transform (GST) and threshold segmentation is proposed. The sub-pulse period is firstly estimated based on auto correlation function firstly. Secondly, the time-frequency image and the related gray scale image are achieved based on GST. Finally, the Tsallis cross entropy is utilized to compute the optimized segmentation threshold, and then the jamming suppression filter is constructed based on the threshold. The simulation results show that the proposed method is of good performance in the suppression of false targets produced by SMSP.
Poisson denoising on the sphere: application to the Fermi gamma ray space telescope
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.
2010-07-01
The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.
An analysis of random projection for changeable and privacy-preserving biometric verification.
Wang, Yongjin; Plataniotis, Konstantinos N
2010-10-01
Changeability and privacy protection are important factors for widespread deployment of biometrics-based verification systems. This paper presents a systematic analysis of a random-projection (RP)-based method for addressing these problems. The employed method transforms biometric data using a random matrix with each entry an independent and identically distributed Gaussian random variable. The similarity- and privacy-preserving properties, as well as the changeability of the biometric information in the transformed domain, are analyzed in detail. Specifically, RP on both high-dimensional image vectors and dimensionality-reduced feature vectors is discussed and compared. A vector translation method is proposed to improve the changeability of the generated templates. The feasibility of the introduced solution is well supported by detailed theoretical analyses. Extensive experimentation on a face-based biometric verification problem shows the effectiveness of the proposed method.
Wacker, M; Witte, H
2013-01-01
This review outlines the methodological fundamentals of the most frequently used non-parametric time-frequency analysis techniques in biomedicine and their main properties, as well as providing decision aids concerning their applications. The short-term Fourier transform (STFT), the Gabor transform (GT), the S-transform (ST), the continuous Morlet wavelet transform (CMWT), and the Hilbert transform (HT) are introduced as linear transforms by using a unified concept of the time-frequency representation which is based on a standardized analytic signal. The Wigner-Ville distribution (WVD) serves as an example of the 'quadratic transforms' class. The combination of WVD and GT with the matching pursuit (MP) decomposition and that of the HT with the empirical mode decomposition (EMD) are explained; these belong to the class of signal-adaptive approaches. Similarities between linear transforms are demonstrated and differences with regard to the time-frequency resolution and interference (cross) terms are presented in detail. By means of simulated signals the effects of different time-frequency resolutions of the GT, CMWT, and WVD as well as the resolution-related properties of the interference (cross) terms are shown. The method-inherent drawbacks and their consequences for the application of the time-frequency techniques are demonstrated by instantaneous amplitude, frequency and phase measures and related time-frequency representations (spectrogram, scalogram, time-frequency distribution, phase-locking maps) of measured magnetoencephalographic (MEG) signals. The appropriate selection of a method and its parameter settings will ensure readability of the time-frequency representations and reliability of results. When the time-frequency characteristics of a signal strongly correspond with the time-frequency resolution of the analysis then a method may be considered 'optimal'. The MP-based signal-adaptive approaches are preferred as these provide an appropriate time-frequency resolution for all frequencies while simultaneously reducing interference (cross) terms.
A window-based time series feature extraction method.
Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife
2017-10-01
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Professional Development of Teacher-Educators towards Transformative Learning
ERIC Educational Resources Information Center
Meijer, Marie-Jeanne; Kuijpers, Marinka; Boei, Fer; Vrieling, Emmy; Geijsel, Femke
2017-01-01
This study explores the specific characteristics of teacher-educator professional development interventions that enhance their transformative learning towards stimulating the inquiry-based attitude of students. An educational design research method was followed. Firstly, in partnership with five experienced educators, a professional development…
General optical discrete z transform: design and application.
Ngo, Nam Quoc
2016-12-20
This paper presents a generalization of the discrete z transform algorithm. It is shown that the GOD-ZT algorithm is a generalization of several important conventional discrete transforms. Based on the GOD-ZT algorithm, a tunable general optical discrete z transform (GOD-ZT) processor is synthesized using the silica-based finite impulse response transversal filter. To demonstrate the effectiveness of the method, the design and simulation of a tunable optical discrete Fourier transform (ODFT) processor as a special case of the synthesized GOD-ZT processor is presented. It is also shown that the ODFT processor can function as a real-time optical spectrum analyzer. The tunable ODFT has an important potential application as a tunable optical demultiplexer at the receiver end of an optical orthogonal frequency-division multiplexing transmission system.
A cascade method for TFT-LCD defect detection
NASA Astrophysics Data System (ADS)
Yi, Songsong; Wu, Xiaojun; Yu, Zhiyang; Mo, Zhuoya
2017-07-01
In this paper, we propose a novel cascade detection algorithm which focuses on point and line defects on TFT-LCD. At the first step of the algorithm, we use the gray level difference of su-bimage to segment the abnormal area. The second step is based on phase only transform (POT) which corresponds to the Discrete Fourier Transform (DFT), normalized by the magnitude. It can remove regularities like texture and noise. After that, we improve the method of setting regions of interest (ROI) with the method of edge segmentation and polar transformation. The algorithm has outstanding performance in both computation speed and accuracy. It can solve most of the defect detections including dark point, light point, dark line, etc.
Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel
2014-10-01
An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-03-01
A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.
Quan, Hui; Zhang, Ji
2003-09-15
Analyses of study variables are frequently based on log transformations. To calculate the power for detecting the between-treatment difference in the log scale, we need an estimate of the standard deviation of the log-transformed variable. However, in many situations a literature search only provides the arithmetic means and the corresponding standard deviations. Without individual log-transformed data to directly calculate the sample standard deviation, we need alternative methods to estimate it. This paper presents methods for estimating and constructing confidence intervals for the standard deviation of a log-transformed variable given the mean and standard deviation of the untransformed variable. It also presents methods for estimating the standard deviation of change from baseline in the log scale given the means and standard deviations of the untransformed baseline value, on-treatment value and change from baseline. Simulations and examples are provided to assess the performance of these estimates. Copyright 2003 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Setyowati, H. A.; S, S. H. Murti B.; Sukentyas, E. S.
2016-11-01
The reflection of land surface, atmosphere and vegetation conditions affect the reflectance value of the object is recorded on remote sensing image so that it can affect the outcome of information extraction from remote sensing imagery one multispectral classification. This study aims to assess the ability of the transformation of generic vegetation index (Wide Dynamic Range Vegetation Index), the vegetation index transformation that is capable reducing the influence of the atmosphere (Atmospherically Resistant Vegetation Index), and the transformation of vegetation index that is capable of reducing the influence of the background soil (Second Modified Soil Adjusted Vegetation Index) for the identification and mapping of land use in the oil palm plantation area based on SPOT-6 archived on June 13, 2013 from LAPAN. The study area selected oil palm plantations PT. Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu, Riau Province. The method is using the transformation of the vegetation index ARVI, MSAVI2, and WDRVI. Sample selection method used was stratified random sampling. The test method used mapping accuracy of the confusion matrix. The results showed that the best transformation of the vegetation index for the identification and mapping of land use in the plantation area is ARVI transformation with a total of accuracy is 96%. Accuracy of mapping land use settlements 100%, replanting 82.35%, 81.25% young oil palm, old oil palm 99.46%, 100% bush, body of water 100%, and 100% bare-soil.
An Accurate and Stable FFT-based Method for Pricing Options under Exp-Lévy Processes
NASA Astrophysics Data System (ADS)
Ding, Deng; Chong U, Sio
2010-05-01
An accurate and stable method for pricing European options in exp-Lévy models is presented. The main idea of this new method is combining the quadrature technique and the Carr-Madan Fast Fourier Transform methods. The theoretical analysis shows that the overall complexity of this new method is still O(N log N) with N grid points as the fast Fourier transform methods. Numerical experiments for different exp-Lévy processes also show that the numerical algorithm proposed by this new method has an accuracy and stability for the small strike prices K. That develops and improves the Carr-Madan method.
Estimating leaf nitrogen accumulation in maize based on canopy hyperspectrum data
NASA Astrophysics Data System (ADS)
Gu, Xiaohe; Wang, Lizhi; Song, Xiaoyu; Xu, Xingang
2016-10-01
Leaf nitrogen accumulation (LNA) has important influence on the formation of crop yield and grain protein. Monitoring leaf nitrogen accumulation of crop canopy quantitively and real-timely is helpful for mastering crop nutrition status, diagnosing group growth and managing fertilization precisely. The study aimed to develop a universal method to monitor LNA of maize by hyperspectrum data, which could provide mechanism support for mapping LNA of maize at county scale. The correlations between LNA and hyperspectrum reflectivity and its mathematical transformations were analyzed. Then the feature bands and its transformations were screened to develop the optimal model of estimating LNA based on multiple linear regression method. The in-situ samples were used to evaluate the accuracy of the estimating model. Results showed that the estimating model with one differential logarithmic transformation (lgP') of reflectivity could reach highest correlation coefficient (0.889) with lowest RMSE (0.646 g·m-2), which was considered as the optimal model for estimating LNA in maize. The determination coefficient (R2) of testing samples was 0.831, while the RMSE was 1.901 g·m-2. It indicated that the one differential logarithmic transformation of hyperspectrum had good response with LNA of maize. Based on this transformation, the optimal estimating model of LNA could reach good accuracy with high stability.
Fourier transform-wavefront reconstruction for the pyramid wavefront sensor
NASA Astrophysics Data System (ADS)
Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone
The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.
NASA Technical Reports Server (NTRS)
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
A new method for computing the gyrocenter orbit in the tokamak configuration
NASA Astrophysics Data System (ADS)
Xu, Yingfeng
2013-10-01
Gyrokinetic theory is an important tool for studying the long-time behavior of magnetized plasmas in Tokamaks. The gyrocenter trajectory determined by the gyrocenter equations of motion can be computed by using a special kind of the Lie-transform perturbation method. The corresponding Lie-transform called I-transform makes that the transformed equations of motion have the same form as the unperturbed ones. The gyrocenter trajectory in short time is divided into two parts. One is along the unperturbed orbit. The other one, which is related to perturbation, is determined by the I-transform generating vector. The numerical gyrocenter orbit code based on this new method has been developed in the tokamak configuration and benchmarked with the other orbit code in some simple cases. Furthermore, it is clearly demonstrated that this new method for computing gyrocenter orbit is equivalent to the gyrocenter Hamilton equations of motion up to the second order in timestep. The new method can be applied to the gyrokinetic simulation. The gyrocenter orbit of the unperturbed part determined by the equilibrium fields can be computed previously in the gyrokinetic simulation, and the corresponding time consumption is neglectable.
Harmonic analysis of electrified railway based on improved HHT
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.
During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U 2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloymore » as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the α/γ interface.« less
NASA Astrophysics Data System (ADS)
Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David
2016-03-01
In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.
Optical calculation of correlation filters for a robotic vision system
NASA Technical Reports Server (NTRS)
Knopp, Jerome
1989-01-01
A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P Yu
Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less
Theory and operational rules for the discrete Hankel transform.
Baddour, Natalie; Chouinard, Ugo
2015-04-01
Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.
Fourier analysis and signal processing by use of the Moebius inversion formula
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.
1990-01-01
A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.
A new method for correlation analysis of compositional (environmental) data - a worked example.
Reimann, C; Filzmoser, P; Hron, K; Kynčlová, P; Garrett, R G
2017-12-31
Most data in environmental sciences and geochemistry are compositional. Already the unit used to report the data (e.g., μg/l, mg/kg, wt%) implies that the analytical results for each element are not free to vary independently of the other measured variables. This is often neglected in statistical analysis, where a simple log-transformation of the single variables is insufficient to put the data into an acceptable geometry. This is also important for bivariate data analysis and for correlation analysis, for which the data need to be appropriately log-ratio transformed. A new approach based on the isometric log-ratio (ilr) transformation, leading to so-called symmetric coordinates, is presented here. Summarizing the correlations in a heat-map gives a powerful tool for bivariate data analysis. Here an application of the new method using a data set from a regional geochemical mapping project based on soil O and C horizon samples is demonstrated. Differences to 'classical' correlation analysis based on log-transformed data are highlighted. The fact that some expected strong positive correlations appear and remain unchanged even following a log-ratio transformation has probably led to the misconception that the special nature of compositional data can be ignored when working with trace elements. The example dataset is employed to demonstrate that using 'classical' correlation analysis and plotting XY diagrams, scatterplots, based on the original or simply log-transformed data can easily lead to severe misinterpretations of the relationships between elements. Copyright © 2017 Elsevier B.V. All rights reserved.
A Local DCT-II Feature Extraction Approach for Personal Identification Based on Palmprint
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Oyama, Tadahiro; Karungaru, Stephen; Tsuge, Satoru; Fukumi, Minoru
Biometric applications based on the palmprint have recently attracted increased attention from various researchers. In this paper, a method is presented that differs from the commonly used global statistical and structural techniques by extracting and using local features instead. The middle palm area is extracted after preprocessing for rotation, position and illumination normalization. The segmented region of interest is then divided into blocks of either 8×8 or 16×16 pixels in size. The type-II Discrete Cosine Transform (DCT) is applied to transform the blocks into DCT space. A subset of coefficients that encode the low to medium frequency components is selected using the JPEG-style zigzag scanning method. Features from each block are subsequently concatenated into a compact feature vector and used in palmprint verification experiments with palmprints from the PolyU Palmprint Database. Results indicate that this approach achieves better results than many conventional transform-based methods, with an excellent recognition accuracy above 99% and an Equal Error Rate (EER) of less than 1.2% in palmprint verification.
Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong
2017-06-01
The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.
NASA Astrophysics Data System (ADS)
Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong
2017-06-01
The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.
A New Shape Description Method Using Angular Radial Transform
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Kim, Whoi-Yul
Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.
Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform
NASA Astrophysics Data System (ADS)
Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.
2017-12-01
In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.
Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method
NASA Astrophysics Data System (ADS)
Bekhoucha, F.; Rechak, S.; Cadou, J. M.
2016-12-01
In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.
Wang, Jianing; Liu, Yuan; Noble, Jack H; Dawant, Benoit M
2017-10-01
Medical image registration establishes a correspondence between images of biological structures, and it is at the core of many applications. Commonly used deformable image registration methods depend on a good preregistration initialization. We develop a learning-based method to automatically find a set of robust landmarks in three-dimensional MR image volumes of the head. These landmarks are then used to compute a thin plate spline-based initialization transformation. The process involves two steps: (1) identifying a set of landmarks that can be reliably localized in the images and (2) selecting among them the subset that leads to a good initial transformation. To validate our method, we use it to initialize five well-established deformable registration algorithms that are subsequently used to register an atlas to MR images of the head. We compare our proposed initialization method with a standard approach that involves estimating an affine transformation with an intensity-based approach. We show that for all five registration algorithms the final registration results are statistically better when they are initialized with the method that we propose than when a standard approach is used. The technique that we propose is generic and could be used to initialize nonrigid registration algorithms for other applications.
Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H
2013-03-20
We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.
A Formal Approach to Requirements-Based Programming
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
No significant general-purpose method is currently available to mechanically transform system requirements into a provably equivalent model. The widespread use of such a method represents a necessary step toward high-dependability system engineering for numerous application domains. Current tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The "gap" unfilled by such tools and methods is that the formal models cannot be proven to be equivalent to the requirements. We offer a method for mechanically transforming requirements into a provably equivalent formal model that can be used as the basis for code generation and other transformations. This method is unique in offering full mathematical tractability while using notations and techniques that are well known and well trusted. Finally, we describe further application areas we are investigating for use of the approach.
Spherical harmonic analysis of a harmonic function given on a spheroid
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-07-01
A new analytical method for the computation of a truncated series of solid spherical harmonic coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived, using a transformation between surface and solid spherical HCs. A two-step procedure is derived to extend this transformation beyond degree and order (d/o) 520. The method is compared to the Hotine-Jekeli transformation in a numerical study based on the EGM2008 global gravity model. Both methods are shown to achieve submicrometre precision in terms of height anomalies for a model to d/o 2239. However, both methods result in spherical harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in gravity disturbances due to the different coordinate system used. While the Hotine-Jekeli transformation requires the use of an ellipsoidal coordinate system, the new method uses only spherical polar coordinates. The Hotine-Jekeli transformation is numerically more efficient, but the new method can more easily be extended to cases where (a linear combination of) normal derivatives of the function under consideration are given on the surface of the spheroid. It therefore provides a solution to many types of ellipsoidal boundary-value problems in the spectral domain.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
On the efficacy of procedures to normalize Ex-Gaussian distributions.
Marmolejo-Ramos, Fernando; Cousineau, Denis; Benites, Luis; Maehara, Rocío
2014-01-01
Reaction time (RT) is one of the most common types of measure used in experimental psychology. Its distribution is not normal (Gaussian) but resembles a convolution of normal and exponential distributions (Ex-Gaussian). One of the major assumptions in parametric tests (such as ANOVAs) is that variables are normally distributed. Hence, it is acknowledged by many that the normality assumption is not met. This paper presents different procedures to normalize data sampled from an Ex-Gaussian distribution in such a way that they are suitable for parametric tests based on the normality assumption. Using simulation studies, various outlier elimination and transformation procedures were tested against the level of normality they provide. The results suggest that the transformation methods are better than elimination methods in normalizing positively skewed data and the more skewed the distribution then the transformation methods are more effective in normalizing such data. Specifically, transformation with parameter lambda -1 leads to the best results.
The method for homography estimation between two planes based on lines and points
NASA Astrophysics Data System (ADS)
Shemiakina, Julia; Zhukovsky, Alexander; Nikolaev, Dmitry
2018-04-01
The paper considers the problem of estimating a transform connecting two images of one plane object. The method based on RANSAC is proposed for calculating the parameters of projective transform which uses points and lines correspondences simultaneously. A series of experiments was performed on synthesized data. Presented results show that the algorithm convergence rate is significantly higher when actual lines are used instead of points of lines intersection. When using both lines and feature points it is shown that the convergence rate does not depend on the ratio between lines and feature points in the input dataset.
Model-Based Clustering and Data Transformations for Gene Expression Data
2001-04-30
transformation parameters, e.g. Andrews, Gnanadesikan , and Warner (1973). Aitchison tests: Aitchison (1986) tested three aspects of the data for...N in the Box-Cox transformation in Equation (5) is estimated by maximum likelihood using the observa- tions (Andrews, Gnanadesikan , and Warner 1973...Compositional Data. Chapman and Hall. Andrews, D. F., R. Gnanadesikan , and J. L. Warner (1973). Methods for assessing multivari- ate normality. In P. R
NASA Astrophysics Data System (ADS)
Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo
2018-05-01
The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.
Bakshi, Souvika; Saha, Bedabrata; Roy, Nand Kishor; Mishra, Sagarika; Panda, Sanjib Kumar; Sahoo, Lingaraj
2012-06-01
A new method for obtaining transgenic cowpea was developed using positive selection based on the Escherichia coli 6-phosphomannose isomerase gene as the selectable marker and mannose as the selective agent. Only transformed cells were capable of utilizing mannose as a carbon source. Cotyledonary node explants from 4-day-old in vitro-germinated seedlings of cultivar Pusa Komal were inoculated with Agrobacterium tumefaciens strain EHA105 carrying the vector pNOV2819. Regenerating transformed shoots were selected on medium supplemented with a combination of 20 g/l mannose and 5 g/l sucrose as carbon source. The transformed shoots were rooted on medium devoid of mannose. Transformation efficiency based on PCR analysis of individual putative transformed shoots was 3.6%. Southern blot analysis on five randomly chosen PCR-positive plants confirmed the integration of the pmi transgene. Qualitative reverse transcription (qRT-PCR) analysis demonstrated the expression of pmi in T₀ transgenic plants. Chlorophenol red (CPR) assays confirmed the activity of PMI in transgenic plants, and the gene was transmitted to progeny in a Mendelian fashion. The transformation method presented here for cowpea using mannose selection is efficient and reproducible, and could be used to introduce a desirable gene(s) into cowpea for biotic and abiotic stress tolerance.
A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds
Poreba, Martyna; Goulette, François
2015-01-01
With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%. PMID:25594589
NASA Astrophysics Data System (ADS)
Shao, Xupeng
2017-04-01
Glutenite bodies are widely developed in northern Minfeng zone of Dongying Sag. Their litho-electric relationship is not clear. In addition, as the conventional sequence stratigraphic research method drawbacks of involving too many subjective human factors, it has limited deepening of the regional sequence stratigraphic research. The wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data have advantages of dividing sequence stratigraphy quantitatively comparing with the conventional methods. Under the basis of the conventional sequence research method, this paper used the above techniques to divide the fourth-order sequence of the upper Es4 in northern Minfeng zone of Dongying Sag. The research shows that the wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data are essentially consistent, both of which divide sequence stratigraphy quantitatively in the frequency domain; wavelet transform technique has high resolutions. It is suitable for areas with wells. The seismic time-frequency analysis technique has wide applicability, but a low resolution. Both of the techniques should be combined; the upper Es4 in northern Minfeng zone of Dongying Sag is a complete set of third-order sequence, which can be further subdivided into 5 fourth-order sequences that has the depositional characteristics of fine-upward sequence in granularity. Key words: Dongying sag, northern Minfeng zone, wavelet transform technique, time-frequency analysis technique ,the upper Es4, sequence stratigraphy
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
NASA Astrophysics Data System (ADS)
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-02-01
In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.
Pacaci, Anil; Gonul, Suat; Sinaci, A Anil; Yuksel, Mustafa; Laleci Erturkmen, Gokce B
2018-01-01
Background: Utilization of the available observational healthcare datasets is key to complement and strengthen the postmarketing safety studies. Use of common data models (CDM) is the predominant approach in order to enable large scale systematic analyses on disparate data models and vocabularies. Current CDM transformation practices depend on proprietarily developed Extract-Transform-Load (ETL) procedures, which require knowledge both on the semantics and technical characteristics of the source datasets and target CDM. Purpose: In this study, our aim is to develop a modular but coordinated transformation approach in order to separate semantic and technical steps of transformation processes, which do not have a strict separation in traditional ETL approaches. Such an approach would discretize the operations to extract data from source electronic health record systems, alignment of the source, and target models on the semantic level and the operations to populate target common data repositories. Approach: In order to separate the activities that are required to transform heterogeneous data sources to a target CDM, we introduce a semantic transformation approach composed of three steps: (1) transformation of source datasets to Resource Description Framework (RDF) format, (2) application of semantic conversion rules to get the data as instances of ontological model of the target CDM, and (3) population of repositories, which comply with the specifications of the CDM, by processing the RDF instances from step 2. The proposed approach has been implemented on real healthcare settings where Observational Medical Outcomes Partnership (OMOP) CDM has been chosen as the common data model and a comprehensive comparative analysis between the native and transformed data has been conducted. Results: Health records of ~1 million patients have been successfully transformed to an OMOP CDM based database from the source database. Descriptive statistics obtained from the source and target databases present analogous and consistent results. Discussion and Conclusion: Our method goes beyond the traditional ETL approaches by being more declarative and rigorous. Declarative because the use of RDF based mapping rules makes each mapping more transparent and understandable to humans while retaining logic-based computability. Rigorous because the mappings would be based on computer readable semantics which are amenable to validation through logic-based inference methods.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
A Method for the Analysis of Information Use in Source-Based Writing
ERIC Educational Resources Information Center
Sormunen, Eero; Heinstrom, Jannica; Romu, Leena; Turunen, Risto
2012-01-01
Introduction: Past research on source-based writing assignments has hesitated to scrutinize how students actually use information afforded by sources. This paper introduces a method for the analysis of text transformations from sources to texts composed. The method is aimed to serve scholars in building a more detailed understanding of how…
Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong
2014-06-01
Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices.
Holland, Alexander; Aboy, Mateo
2009-07-01
We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.
Sohrabi, Mahmoud Reza; Tayefeh Zarkesh, Mahshid
2014-05-01
In the present paper, two spectrophotometric methods based on signal processing are proposed for the simultaneous determination of two components of an anti-HIV drug called lamivudine (LMV) and zidovudine (ZDV). The proposed methods are applied to synthetic binary mixtures and commercial pharmaceutical tablets without the need for any chemical separation procedures. The developed methods are based on the application of Continuous Wavelet Transform (CWT) and Derivative Spectrophotometry (DS) combined with the zero cross point technique. The Daubechies (db5) wavelet family (242 nm) and Dmey wavelet family (236 nm) were found to give the best results under optimum conditions for simultaneous analysis of lamivudine and zidovudine, respectively. In addition, the first derivative absorption spectra were selected for the determination of lamivudine and zidovudine at 266 nm and 248 nm, respectively. Assaying various synthetic mixtures of the components validated the presented methods. Mean recovery values were found to be between 100.31% and 100.2% for CWT and 99.42% and 97.37% for DS, respectively for determination of LMV and ZDV. The results obtained from analyzing the real samples by the proposed methods were compared to the HPLC reference method. One-way ANOVA test at 95% confidence level was applied to the results. The statistical data from comparing the proposed methods with the reference method showed no significant differences. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Wu, Xiao-Yu
2018-04-01
In this paper, investigation is made on a Kadomtsev-Petviashvili-based system, which can be seen in fluid dynamics, biology and plasma physics. Based on the Hirota method, bilinear form and Bäcklund transformation (BT) are derived. N-soliton solutions in terms of the Wronskian are constructed, and it can be verified that the N-soliton solutions in terms of the Wronskian satisfy the bilinear form and Bäcklund transformation. Through the N-soliton solutions in terms of the Wronskian, we graphically obtain the kink-dark-like solitons and parallel solitons, which keep their shapes and velocities unchanged during the propagation.
USDA-ARS?s Scientific Manuscript database
An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...
Adaptive Fourier decomposition based ECG denoising.
Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming
2016-10-01
A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Xiao; Zang, Yali; Dong, Di; Zhang, Liwen; Fang, Mengjie; Yang, Xin; Arranz, Alicia; Ripoll, Jorge; Hui, Hui; Tian, Jie
2016-10-01
Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
OBS Data Denoising Based on Compressed Sensing Using Fast Discrete Curvelet Transform
NASA Astrophysics Data System (ADS)
Nan, F.; Xu, Y.
2017-12-01
OBS (Ocean Bottom Seismometer) data denoising is an important step of OBS data processing and inversion. It is necessary to get clearer seismic phases for further velocity structure analysis. Traditional methods for OBS data denoising include band-pass filter, Wiener filter and deconvolution etc. (Liu, 2015). Most of these filtering methods are based on Fourier Transform (FT). Recently, the multi-scale transform methods such as wavelet transform (WT) and Curvelet transform (CvT) are widely used for data denoising in various applications. The FT, WT and CvT could represent signal sparsely and separate noise in transform domain. They could be used in different cases. Compared with Curvelet transform, the FT has Gibbs phenomenon and it cannot handle points discontinuities well. WT is well localized and multi scale, but it has poor orientation selectivity and could not handle curves discontinuities well. CvT is a multiscale directional transform that could represent curves with only a small number of coefficients. It provide an optimal sparse representation of objects with singularities along smooth curves, which is suitable for seismic data processing. As we know, different seismic phases in OBS data are showed as discontinuous curves in time domain. Hence, we promote to analysis the OBS data via CvT and separate the noise in CvT domain. In this paper, our sparsity-promoting inversion approach is restrained by L1 condition and we solve this L1 problem by using modified iteration thresholding. Results show that the proposed method could suppress the noise well and give sparse results in Curvelet domain. Figure 1 compares the Curvelet denoising method with Wavelet method on the same iterations and threshold through synthetic example. a)Original data. b) Add-noise data. c) Denoised data using CvT. d) Denoised data using WT. The CvT can well eliminate the noise and has better result than WT. Further we applied the CvT denoise method for the OBS data processing. Figure 2a is a common receiver gather collected in the Bohai Sea, China. The whole profile is 120km long with 987 shots. The horizontal axis is shot number. The vertical axis is travel time reduced by 6km/s. We use our method to process the data and get a denoised profile figure 2b. After denoising, most of the high frequency noise was suppressed and the seismic phases were clearer.
Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features
NASA Astrophysics Data System (ADS)
Dixit, Rahul; Naskar, Ruchira
2018-03-01
In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
The application and improvement of Fourier transform spectrometer experiment
NASA Astrophysics Data System (ADS)
Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning
2017-08-01
According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.
Efficient grid-based techniques for density functional theory
NASA Astrophysics Data System (ADS)
Rodriguez-Hernandez, Juan Ignacio
Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.
Study on sampling of continuous linear system based on generalized Fourier transform
NASA Astrophysics Data System (ADS)
Li, Huiguang
2003-09-01
In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.
Identification Method of Mud Shale Fractures Base on Wavelet Transform
NASA Astrophysics Data System (ADS)
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1972-01-01
A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.
Logo recognition in video by line profile classification
NASA Astrophysics Data System (ADS)
den Hollander, Richard J. M.; Hanjalic, Alan
2003-12-01
We present an extension to earlier work on recognizing logos in video stills. The logo instances considered here are rigid planar objects observed at a distance in the scene, so the possible perspective transformation can be approximated by an affine transformation. For this reason we can classify the logos by matching (invariant) line profiles. We enhance our previous method by considering multiple line profiles instead of a single profile of the logo. The positions of the lines are based on maxima in the Hough transform space of the segmented logo foreground image. Experiments are performed on MPEG1 sport video sequences to show the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Exact finite element method analysis of viscoelastic tapered structures to transient loads
NASA Technical Reports Server (NTRS)
Spyrakos, Constantine Chris
1987-01-01
A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui
2015-05-01
The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-01-01
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502
Laser spot tracking based on modified circular Hough transform and motion pattern analysis.
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-10-27
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Shape-based retrieval of CNV regions in read coverage data.
Hong, Sangkyun; Yoon, Jeehee; Hong, Dongwan; Lee, Unjoo; Kim, Baeksop; Park, Sanghyun
2014-01-01
This study proposes a novel copy number variation (CNV) detection method, CNV_shape, based on variations in the shape of the read coverage data which are obtained from millions of short reads aligned to a reference sequence. The proposed method carries out two transforms, mean shift transform and mean slope transform, to extract the shape of a CNV more precisely from real human data, which are vulnerable to experimental and biological noises. The mean shift transform is a procedure for gaining a preliminary estimation of the CNVs by statistically evaluating moving averages of given read coverage data. The mean slope transform extracts candidate CNVs by filtering out non-stationary sub-regions from each of the primary CNVs pre-estimated in the mean shift procedure. Each of the candidate CNVs is merged with neighbours depending on the merging score to be finally identified as a putative CNV, where the merging score is estimated by the ratio of the positions with non-zero values of the mean shift transform to the total length of the region including two neighbouring candidate CNVs and the interval between them. The proposed CNV detection method was validated experimentally with simulated data and real human data. The simulated data with coverage in the range of 1x to 10x were generated for various sampling sizes and p-values. Five individual human genomes were used as real human data. The results show that relatively small CNVs (> 1 kbp) can be detected from low coverage (> 1.7x) data. The results also reveal that, in contrast to conventional methods, performance improvement from 8.18 to 87.90% was achieved in CNV_shape. The outcomes suggest that the proposed method is very effective in reducing noises inherent in real data as well as in detecting CNVs of various sizes and types.
Acoustical Applications of the HHT Method
NASA Technical Reports Server (NTRS)
Huang, Norden E.
2003-01-01
A document discusses applications of a method based on the Huang-Hilbert transform (HHT). The method was described, without the HHT name, in Analyzing Time Series Using EMD and Hilbert Spectra (GSC-13817), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 63. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear physical phenomena. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called intrinsic mode functions (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis.
Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.
Xia, Yong; Han, Junze; Wang, Kuanquan
2015-01-01
Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.
Rigorous simulations of a helical core fiber by the use of transformation optics formalism.
Napiorkowski, Maciej; Urbanczyk, Waclaw
2014-09-22
We report for the first time on rigorous numerical simulations of a helical-core fiber by using a full vectorial method based on the transformation optics formalism. We modeled the dependence of circular birefringence of the fundamental mode on the helix pitch and analyzed the effect of a birefringence increase caused by the mode displacement induced by a core twist. Furthermore, we analyzed the complex field evolution versus the helix pitch in the first order modes, including polarization and intensity distribution. Finally, we show that the use of the rigorous vectorial method allows to better predict the confinement loss of the guided modes compared to approximate methods based on equivalent in-plane bending models.
Improving the local wavenumber method by automatic DEXP transformation
NASA Astrophysics Data System (ADS)
Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni
2014-12-01
In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.
Model-based registration of multi-rigid-body for augmented reality
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro
2009-02-01
Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.
Review of Vibration-Based Helicopters Health and Usage Monitoring Methods
2001-04-05
FM4, NA4, NA4*, NB4 and NB48* (Polyshchuk et al., 1998). The Wigner - Ville distribution ( WVD ) is a joint time-frequency signal analysis. The WVD is one...signal processing methodologies that are of relevance to vibration based damage detection (e.g., Wavelet Transform and Wigner - Ville distribution ) will be...operation cost, reduce maintenance flights, and increase flight safety. Key Words: HUMS; Wavelet Transform; Wigner - Ville distribution ; O&S; Machinery
Inter-class sparsity based discriminative least square regression.
Wen, Jie; Xu, Yong; Li, Zuoyong; Ma, Zhongli; Xu, Yuanrong
2018-06-01
Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero-one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero-one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aarons, Gregory A.
2006-01-01
Objective Leadership in organizations is important in shaping workers’ perceptions, responses to organizational change, and acceptance of innovations, such as evidence-based practices. Transformational leadership inspires and motivates followers, whereas transactional leadership is based more on reinforcement and exchanges. Studies have shown that in youth and family service organizations, mental health providers’ attitudes toward adopting an evidence-based practice are associated with organizational context and individual provider differences. The purpose of this study was to expand these findings by examining the association between leadership and mental health providers’ attitudes toward adopting evidence-based practice. Methods Participants were 303 public-sector mental health service clinicians and case managers from 49 programs who were providing mental health services to children, adolescents, and their families. Data were gathered on providers’ characteristics, attitudes toward evidence-based practices, and perceptions of their supervisors’ leadership behaviors. Zero-order correlations and multilevel regression analyses were conducted that controlled for effects of service providers’ characteristics. Results Both transformational and transactional leadership were positively associated with providers’ having more positive attitudes toward adoption of evidence-based practice, and transformational leadership was negatively associated with providers’ perception of difference between the providers’ current practice and evidence-based practice. Conclusions Mental health service organizations may benefit from improving transformational and transactional supervisory leadership skills in preparation for implementing evidence-based practices. PMID:16870968
NASA Astrophysics Data System (ADS)
Ahmed, Mustafa Wasir; Baishya, Manash Jyoti; Sharma, Sasanka Sekhor; Hazarika, Manash
2018-04-01
This paper presents a detecting system on power transformer in transformer winding, core and on load tap changer (OLTC). Accuracy of winding deformation is determined using kNN based classifier. Winding deformation in power transformer can be measured using sweep frequency response analysis (SFRA), which can enhance the diagnosis accuracy to a large degree. It is suggested that in the results minor deformation faults can be detected at frequency range of 1 mHz to 2 MHz. The values of RCL parameters are changed when faults occur and hence frequency response of the winding will change accordingly. The SFRA data of tested transformer is compared with reference trace. The difference between two graphs indicate faults in the transformer. The deformation between 1 mHz to 1kHz gives winding deformation, 1 kHz to 100 kHz gives core deformation and 100 kHz to 2 MHz gives OLTC deformation.
Quantile regression via vector generalized additive models.
Yee, Thomas W
2004-07-30
One of the most popular methods for quantile regression is the LMS method of Cole and Green. The method naturally falls within a penalized likelihood framework, and consequently allows for considerable flexible because all three parameters may be modelled by cubic smoothing splines. The model is also very understandable: for a given value of the covariate, the LMS method applies a Box-Cox transformation to the response in order to transform it to standard normality; to obtain the quantiles, an inverse Box-Cox transformation is applied to the quantiles of the standard normal distribution. The purposes of this article are three-fold. Firstly, LMS quantile regression is presented within the framework of the class of vector generalized additive models. This confers a number of advantages such as a unifying theory and estimation process. Secondly, a new LMS method based on the Yeo-Johnson transformation is proposed, which has the advantage that the response is not restricted to be positive. Lastly, this paper describes a software implementation of three LMS quantile regression methods in the S language. This includes the LMS-Yeo-Johnson method, which is estimated efficiently by a new numerical integration scheme. The LMS-Yeo-Johnson method is illustrated by way of a large cross-sectional data set from a New Zealand working population. Copyright 2004 John Wiley & Sons, Ltd.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Transformations based on continuous piecewise-affine velocity fields
Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...
2017-01-11
Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
Transformations Based on Continuous Piecewise-Affine Velocity Fields
Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.
2018-01-01
We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517
Short-term data forecasting based on wavelet transformation and chaos theory
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Cunbin; Zhang, Liang
2017-09-01
A sketch of wavelet transformation and its application was given. Concerning the characteristics of time sequence, Haar wavelet was used to do data reduction. After processing, the effect of “data nail” on forecasting was reduced. Chaos theory was also introduced, a new chaos time series forecasting flow based on wavelet transformation was proposed. The largest Lyapunov exponent was larger than zero from small data sets, it verified the data change behavior still met chaotic behavior. Based on this, chaos time series to forecast short-term change behavior could be used. At last, the example analysis of the price from a real electricity market showed that the forecasting method increased the precision of the forecasting more effectively and steadily.
Improvements to surrogate data methods for nonstationary time series.
Lucio, J H; Valdés, R; Rodríguez, L R
2012-05-01
The method of surrogate data has been extensively applied to hypothesis testing of system linearity, when only one realization of the system, a time series, is known. Normally, surrogate data should preserve the linear stochastic structure and the amplitude distribution of the original series. Classical surrogate data methods (such as random permutation, amplitude adjusted Fourier transform, or iterative amplitude adjusted Fourier transform) are successful at preserving one or both of these features in stationary cases. However, they always produce stationary surrogates, hence existing nonstationarity could be interpreted as dynamic nonlinearity. Certain modifications have been proposed that additionally preserve some nonstationarity, at the expense of reproducing a great deal of nonlinearity. However, even those methods generally fail to preserve the trend (i.e., global nonstationarity in the mean) of the original series. This is the case of time series with unit roots in their autoregressive structure. Additionally, those methods, based on Fourier transform, either need first and last values in the original series to match, or they need to select a piece of the original series with matching ends. These conditions are often inapplicable and the resulting surrogates are adversely affected by the well-known artefact problem. In this study, we propose a simple technique that, applied within existing Fourier-transform-based methods, generates surrogate data that jointly preserve the aforementioned characteristics of the original series, including (even strong) trends. Moreover, our technique avoids the negative effects of end mismatch. Several artificial and real, stationary and nonstationary, linear and nonlinear time series are examined, in order to demonstrate the advantages of the methods. Corresponding surrogate data are produced with the classical and with the proposed methods, and the results are compared.
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P
1996-01-01
A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.
Abel inversion using fast Fourier transforms.
Kalal, M; Nugent, K A
1988-05-15
A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.
Solving the robot-world, hand-eye(s) calibration problem with iterative methods
USDA-ARS?s Scientific Manuscript database
Robot-world, hand-eye calibration is the problem of determining the transformation between the robot end effector and a camera, as well as the transformation between the robot base and the world coordinate system. This relationship has been modeled as AX = ZB, where X and Z are unknown homogeneous ...
NASA Astrophysics Data System (ADS)
Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun
2018-03-01
Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.
NASA Astrophysics Data System (ADS)
Yadav, Poonam Lata; Singh, Hukum
2018-06-01
To maintain the security of the image encryption and to protect the image from intruders, a new asymmetric cryptosystem based on fractional Hartley Transform (FrHT) and the Arnold transform (AT) is proposed. AT is a method of image cropping and edging in which pixels of the image are reorganized. In this cryptosystem we have used AT so as to extent the information content of the two original images onto the encrypted images so as to increase the safety of the encoded images. We have even used Structured Phase Mask (SPM) and Hybrid Mask (HM) as the encryption keys. The original image is first multiplied with the SPM and HM and then transformed with direct and inverse fractional Hartley transform so as to obtain the encrypted image. The fractional orders of the FrHT and the parameters of the AT correspond to the keys of encryption and decryption methods. If both the keys are correctly used only then the original image would be retrieved. Recommended method helps in strengthening the safety of DRPE by growing the key space and the number of parameters and the method is robust against various attacks. By using MATLAB 8.3.0.52 (R2014a) we calculate the strength of the recommended cryptosystem. A set of simulated results shows the power of the proposed asymmetric cryptosystem.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
Development and Present Situation Analysis of Power Transformer State Maintenance
NASA Astrophysics Data System (ADS)
Lv, Sen; Li, Biao; Li, Huan
2018-02-01
The pivotal status of power transformer in the power system is one of the most important equipment. The safety and reliability of its operation is directly related to the safety and stability of power system. Based on the analysis of the present situation of power transformer state maintenance in home and abroad. The paper points out the deficiency of the current method and provides a theoretical basis for further research, which has a certain guiding significance.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi
2018-04-01
The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.
Multisource image fusion method using support value transform.
Zheng, Sheng; Shi, Wen-Zhong; Liu, Jian; Zhu, Guang-Xi; Tian, Jin-Wen
2007-07-01
With the development of numerous imaging sensors, many images can be simultaneously pictured by various sensors. However, there are many scenarios where no one sensor can give the complete picture. Image fusion is an important approach to solve this problem and produces a single image which preserves all relevant information from a set of different sensors. In this paper, we proposed a new image fusion method using the support value transform, which uses the support value to represent the salient features of image. This is based on the fact that, in support vector machines (SVMs), the data with larger support values have a physical meaning in the sense that they reveal relative more importance of the data points for contributing to the SVM model. The mapped least squares SVM (mapped LS-SVM) is used to efficiently compute the support values of image. The support value analysis is developed by using a series of multiscale support value filters, which are obtained by filling zeros in the basic support value filter deduced from the mapped LS-SVM to match the resolution of the desired level. Compared with the widely used image fusion methods, such as the Laplacian pyramid, discrete wavelet transform methods, the proposed method is an undecimated transform-based approach. The fusion experiments are undertaken on multisource images. The results demonstrate that the proposed approach is effective and is superior to the conventional image fusion methods in terms of the pertained quantitative fusion evaluation indexes, such as quality of visual information (Q(AB/F)), the mutual information, etc.
Liu, Baoyan; Zhang, Yanhong; Hu, Jingqing; He, Liyun; Zhou, Xuezhong
2011-06-01
The gradual development of Chinese medicine is based on constant accumulation and summary of experience in clinical practice, but without the benefit of undergoing the experimental medicine stage. Although Chinese medicine has formed a systematic and unique theory system through thousands of years, with the development of evidence-based medicine, the bondage of the research methods of experience medicine to Chinese medicine is appearing. The rapid transition and transformation from experience medicine to evidence-based medicine have become important content in the development of Chinese medicine. According to the features of Chinese medicine, we propose the research idea of "taking two ways simultaneously," which is the study both in the ideal condition and in the real world. Analyzing and constructing the theoretical basis and methodology of clinical research in the real world, and building the stage for research technique is key to the effective clinical research of Chinese medicine. Only by gradually maturing and completing the clinical research methods of the real world could we realize "taking two ways simultaneously" and complementing each other, continuously produce scientific and reliable evidence of Chinese medicine, as well as transform and develop Chinese medicine from experience medicine to evidence-based medicine.
Electronic voltage and current transformers testing device.
Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming
2012-01-01
A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.
A quasiparticle-based multi-reference coupled-cluster method.
Rolik, Zoltán; Kállay, Mihály
2014-10-07
The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.
NASA Astrophysics Data System (ADS)
Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.
2016-12-01
It is widely recognised that merging radar rainfall estimates (RRE) with rain gauge data can improve the RRE and provide areal and temporal coverage that rain gauges cannot offer. Many methods to merge radar and rain gauge data are based on kriging and require an assumption of Gaussianity on the variable of interest. In particular, this work looks at kriging with external drift (KED), because it is an efficient, widely used, and well performing merging method. Rainfall, especially at finer temporal scale, does not have a normal distribution and presents a bi-modal skewed distribution. In some applications a Gaussianity assumption is made, without any correction. In other cases, variables are transformed in order to obtain a distribution closer to Gaussian. This work has two objectives: 1) compare different transformation methods in merging applications; 2) evaluate the uncertainty arising when untransformed rainfall data is used in KED. The comparison of transformation methods is addressed under two points of view. On the one hand, the ability to reproduce the original probability distribution after back-transformation of merged products is evaluated with qq-plots, on the other hand the rainfall estimates are compared with an independent set of rain gauge measurements. The tested methods are 1) no transformation, 2) Box-Cox transformations with parameter equal to λ=0.5 (square root), 3) λ=0.25 (square root - square root), and 4) λ=0.1 (almost logarithmic), 5) normal quantile transformation, and 6) singularity analysis. The uncertainty associated with the use of non-transformed data in KED is evaluated in comparison with the best performing product. The methods are tested on a case study in Northern England, using hourly data from 211 tipping bucket rain gauges from the Environment Agency and radar rainfall data at 1 km/5-min resolutions from the UK Met Office. In addition, 25 independent rain gauges from the UK Met Office were used to assess the merged products.
NASA Astrophysics Data System (ADS)
Salati, Amin; Mokhtari, Esmail; Panjepour, Masoud; Aryanpour, Gholamreza
2013-04-01
The temperature at which polymorphic phase transformation occurs in nanocrystalline (NC) materials is different from that of coarse-grained specimens. This anomaly has been related to the role of grain boundary component in these materials and can be predicted by a dilated crystal model. In this study, based on this model, a modified equation of state (MEOS) method (instead of equation of state, EOS, method) is used to calculate the total Gibbs free energy of each phase (β-Zr or α-Zr) in NC Zr. Thereupon, the change in the total Gibbs free energy for β-Zr to α-Zr phase transformation (ΔGβ→α) via the grain size is calculated by this method. Similar to polymorphic transformation in other NC materials (Fe, Nb, Co, TiO2, Al2O3 and ZnS), it is found that the estimated transformation temperature in NC Zr (β→α) is reduced with decreasing grain size. Finally, a molecular dynamics (MD) simulation is employed to confirm the theoretical results.
Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features
NASA Astrophysics Data System (ADS)
Rezaeian, A.; Homayouni, S.; Safari, A.
2015-12-01
Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.
Haldar, Justin P.; Leahy, Richard M.
2013-01-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603
On the efficacy of procedures to normalize Ex-Gaussian distributions
Marmolejo-Ramos, Fernando; Cousineau, Denis; Benites, Luis; Maehara, Rocío
2015-01-01
Reaction time (RT) is one of the most common types of measure used in experimental psychology. Its distribution is not normal (Gaussian) but resembles a convolution of normal and exponential distributions (Ex-Gaussian). One of the major assumptions in parametric tests (such as ANOVAs) is that variables are normally distributed. Hence, it is acknowledged by many that the normality assumption is not met. This paper presents different procedures to normalize data sampled from an Ex-Gaussian distribution in such a way that they are suitable for parametric tests based on the normality assumption. Using simulation studies, various outlier elimination and transformation procedures were tested against the level of normality they provide. The results suggest that the transformation methods are better than elimination methods in normalizing positively skewed data and the more skewed the distribution then the transformation methods are more effective in normalizing such data. Specifically, transformation with parameter lambda -1 leads to the best results. PMID:25709588
An Improved Image Matching Method Based on Surf Algorithm
NASA Astrophysics Data System (ADS)
Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.
2018-04-01
Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.
Vanishing points detection using combination of fast Hough transform and deep learning
NASA Astrophysics Data System (ADS)
Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry
2018-04-01
In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.
Translating three states of knowledge--discovery, invention, and innovation
2010-01-01
Background Knowledge Translation (KT) has historically focused on the proper use of knowledge in healthcare delivery. A knowledge base has been created through empirical research and resides in scholarly literature. Some knowledge is amenable to direct application by stakeholders who are engaged during or after the research process, as shown by the Knowledge to Action (KTA) model. Other knowledge requires multiple transformations before achieving utility for end users. For example, conceptual knowledge generated through science or engineering may become embodied as a technology-based invention through development methods. The invention may then be integrated within an innovative device or service through production methods. To what extent is KT relevant to these transformations? How might the KTA model accommodate these additional development and production activities while preserving the KT concepts? Discussion Stakeholders adopt and use knowledge that has perceived utility, such as a solution to a problem. Achieving a technology-based solution involves three methods that generate knowledge in three states, analogous to the three classic states of matter. Research activity generates discoveries that are intangible and highly malleable like a gas; development activity transforms discoveries into inventions that are moderately tangible yet still malleable like a liquid; and production activity transforms inventions into innovations that are tangible and immutable like a solid. The paper demonstrates how the KTA model can accommodate all three types of activity and address all three states of knowledge. Linking the three activities in one model also illustrates the importance of engaging the relevant stakeholders prior to initiating any knowledge-related activities. Summary Science and engineering focused on technology-based devices or services change the state of knowledge through three successive activities. Achieving knowledge implementation requires methods that accommodate these three activities and knowledge states. Accomplishing beneficial societal impacts from technology-based knowledge involves the successful progression through all three activities, and the effective communication of each successive knowledge state to the relevant stakeholders. The KTA model appears suitable for structuring and linking these processes. PMID:20205873
NASA Astrophysics Data System (ADS)
Kadampur, Mohammad Ali; D. v. L. N., Somayajulu
Privacy preserving data mining is an art of knowledge discovery without revealing the sensitive data of the data set. In this paper a data transformation technique using wavelets is presented for privacy preserving data mining. Wavelets use well known energy compaction approach during data transformation and only the high energy coefficients are published to the public domain instead of the actual data proper. It is found that the transformed data preserves the Eucleadian distances and the method can be used in privacy preserving clustering. Wavelets offer the inherent improved time complexity.
Estimation of transformation parameters for microarray data.
Durbin, Blythe; Rocke, David M
2003-07-22
Durbin et al. (2002), Huber et al. (2002) and Munson (2001) independently introduced a family of transformations (the generalized-log family) which stabilizes the variance of microarray data up to the first order. We introduce a method for estimating the transformation parameter in tandem with a linear model based on the procedure outlined in Box and Cox (1964). We also discuss means of finding transformations within the generalized-log family which are optimal under other criteria, such as minimum residual skewness and minimum mean-variance dependency. R and Matlab code and test data are available from the authors on request.
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Application of composite small calibration objects in traffic accident scene photogrammetry.
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.
Numerical simulation of tonal fan noise of computers and air conditioning systems
NASA Astrophysics Data System (ADS)
Aksenov, A. A.; Gavrilyuk, V. N.; Timushev, S. F.
2016-07-01
Current approaches to fan noise simulation are mainly based on the Lighthill equation and socalled aeroacoustic analogy, which are also based on the transformed Lighthill equation, such as the wellknown FW-H equation or the Kirchhoff theorem. A disadvantage of such methods leading to significant modeling errors is associated with incorrect solution of the decomposition problem, i.e., separation of acoustic and vortex (pseudosound) modes in the area of the oscillation source. In this paper, we propose a method for tonal noise simulation based on the mesh solution of the Helmholtz equation for the Fourier transform of pressure perturbation with boundary conditions in the form of the complex impedance. A noise source is placed on the surface surrounding each fan rotor. The acoustic fan power is determined by the acoustic-vortex method, which ensures more accurate decomposition and determination of the pressure pulsation amplitudes in the near field of the fan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian
2018-06-01
A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.
Orczyk, C; Rusinek, H; Rosenkrantz, A B; Mikheev, A; Deng, F-M; Melamed, J; Taneja, S S
2013-12-01
To assess a novel method of three-dimensional (3D) co-registration of prostate cancer digital histology and in-vivo multiparametric magnetic resonance imaging (mpMRI) image sets for clinical usefulness. A software platform was developed to achieve 3D co-registration. This software was prospectively applied to three patients who underwent radical prostatectomy. Data comprised in-vivo mpMRI [T2-weighted, dynamic contrast-enhanced weighted images (DCE); apparent diffusion coefficient (ADC)], ex-vivo T2-weighted imaging, 3D-rebuilt pathological specimen, and digital histology. Internal landmarks from zonal anatomy served as reference points for assessing co-registration accuracy and precision. Applying a method of deformable transformation based on 22 internal landmarks, a 1.6 mm accuracy was reached to align T2-weighted images and the 3D-rebuilt pathological specimen, an improvement over rigid transformation of 32% (p = 0.003). The 22 zonal anatomy landmarks were more accurately mapped using deformable transformation than rigid transformation (p = 0.0008). An automatic method based on mutual information, enabled automation of the process and to include perfusion and diffusion MRI images. Evaluation of co-registration accuracy using the volume overlap index (Dice index) met clinically relevant requirements, ranging from 0.81-0.96 for sequences tested. Ex-vivo images of the specimen did not significantly improve co-registration accuracy. This preliminary analysis suggests that deformable transformation based on zonal anatomy landmarks is accurate in the co-registration of mpMRI and histology. Including diffusion and perfusion sequences in the same 3D space as histology is essential further clinical information. The ability to localize cancer in 3D space may improve targeting for image-guided biopsy, focal therapy, and disease quantification in surveillance protocols. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
[Surface electromyography signal classification using gray system theory].
Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai
2004-12-01
A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.
O'Malley, Sean; Sareth, Sina; Jiao, Guan-Sheng; Kim, Seongjin; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; Margosiak, Stephen A; Johnson, Alan T
2013-05-01
A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the botulinum neurotoxin serotype A metalloprotease light chain, hit rates of 32% and 18% were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier
NASA Technical Reports Server (NTRS)
Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco
2000-01-01
A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.
Using the Landsat 7 enhanced thematic mapper tasseled cap transformation to extract shoreline
Scott, J.W.
2003-01-01
A semiautomated method for objectively interpreting and extracting the land-water interface has been devised and used successfully to generate multiple shoreline data for the test States of Louisiana and Delaware. The method is based on the application of tasseled cap transformation coefficients derived by the EROS Data Center for Landsat 7 Enhanced Thematic Mapper Data, and is used in conjunction with ERDAS Imagine software. Shoreline data obtained using this method are cost effective compared with conventional mapping methods for State, regional, and national coastline applications. Attempts to attribute vector shoreline data with orthometric elevation values derived from tide observation stations, however, proved unsuccessful.
Target Identification Using Harmonic Wavelet Based ISAR Imaging
NASA Astrophysics Data System (ADS)
Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.
2006-12-01
A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.
NASA Astrophysics Data System (ADS)
Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi
2017-01-01
Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.
Stępień, Grzegorz
2018-03-17
The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.
2017-09-01
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.
A robust method of computing finite difference coefficients based on Vandermonde matrix
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin
2018-05-01
When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.
Computer implemented empirical mode decomposition method, apparatus and article of manufacture
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
1999-01-01
A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Precise Determination of the Absorption Maximum in Wide Bands
ERIC Educational Resources Information Center
Eriksson, Karl-Hugo; And Others
1977-01-01
A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)
Controlling the wave propagation through the medium designed by linear coordinate transformation
NASA Astrophysics Data System (ADS)
Wu, Yicheng; He, Chengdong; Wang, Yuzhuo; Liu, Xuan; Zhou, Jing
2015-01-01
Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illusion devices are designed, which have application prospects in micro-optics and nano-optics. The simulation results demonstrate the feasibilities and the flexibilities of the method and the properties of these devices. Design details and full-wave simulation results are provided. The work in this paper comprehensively applies the fundamental theories of electromagnetism and mathematics. The method of obtaining a new solution of the Maxwell equations in a medium from a vacuum plane wave solution and a linear coordinate transformation is introduced. These have a pedagogical value and are methodologically and motivationally appropriate for physics students and teachers at the undergraduate and graduate levels.
A symmetrical method to obtain shear moduli from microrheology.
Nishi, Kengo; Kilfoil, Maria L; Schmidt, Christoph F; MacKintosh, F C
2018-05-16
Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacements (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers-Kronig (KK) transformation or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω) = χ'(ω) + iχ''(ω) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω) relative to the use of KK transformation, which has been shown to lead to artifacts in χ'(ω). We test our method on both model and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.
1992-03-01
The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.
Martínez-Cruz, Jesús; Romero, Diego; de Vicente, Antonio; Pérez-García, Alejandro
2017-03-01
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli
2016-10-01
Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.
a Weighted Closed-Form Solution for Rgb-D Data Registration
NASA Astrophysics Data System (ADS)
Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.
2016-06-01
Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.
NASA Astrophysics Data System (ADS)
Hong, Zixuan; Bian, Fuling
2008-10-01
Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.
Bostanov, Vladimir; Kotchoubey, Boris
2006-12-01
This study was aimed at developing a method for extraction and assessment of event-related brain potentials (ERP) from single-trials. This method should be applicable in the assessment of single persons' ERPs and should be able to handle both single ERP components and whole waveforms. We adopted a recently developed ERP feature extraction method, the t-CWT, for the purposes of hypothesis testing in the statistical assessment of ERPs. The t-CWT is based on the continuous wavelet transform (CWT) and Student's t-statistics. The method was tested in two ERP paradigms, oddball and semantic priming, by assessing individual-participant data on a single-trial basis, and testing the significance of selected ERP components, P300 and N400, as well as of whole ERP waveforms. The t-CWT was also compared to other univariate and multivariate ERP assessment methods: peak picking, area computation, discrete wavelet transform (DWT) and principal component analysis (PCA). The t-CWT produced better results than all of the other assessment methods it was compared with. The t-CWT can be used as a reliable and powerful method for ERP-component detection and testing of statistical hypotheses concerning both single ERP components and whole waveforms extracted from either single persons' or group data. The t-CWT is the first such method based explicitly on the criteria of maximal statistical difference between two average ERPs in the time-frequency domain and is particularly suitable for ERP assessment of individual data (e.g. in clinical settings), but also for the investigation of small and/or novel ERP effects from group data.
Okamoto, Takuma; Sakaguchi, Atsushi
2017-03-01
Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.
ERIC Educational Resources Information Center
Okçu, Veysel
2014-01-01
This study investigates the relation between secondary school administrators' transformational and transactional leadership style and skills to diversity management in the school, based on branch teachers' perceptions. The relational survey method was used in the study. The sample for the study was comprised of teachers 735 public school teachers…
ERIC Educational Resources Information Center
Pearce, Craig L.; Sims, Henry P., Jr.; Cox, Jonathan F.; Ball, Gail; Schnell, Eugene; Smith, Ken A.; Trevino, Linda
2003-01-01
To extend the transactional-transformational model of leadership, four theoretical behavioral types of leadership were developed based on literature review and data from studies of executive behavior (n=253) and subordinate attitudes (n=208). Confirmatory factor analysis of a third data set (n=702) support the existence of four leadership types:…
ERIC Educational Resources Information Center
Pugh, Kevin J.
2002-01-01
Examined the effectiveness of two teaching elements (the artistic crafting of content and the modeling and scaffolding of perception and value) at fostering transformative experiences among students in a high school zoology class. Student outcomes were compared to the outcomes of students in a class taught with a case-based method. Significantly…
Propagation Characteristics Of Weakly Guiding Optical Fibers
NASA Technical Reports Server (NTRS)
Manshadi, Farzin
1992-01-01
Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.
Martin, P A
1999-01-01
Arguing that a consensus-based method of bioethical decision making can transform ethical pluralism into an ethical whole, author examines the theory of three consensus-based models--clinical pragmatism, ethics facilitation, and mediation--and develops a practical guide to ethics facilitation that includes a hypothetical case.
Multi-objective based spectral unmixing for hyperspectral images
NASA Astrophysics Data System (ADS)
Xu, Xia; Shi, Zhenwei
2017-02-01
Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.
Monitoring the health of power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.
This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
Reference point detection for camera-based fingerprint image based on wavelet transformation.
Khalil, Mohammed S
2015-04-30
Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.
Superpixel Based Factor Analysis and Target Transformation Method for Martian Minerals Detection
NASA Astrophysics Data System (ADS)
Wu, X.; Zhang, X.; Lin, H.
2018-04-01
The Factor analysis and target transformation (FATT) is an effective method to test for the presence of particular mineral on Martian surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES) and near-infrared (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM) hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC) algorithm was used to partition the CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our experimental results indicate that the proposed method work well both in simulated and real data sets.
Wu, Linzhi
2016-01-01
Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884
Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin
2014-02-01
Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.
Adapting rice anther culture to gene transformation and RNA interference.
Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang
2006-10-01
Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.
Multi-focus image fusion algorithm using NSCT and MPCNN
NASA Astrophysics Data System (ADS)
Liu, Kang; Wang, Lianli
2018-04-01
Based on nonsubsampled contourlet transform (NSCT) and modified pulse coupled neural network (MPCNN), the paper proposes an effective method of image fusion. Firstly, the paper decomposes the source image into the low-frequency components and high-frequency components using NSCT, and then processes the low-frequency components by regional statistical fusion rules. For high-frequency components, the paper calculates the spatial frequency (SF), which is input into MPCNN model to get relevant coefficients according to the fire-mapping image of MPCNN. At last, the paper restructures the final image by inverse transformation of low-frequency and high-frequency components. Compared with the wavelet transformation (WT) and the traditional NSCT algorithm, experimental results indicate that the method proposed in this paper achieves an improvement both in human visual perception and objective evaluation. It indicates that the method is effective, practical and good performance.
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method
Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng
2016-01-01
Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358
Transform coding for space applications
NASA Technical Reports Server (NTRS)
Glover, Daniel
1993-01-01
Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.
Artificial retina model for the retinally blind based on wavelet transform
NASA Astrophysics Data System (ADS)
Zeng, Yan-an; Song, Xin-qiang; Jiang, Fa-gang; Chang, Da-ding
2007-01-01
Artificial retina is aimed for the stimulation of remained retinal neurons in the patients with degenerated photoreceptors. Microelectrode arrays have been developed for this as a part of stimulator. Design such microelectrode arrays first requires a suitable mathematical method for human retinal information processing. In this paper, a flexible and adjustable human visual information extracting model is presented, which is based on the wavelet transform. With the flexible of wavelet transform to image information processing and the consistent to human visual information extracting, wavelet transform theory is applied to the artificial retina model for the retinally blind. The response of the model to synthetic image is shown. The simulated experiment demonstrates that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an artificial retina.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
NASA Astrophysics Data System (ADS)
Amiri-Simkooei, A. R.
2018-01-01
Three-dimensional (3D) coordinate transformations, generally consisting of origin shifts, axes rotations, scale changes, and skew parameters, are widely used in many geomatics applications. Although in some geodetic applications simplified transformation models are used based on the assumption of small transformation parameters, in other fields of applications such parameters are indeed large. The algorithms of two recent papers on the weighted total least-squares (WTLS) problem are used for the 3D coordinate transformation. The methodology can be applied to the case when the transformation parameters are generally large of which no approximate values of the parameters are required. Direct linearization of the rotation and scale parameters is thus not required. The WTLS formulation is employed to take into consideration errors in both the start and target systems on the estimation of the transformation parameters. Two of the well-known 3D transformation methods, namely affine (12, 9, and 8 parameters) and similarity (7 and 6 parameters) transformations, can be handled using the WTLS theory subject to hard constraints. Because the method can be formulated by the standard least-squares theory with constraints, the covariance matrix of the transformation parameters can directly be provided. The above characteristics of the 3D coordinate transformation are implemented in the presence of different variance components, which are estimated using the least squares variance component estimation. In particular, the estimability of the variance components is investigated. The efficacy of the proposed formulation is verified on two real data sets.
NASA Astrophysics Data System (ADS)
Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter; Dowling, Jason
2014-03-01
MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy are two promising techniques that could significantly increase the accuracy of the curative dose delivery processes while reducing the total radiation dose. State-of-the-art methods rely on the registration of a patient MRI with a MR-CT atlas for the estimation of pseudo-CT [5]. This atlas itself is generally created by registering many CT and MRI pairs. Most registration methods are not symmetric, but the order of the images influences the result [8]. The computed transformation is therefore biased, introducing unwanted variability. This work examines how much a symmetric algorithm improves the registration. Methods: A robust symmetric registration algorithm is proposed that simultaneously optimises a half space transform and its inverse. During the registration process, the two input volumetric images are transformed to a common position in space, therefore minimising any computational bias. An asymmetrical implementation of the same algorithm was used for comparison purposes. Results: Whole pelvis MRI and CT scans from 15 prostate patients were registered, as in the creation of MR-CT atlases. In each case, two registrations were performed, with different input image orders, and the transformation error quantified. Mean residuals of 0.63±0.26 mm (translation) and (8.7±7.3) × 10--3 rad (rotation) were found for the asymmetrical implementation with corresponding values of 0.038±0.039 mm and (1.6 ± 1.3) × 10--3 rad for the proposed symmetric algorithm, a substantial improvement. Conclusions: The increased registration precision will enhance the generation of pseudo-CT from MRI for atlas based MR planning methods.
Zero cylinder coordinate system approach to image reconstruction in fan beam ICT
NASA Astrophysics Data System (ADS)
Yan, Yan-Chun; Xian, Wu; Hall, Ernest L.
1992-11-01
The state-of-the-art of the transform algorithms has allowed the newest versions to produce excellent and efficient reconstructed images in most applications, especially in medical CT and industrial CT etc. Based on the Zero Cylinder Coordinate system (ZCC) presented in this paper, a new transform algorithm of image reconstruction in fan beam industrial CT is suggested. It greatly reduces the amount of computation of the backprojection, which requires only two INC instructions to calculate the weighted factor and the subcoordinate. A new backprojector is designed, which simplifies its assembly-line mechanism based on the ZCC method. Finally, a simulation results on microcomputer is given out, which proves this method is effective and practical.
Electronic Voltage and Current Transformers Testing Device
Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming
2012-01-01
A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510
Anderson, Justin E; Michno, Jean-Michel; Kono, Thomas J Y; Stec, Adrian O; Campbell, Benjamin W; Curtin, Shaun J; Stupar, Robert M
2016-05-12
The safety of mutagenized and genetically transformed plants remains a subject of scrutiny. Data gathered and communicated on the phenotypic and molecular variation induced by gene transfer technologies will provide a scientific-based means to rationally address such concerns. In this study, genomic structural variation (e.g. large deletions and duplications) and single nucleotide polymorphism rates were assessed among a sample of soybean cultivars, fast neutron-derived mutants, and five genetically transformed plants developed through Agrobacterium based transformation methods. On average, the number of genes affected by structural variations in transgenic plants was one order of magnitude less than that of fast neutron mutants and two orders of magnitude less than the rates observed between cultivars. Structural variants in transgenic plants, while rare, occurred adjacent to the transgenes, and at unlinked loci on different chromosomes. DNA repair junctions at both transgenic and unlinked sites were consistent with sequence microhomology across breakpoints. The single nucleotide substitution rates were modest in both fast neutron and transformed plants, exhibiting fewer than 100 substitutions genome-wide, while inter-cultivar comparisons identified over one-million single nucleotide polymorphisms. Overall, these patterns provide a fresh perspective on the genomic variation associated with high-energy induced mutagenesis and genetically transformed plants. The genetic transformation process infrequently results in novel genetic variation and these rare events are analogous to genetic variants occurring spontaneously, already present in the existing germplasm, or induced through other types of mutagenesis. It remains unclear how broadly these results can be applied to other crops or transformation methods.
Global asymptotic stabilisation of rational dynamical systems based on solving BMI
NASA Astrophysics Data System (ADS)
Esmaili, Farhad; Kamyad, A. V.; Jahed-Motlagh, Mohammad Reza; Pariz, Naser
2017-08-01
In this paper, the global asymptotic stabiliser design of rational systems is studied in detail. To develop the idea, the state equations of the system are transformed to a new coordinate via polynomial transformation and the state feedback control law. This in turn is followed by the satisfaction of the linear growth condition (i.e. Lipschitz at zero). Based on a linear matrix inequality solution, the system in the new coordinate is globally asymptotically stabilised and then, leading to the global asymptotic stabilisation of the primary system. The polynomial transformation coefficients are derived by solving the bilinear matrix inequality problem. To confirm the capability of this method, three examples are highlighted.
NASA Astrophysics Data System (ADS)
Dong, Lieqian; Wang, Deying; Zhang, Yimeng; Zhou, Datong
2017-09-01
Signal enhancement is a necessary step in seismic data processing. In this paper we utilize the complementary ensemble empirical mode decomposition (CEEMD) and complex curvelet transform (CCT) methods to separate signal from random noise further to improve the signal to noise (S/N) ratio. Firstly, the original data with noise is decomposed into a series of intrinsic mode function (IMF) profiles with the aid of CEEMD. Then the IMFs with noise are transformed into CCT domain. By choosing different thresholds which are based on the noise level difference of each IMF profile, the noise in original data can be suppressed. Finally, we illustrate the effectiveness of the approach by simulated and field datasets.
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
NASA Astrophysics Data System (ADS)
Ma, Shangjun; Cheng, Bo; Shang, Zhaowei; Liu, Geng
2018-05-01
This paper proposes an algorithm for fault diagnosis of rotating machinery to overcome the shortcomings of classical techniques which are noise sensitive in feature extraction and time consuming for training. Based on the scattering transform and the least squares recursive projection twin support vector machine (LSPTSVM), the method has the advantages of high efficiency and insensitivity for noise signal. Using the energy of the scattering coefficients in each sub-band, the features of the vibration signals are obtained. Then, an LSPTSVM classifier is used for fault diagnosis. The new method is compared with other common methods including the proximal support vector machine, the standard support vector machine and multi-scale theory by using fault data for two systems, a motor bearing and a gear box. The results show that the new method proposed in this study is more effective for fault diagnosis of rotating machinery.
Ma, Liyan; Qiu, Bo; Cui, Mingyue; Ding, Jianwei
2017-01-01
Depth image-based rendering (DIBR), which is used to render virtual views with a color image and the corresponding depth map, is one of the key techniques in the 2D to 3D conversion process. Due to the absence of knowledge about the 3D structure of a scene and its corresponding texture, DIBR in the 2D to 3D conversion process, inevitably leads to holes in the resulting 3D image as a result of newly-exposed areas. In this paper, we proposed a structure-aided depth map preprocessing framework in the transformed domain, which is inspired by recently proposed domain transform for its low complexity and high efficiency. Firstly, our framework integrates hybrid constraints including scene structure, edge consistency and visual saliency information in the transformed domain to improve the performance of depth map preprocess in an implicit way. Then, adaptive smooth localization is cooperated and realized in the proposed framework to further reduce over-smoothness and enhance optimization in the non-hole regions. Different from the other similar methods, the proposed method can simultaneously achieve the effects of hole filling, edge correction and local smoothing for typical depth maps in a united framework. Thanks to these advantages, it can yield visually satisfactory results with less computational complexity for high quality 2D to 3D conversion. Numerical experimental results demonstrate the excellent performances of the proposed method. PMID:28407027
Zhang, Xingwu; Wang, Chenxi; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin
2016-01-01
Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
NASA Astrophysics Data System (ADS)
Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam
2018-07-01
Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.
Discretization analysis of bifurcation based nonlinear amplifiers
NASA Astrophysics Data System (ADS)
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
NASA Astrophysics Data System (ADS)
Qin, Xulei; Cong, Zhibin; Fei, Baowei
2013-11-01
An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.
Jin, Lei; Zhang, Xiaojun; Sun, Xiumei; Shi, Hui; Li, Tiejun
2014-10-01
A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC-MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory.
Faucheaux, Jacob A; Nooijen, Marcel; Hirata, So
2018-02-07
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
NASA Astrophysics Data System (ADS)
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Local wavelet transform: a cost-efficient custom processor for space image compression
NASA Astrophysics Data System (ADS)
Masschelein, Bart; Bormans, Jan G.; Lafruit, Gauthier
2002-11-01
Thanks to its intrinsic scalability features, the wavelet transform has become increasingly popular as decorrelator in image compression applications. Throuhgput, memory requirements and complexity are important parameters when developing hardware image compression modules. An implementation of the classical, global wavelet transform requires large memory sizes and implies a large latency between the availability of the input image and the production of minimal data entities for entropy coding. Image tiling methods, as proposed by JPEG2000, reduce the memory sizes and the latency, but inevitably introduce image artefacts. The Local Wavelet Transform (LWT), presented in this paper, is a low-complexity wavelet transform architecture using a block-based processing that results in the same transformed images as those obtained by the global wavelet transform. The architecture minimizes the processing latency with a limited amount of memory. Moreover, as the LWT is an instruction-based custom processor, it can be programmed for specific tasks, such as push-broom processing of infinite-length satelite images. The features of the LWT makes it appropriate for use in space image compression, where high throughput, low memory sizes, low complexity, low power and push-broom processing are important requirements.
NASA Astrophysics Data System (ADS)
Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan
2018-04-01
It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.
NASA Technical Reports Server (NTRS)
Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)
2003-01-01
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Speckle reduction in optical coherence tomography images based on wave atoms
Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping
2014-01-01
Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507
Haldar, Justin P; Leahy, Richard M
2013-05-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.
Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.
Serbes, Gorkem; Aydin, Nizamettin
2010-01-01
Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).
Slant rectification in Russian passport OCR system using fast Hough transform
NASA Astrophysics Data System (ADS)
Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir
2017-03-01
In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.
NASA Astrophysics Data System (ADS)
Kanjilal, Oindrila; Manohar, C. S.
2017-07-01
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.
Sandiego, Christine M.; Weinzimmer, David; Carson, Richard E.
2012-01-01
An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies. PMID:22926293
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei
2015-08-01
Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.
Ozonation of wastewater: removal and transformation products of drugs of abuse.
Rodayan, Angela; Segura, Pedro Alejandro; Yargeau, Viviane
2014-07-15
In this study amphetamine, methamphetamine, methylenedioxymethamphetamine (MDMA), cocaine (COC), benzoylecgonine (BE), ketamine (KET) and oxycodone (OXY) in wastewater at concentrations of 100 μgL(-1) were subjected to ozone to determine their removals as a function of ozone dose and to identify significant oxidation transformation products (OTPs) produced as a result of ozonation. A method based on high resolution mass spectrometry and differential analysis was used to facilitate and accelerate the identification and structural elucidation of the transformation products. The drug removal ranged from 3 to 50% depending on the complexity of the matrix and whether a mixture or individual drugs were ozonated. Both transient and persistent oxidation transformation products were identified for MDMA, COC and OXY and their chemical formulae were determined. Three possible structures of the persistent transformation product of MDMA (OTP-213) with chemical formula C10H16O4N, were determined based on MS(n) mass spectra and the most plausible structure (OTP-213a) was determined based on the chemistry of ozone. These results indicate that ozone is capable of removing drugs of abuse from wastewater to varying extents and that persistent transformation products are produced as a result of treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-01-01
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-11-10
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.
Application of Classical and Lie Transform Methods to Zonal Perturbation in the Artificial Satellite
NASA Astrophysics Data System (ADS)
San-Juan, J. F.; San-Martin, M.; Perez, I.; Lopez-Ochoa, L. M.
2013-08-01
A scalable second-order analytical orbit propagator program is being carried out. This analytical orbit propagator combines modern perturbation methods, based on the canonical frame of the Lie transform, and classical perturbation methods in function of orbit types or the requirements needed for a space mission, such as catalog maintenance operations, long period evolution, and so on. As a first step on the validation of part of our orbit propagator, in this work we only consider the perturbation produced by zonal harmonic coefficients in the Earth's gravity potential, so that it is possible to analyze the behaviour of the perturbation methods involved in the corresponding analytical theories.
Transformation of dwelling culture based on riverine community in Musi River Palembang
NASA Astrophysics Data System (ADS)
Wicaksono, Bambang; Siswanto, Ari; Kusdiwanggo, Susilo; Anwar, Widya Fransiska Febriati
2017-11-01
Palembang City development since the Palembang Darussalam Sultanate era to the reformation era has impact on the living culture community, less of the raft houses, houses on stilts transformed into a terraced house, and the house became the dominant land. Dwelling Culture oriented on transformation of river become land-oriented. The development has leaving identity, character, and potential of the riverine architecture and dwelling life of river. The goals of study are to describe a case and revealing the meaning of dwelling cultural transformation in Musi River society from the process of cultural acculturation and investigate the architectural aspect from the form of house and modes of dwelling through the structuralism approach. The data collection is conducted qualitatively by using data collection techniques such as observation, interview, literature study, whereas the method of analysis, is a method that is done through Levi-Strauss structuralism approach that identifies all the elements of community thought in a systematic procedure. The results showed the structure behind the orientation, position, shape, and layout of dwelling revealed through the meanings in it. It means, the change and development from cultural acculturation process which oriented in the land dwelling, based on structure thinking of Palembang society.
Design and realization of assessment software for DC-bias of transformers
NASA Astrophysics Data System (ADS)
Liu, Chang; Liu, Lian-guang; Yuan, Zhong-chen
2013-03-01
The transformer working at the rated state will partically be saturated, and its mangetic current will be distorted accompanying with various of harmonic, increasing reactive power demand and some other affilicated phenomenon, which will threaten the safe operation of power grid. This paper establishes a transformer saturation circuit model of DCbias under duality principle basing on J-A theory which can reflect the hysteresis characteristics of iron core, and develops an software can assess the effects of transformer DC-bias using hybrid programming technology of C#.net and MATLAB with the microsoft.net platform. This software is able to simulate the mangnetizing current of different structures and assess the Saturation Level of transformers and the influnces of affilicated phenomenon accroding to the parameter of transformers and the DC equivalent voltage. It provides an effective method to assess the influnces of transformers caused by magnetic storm disaster and the earthing current of the HVDC project.
Wavelet transforms as solutions of partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweig, G.
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuousmore » wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.« less
Power density of piezoelectric transformers improved using a contact heat transfer structure.
Shao, Wei Wei; Chen, Li Juan; Pan, Cheng Liang; Liu, Yong Bin; Feng, Zhi Hua
2012-01-01
Based on contact heat transfer, a novel method to increase power density of piezoelectric transformers is proposed. A heat transfer structure is realized by directly attaching a dissipater to the piezoelectric transformer plate. By maintaining the vibration mode of the transformer and limiting additional energy losses from the contact interface, an appropriate design can improve power density of the transformer on a large scale, resulting from effective suppression of its working temperature rise. A prototype device was fabricated from a rectangular piezoelectric transformer, a copper heat transfer sheet, a thermal grease insulation pad, and an aluminum heat radiator. The experimental results show the transformer maintains a maximum power density of 135 W/cm(3) and an efficiency of 90.8% with a temperature rise of less than 10 °C after more than 36 h, without notable changes in performance. © 2012 IEEE
CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, Adrienne Celeste
Here, the development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria.
CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense
Greene, Adrienne Celeste
2017-11-17
Here, the development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria.
ERIC Educational Resources Information Center
Kim, Kyung Hi
2014-01-01
This research, based on a case study of vulnerable children in Korea, used a mixed methods transformative approach to explore strategies to support and help disadvantaged children. The methodological approach includes three phases: a mixed methods contextual analysis, a qualitative dominant analysis based on Sen's capability approach and critical…
ERIC Educational Resources Information Center
Lucero, Julie; Wallerstein, Nina; Duran, Bonnie; Alegria, Margarita; Greene-Moton, Ella; Israel, Barbara; Kastelic, Sarah; Magarati, Maya; Oetzel, John; Pearson, Cynthia; Schulz, Amy; Villegas, Malia; White Hat, Emily R.
2018-01-01
This article describes a mixed methods study of community-based participatory research (CBPR) partnership practices and the links between these practices and changes in health status and disparities outcomes. Directed by a CBPR conceptual model and grounded in indigenous-transformative theory, our nation-wide, cross-site study showcases the value…
Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers.
Wangüemert-Pérez, J G; Godoy-Rubio, R; Ortega-Moñux, A; Molina-Fernández, I
2007-12-01
A simple strategy for accurately recovering discontinuous functions from their Fourier series coefficients is presented. The aim of the proposed approach, named spectrum splitting (SS), is to remove the Gibbs phenomenon by making use of signal-filtering-based concepts and some properties of the Fourier series. While the technique can be used in a vast range of situations, it is particularly suitable for being incorporated into fast-Fourier-transform-based electromagnetic mode solvers (FFT-MSs), which are known to suffer from very poor convergence rates when applied to situations where the field distributions are highly discontinuous (e.g., silicon-on-insulator photonic wires). The resultant method, SS-FFT-MS, is exhaustively tested under the assumption of a simplified one-dimensional model, clearly showing a dramatic improvement of the convergence rates with respect to the original FFT-based methods.
Transformation-cost time-series method for analyzing irregularly sampled data
NASA Astrophysics Data System (ADS)
Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen
2015-06-01
Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.
Transformation-cost time-series method for analyzing irregularly sampled data.
Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen
2015-06-01
Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.
Martins, Silvia A; Sousa, Sergio F
2013-06-05
The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.
Multi-Focus Image Fusion Based on NSCT and NSST
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen
2015-12-01
In this paper, a multi-focus image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) and the nonsubsampled shearlet transform (NSST) is proposed. The source images are first decomposed by the NSCT and NSST into low frequency coefficients and high frequency coefficients. Then, the average method is used to fuse low frequency coefficient of the NSCT. To obtain more accurate salience measurement, the high frequency coefficients of the NSST and NSCT are combined to measure salience. The high frequency coefficients of the NSCT with larger salience are selected as fused high frequency coefficients. Finally, the fused image is reconstructed by the inverse NSCT. We adopt three metrics (Q AB/F , Q e and Q w ) to evaluate the quality of fused images. The experimental results demonstrate that the proposed method outperforms other methods. It retains highly detailed edges and contours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jinghao; Kim, Sung; Jabbour, Salma
2010-03-15
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less
Rock classification based on resistivity patterns in electrical borehole wall images
NASA Astrophysics Data System (ADS)
Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph
2007-06-01
Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.
[Detection of Heart Rate of Fetal ECG Based on STFT and BSS].
Wang, Xu; Cai, Kun
2016-01-01
Changes in heart rate of fetal is function regulating performance of the circulatory system and the central nervous system, it is significant to detect heart rate of fetus in perinatal fetal. This paper puts forward the fetal heart rate detection method based on short time Fourier transform and blind source separation. First of all, the mixed ECG signal was preprocessed, and then the wavelet transform technique was used to separate the fetal ECG signal with noise from mixed ECG signal, after that, the short-time Fourier transform and the blind separation were carried on it, and then calculated the correlation coefficient of it, Finally, An independent component that it has strongest correlation with the original signal was selected to make FECG peak detection and calculated the fetal instantaneous heart rate. The experimental results show that the method can improve the detection rate of the FECG peak (R), and it has high accuracy in fixing peak(R) location in the case of low signal-noise ratio.
A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.
Hu, Shoubo; Chen, Zhitang; Chan, Laiwan
2018-05-01
Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.
Pal, Suvra; Balakrishnan, Narayanaswamy
2018-05-01
In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.
Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.
Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J
2015-10-26
Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.
Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2018-04-01
In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.
NASA Astrophysics Data System (ADS)
Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun
2018-05-01
This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.
Color image enhancement based on particle swarm optimization with Gaussian mixture
NASA Astrophysics Data System (ADS)
Kattakkalil Subhashdas, Shibudas; Choi, Bong-Seok; Yoo, Ji-Hoon; Ha, Yeong-Ho
2015-01-01
This paper proposes a Gaussian mixture based image enhancement method which uses particle swarm optimization (PSO) to have an edge over other contemporary methods. The proposed method uses the guassian mixture model to model the lightness histogram of the input image in CIEL*a*b* space. The intersection points of the guassian components in the model are used to partition the lightness histogram. . The enhanced lightness image is generated by transforming the lightness value in each interval to appropriate output interval according to the transformation function that depends on PSO optimized parameters, weight and standard deviation of Gaussian component and cumulative distribution of the input histogram interval. In addition, chroma compensation is applied to the resulting image to reduce washout appearance. Experimental results show that the proposed method produces a better enhanced image compared to the traditional methods. Moreover, the enhanced image is free from several side effects such as washout appearance, information loss and gradation artifacts.
Research on fusion algorithm of polarization image in tetrolet domain
NASA Astrophysics Data System (ADS)
Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing
2015-12-01
Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect
Improving the quality of the ECG signal by filtering in wavelet transform domain
NASA Astrophysics Data System (ADS)
DzierŻak, RóŻa; Surtel, Wojciech; Dzida, Grzegorz; Maciejewski, Marcin
2016-09-01
The article concerns the research methods of noise reduction occurring in the ECG signals. The method is based on the use of filtration in wavelet transform domain. The study was conducted on two types of signal - received during the rest of the patient and obtained during physical activity. For each of the signals 3 types of filtration were used. The study was designed to determine the effectiveness of various wavelets for de-noising signals obtained in both cases. The results confirm the suitability of the method for improving the quality of the electrocardiogram in case of both types of signals.
Liu, S X; Zou, M S
2018-03-01
The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.
Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.
Punys, Vytenis; Maknickas, Ramunas
2011-01-01
Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.
Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min
2008-07-01
In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.
NASA Astrophysics Data System (ADS)
Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo
2016-09-01
This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.
Two-level image authentication by two-step phase-shifting interferometry and compressive sensing
NASA Astrophysics Data System (ADS)
Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-01-01
A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.
Computing pKa Values in Different Solvents by Electrostatic Transformation.
Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter
2016-07-12
We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.
SU-E-J-237: Image Feature Based DRR and Portal Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X; Chang, J
Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thusmore » the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.« less
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Senroy, Nilanjan [New Delhi, IN; Suryanarayanan, Siddharth [Littleton, CO
2011-03-15
A computer-implemented method of signal processing is provided. The method includes generating one or more masking signals based upon a computed Fourier transform of a received signal. The method further includes determining one or more intrinsic mode functions (IMFs) of the received signal by performing a masking-signal-based empirical mode decomposition (EMD) using the at least one masking signal.
NASA Astrophysics Data System (ADS)
Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.
2018-04-01
This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.
NASA Astrophysics Data System (ADS)
Ge, Yongbin; Cao, Fujun
2011-05-01
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.
The application of S-transformation and M-2DPCA in I.C. Engine fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Shixiong; Cai, Yanping; Mu, Weijie
2017-04-01
According to the problem of parameter selection and feature extraction for vibration diagnosis of traditional internal combustion engine is discussed. The method based on S-transformation and Module Two Dimensional Principal Components Analysis (M-2DPCA) is proposed to carry out fault diagnosis of I.C. Engine valve mechanism. First of all, the method transfers cylinder surface vibration signals of I.C. into images through S-transform. The second, extracting the optimized projection vectors from the general distribution matrix G which is obtained by all sample sub-images, so that vibration spectrum images can be modularized using M-2DPCA. The last, these features matrix obtained from images project will served as the enters of nearest neighbor classifier, it is used to achieve fault types' division. The method is applied to the diagnosis example of the vibration signal of the valve mechanism eight operating modes, recognition rate up to 94.17 percent; the effectiveness of the proposed method is proved.
A novel attack method about double-random-phase-encoding-based image hiding method
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen
2018-03-01
By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.
Nam, Jaewook
2011-01-01
We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752
Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image
NASA Astrophysics Data System (ADS)
Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun
2018-02-01
Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.
A Shearlet-based algorithm for quantum noise removal in low-dose CT images
NASA Astrophysics Data System (ADS)
Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng
2016-03-01
Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro
This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less
Modeling and simulating industrial land-use evolution in Shanghai, China
NASA Astrophysics Data System (ADS)
Qiu, Rongxu; Xu, Wei; Zhang, John; Staenz, Karl
2018-01-01
This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.
Target matching based on multi-view tracking
NASA Astrophysics Data System (ADS)
Liu, Yahui; Zhou, Changsheng
2011-01-01
A feature matching method is proposed based on Maximally Stable Extremal Regions (MSER) and Scale Invariant Feature Transform (SIFT) to solve the problem of the same target matching in multiple cameras. Target foreground is extracted by using frame difference twice and bounding box which is regarded as target regions is calculated. Extremal regions are got by MSER. After fitted into elliptical regions, those regions will be normalized into unity circles and represented with SIFT descriptors. Initial matching is obtained from the ratio of the closest distance to second distance less than some threshold and outlier points are eliminated in terms of RANSAC. Experimental results indicate the method can reduce computational complexity effectively and is also adapt to affine transformation, rotation, scale and illumination.
An appraisal of statistical procedures used in derivation of reference intervals.
Ichihara, Kiyoshi; Boyd, James C
2010-11-01
When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.
Zheng, Dandan; Todor, Dorin A
2011-01-01
In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan
2017-06-01
Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P
2010-03-09
A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains.
Application of Composite Small Calibration Objects in Traffic Accident Scene Photogrammetry
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies. PMID:26011052
Paul, Sabyasachi; Sarkar, P K
2013-04-01
Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.
NASA Astrophysics Data System (ADS)
Dai, Xiaoqian; Tian, Jie; Chen, Zhe
2010-03-01
Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.
Two-Stream Transformer Networks for Video-based Face Alignment.
Liu, Hao; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.
Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition
NASA Astrophysics Data System (ADS)
Meckley, John R.
1995-09-01
The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total wavelet coefficient energy. The detection algorithm provides an estimate of the line offset, orientation, and length that is then used to index the appropriate filter shape. Additional wavelet pyramid decomposition is performed in areas of high energy to refine the line position estimate. After filtering, the new Radon transform is generated by inverting the wavelet pyramid. The Radon transform is then inverted by filtered backprojection to produce the final 2D signal estimate with the enhanced linear features. The wavelet-based method is compared to both the Fourier and the nonlinear filtering with examples of sparse and dense shapes in imaging, acoustics and medical tomography with test images of noisy concentric lines, a real spectrogram of a blow fish (a very nonstationary spectrum), and the Shepp Logan Computer Tomography phantom image. Both qualitative and derived quantitative measures demonstrate the improvement of wavelet-based filtering. Additional research is suggested based on these results. Open questions include what level(s) to use for detection and filtering because multiple-level representations exist. The lower levels are smoother at reduced spatial resolution, while the higher levels provide better response to edges. Several examples are discussed based on analytical and phenomenological arguments.
New approach to isometric transformations in oblique local coordinate systems of reference
NASA Astrophysics Data System (ADS)
Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz
2017-12-01
The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.
Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.
Kiat Teu, Koon; Kim, Wangdo
2006-01-01
The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.
Repeatability of paired counts.
Alexander, Neal; Bethony, Jeff; Corrêa-Oliveira, Rodrigo; Rodrigues, Laura C; Hotez, Peter; Brooker, Simon
2007-08-30
The Bland and Altman technique is widely used to assess the variation between replicates of a method of clinical measurement. It yields the repeatability, i.e. the value within which 95 per cent of repeat measurements lie. The valid use of the technique requires that the variance is constant over the data range. This is not usually the case for counts of items such as CD4 cells or parasites, nor is the log transformation applicable to zero counts. We investigate the properties of generalized differences based on Box-Cox transformations. For an example, in a data set of hookworm eggs counted by the Kato-Katz method, the square root transformation is found to stabilize the variance. We show how to back-transform the repeatability on the square root scale to the repeatability of the counts themselves, as an increasing function of the square mean root egg count, i.e. the square of the average of square roots. As well as being more easily interpretable, the back-transformed results highlight the dependence of the repeatability on the sample volume used.
Integrating models that depend on variable data
NASA Astrophysics Data System (ADS)
Banks, A. T.; Hill, M. C.
2016-12-01
Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log-transformation. Greater consistency is obtained by imposing smaller (by up to a factor of 1/35) weights on the smaller dependent-variable values. From an error-based perspective, the small weights are consistent with large standard deviations. This work considers the consequences of these two common ways of addressing variable data.
Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.
Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A
2015-01-01
This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.
ERIC Educational Resources Information Center
Alsop, Steve; Dippo, Don; Zandvliet, David B.
2007-01-01
This paper offers reflections on two transformative teacher education projects. The first a global communities module is set in a university in Vancouver and utilizes the lens of social ecology to examine the roles of teachers in bringing an awareness of local/global issues to their students' learning experiences. The second, a Canadian…
Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.R. Hudson
2003-11-20
Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates.
Transformation of gram positive bacteria by sonoporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yunfeng; Li, Yongchao
The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.
Materials and methods for efficient lactic acid production
Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C
2013-04-23
The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.
Materials and methods for efficient lactic acid production
Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL
2009-12-08
The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.