Sample records for transform infra red

  1. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    NASA Astrophysics Data System (ADS)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  2. Simultaneous and continuous measurements of dissolved CO2, CH4, N2O and CO in rivers using Fourier-Transform-InfraRed (FTIR) spectrometry

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus

    2015-04-01

    We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.

  3. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  4. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  5. [Influence of infra-red and super high frequency heating on food value of the beef meat].

    PubMed

    Beliaeva, M A

    2005-01-01

    In clause results of research of influence infrared and super high frequency heating on amino acid, fatty fabric and mineral; substances fresh beef are shown meat, after infra-red and the super high frequency of processing, also are shown influence of various modes infra-red heating of processing on amino acid of meat. Advantage of an infra-red way of processing is shown in comparison with super high frequency heating.

  6. Modification of wheat gluten with citric acid to produce superabsorbent materials

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  7. High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography

    PubMed Central

    Chang, Yun-Chorng; Lu, Sih-Chen; Chung, Hsin-Chan; Wang, Shih-Ming; Tsai, Tzung-Da; Guo, Tzung-Fang

    2013-01-01

    Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications. PMID:24284941

  8. From Radio to X-rays--Some 'Real' Electrical Applications.

    ERIC Educational Resources Information Center

    Freeman, J. C.

    1986-01-01

    Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)

  9. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  10. Passive Standoff Detection of Chemical Vapors by Differential FTIR Radiometry

    DTIC Science & Technology

    2001-01-01

    8217 utilisation d’un interferometre infrarouge a transformation de Fourier (FTIR) a double entree optimise pour la soustraction optique. En vue de sa mise...Valcartier (DREV) is currently developing a passive Fourier Transform InfraRed (FTIR) technique for the standoff detection and identification of...chemical vapors. A well-known difficulty associated with this technique is that the recorded signal also contains a large amount of unwanted background

  11. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report

    NASA Astrophysics Data System (ADS)

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-01

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  12. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  13. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  14. Bias correction of daily satellite precipitation data using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Pratama, A. W.; Buono, A.; Hidayat, R.; Harsa, H.

    2018-05-01

    Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) was producted by blending Satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) with Stasion observations data. The blending process was aimed to reduce bias of CHIRP. However, Biases of CHIRPS on statistical moment and quantil values were high during wet season over Java Island. This paper presented a bias correction scheme to adjust statistical moment of CHIRP using observation precipitation data. The scheme combined Genetic Algorithm and Nonlinear Power Transformation, the results was evaluated based on different season and different elevation level. The experiment results revealed that the scheme robustly reduced bias on variance around 100% reduction and leaded to reduction of first, and second quantile biases. However, bias on third quantile only reduced during dry months. Based on different level of elevation, the performance of bias correction process is only significantly different on skewness indicators.

  15. Note: Modification of an FTIR spectrometer for optoelectronic characterizations.

    PubMed

    Puspitosari, N; Longeaud, C

    2017-08-01

    We propose a very simple system to be adapted to a Fourier Transform Infra-Red (FTIR) spectrometer with which three different types of characterizations can be done: the Fourier transform photocurrent spectroscopy, the recording of reflection-transmission spectra of thin film semiconductors, and the acquisition of spectral responses of solar cells. In addition to gather three techniques into a single apparatus, this FTIR-based system also significantly reduces the recording time and largely improves the resolution of the measured spectra compared to standard equipments.

  16. Note: Modification of an FTIR spectrometer for optoelectronic characterizations

    NASA Astrophysics Data System (ADS)

    Puspitosari, N.; Longeaud, C.

    2017-08-01

    We propose a very simple system to be adapted to a Fourier Transform Infra-Red (FTIR) spectrometer with which three different types of characterizations can be done: the Fourier transform photocurrent spectroscopy, the recording of reflection-transmission spectra of thin film semiconductors, and the acquisition of spectral responses of solar cells. In addition to gather three techniques into a single apparatus, this FTIR-based system also significantly reduces the recording time and largely improves the resolution of the measured spectra compared to standard equipments.

  17. A study of doping influences on transmission of large-diameter gallium antimonide substrates for long-wave (LWIR) to very long wavelength (VLWIR) infra-red applications

    NASA Astrophysics Data System (ADS)

    Martinez, Rebecca; Tybjerg, Marius; Smith, Brian; Mowbray, Andrew; Furlong, Mark J.

    2015-06-01

    Gallium antimonide (GaSb) is an important Group III-V compound semiconductor for infra-red (IR) photodetectors used in sensing and imaging applications. Operating in the mid (3-5 μm) to long wavelength region (8-12 μm) of the IR spectrum, the application of GaSb detectors is extensive, encompassing military, industrial, medical and environmental uses. A significant developing technology for GaSb based detectors are those effective in the very long wavelength (VLWIR) infra-red region (13 μm and beyond) which are advantageous in space and stealth based applications which necessitate high operating temperatures. In this study different doping levels of GaSb are considered and the IR transmission spectra examined by Fourier Transform IR analysis. GaSb n-type doped material consistent in delivering long to very long wavelength transmission is demonstrated which is preferable to p-type material which requires backside thinning for IR transmission. Czochralski (Cz) grown GaSb wafers are assessed for electrical quality and uniformity results, on Hall mobility, resistivity and carrier level reported. Results of this work will establish the carrier concentration that ultimately results in high transparency substrates. In summary enhancements in IR transmission will be shown to be achieved in GaSb bulk crystals by tellurium (Te) compensation.

  18. Supply of avocado starch (Persea americana mill) as bioplastic material

    NASA Astrophysics Data System (ADS)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  19. Passive cooler

    NASA Technical Reports Server (NTRS)

    Aronson, Albert Irving (Inventor)

    1977-01-01

    A three stage passive cooler for use in a spacecraft for cooling an infra-red detector includes a detector mounting cold plate for mounting the detector directly to the telescope optics. The telescope optics collect and direct the infra-red radiation from the earth, for example, to the infra-red detector, and are mounted directly to the spacecraft. The remaining stages of the cooler are mounted with thermal insulators to each other and to the spacecraft at separate locations from the detector mounting cold plate.

  20. The use of far infra-red radiation for the detection of concealed metal objects.

    DOT National Transportation Integrated Search

    1971-11-01

    The use of infra-red radiation for the detection : of conceal ed metal objects has been investiga ted both : theoretically and experimentally. The investigation was : divided into two phases, one which considered passive : techniques, and another whi...

  1. Proton transfer from imidazole to chloranil studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Amit

    2018-05-01

    Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Therefore it is important to study its proton transfer property. In the present work proton transfer from imidazole to chloranil is investigated by Fourier Transform Infra red Spectroscopy.

  2. 77 FR 64588 - Highway Safety Programs; Conforming Products List of Calibrating Units for Breath Alcohol Testers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... accuracy and precision for wet bath and dry gas calibrating units using infra-red spectroscopy. On June 25... infra-red spectroscopy (72 FR 34742). That notice also adds references to the dry gas standards by fixed...

  3. 40 CFR 60.613 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., photoionization, or thermal conductivity, each equipped with a continuous recorder. (2) Where a condenser is the... detection principle such as infra-red, photoionization, or thermal conductivity, each equipped with a... based on a detection principle such as infra-red, photoionization, or thermal conductivity, each...

  4. A low cost, simple, portable instrument for the measurement of infra-red reflectance of paints

    NASA Astrophysics Data System (ADS)

    Marson, F.

    1982-05-01

    The construction and design of a low cost, simple, portable infra-red reflectometer which can be used to estimate the reflectance of paint films in the 800 nm region is described. The infra-red reflectances of a range of lustreless, semigloss and gloss olive drab camouflage paints determined using this instrument are compared to those obtained using modified commercial equipment and to the reflectances measured at 800 nm using a Cary model 17 spectrophotometer. The new reflectometer was shown to be superior to the modified commercial instrument currently specified in Australian government paint specifications and to be capable of estimating the reflectance of olive drab paints to within about one per cent of the Cary derived reflectance values. The reflectance values for a range of 24 experimental coatings made with pigments of varying absorption in the infra-red region are used to illustrate the effect of the instrument's spectral response and the necessity of establishing a reliable working standard.

  5. Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing

    NASA Astrophysics Data System (ADS)

    Narayanan, Aditya; Varnavski, Oleg; Mongin, Oliver; Majoral, Jean-Pierre; Blanchard-Desce, Mireille; Goodson, Theodore, III

    2008-03-01

    There is currently a need for superior stand-off detection schemes for protection against explosive weapons of mass destruction. Fluorescence detection at small distances from the target has proven to be attractive. A novel unexplored route in fluorescence chemical sensing that utilizes the exceptional spectroscopic capabilities of nonlinear optical methods is two-photon excited fluorescence. This approach utilizes infra-red light for excitation of remote sensors. Infra-red light suffers less scattering in porous materials which is beneficial for vapor sensing and has greater depth of penetration through the atmosphere, and there are fewer concerns regarding eye safety in remote detection schemes. We demonstrate this method using a novel dendritic system which possesses both excellent fluorescence sensitivity to the presence of TNT with infra-red pulses of light and high two-photon absorption (TPA) response. This illustrates the use of TPA for potential stand-off detection of energetic materials in the infra-red spectral regions in a highly two-photon responsive dendrimer.

  6. Low Size, Weight and Power Concept for Mid-Wave Infrared Optical Communication Transceivers Based on Quantum Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Luzhanskiy, Edward; Choa, Fow-Sen; Merritt, Scott; Yu, Anthony; Krainak, Michael

    2015-01-01

    The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept presented, realized and tested in the laboratory environment. Resilience to atmospheric impairments analyzed with simulated turbulence. Performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  7. The influence of physiological status on age prediction of Anopheles arabiensis using near infra-red spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to deter...

  8. Detecting defective electrical components in heterogeneous infra-red images by spatial control charts

    NASA Astrophysics Data System (ADS)

    Jamshidieini, Bahman; Fazaee, Reza

    2016-05-01

    Distribution network components connect machines and other loads to electrical sources. If resistance or current of any component is more than specified range, its temperature may exceed the operational limit which can cause major problems. Therefore, these defects should be found and eliminated according to their severity. Although infra-red cameras have been used for inspection of electrical components, maintenance prioritization of distribution cubicles is mostly based on personal perception and lack of training data prevents engineers from developing image processing methods. New research on the spatial control chart encouraged us to use statistical approaches instead of the pattern recognition for the image processing. In the present study, a new scanning pattern which can tolerate heavy autocorrelation among adjacent pixels within infra-red image was developed and for the first time combination of kernel smoothing, spatial control charts and local robust regression were used for finding defects within heterogeneous infra-red images of old distribution cubicles. This method does not need training data and this advantage is crucially important when the training data is not available.

  9. Crystal Growth and Luminescence Properties of Yb-doped Gd3Al2Ga3O12 Infra-red Scintillator

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Nagata, Shinji; Yamamura, Tomoo; Pejchal, Jan; Yamaji, Akihiro; Yokota, Yuui; Shirasaki, Kenji; Homma, Yoshiya; Aoki, Dai; Shikama, Tatsuo; Yoshikawa, Akira

    2014-07-01

    1-mol%-Yb-doped Gd3Al2Ga3O12 infra-red scintillator crystal has been studied as a novel implantable radiation monitor in radiation therapy. Powder X-ray diffraction measurement and chemical analysis with a field emission scanning microscope and wavelength dispersive spectrometer determined its garnet structure and average chemical composition of Yb0.03±0.01Gd2.99±0.07Al2.21±0.08Ga2.64±0.09O12.10±0.09. Transmittance measurements reached high values of approximately 70% in the human body transparency region between 650 to 1200 nm. Photoluminescence peaks were detected around 970 and 1030 nm under the 940 nm excitation with a Xe lamp. Infra-red scintillation emissions were clearly observed around 970 and 1030 nm due to Yb3+ 4f-4f transitions under X-ray excitation. Therefore, these results suggest that Yb-doped Gd3Al2Ga3O12 might be used as an infra-red scintillator material.

  10. Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies

    NASA Astrophysics Data System (ADS)

    Gay, J.; Rabbia, Y.

    2014-04-01

    We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.

  11. Passive Ranging Using Infra-Red Atmospheric Attenuation

    DTIC Science & Technology

    2010-03-01

    was the Bomem MR-154 Fourier Transform Spectrometer (FTS). The FTS used both an HgCdTe and InSb detector . For this study, the primary source of data...also outfitted with an HgCdTe and InSb detector . Again, only data from the InSb detector was used. The spectral range of data collected was from...an uncertainty in transmittance of 0.01 (figure 20). This would yield an error in range of 6%. Other sources of error include detector noise or

  12. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  13. Electrical conductivity and morphology of electrochemical synthesized polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Yesappa, L.; Vijeth, H.; Niranjana, M.; Devendrappa, H.

    2018-05-01

    Polyaniline (PANI) and Polyaniline/CuO nanocomposite have been synthesized by using electrochemical deposition method. The composite was characterized using Fourier transform infra-red spectroscopy (FT-IR) to confirm the chemical interaction changes, micro structural morphology was done by Field Emission Scanning Electronic Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constant and AC conductivity are found to increases with increase in temperature range (303 to 393K), these results shows enhancement in electrical conductivity due to effect of nanocomposite.

  14. FIR and sub-mm direct detection spectrometers for spaceborne astronomy

    NASA Astrophysics Data System (ADS)

    Wijnbergen, Jan J.; de Graauw, Thijs

    1990-12-01

    Candidate spaceborne sub-mm instrumentation proposed for space projects with large passively cooled telescopes are reviewed. Grating instruments and Fourier transform spectroscopy (FTS) spectrometers are discussed. Particular attention is given to imaging Fabry-Perot spectrometers. The special needs of the Large Deployable Reflector (LDR) and for the Far InfraRed Space Telescope (FIRST) missions in this area are outlined. Possible Fabry-Perot spectrometer setups are diagrammed and outlined. The use of spherical and multiplex Fabry-Perot spectrometers is discussed.

  15. Infra-red detector and method of making and using same

    DOEpatents

    Craig, Richard A [Richland, WA; Griffin, Jeffrey W [Kennewick, WA

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  16. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  17. Alignment and Polarization Sensitivity Study for the Cassini-Composite InfraRed Spectrometer (CIRS) Far InfraRed (FIR) Interferometer

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.; Hagopian, John G.

    1998-01-01

    The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.

  18. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  19. Sensing of moisture content in in-shell peanuts by NIR (Near Infra Red) reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleanin...

  20. Infra-red lamp panel study and assessment application to thermal vacuum testing of sigma telescope

    NASA Technical Reports Server (NTRS)

    Mauduyt, Jacques; Merlet, Joseph; Poux, Christiane

    1986-01-01

    A research and development program of the Infra-Red Test has been conducted by the French Space Agency (CNES). A choice, after characterization, among several possibilities has been made on the type of methods and facilities for the I.R. test. An application to the Thermal Vacuum Test of the SIGMA Telescope is described.

  1. Detection of microscopic particles present as contaminants in latent fingerprints by means of synchrotron radiation-based Fourier transform infra-red micro-imaging.

    PubMed

    Banas, A; Banas, K; Breese, M B H; Loke, J; Heng Teo, B; Lim, S K

    2012-08-07

    Synchrotron radiation-based Fourier transform infra-red (SR-FTIR) micro-imaging has been developed as a rapid, direct and non-destructive technique. This method, taking advantage of the high brightness and small effective source size of synchrotron light, is capable of exploring the molecular chemistry within the microstructures of microscopic particles without their destruction at high spatial resolutions. This is in contrast to traditional "wet" chemical methods, which, during processing for analysis, often caused destruction of the original samples. In the present study, we demonstrate the potential of SR-FTIR micro-imaging as an effective way to accurately identify microscopic particles deposited within latent fingerprints. These particles are present from residual amounts of materials left on a person's fingers after handling such materials. Fingerprints contaminated with various types of powders, creams, medications and high explosive materials (3-nitrooxy-2,2-bis(nitrooxymethyl)propyl nitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2-methyl-1,3,5-trinitrobenzene (TNT)) deposited on various - daily used - substrates have been analysed herein without any further sample preparation. A non-destructive method for the transfer of contaminated fingerprints from hard-to-reach areas of the substrates to the place of analysis is also presented. This method could have a significant impact on forensic science and could dramatically enhance the amount of information that can be obtained from the study of fingerprints.

  2. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  3. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  5. Electrochemical thinning of silicon

    DOEpatents

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  6. Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. A.; Abd-Elwahab, S. M.; Ahmed, M. K.

    2016-10-01

    Hydroxyapatite (HAP) and dicalcium phosphate dihydrate (brushite) nanoparticles were prepared by co-precipitation method. The obtained products were characterized by X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR) and thermo-gravimetric analysis (TGA). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to investigate the morphology of the powdered samples as well as their microstructure, respectively. Brushite samples were obtained in a spherical shape, while hydroxyapatite was formed in a needle and rice shape depending on the pH value.

  7. Synthesis and Properties of Ortho-Nitro-Fe Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, A.; Mishra, Niyati; Sharma, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  8. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    SPANNING THE PHYSICAL SCALES OF MODERN TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact...Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and...Nanocrystalline Diamond for Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three

  9. Probing photochromic properties by correlation of UV-visible and infra-red absorption spectroscopy: a case study with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene.

    PubMed

    Spangenberg, Arnaud; Piedras Perez, Jose Alejandro; Patra, Abhijit; Piard, Jonathan; Brosseau, Arnaud; Métivier, Rémi; Nakatani, Keitaro

    2010-02-01

    Quantification of the relative composition of the isomers in a photochromic system at any irradiation time interval is a critical issue in determining absolute quantum yields. For this purpose, we have developed a simple and convenient protocol involving combination of UV-visible and infra-red absorption spectroscopy. Photochromic cyclization reaction of cis-l,2-dicyano-l,2-bis(2,4,5-trimethyl-3-thieny1)ethene (CMTE) is analyzed to demonstrate the efficiency of the proposed methodology. This approach is based on the fact that the two isomers show distinctive infra-red bands. Detailed investigations of the UV-visible and infra-red spectra of the mixture obtained at different irradiation times in CCl(4) supported by quantum chemical computations lead to the unambiguous estimation of molar absorption coefficients of the closed isomer (epsilon(CF) = 4650 L mol(-1) cm(-1) at 512 nm). It facilitates the first determination of absolute quantum yields of this reversible photochromic reaction in CCl(4) by fitting the UV-visible spectral data (Phi(OF-->CF) = 0.41 +/- 0.05 and Phi(CF-->OF) = 0.12 +/- 0.02 at 405 nm and 546 nm, respectively).

  10. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact friction and wear? How is heat dissipated...InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and Nanocrystalline Diamond for Space Applications...Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three publications in the area of vacuum

  11. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  12. Laser fabrication of perfect absorbers

    NASA Astrophysics Data System (ADS)

    Mizeikis, V.; Faniayeu, I.

    2018-01-01

    We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.

  13. Effect of annealing temperature on titania nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.

    2014-04-24

    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less

  14. Status of the JWST Science Instrument Payload

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  15. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  16. Physiological and genetic characterization of plant growth and gravitropism in LED light sources

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald F.

    1994-01-01

    Among the many problems of growing plants in completely controlled environments, such as those anticipated for the space station and the CELSS program, is the need to provide light that is both adequate for photosynthesis and of proper quality for normal growth and development. NASA scientists and engineers have recently become interested in the possibility of utilizing densely packed, solid state, light emitting diodes (LED's) as a source for this light. Unlike more conventional incandescent or electrical discharge lamps, these sources are highly monochromatic and lack energy in spectral regions thought to be important for normal plant development. In addition, a recent observation by NASA scientist has suggested that infra-red LED's, that are routinely used as photographic safelights for plants grown in darkness, may interact with the ability of plants to detect gravity. In order to establish how plants respond to light from these LED light sources we carried out a series of experiments with known pigment mutants of the model mustard plant, Arabidopsis thaliana, growing in either a gravity field or on a clinostat to simulate a micro-gravity environment. Results indicate that only red light from the 665 nm LED's disrupts the ability of normal wildtype seedlings to detect a gravity stimulus. There was no consistent effect found for the far-red (735 nm) LED's or either of the infrared (880 nm or 935 nm) LED sources but both showed some effect in one or more of the genotypes tested. Of these five members of the phytochrome multigene family in Arabidopsis, only the phytochrome B pigment mutant (hy3) lacked the ability to detect gravity under all conditions. There was no effect of either micro-gravity (clinostat) or the infra-red LED's on the light induced inhibition of hypocotyl elongation. Measurements of the pigment phytochrome in oats also showed no photoconversion by 15 min irradiations with the infra-red LED's. We conclude that phytochrome B is required for the perception of gravity and that only red light is able to disrupt this perception. The infra-red LED's also do not appear to interact with gravity perception in Arabidopsis, but caution should be exercised if infra-red LED's are to be used as photographic safelights for these types of experiments.

  17. Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallacher, K.; Millar, R. W.; Paul, D. J., E-mail: Douglas.Paul@glasgow.ac.uk

    2016-02-29

    Mid-infrared intersubband absorption from p-Ge quantum wells with Si{sub 0.5}Ge{sub 0.5} barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm.

  18. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arogundade, A. I., E-mail: ajiunolorioba@gmail.com; Megat-Yusoff, P. S. M., E-mail: puteris@petronas.com.my; Faiz, A.

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller andmore » more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.« less

  19. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO2) and adsorption of remazol reactive dye

    NASA Astrophysics Data System (ADS)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Nanoporous amorphous-MnO2 was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH3COO)2.4H2O) in 0.1 M KMnO4. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO2 bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO2. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO2 showed 99 - 100% decolorization.

  20. Near-InfraRed Planet Searcher to Join HARPS on the ESO 3.6-metre Telescope

    NASA Astrophysics Data System (ADS)

    Bouchy, F.; Doyon, R.; Artigau, É.; Melo, C.; Hernandez, O.; Wildi, F.; Delfosse, X.; Lovis, C.; Figueira, P.; Canto Martins, B. L..; González Hernández, J. I..; Thibault, S.; Reshetov, V.; Pepe, F.; Santos, N. C.; de Medeiros, J. R..; Rebolo, R.; Abreu, M.; Adibekyan, V. Z.; Bandy, T.; Benz, W.; Blind, N.; Bohlender, D.; Boisse, I.; Bovay, S.; Broeg, C.; Brousseau, D.; Cabral, A.; Chazelas, B.; Cloutier, R.; Coelho, J.; Conod, U.; Cumming, A.; Delabre, B.; Genolet, L.; Hagelberg, J.; Jayawardhana, R.; Käufl, H.-U.; Lafrenière, D.; de Castro Leão, I..; Malo, L.; de Medeiros Martins, A..; Matthews, J. M.; Metchev, S.; Oshagh, M.; Ouellet, M.; Parro, V. C.; Rasilla Piñeiro, J. L..; Santos, P.; Sarajlic, M.; Segovia, A.; Sordet, M.; Udry, S.; Valencia, D.; Vallée, P.; Venn, K.; Wade, G. A.; Saddlemyer, L.

    2017-09-01

    The Near-InfraRed Planet Searcher (NIRPS) is a new ultra-stable infrared (YJH) spectrograph that will be installed on ESO's 3.6-metre Telescope in La Silla, Chile. Aiming to achieve a precision of 1 m s-1, NIRPS is designed to find rocky planets orbiting M dwarfs, and will operate together with the High Accuracy Radial velocity Planet Searcher (HARPS), also on the 3.6-metre Telescope. In this article we describe the NIRPS science cases and present its main technical characteristics.

  1. Enterprise Architecture as a Tool of Navy METOC Transformation

    DTIC Science & Technology

    2006-09-01

    Enterprise Service Integration Layer (MESIL) METOC Enterprise Service Bus (ESB) Local ESBl Impl InfraI l I f Production Center Node Local ESBl Impl...InfraI l I f Local ESBl Impl InfraI l I f METOC Edge Node NCOW Tenets NCOW Tenets SOA Tenets SOA Tenets Production Center Node Top-Down Analysis

  2. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure.

    PubMed

    Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Davies, Philip R; Morgan, David J; Mandal, Dipankar

    2017-12-01

    In this paper, a novel infra-red (IR) sensitive Er 3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er 3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er 3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, S M  ~ 3.4 VPa -1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er 3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices.

  3. One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens.

    PubMed

    Basavegowda, Nagaraj; Dhanya Kumar, Gowri; Tyliszczak, Bozena; Wzorek, Zbigniew; Sobczak-Kupiec, Agnieszka

    2015-01-01

    Novel approaches for the synthesis of gold nanoparticles (AuNPs) are of great importance due to its vast spectrum of applications in diverse fields, including medical diagnostics and therapeutics. Te presented study reports the successful AuNPs' synthesis using Artocarpus heterophyllus Lam. extract, and provides detailed characterization and evaluation of its antibacterial potential. The aim was to develop a cost-effective and environmentally friendly synthesis method of gold nanoparticles using aqueous fruit extract of Artocarpus heterophyllus Lam. as a reducing and capping agent, which has proven activity against human pathogens, such as microbial species E.coli and Streptobacillus sps. Characterizations were carried out using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and Fourier-Transform infra-red spectroscopy (FT-IR). SEM images showed the formation of gold nanoparticles with an average size of 20-25 nm. Spectra collected while infra-red analysis contained broad peaks in ranges from 4000-400 cm -1 . It can be concluded that the fruit of Artocarpus heterophyllus Lam. can be good source for synthesis of gold nanoparticles which showed antimicrobial activity against investigated microbes, in particul E. coli, and Streptobacillus. An important outcome of this study will be the development of value-added products from the medicinal plant Artocarpus heterophyllus Lam. for the biomedical and nanotechnology-based industries.

  4. Generation of drugs coated iron nanoparticles through high energy ball milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  5. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  6. [Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2013-01-01

    The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.

  7. Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano

    2008-01-01

    Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.

  8. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  9. Fabrication of metasurface-based infrared absorber structures using direct laser write lithography

    NASA Astrophysics Data System (ADS)

    Fanyaeu, Ihar; Mizeikis, Vygantas

    2016-03-01

    We report fabrication and optical properties of ultra-thin polarization-invariant electromagnetic absorber metasurface for infra-red spectral. The absorber structure, which uses three-dimensional architecture is based on single-turn metallic helices arranged into a periodic square lattice on a metallic substrate, is expected to exhibit total resonant absorption due to balanced coupling between resonances of the helices. The structure was designed using numerical simulations aiming to tune the total absorption resonance to infra-red wavelength range by appropriately downscaling the unit cell of the structure, and taking into account dielectric dispersion and losses of the metal. The designed structures were subsequently fabricated using femtosecond direct laser write technique in a dielectric photoresist, and subsequent metallisation by gold sputtering. In accordance with the expectations, the structure was found to exhibit resonant absorption centred near the wavelength of 6 - 9 µm, with peak absorption in excess of 82%. The absorber metasurface may be applied in various areas of science and technology, such as harvesting infra-red radiation in thermal detectors and energy converters.

  10. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  11. Winter Far InfraRed Measurements in the High Arctic

    NASA Astrophysics Data System (ADS)

    S Pelletier, L.; Libois, Q.; Laurence, C.; Blanchet, J. P.

    2017-12-01

    During the polar night the majority of earth emission to space occurs in the Far InfraRed (FIR) (l>15mm). Below 10 mm of column integrated water vapour (WV) the atmosphere becomes partially transparent in this spectral range, extending the atmospheric window to longer wavelength. Small variations of WV content can thus lead to strong variations of the transmittance of the atmosphere, impacting its cooling rate and the water vapor greenhouse effect. This is especially true in the Arctic since more than 50% of atmospheric cooling occurs in the FIR. Furthermore, remote sensing observations from CALIPSO and CloudSat satellites over the Arctic have enlighten the ubiquity of optically thin ice clouds (TIC). Those clouds act as effective radiators through the whole troposphere and their formation process is still poorly understood. Theoretical work has shown the added value of FIR measurements for WV and TIC optical properties retrieval. Even so there is currently no spaceborne instrument performing spectrally resolved measurements in the FIR. The TICFIRE (Thin ice cloud in the far infrared experiment) satellite project aims to fill this gap. Here we present the results of the first ground experiments using a breadboard of the satellite, the Far InfraRed Radiometer (FIRR). It measured downwelling radiance at Eureka, NU (79°59'20″N 085°56'27″W) from 25/02/2016 to 31/05/2016. The FIRR uses an array of uncooled microbolometers to measure radiance in 9 spectral channels spanning from 8 - 50 μm. The emission of the atmosphere in this spectral region is extremely sensitive to its WV content and the effective diameter of TIC ice crystals. By comparing these measurements with the E-AERI, a Fourier transform interferometer which serves as a reference, and a radiative transfers model , we aim to assess the radiative accuracy of this new technology as well as its sensitivity to the state of the atmosphere. Results shows that the in situ radiometric accuracy of the FIRR matches laboratory performances (noise below 0.02 Wm-2sr-1). This paves the way for the development of TIC properties retrieval from ground measurements.

  12. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali, E-mail: rozali@ukm.edu.my

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye onmore » 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.« less

  13. A webcam in Bayer-mode as a light beam profiler for the near infra-red

    PubMed Central

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-01-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique. PMID:23645943

  14. A webcam in Bayer-mode as a light beam profiler for the near infra-red.

    PubMed

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-05-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique.

  15. Flowing to higher dimensions: a new strongly-coupled phase on M2 branes

    DOE PAGES

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    2015-11-24

    We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less

  16. Flowing to higher dimensions: a new strongly-coupled phase on M2 branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less

  17. An infra-red imaging system for the analysis of tropisms in Arabidopsis thaliana seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orbovic, V.; Poff, K.L.

    1990-05-01

    Since blue and green light will induce phototropism and red light is absorbed by phytochrome, no wavelength of visible radiation should be considered safe for any study of tropisms in etiolated seedlings. For this reason, we have developed an infra-red imaging system with a video camera with which we can monitor seedlings using radiation at wavelengths longer than 800 nm. The image of the seedlings can be observed in real time, recorded on a VCR and subsequently analyzed using the Java image analysis system. The time courses for curvature of seedlings differ in shape, amplitude, and lag time. This variabilitymore » accounts for much of the noise in the measurement of curvature for a population of seedlings.« less

  18. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  19. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    NASA Astrophysics Data System (ADS)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  20. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  1. Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    U, Vivian; Dekany, R.; Mobasher, B.

    2013-01-01

    The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.

  2. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  3. Nanostructured magnesium oxide biosensing platform for cholera detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj K.; Azahar Ali, Md.; Agrawal, Ved V.; Ansari, Z. A.; Ansari, S. G.; Malhotra, B. D.

    2013-04-01

    We report fabrication of highly crystalline nanostructured magnesium oxide (NanoMgO, size >30 nm) film electrophoretically deposited onto indium-tin-oxide (ITO) glass substrate for Vibrio cholerae detection. The single stranded deoxyribonucleic acid (ssDNA) probe, consisting of 23 bases (O1 gene sequence) immobilized onto NanoMgO/ITO electrode surface, has been characterized using electrochemical, Fourier Transform-Infra Red, and UltraViolet-visible spectroscopic techniques. The hybridization studies of ssDNA/NanoMgO/ITO bioelectrode with fragmented target DNA conducted using differential pulse voltammetry reveal sensitivity as 16.80 nA/ng/cm2, response time of 3 s, linearity as 100-500 ng/μL, and stability of about 120 days.

  4. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  5. Synthesis of Furfural from Water Hyacinth (Eichornia croassipes)

    NASA Astrophysics Data System (ADS)

    Ismiyarto; Ngadiwiyana; windarti, T.; Purbowatiningrum, RS; Hapsari, M.; Rafi'ah, FH; Suyanti; Haq, MS

    2017-02-01

    Furfural has been prepared from hydrolysis of dried biomass of water hyacinth (Eichornia crassipes) by using diluted hydrochloric acid and sulphuric acid as catalysts. This process involved the conversion of the pentosane fraction in water hyacinth into pentose, and then pentose was cyclodehydrated into furfural. The reaction was conducted in a distillation set with receiving the flask that contains chloroform. Furfural was identified by fehling test which was then characterized using Fourier Transform Infra Red (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR), followed by Gas Chromatography with Mass Spectroscopy (GC-MS). The yield of furfural obtained using sulphuric acid catalyst was 0.38% and hydrochloric acid catalyst was 0.01% of dried biomass.

  6. Effect of Substituents in Alcohol-Amine Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik

    2014-06-01

    A series of alcohol-amine complexes have been investigated to gain physical insight into the effect on the hydrogen bond strength as different substituents are attached. The series of complexes investigated are shown in the figure, where R_1 = CH_3, CH_3CH_2 or CF_3CH_2 and R_2 = H or CH_3. To estimate the hydrogen bond strength, redshifts of the OH-stretching transition frequency upon complexation were measured using gas phase Fourier Transform InfraRed (FTIR) spectroscopy. Equilibrium constants for the formation of the complexes were also determined, exploiting a combination of a calculated oscillator strength and the measured integrated absorbance of the fundamental OH-stretching and second overtone NH-stretching transitions.

  7. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  8. Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu

    2018-04-01

    We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.

  9. Production of MAG via enzymatic glycerolysis

    NASA Astrophysics Data System (ADS)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  10. Real-time classification of vehicles by type within infrared imagery

    NASA Astrophysics Data System (ADS)

    Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.

    2016-10-01

    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.

  11. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  12. Luminescent properties of Cr-doped (GdX, Y1-X)3Al5O12 infra-red scintillator crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2014-10-01

    Cr-doped (GdX Y1-X)3Al5O12 (X = 0, 0.25, 0.50) crystals prepared by the micro-pulling down method were investigated to develop a infra-red scintillator for implantable patient dosimeter in radiation therapy. In order to evaluate their optical and scintillation performance, the following properties were measured: (i) transmittance between ultra-violet and near-infra red region, (ii) photoluminescence spectra under Xe-lamp excitation, and (iii) X-ray excited radio-luminescence spectra. Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals showed increased transmittance of 80%, while Cr:(Gd0.50 Y0.50)3Al5O12 had a lower transmittance of 40% due to its polycrystalline structure. In addition, all the Cr:(GdX Y1-X)3Al5O12 crystals showed sharp scintillation luminescence peaks ascribed to Cr3+ d-d transitions. Therefore, these results suggested that Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals can be candidate materials for the dosimeter use.

  13. CIRCE: The Canarias InfraRed Camera Experiment for the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Charcos, Miguel; Edwards, Michelle L.; Garner, Alan; Lasso-Cabrera, Nestor; Stelter, Richard D.; Marin-Franch, Antonio; Raines, S. Nicholas; Ackley, Kendall; Bennett, John G.; Cenarro, Javier A.; Chinn, Brian; Donoso, H. Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D.; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H.; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A. N.; Burse, Mahesh; Punnadi, Sunjit; Chordia, Pravin; Gerarts, Andreas; Martín, Héctor De Paz; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Sánchez, William Miguel Hernández; Siegel, Benjamin; Pérez, Francisco Francisco; Martín, Himar D. Viera; Losada, José A. Rodríguez; Nuñez, Agustín; Tejero, Álvaro; González, Carlos E. Martín; Rodríguez, César Cabrera; Sendra, Jordi Molgó; Rodriguez, J. Esteban; Cáceres, J. Israel Fernádez; García, Luis A. Rodríguez; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata; Castro-Tirado, A. J.

    The Canarias InfraRed Camera Experiment (CIRCE) is a near-infrared (1-2.5μm) imager, polarimeter and low-resolution spectrograph operating as a visitor instrument for the Gran Telescopio Canarias (GTC) 10.4-m telescope. It was designed and built largely by graduate students and postdocs, with help from the University of Florida (UF) astronomy engineering group, and is funded by the UF and the US National Science Foundation. CIRCE is intended to help fill the gap in near-infrared capabilities prior to the arrival of Especrografo Multiobjecto Infra-Rojo (EMIR) to the GTC and will also provide the following scientific capabilities to compliment EMIR after its arrival: high-resolution imaging, narrowband imaging, high-time-resolution photometry, imaging polarimetry, and low resolution spectroscopy. In this paper, we review the design, fabrication, integration, lab testing, and on-sky performance results for CIRCE. These include a novel approach to the opto-mechanical design, fabrication, and alignment.

  14. First measurements of continuous δ18O-CO2 with a Fourier Transform InfraRed spectrometer in Heidelberg, Germany

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Hammer, S.; Sabasch, M.; Griffith, D. W. T.; Levin, I.

    2014-07-01

    The continuous in-situ measurement of δ18O in atmospheric CO2 opens a new door to differentiating between CO2 source and sink components with high temporal resolution. Continuous 13C-CO2 measurement systems have been commercially available already for some time, but until now, only few instruments have been able to provide a continuous measurement of the oxygen isotope ratio in CO2. Besides precise 13C/12C observations, the Fourier Transform InfraRed (FTIR) spectrometer also measures the 18O/16O ratio of CO2, but the precision and accuracy of the measurements has not been evaluated yet. Here we present a first analysis of δ18O-CO2 (and δ13C-CO2) measurements with the FTIR in Heidelberg. We find that our spectrometer measures 18O in CO2 with a reproducibility of better than 0.3‰ at a temporal resolution of less than 10 min, as determined from surveillance gas measurements over a period of ten months. An Allan deviation test shows that the δ18O repeatability reaches 0.15‰ for half-hourly means. The compatibility of our spectroscopic measurements was determined by comparing FTIR measurements of calibration gases and ambient air to mass-spectrometric measurements of flask samples, filled with the cylinder gases or episodically collected over a diurnal cycle (event). We found that direct cylinder gas measurements agree to 0.01 ± 0.04‰ (mean and standard deviation) for δ13C-CO2 and 0.01 ± 0.11‰ for δ18O. Two weekly episodes of recent ambient air measurements, one in winter and one in summer, are discussed in view of the question, which potential insights and new challenges combined highly resolved δ18O-CO2 and δ13C-CO2 records may provide in terms of better understanding regional scale continental carbon exchange processes.

  15. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  16. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts

    PubMed Central

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-01-01

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods—traditional static hot air roasting and infra-red rays roasting—were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts. PMID:28230792

  17. Optimal speckle noise reduction filter for range gated laser illuminated imaging

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur

    2016-09-01

    Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.

  18. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts.

    PubMed

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-02-21

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods-traditional static hot air roasting and infra-red rays roasting-were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts.

  19. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  20. Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects

    PubMed Central

    Vivek, Marimuthu; Kumar, Palanisamy Senthil; Steffi, Sesurajan; Sudha, Sellappa

    2011-01-01

    The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the aqueous extract of red seaweed Gelidiella acerosa as the reducing agent to study the antifungal activity. The formation of Ag-NPs was confirmed by UV-Visible Spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The synthesized Ag-NPs was predominately spherical in shape and polydispersed. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nano-Ag was capped with bimolecular compounds which are responsible for reduction of silver ions. The antifungal effects of these nanoparticles were studied against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC 3318) and Trichoderma reesei (MTCC 3929). The present study indicates that Ag-NPs have considerable antifungal activity in comparison with standard antifungal drug, and hence further investigation for clinical applications is necessary. PMID:23408653

  1. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  2. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  3. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Ma, Jian; Bao, Chongxi; Cao, Yang

    2016-02-01

    We investigated the effect of the addition of Al2O3 nanoparticles on the permeability and core loss of Fe soft magnetic composites coated with silicone. Fourier transform infra-red spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis revealed that the surface layer of the powder particles consisted of a thin insulating Al2O3 layer with uniform surface coverage. The permeability and core loss of the composite with the Al2O3 addition annealed at 650 °C were excellent. The results indicated that the Al2O3 nanoparticle addition increases the permeability stablility with changing frequency and decreases the core loss over a wide range of frequencies.

  4. Evaluation of biodegradable plastics for rubber seedling applications

    NASA Astrophysics Data System (ADS)

    Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa

    2015-08-01

    The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.

  5. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    PubMed

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  6. Biosynthesis of CdS nanoparticles in banana peel extract.

    PubMed

    Zhou, Guang Ju; Li, Shuo Hao; Zhang, Yu Cang; Fu, Yun Zhi

    2014-06-01

    Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized by using banana peel extract as a convenient, non-toxic, eco-friendly 'green' capping agent. Cadmium nitrate and sodium sulfide are main reagents. A variety of CdS NPs are prepared through changing reaction conditions (banana extracts, the amount of banana peel extract, solution pH, concentration and reactive temperature). The prepared CdS colloid displays strong fluorescence spectrum. X-ray diffraction analysis demonstrates the successful formation of CdS NPs. Fourier transform infra-red (FTIR) spectrogram indicates the involvement of carboxyl, amine and hydroxyl groups in the formation of CdS NPs. Transmission electron microscope (TEM) result reveals that the average size of the NPs is around 1.48 nm.

  7. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  8. Degradation of 4-Chlorophenol Under Sunlight Using ZnO Nanoparticles as Catalysts

    NASA Astrophysics Data System (ADS)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Sherazi, Tufail H.; Kumar, Raj

    2018-03-01

    Herein we demonstrate a simplistic microwave assisted chemical precipitation approach regarding the synthesis of zinc oxide nanoparticles. As-prepared ZnO nanoparticles (NPs) were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy, atomic force microscopy and x-ray diffractometry and scrutinized as photo-catalysts for degradation of 4-chlorophenol (4-CP) under sunlight. The study substantiated that 98.5% of 4-CP was degraded within 20 min in the absence of initiator like H2O2 which reflects an outstanding prospective use for ZnO NPs as photo-catalysts. The nanocatalysts were recycled four times and still showed catalytic efficiency up to 95.5% for degradation of 4-CP in the specified 20 min.

  9. Green-light-emitting electroluminescent device based on a new cadmium complex

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Srivastava, Ritu; Kumar, Akshay; Kamalasanan, M. N.; Singh, K.

    2010-06-01

    A new cadmium complex is synthesized to investigate its stability and applicability for a luminescent device. The as-prepared Cd(Bpy)q sample is characterized by Fourier-transformed infra-red spectroscopy (FTIR), thermal gravimetric analyzer (TGA) and photoluminescence (PL). The prepared sample shows excellent thermal stability up to 380 °C. A maximum is observed at 240 nm in absorption spectra which is attributed to the π-π* transition. An organic-light-emitting diode (OLED) has been fabricated using this material. The fundamental structures of the device exhibit ITO/α-NPD/Cd(Bpy)q/BCP/Alq3/LiF/Al. The electroluminescence (EL) device emits bright green light with maximum luminescence 1683 cd/m2 at 20 V.

  10. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    PubMed

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  12. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    NASA Astrophysics Data System (ADS)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  13. Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals

    NASA Astrophysics Data System (ADS)

    Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2017-12-01

    The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.

  14. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2015-03-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.

  15. [Tissue oxygen saturation in the critically ill patient].

    PubMed

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  16. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGES

    Patel, Mogon; Bowditch, Martin; Jones, Ben; ...

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-EN TM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cmmore » -1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  17. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  18. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Chudinov, Vasiliy, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Bilalov, Dmitry, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer andmore » a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.« less

  19. Detection of creatinine enriched on a surface imprinted polystyrene film using FT-ATR-IR.

    PubMed

    Sreenivasan, K

    2006-01-01

    The surface of polystyrene (PS) was chemically modified by coating a thin layer of polyaniline (PANI) by oxidizing aniline using ammonium persulfate. Affinity sites for creatinine, a clinically relevant molecule, were created in the coated layer by adding creatinine as print molecules during the oxidation. The imprinted layer adsorbed creatinine was compared to non-imprinted surface reflecting the creation of creatinine-specific sites on the surface. The equilibrium was attained rapidly, indicating that a material of this kind is suitable for sensing applications. The adsorbed creatinine on the surface was detected using the technique of Fourier transform attenuated total internal reflection infra red spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface can enrich molecules of interest and the enriched molecules can be detected using FT-IR.

  20. Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization

    PubMed Central

    Arulkumar, Subramanian; Sabesan, Muthukumaran

    2010-01-01

    Backgorund: Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving an important branch of nanotechnology. Methods: The bioreduction behavior of plant seed extract of Mucuna pruriens in the synthesis of silver nanoparticles was investigated employing UV/visible spectrophotometry, X-ray diffraction (XRD), and transmission electron microscopy (TEM), Fourier transform – infra red (FT- IR). Result: M. pruriens was found to exhibit strong potential for rapid reduction of silver ions. The formation of nanoparticles by this method is extremely rapid, requires no toxic chemicals, and the nanoparticles are stable for several months. Conclusion: The main conclusion is that the bioreduction method to produce nanoparticles is a good alternative to the electrochemical methods and it is expected to be biocompatible. PMID:21808573

  1. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    PubMed

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  2. Chemical polymerization and characterization of surfactant directed of polypyrrole-tannin-CTAB nanocomposites

    NASA Astrophysics Data System (ADS)

    Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Lim, Hong Ngee; Tahir, Paridah Md; Razalli, Rawaida Liyana; Hoong, Yeoh Beng

    2017-12-01

    In this research, Tannin (TA) from Acacia mangium tree was used to modify polypyrrole (PPy) composite with enhanced physical and structural properties. Composite nanostructure preparation was done in the presence of cationic surfactant, cetyltrimethylammonium bromide (CTAB) to improve surface area and electron transferring of resulting polymer. The Fourier Transform InfraRed (FT-IR) spectrum showed the characteristics peaks of functional group of PPy, TA, and CTAB in the resulting composite indicating the incorporation of TA and CTAB into PPy structure. The spherical structure was observed for PPy/TA prepared in the presence of CTAB with higher porosity compared with the PPy/TA. Cyclic voltammograms of modified SPE electrode using Ppy/TA/CTAB showed enhanced current response compared with the electrode modified by only PPy or PPy/TA.

  3. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Galaleldin, S.; Mannan, H. A.; Mukhtar, H.

    2017-12-01

    In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.

  4. Structural analysis of the industrial grade calcite

    NASA Astrophysics Data System (ADS)

    Shah, Rajiv P.; Raval, Kamlesh G.

    2017-05-01

    The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries

  5. Effect of tungsten concentration on growth of acetobacter xylinum as a promising agent for eco-friendly recycling system

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Halimatul, H. S.; Rosyid, N. H.; Effendi, D. B.

    2016-04-01

    Effect of tungsten (W) concentration on Acetobacter xylinum growth was studied. In the experimental procedure, concentration of W in the bacterial growth medium containing pineapple peels waste was varied from 0.5 to 50 ppm. To confirm the influence of W, the bacterial incubation process was carried out for 72 hours. Spectrophotometer analysis showed that the growth rate of Acetobacter xylinum decreased with increasing concentration of W. The result from fourier transform infra red analysis showed a slightly change on the absorption peak intensities and informing the interaction of W ion and bacteria cell. The result confirmed that Acetobacter xylinum was able to uptake W concentration up to 15 ppm, indicating that Acetobacter xylinum might act as a promising agent for eco-friendly recycling system.

  6. Standardization of Shodhita Naga with special reference to thermogravimetry and infra-red spectroscopy.

    PubMed

    Rajput, Dhirajsingh S; Patgiri, Biswajyoti; Shukla, Vinay J

    2014-01-01

    Standardization of Ayurvedic medicine is the need of hour to obtain desired quality of final product. Shodhana literally means purification, is the initial step to make drugs like metals, minerals and poisonous herbs suitable for further procedure. Shodhana of metals/minerals help to expose maximum surface area of drug for chemical reactions and also in impregnation of organic materials and their properties in the drug. Thermo-gravimetric analysis (TGA) facilitates in identifying the presence of organic matter and change in the melting point of metal whereas Fourier transform infra-red spectroscopy (FTIR) assists in identifying the presence of various functional groups. To standardize the process of Naga Shodhana and to study the change in chemical nature of Shodhita Naga in each media through TGA and FTIR. Samanya and Vishesha Shodhana of Naga was carried out. Time taken for melting of Naga, physico-chemical changes in media used for Shodhana and weight changes after Shodhana were recorded. Samples of Naga were collected after Shodhana in each media for TGA and FTIR analysis. Average loss occurred during Shodhana was 6.26%. Melting point of Ashuddha Naga was 327.46°C, and it was 328.42°C after Shodhana. Percentage purity of Naga (percentage of lead in Naga) decreased after Shodhana from 99.80% to 99.40%. FTIR analysis of Shodhita Naga in each sample showed stretching vibrations particularly between C-H and C-N bonds that are indicating the presence of various organic compounds. According to TGA and FTIR analysis, Shodhana process increases melting point of Naga and initiation of new physico-chemical properties which are indicated by detection of large number of functional groups and organo-metallic nature of Shodhita Naga.

  7. Standardization of Shodhita Naga with special reference to thermogravimetry and infra-red spectroscopy

    PubMed Central

    Rajput, Dhirajsingh S.; Patgiri, Biswajyoti; Shukla, Vinay J.

    2014-01-01

    Background: Standardization of Ayurvedic medicine is the need of hour to obtain desired quality of final product. Shodhana literally means purification, is the initial step to make drugs like metals, minerals and poisonous herbs suitable for further procedure. Shodhana of metals/minerals help to expose maximum surface area of drug for chemical reactions and also in impregnation of organic materials and their properties in the drug. Thermo-gravimetric analysis (TGA) facilitates in identifying the presence of organic matter and change in the melting point of metal whereas Fourier transform infra-red spectroscopy (FTIR) assists in identifying the presence of various functional groups. Aim: To standardize the process of Naga Shodhana and to study the change in chemical nature of Shodhita Naga in each media through TGA and FTIR. Material and Methods: Samanya and Vishesha Shodhana of Naga was carried out. Time taken for melting of Naga, physico-chemical changes in media used for Shodhana and weight changes after Shodhana were recorded. Samples of Naga were collected after Shodhana in each media for TGA and FTIR analysis. Results: Average loss occurred during Shodhana was 6.26%. Melting point of Ashuddha Naga was 327.46°C, and it was 328.42°C after Shodhana. Percentage purity of Naga (percentage of lead in Naga) decreased after Shodhana from 99.80% to 99.40%. FTIR analysis of Shodhita Naga in each sample showed stretching vibrations particularly between C-H and C-N bonds that are indicating the presence of various organic compounds. Conclusion: According to TGA and FTIR analysis, Shodhana process increases melting point of Naga and initiation of new physico-chemical properties which are indicated by detection of large number of functional groups and organo-metallic nature of Shodhita Naga. PMID:26664241

  8. Spectrally resolved laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip

    2018-07-01

    We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.

  9. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar

    2013-08-01

    Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.

  10. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  11. 40 CFR 1065.250 - Nondispersive infra-red analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analyzer that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no...

  12. 40 CFR 1065.250 - Nondispersive infra-red analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analyzer that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no...

  13. The thermal conductance of solid-lubricated bearings at cryogenic temperatures in vacuum

    NASA Technical Reports Server (NTRS)

    Anderson, M. J.

    1996-01-01

    The thermal conductance of Hertzian contacts is of great importance to cryogenic spacecraft mechanisms such as the Infra-Red Space Observatory (ISO) and the Far Infra-Red Space Telescope (FIRST). At cryogenic temperatures, cooling of mechanism shafts and associated components occurs via conduction through the bearings. When fluid lubricants are cooled below their pour points, they no longer lubricate effectively, and it is necessary to use low shear strength solid lubricants. Currently, only very limited low temperature data exists on the thermal conductance of Hertzian contacts in both unlubricated and lubricated conditions. This paper reports on measurements of thermal conductance made on stationary ball bearings under cryo-vacuum conditions. Quantitative data is provided to support the development of computer models predicting the thermal conductance of Hertzian contacts and solid lubricants at cryogenic temperatures.

  14. The effects of ionizing radiations on L-, DL-phenylalanine and L-, DL- tryptophase studied by ultra-violet and infra-red spectrophotometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korgaonkar, K S; Donde, R B

    Aqueous solutions of L-, DL-phenylalanlne and L-, DLtryptophane were irradiated with Co 60 gamma rays. Marked changes in the ultraviolet spectra of the samples and in the infra-red spectra of their solid residues were noted. The radiosensitivities of these irradiated molecules in terms of G-values were determined, and the modes of action and the nature of irradiation products are discussed. A common order of radiosensitivities among the three aromatic amino acids both L-, and DL-forms is observed. Apparent differences In the ultraviolet spectral responses of tryptophane on the one hand and phenylalanine and tyrosine on the other are explained. Evidencemore » is presented suggesting some common radiation end-product of a cellulose or sugar type from these aromatic amino acids.« less

  15. ASPIRE - Airborne Spectro-Polarization InfraRed Experiment

    NASA Astrophysics Data System (ADS)

    DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.

    2017-12-01

    Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.

  16. Resumes of the Bird mission

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  17. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10(-3)). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10(-2)) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741-753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  18. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Thamri, Atef; Baccar, Hamdi; Struzzi, Claudia; Bittencourt, Carla; Abdelghani, Adnane; Llobet, Eduard

    2016-10-01

    The chemical modification of multiwalled carbon nanotubes (MWCNTs) with a long chain mercapto acid is reported as a way to improve sensitivity and response time of gas sensors for detecting alcohols, acetone and toxic gases such as DMMP. We have developed sensors employing MWCNTs decorated with gold nanoparticles and modified with a 16-mercaptohexadecanoic acid (MHDA) monolayer. Morphological and compositional analysis by Transmission Electron Microscopy (TEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray photoelectron spectroscopy were performed to characterize the gold nanoparticles and to check the bonding of the thiol monolayer. The detection of aromatic and non-aromatic volatiles and DMMP vapors by MWCNT/Au and MWCNT/Au/MHDA shows that the presence of the self-assembled layer increases sensitivity and selectivity towards non-aromatics. Furthermore, it ameliorates response dynamics, and significantly reduces nitrogen dioxide and moisture cross-sensitivity.

  19. In-vitro study of copper doped SiO2-CaO-P2O5 system for bioactivity and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Kaur, Harpreet; Arora, Daljit Singh

    2015-08-01

    Samples of the xCuO-(45-x)CaO-10P2O5-45SiO2 system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu2+and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensure the use of prepared material as biomaterial with good antibacterial properties.

  20. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  1. Biosignature Characterization: from Lab to Space

    NASA Astrophysics Data System (ADS)

    Schierano, Debora; Baqué, Mickael; Billi, Daniela; Pace, Emanuele; Cestelli Guidi, Mariangela; Claudi, Riccardo; Verseux, Cyprien; Erculiani, Marco Sergio

    Kepler mission recently discovered tens of alien planets in the habitable zone. In the next few decades, high resolution transmission spectroscopy of exoplanet atmospheres could reveal the presence or the abundance of molecules with a biological origin: the so-called biomarkers. This paper presents a new experimental setup for a laboratory study and for the optical characterization of biomarkers in the atmosphere. In order to carry out this experiment, a secondary atmosphere has been modified through the metabolic action of microorganisms, recreating an environment in which temperature, pressure and chemical composition are controlled. In particular, a bacterial colony placed in a gas cell was exposed to radiation corresponding to that produced by G and M-class stars in the habitable zone. The so produced atmosphere’s transmission spectra have been recorded with a Fourier-Transform InfraRed (FT-IR) interferometer in the NIR region.

  2. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  3. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  4. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  5. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increasemore » with the ionic liquid ratio.« less

  6. Influence of Brij58 on the Characteristic and Performance of PES Membrane for Water Treatment Process

    NASA Astrophysics Data System (ADS)

    Mukramah; Syawaliah; Mulyati, S.; Arahman, N.

    2017-03-01

    This study proposes a modification of polyether sulfone (PES) membrane by blending the polymer with a hydrophilic additive of Brij-58. Flat-sheet PES membrane was prepared through a non-solvent induced phase separation (NIPS) method using dimethylformamide (DMF) as a solvent. PES membrane was modified by adding Brij-58 into dope solution at a different concentration, i.e 1, 3, 5, 7, and 10 wt %. The fabricated membranes were characterized by means of Scanning Electron Microscopy (SEM) and Fourier Transform Infra-Red (FTIR) spectroscopy. Filtration performance of membrane was analyzed by using a dead-end module. It is found that the addition of a small amount of Brij into polymer solution brought about the increase of water flux. FT-IR investigation showed that the additive exist on the surface of a blended membrane.

  7. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria

    NASA Astrophysics Data System (ADS)

    Mahfoudh, Ahlem; Barbeau, Jean; Moisan, Michel; Leduc, Annie; Séguin, Jacynthe

    2010-03-01

    Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.

  8. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  9. Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and heteropolyaromatic dyes.

    PubMed

    Kumar, Madhava Anil; Kumar, Vaidyanathan Vinoth; Premkumar, Manickam Periyaraman; Baskaralingam, Palanichamy; Thiruvengadaravi, Kadathur Varathachary; Dhanasekaran, Anuradha; Sivanesan, Subramanian

    2012-11-01

    A bacterial consortium-AVS, consisting of Pseudomonas desmolyticum NCIM 2112, Kocuria rosea MTCC 1532 and Micrococcus glutamicus NCIM 2168 was formulated chemometrically, using the mixture design matrix based on the design of experiments methodology. The formulated consortium-AVS decolorized acid blue 15 and methylene blue with a higher average decolorization rate, which is more rapid than that of the pure cultures. The UV-vis spectrophotometric, Fourier transform infra red spectrophotometric and high performance liquid chromatographic analysis confirm that the decolorization was due to biodegradation by oxido-reductive enzymes, produced by the consortium-AVS. The toxicological assessment of plant growth parameters and the chlorophyll pigment concentrations of Phaseolus mungo and Triticum aestivum seedlings revealed the reduced toxic nature of the biodegraded products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method

    PubMed Central

    2014-01-01

    The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures. PMID:25221453

  11. Improved infra-red procedure for the evaluation of calibrating units.

    DOT National Transportation Integrated Search

    2011-01-04

    Introduction. The NHTSA Model Specifications for Calibrating Units for Breath : Alcohol Testers (FR 72 34742-34748) requires that calibration units submitted for : inclusion on the NHTSA Conforming Products List for such devices be evaluated using : ...

  12. New SPIRITS discoveries of Infrared Transients and Variables

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2017-10-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488).

  13. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  14. Solar energy apparatus with apertured shield

    NASA Technical Reports Server (NTRS)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  15. Infra-red technique for cerebral blood flow: comparison with /sup 133/Xenon clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colacino, J.M.; Grubb, B.; Joebsis, F.F.

    A rapid infra-red optical technique has been developed for the measurement of cerebral blood flow. The method measures optical density changes across the intact skull during the passage of a bolus of the dye. Cardio-Green (CG). The clearance curves obtained for CG boluses are very short (less than 30 sec) in comparison with those obtained with tracers such as /sup 133/Xenon (10-30 min) that distribute into cerebral tissue. The volume of distribution of CG is totally intravascular, and the dye is relatively slowly cleared from the body. The important advantages of this spectrophotometric technique are its speed, versatility, and themore » avoidance of radioactive materials. The differential spectrophotometer used in this study, with trivial modifications, has been used to monitor changes in brain blood volume, oxygen saturation of hemoglobin, and cortical mitochondrial respiratory function, which illustrate the versatility of the technique for neurological assessments.« less

  16. Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Sivadasan, A. K.; Parida, Santanu; Ghosh, Subrata; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light-matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.

  17. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening.

    PubMed

    Young, Nigel; Fairley, Peter; Mohan, Veena; Jumeaux, Coline

    2012-12-01

    Tooth whitening using hydrogen peroxide is a complex process, and there is still some controversy about the roles of pH, temperature, chemical activators, and the use of light irradiation. In this work the basic interactions between whitening agents and stain molecules are studied in simple solutions, thus avoiding the physics of diffusion and light penetration in the tooth to give clarity on the basic chemistry which is occurring. The absorbance of tea stain solution at 450 nm was measured over a period of 40 min, with various compositions of whitening agent added (including hydrogen peroxide, ferrous gluconate and potassium hydroxide) and at the same time the samples were subjected to blue light (465 nm) or infra-red light (850 nm) irradiation, or alternatively they were heated to 37°C. It is shown that the reaction rates between chromogens in the tea solution and hydrogen peroxide can be accelerated significantly using ferrous gluconate activator and blue light irradiation. Infra red irradiation does not increase the reaction rate through photochemistry, it serves only to increase the temperature. Raising the temperature leads to inefficiency through the acceleration of exothermic decomposition reactions which produce only water and oxygen. By carrying out work in simple solution it was possible to show that ferrous activators and blue light irradiation significantly enhance the whitening process, whereas infra red irradiation has no significant effect over heating. The importance of controlling the pH within the tooth structure during whitening is also demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Early Warning Systems Assure Safe Schools

    ERIC Educational Resources Information Center

    Greenhalgh, John

    1973-01-01

    Fairfield, Connecticut, public schools are protected by an automatic fire detection system covering every area of every building through an electric monitor. An intrusion alarm system that relies primarily on pulsed infra-red beams protects the plant investment. (Author/MF)

  19. An investigation into the use of road drainage structures by wildlife in Maryland.

    DOT National Transportation Integrated Search

    2011-08-01

    The research team documented culvert use by 57 species of vertebrates with both infra-red motion detecting digital : game cameras and visual sightings. Species affiliations with culvert characteristics were analyzed using 2 : statistics, Canonical ...

  20. Smart infrared inspection system field operational test.

    DOT National Transportation Integrated Search

    2014-04-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles : passing through the system are in need of further inspection by measuring the thermal data from the wheel : components. As a vehicle ...

  1. Evaluation of infrared brake screening technology : final report & appendices

    DOT National Transportation Integrated Search

    2000-12-01

    This report documents the results of a field evaluation of the InfraRed Inspection System (IRISystem). The objective of the evaluation was to determine the effectiveness of the IRISystem in enhancing the screening of commercial motor vehicles (CMVs) ...

  2. The use of far infra-red radiation for the detection of concealed metal objects

    DOT National Transportation Integrated Search

    1971-11-01

    The use of infrared radiation for the detection of concealed metal objects has been investigated both theoretically and experimentally. The investigation was divided into two phases, one which considered passive techniques, and another which involved...

  3. The use of far infra-red radiation for the detection of concealed metal objects.

    DOT National Transportation Integrated Search

    1971-11-01

    Abstract The use of infrared radiation for the detection : of concealed metal objects has been investigated both : theoretically and experimentally. The investigation was : divided into two phases, one which considered passive : techniques, and anoth...

  4. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  5. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  6. Asbestiform minerals in ophiolitic rocks of Calabria (southern Italy).

    PubMed

    Campopiano, Antonella; Olori, Angelo; Spadafora, Alessandra; Rosaria Bruno, Maria; Angelosanto, Federica; Iannò, Antonino; Casciardi, Stefano; Giardino, Renato; Conte, Maurizio; Oranges, Teresa; Iavicoli, Sergio

    2018-03-22

    Ophiolitic rocks cropping on Calabria territory, southern Italy, can hold asbestiform minerals potentially harmful for human health. The aim of this work was to detect the fibrous phases of ophiolites along the Coastal Chain of northern Calabria and southern part of the Sila massif. Above 220 massive samples were collected in the study areas and analyzed using optical and electron microscopy, X-ray diffractometry, and Fourier transform infra-red spectrometry. The main fibrous constituent belonged to tremolite-actinolite series followed by fibrous antigorite that becomes more abundant in the samples collected in Reventino Mount surroundings. Results highlighted that serpentinites samples mainly consisted of antigorite and minor chrysotile. Samples collected along the coastal chain of northern Calabria did not hold fibrous materials. The results will be useful for Italian natural occurrences of asbestos (NOA) mapping in order to avoid an unintentional exposition by human activity or weathering processes.

  7. 3D-FFT for Signature Detection in LWIR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier spacemore » can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.« less

  8. In-vitro study of copper doped SiO{sub 2}-CaO-P{sub 2}O{sub 5} system for bioactivity and antimicrobial properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Kulwinder; Singh, K. J., E-mail: kanwarjitsingh@yahoo.com; Anand, Vikas

    Samples of the xCuO-(45-x)CaO-10P{sub 2}O{sub 5}-45SiO{sub 2} system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu{sup 2+}and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensuremore » the use of prepared material as biomaterial with good antibacterial properties.« less

  9. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  10. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  11. Comparative study of modified bitumen binder properties collected from mixing plant and quarry.

    NASA Astrophysics Data System (ADS)

    Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.

    2017-11-01

    Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.

  12. Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive.

    PubMed

    Wu, Jianguo; Zhang, Xin; Wan, Jilin; Ma, Fuying; Tang, Yong; Zhang, Xiaoyu

    2011-12-01

    Corn stalk pretreated with white-rot fungus Trametes hirsute was used to produce fiberboard by hot pressing without adhesive. The moduli of rupture and elasticity of the corn-stalk-based fiberboard were increased 3.40- and 8.87-fold when bio-pretreated rather than untreated corn stalk was used. Fourier transform infra-red spectroscopy, X-ray diffraction, and chemical analysis showed that bio-pretreated corn stalk increased the mechanical properties of the fiberboard because it had more than twice the number of hydroxyl group, an 18% higher crystallinity, and twice the polysaccharide content of untreated corn stalk. Its laccase content was 4.65 ± 0.38 U/g. Corn stalk-based fiberboard production did not require adhesives, thus eliminating a potential source of toxic emissions such as formaldehyde gas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus.

    PubMed

    Latha, M; Sumathi, M; Manikandan, R; Arumugam, A; Prabhu, N M

    2015-05-01

    In the present investigation, we described the green synthesis of silver nanoparticles using plant leaf extract of Hemidesmus indicus. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM images proved that the synthesized silver nanoparticles were spherical in shape with an average particle size of 25.24 nm. To evaluate antibacterial efficacy, bacteria was isolated from poultry gut and subjected to 16S rRNA characterization and confirmed as Shigella sonnei. The in vitro antibacterial efficacy of synthesized silver nanoparticles was studied by agar bioassay, well diffusion and confocal laser scanning microscopy (CLSM) assay. The H. indicus mediated synthesis of silver nanoparticles shows rapid synthesis and higher inhibitory activity (34 ± 0.2 mm) against isolated bacteria S. sonnei at 40 μg/ml. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities.

    PubMed

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  16. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    PubMed

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  17. Significance of clustering and classification applications in digital and physical libraries

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioannis; Koulouris, Alexandros; Zervos, Spiros; Dendrinos, Markos; Giannakopoulos, Georgios

    2015-02-01

    Applications of clustering and classification techniques can be proved very significant in both digital and physical (paper-based) libraries. The most essential application, document classification and clustering, is crucial for the content that is produced and maintained in digital libraries, repositories, databases, social media, blogs etc., based on various tags and ontology elements, transcending the traditional library-oriented classification schemes. Other applications with very useful and beneficial role in the new digital library environment involve document routing, summarization and query expansion. Paper-based libraries can benefit as well since classification combined with advanced material characterization techniques such as FTIR (Fourier Transform InfraRed spectroscopy) can be vital for the study and prevention of material deterioration. An improved two-level self-organizing clustering architecture is proposed in order to enhance the discrimination capacity of the learning space, prior to classification, yielding promising results when applied to the above mentioned library tasks.

  18. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  19. Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films.

    PubMed

    Azzaoui, K; Mejdoubi, E; Lamhamdi, A; Zaoui, S; Berrabah, M; Elidrissi, A; Hammouti, B; Fouda, Moustafa M G; Al-Deyab, Salem S

    2015-01-22

    The main aim of this research work was to develop a new inorganic-organic film. Hydroxyapaptite (HAp) particles that represent the inorganic phase was mixed well with hydroxyethyl cellulose acetate (HECA), which representing the organic phase and then the inorganic-organic films were fabricated by evaporating of the solvent. The structure as well as the properties of the formed films were characterized using different analytical tools such as field emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectroscopy. The obtained results revealed that, the HAp nanoparticles was well dispersed and well immobilized throughout the formed films. This can be attributed to the role of the nano- and micropores in the HECA substrate. In addition, a strong interaction occurred between HAp and HECA matrix. The results showed also good thermal stability and miscibility as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances.

    PubMed

    Azzaoui, Khalil; Lamhamdi, Abdelatif; Mejdoubi, El Miloud; Berrabah, Mohammed; Hammouti, Belkheir; Elidrissi, Abderrahman; Fouda, Moustafa M G; Al-Deyab, Salem S

    2014-10-13

    The aim of this work is to develop composite materials with hydroxyapatite (HAp) mineral and organic matrix such as cellulosic polymers. We use cellulose acetate with different percentages, and then inorganic-organic films were fabricated by evaporation of solvent. The composite films were characterized using emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FT-IR) spectra. Test results show that these films are uniform and have good ductility. A strong interaction existed between HAp and cellulosic polymers, and the method allows the production of very fine particles size of about 92 nm. We have developed a new chromatographic method for the quantification of bisphenol A (BPA) in samples of baby food. The result of this study demonstrates how to use this type of composite materials to remove pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  2. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng; Aluyor, E.; Audu, T.

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used tomore » predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.« less

  3. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  4. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes.

    PubMed

    Sekowski, Szymon; Ionov, Maksim; Dubis, Alina; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2016-04-01

    We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.

  5. Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet

    Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.

  6. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ramesh, E-mail: rameshphysicsdu@gmail.com; Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm{sup −1} respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp{sup 2} hybridisation of carbon atoms at 1560 cm{sup −1}. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such asmore » methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.« less

  7. Graphene oxide nanostructures modified multifunctional cotton fabrics

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Navaneethaiyer, Umasuthan; Mohan, Rajneesh; Lee, Jehee; Kim, Sang-Jae

    2012-06-01

    Surface modification of cotton fabrics using graphene oxide (GO) nanostructures was reported. Scanning electron microscopic (SEM) investigations revealed that the GO nanostructure was coated onto the cotton fabric. The molecular level interaction between the graphene oxide and the cotton fabric is studied in detail using the Fourier transform infra-red (FTIR) spectra. Thermogravimetric analysis (TGA) showed that GO loaded cotton fabrics have enhanced thermal stability compared to the bare cotton fabrics. The photocatalytic activity of the GO-coated cotton fabrics was investigated by measuring the photoreduction of resazurin (RZ) into resorufin (RF) under UV light irradiation. The antibacterial activity was evaluated against both Gram-negative and Gram-positive bacteria and the results indicated that the GO-coated cotton fabrics are more toxic towards the Gram-positive ones. Our results provide a way to develop graphene oxide-based devices for the biomedical applications for improving health care.

  8. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    NASA Astrophysics Data System (ADS)

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-01

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R2), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  9. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  10. Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate

    NASA Astrophysics Data System (ADS)

    Hajian, Robabeh; Ehsanikhah, Amin

    2018-01-01

    This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.

  11. Preparation and characterization of 'green' hybrid clay-dye nanopigments

    NASA Astrophysics Data System (ADS)

    Kaya, Mehmet; Onganer, Yavuz; Tabak, Ahmet

    2015-03-01

    We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200-500 °C compared to the raw bentonite.

  12. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  13. The Physical Basis Of Diaphanography

    NASA Astrophysics Data System (ADS)

    Shalev, S.; Linford, J.; Bews, J.; Arenson, J.

    1985-09-01

    Interest in diaphanography for the early diagnosis of breast cancer is increasing, and a number of clinical trials are being conducted. However, little is known about the transmission of light through tissue, or the mechanism by which shadows of lesions are formed. In this work we are studying the scattering and absorption of infra-red light by homogeneous suspensions of red blood, sarcoma and leukemia cells, as well as both normal and pathological samples of human breast tissue.

  14. The V-K colours of the nuclei of bright galaxies

    NASA Technical Reports Server (NTRS)

    Penston, M. V.

    1973-01-01

    Photometric observations of the nuclei of the galaxies M32, M33, M51, NGC5195 and M101 are reported. These give U-B, B-V, H-K and V-K colours for each object and the K-L colour for M32. No short-wavelength infra-red excesses are found. For M32, published population models (Spinrad & Taylor) predict a V-K colour too red to be compatible with the observations.

  15. Luciola Hypertelescope Space Observatory. Versatile, Upgradable High-Resolution Imaging,from Stars to Deep-Field Cosmology

    NASA Technical Reports Server (NTRS)

    Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Lardiere, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.

    2008-01-01

    Luciola is a large (one kilometer) "multi-aperture densified-pupil imaging interferometer", or "hypertelescope" employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a pupil densifier micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having hundreds of thousands of individual receivers . With its high limiting magnitude, reaching the mv=30 limit of HST when 100 collectors of 25cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1200 Angstrom ultra-violet to the 20 micron infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras ( currently 200 to 1000nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120nm to 20 microns, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6m2 , using a specialized mid infra-red focal spacecraft. Calculations ( Boccaletti et al., 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie. & Le Coroller, 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red . Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary Direct Imaging Field , and limiting magnitude, approaching that of an 8-meter space telescope when 1000 apertures of 25cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flasheshich may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, 1994) , will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue ( Ragazzoni et al., 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015-2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.

  16. Hyperspectral remote sensing of foliar nitrogen content

    USDA-ARS?s Scientific Manuscript database

    A strong positive correlation between vegetation canopy Bidirectional Reflectance Factor (BRF) in the Near'InfraRed (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional...

  17. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    PubMed

    Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.

  18. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    PubMed Central

    Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images. PMID:29874262

  19. Cirrus Horizontal Heterogeneity Effects on Cloud Optical Properties Retrieved from MODIS VNIR to TIR Channels as a Function of the Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.

    2017-12-01

    Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.

  20. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  1. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purposes of this subpart, means to take action for the purpose of stopping or reducing leakage of.... Liquids dripping means any visible leakage from the seal including dripping, spraying, misting, clouding... compounds based on a detection principle such as infra-red, photo ionization, or thermal conductivity...

  2. LIGHT TITRATIONS

    PubMed Central

    Field, John; Baas-Becking, Lourens G. M.

    1926-01-01

    1. The usefulness of the radiomicrometer in titration work has been pointed out. The authors suggest that light titration may also be used where a reaction mixture changes its absorption in the (near) infra-red. 2. The applicability of this method to the starch-iodine reaction has been demonstrated. PMID:19872266

  3. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  4. Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings.

    PubMed

    Jérôme, Christine; Aqil, Abdelhafid; Voccia, Samuël; Labaye, David-Emmanuel; Maquet, Véronique; Gautier, Sandrine; Bertrand, Olivier F; Jérôme, Robert

    2006-03-01

    This article reports on a novel two-step strategy for the coating of cardiovascular stents by strongly adhering biocompatible and biodegradable aliphatic polyesters. First, a precoating of poly(ethylacrylate) (PEA) was electrografted onto the metallic substrate by cathodic reduction of the parent monomer in dimethylformamide (DMF). The electrodeposition of PEA, in a good solvent of it, was confirmed by both Infra-red and Raman spectroscopies. The pendant ester groups of PEA were then chemically reduced into aluminum alkoxides, able to initiate the ring-opening polymerization (ROP) of either D,L-lactide (LA) or epsilon-caprolactone (CL). Growth of biodegradable PLA or PCL coatings from the adhering precoating was confirmed by both Infra-red and Raman spectroscopies, and directly observed by scanning electron microscopy (SEM). This type of coating can act as an anchoring layer for the subsequent casting of drug-loaded polyester films allowing the controlled release of antiproliferative agents for the treatment of in-stent restenosis. (c) 2005 Wiley Periodicals, Inc.

  5. Effect of RF power and annealing on chemical bonding and morphology of a-CN{sub x} thin films as humidity sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, N. F. H; Hussain, N. S. Mohamed; Awang, R.

    2013-11-27

    Amorphous carbon nitride (a-CN{sub x}) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique. A set of a-CN{sub x} thin films were prepared using pure methane (CH{sub 4}) gas diluted with nitrogen (N{sub 2}) gas. The rf power was varied at 50, 60, 70, 80, 90 and 100 W. These films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The effects of rf power and thermal annealing on the chemical bonding and morphology of these samples were studied. Surface profilometer was used to measure film thickness. Fourier transformmore » infra-red spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) measurements were used to determine their chemical bonding and morphology respectively. The deposition rate of the films increased constantly with increasing rf power up to 80W, before decreasing with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks included C-N, C=N, C=C and C≡N triple bond. C=N and C≡N bonds decreased with increased C-N bonds after thermal annealing process. The FESEM images showed that the structure is porous for as-deposited and covered by granule-like grain structure after thermal annealing process was done. The resistance of the a-CN{sub x} thin film changed from 23.765 kΩ to 5.845 kΩ in the relative humidity range of 5 to 92 % and the film shows a good response and repeatability as a humidity sensing materials. This work showed that rf power and thermal annealing has significant effects on the chemical bonding and surface morphology of the a-CN{sub x} films and but yield films which are potential candidate as humidity sensor device.« less

  6. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows intense green emission so the prepared phosphor is may be useful for green light emitting diode (GLED) application.

  7. GaAs/Al(x)Ga(1-x)As quantum well infra-red photodetectors with cutoff wavelength lambda(c) = 14.9 microns

    NASA Technical Reports Server (NTRS)

    Zussman, A.; Levine, B. F.; Hong, M.; Mannaerts, J. P.

    1991-01-01

    The longest-wavelength quantum well infrared photodetector (QWIP) ever measured is demonstrated. This QWIP has a cutoff wavelength of 14.9 microns. The results show that even longer wavelength detectors should be possible.

  8. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos,; Stavros, Staggs [Livermore, CA; Michael, C [Tracy, CA

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  9. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  10. NOAA Photo Library - NOAA In Space Collection

    Science.gov Websites

    and Infra-Red Observation Satellite. Data from this first meteorological satellite was processed at the Weather Bureau's Meteorological Satellite Laboratory. This laboratory ultimately evolved into the satellite operations of NOAA's National Environmental Satellite, Data, and Information Service (NESDIS

  11. Further Storm Approaches Western Europe

    NASA Image and Video Library

    2014-02-14

    This composite image shows the weather situation over Europe at 12:00 UTC on 13 February 2014. The image is composed of infra-red imagery from the geostationary satellites of EUMETSAT and NOAA, overlaid on NASA's Blue Marble land imagery. Copyright: 2014 EUMETSAT, www.flickr.com/photos/eumetsat/12500210655

  12. Science and Technology Text Mining: Global Technology Watch

    DTIC Science & Technology

    2003-07-01

    22217 PHONE: 703-696-4198 FAX: 703-696-4274 INTERNET: KOSTOFR@ONR.NAVY.MIL http:// ww2 .onr.navy.mil/test/technowatch/default.htm (THE VIEWS IN THIS...is used in science and technology as an abbreviation for InfraRed (physics), Immuno-Reactivity (biology), Ischemia-Reperfusion (medicine), current(I

  13. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  14. NOAA Photo Library

    Science.gov Websites

    - spac0118 Overhead view of a TIROS satellite showing interior arrangement of satellite sensing packages including TV cameras and infra-red sensors. In: "TIROS A Story of Achievement" RCA, February 28 /Graphic/Satellite/ * High Resolution Photo Available Publication of the U.S. Department of Commerce

  15. NOAA Photo Library

    Science.gov Websites

    cells. TIROS II was the first meteorological satellite to have infra-red sensors as well as television - spac0116 Making adjustments to TIROS II satellite prior to launch. Small square objects are 9,260 solar Collection Photo Date: 1960, November Category: Space/Satellite/Vehicle/ * High Resolution Photo Available

  16. UTILITY OF A WIDE SPECTRUM LIGHT METER AS AN UNDERWATER SENSOR OF PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR)

    EPA Science Inventory

    The strong attenuation of infra red wavelengths (>700 nm) in coastal waters is suggestive that some instruments with broad spectral responses might be useful, inexpensive substitutes for PAR sensors in studies of estuarine plant dynamics. Wide spectrum (350-1100 nm) light intensi...

  17. Neural Correlates of Infant Accent Discrimination: An fNIRS Study

    ERIC Educational Resources Information Center

    Cristia, Alejandrina; Minagawa-Kawai, Yasuyo; Egorova, Natalia; Gervain, Judit; Filippin, Luca; Cabrol, Dominique; Dupoux, Emmanuel

    2014-01-01

    The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas…

  18. Battlefield training in impaired visibility

    NASA Astrophysics Data System (ADS)

    Gammarino, Rudolph R.; Surhigh, James W.

    1991-04-01

    A laser training system entitled Shoot Through Obscuration MILES (STOM) is being developed to operate with Forward Looking InfraRed (FLIR) systems during battlefield exercises where visibility is impaired. The STOM system is capable of ranges in excess of 6 km and can penetrate battlefield obscurants such as fog-oil, smoke, dust, and rain.

  19. Optical diagnosis of actinic cheilitis by infrared spectroscopy.

    PubMed

    das Chagas E Silva de Carvalho, Luis Felipe; Pereira, Thiago Martini; Magrini, Taciana Depra; Cavalcante, Ana Sueli Rodrigues; da Silva Martinho, Herculano; Almeida, Janete Dias

    2016-12-01

    Actinic cheilitis (AC) is considered a potentially malignant disorder of the lip. Biomolecular markers study is important to understand malignant transformation into squamous cell carcinoma. Fourier transform infra red (FT-IR) spectroscopy was used to analyze AC in this study. The aim of the study was to evaluate if FT-IR spectral regions of nucleic acids and collagen can help in early diagnosis of malignant transformation. Tissues biopsies of 14 patients diagnosed with AC and 14 normal tissues were obtained. FT-IR spectra were measured at five different points resulting in 70 spectra of each. Analysis of Principal components analysis (PCA) and linear discrimination analysis (LDA) model were also used. In order to verify the statistical difference in the spectra, Mann-Whitney U test was performed in each variable (wavenumber) with p-value <0.05. After the Mann-Whitney U test the vibrational modes of CO (Collagen 1), PO2 (Nucleic Acids) and CO asymmetric (Triglycerides/Lipids) were observed as a possible spectral biomarker. These bands were chosen because they represent the vibrational modes related to collagen and DNA, which are supposed to be changed in AC samples. Based on the PCA-LDA results, the predictive model corresponding to the area under the curve was 0.91 for the fingerprint region and 0.83 for the high wavenumber region, showing the greater accuracy of the test. FT-IR changes in collagen and nucleic acids could be used as molecular biomarkers for malignant transformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of image deconvolution algorithms on simulated and laboratory infrared images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, D.

    1994-11-15

    We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.

  1. Great gulf wilderness use estimation: comparisons from 1976, 1989, and 1999

    Treesearch

    Chad P. Dawson; Mark Simon; Rebecca Oreskes; Gary Davis

    2001-01-01

    Wilderness visitor monitoring techniques can provide important baseline information on recreational use and assist managers in making recreation use management decisions. A demonstration project was conducted in the Great Gulf Wilderness using active infra-red beam type trail counters and brief on-site interviews to obtain information about visitor travel patterns,...

  2. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  3. Wind-Forced Modeling Studies of Currents, Meanders, Eddies, and Filaments of the Canary Current System

    DTIC Science & Technology

    1997-06-01

    infra-red images from NOAA7 and NOAA9 and numerous in- situ measurements reveal the existence of a surface poleward flow off the northern coast of...dinamica das Aguas costeiras de Portugal. Dissertacao apresentada a Universidade de Lisboa para obtencao do grau de Doutor em Fisica, especializacao

  4. Brightening of FSRQ 3C 454.3 with an intense optical micro-variability.

    NASA Astrophysics Data System (ADS)

    Kaur, Navpreet; Baliyan, KS; Mukesh, CM; Ganesh, S.; Janaka, A.

    2016-11-01

    On the behalf of blazar monitoring group at Mt Abu InfraRed Observatory operated by the Physical Research Laboratory, India, we report detection of micro-variability in FSRQ 3C 454.3 on November 03, 2016 during which it decays by 0.1 mag in R band.

  5. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; hide

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  6. Wide-Field InfraRed Survey Telescope WFIRST

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Fan, X.; Rauscher, B.; hide

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.

  7. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    NASA Astrophysics Data System (ADS)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  8. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  9. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Evan G.; Xu, Jide; Dodani, Sheel

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a modelmore » Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.« less

  10. Spectral reflectance of surface soils: Relationships with some soil properties

    NASA Technical Reports Server (NTRS)

    Kiesewetter, C. H.

    1983-01-01

    Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.

  11. Assessment of Infrared Sounder Radiometric Noise from Analysis of Spectral Residuals

    NASA Astrophysics Data System (ADS)

    Dufour, E.; Klonecki, A.; Standfuss, C.; Tournier, B.; Serio, C.; Masiello, G.; Tjemkes, S.; Stuhlmann, R.

    2016-08-01

    For the preparation and performance monitoring of the future generation of hyperspectral InfraRed sounders dedicated to the precise vertical profiling of the atmospheric state, such as the Meteosat Third Generation hyperspectral InfraRed Sounder, a reliable assessment of the instrument radiometric error covariance matrix is needed.Ideally, an inflight estimation of the radiometrric noise is recommended as certain sources of noise can be driven by the spectral signature of the observed Earth/ atmosphere radiance. Also, unknown correlated noise sources, generally related to incomplete knowledge of the instrument state, can be present, so a caracterisation of the noise spectral correlation is also neeed.A methodology, relying on the analysis of post-retreival spectral residuals, is designed and implemented to derive in-flight the covariance matrix on the basis of Earth scenes measurements. This methodology is successfully demonstrated using IASI observations as MTG-IRS proxy data and made it possible to highlight anticipated correlation structures explained by apodization and micro-vibration effects (ghost). This analysis is corroborated by a parallel estimation based on an IASI black body measurement dataset and the results of an independent micro-vibration model.

  12. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  13. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preynas, M.; Laqua, H. P.; Marsen, S.

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the cameramore » and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.« less

  14. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract

    NASA Astrophysics Data System (ADS)

    Sari, I. P.; Yulizar, Y.

    2017-04-01

    Magnetite nanoparticles (MNPs) attracted the attention of many researchers due to their unique properties. In this research, nanoscale magnetite particles have been successfully synthesized through an environmentally friendly method using aqueous extract of Graptophyllum pictum leaf (GPLE). In MNPs formation, GPLE acted as a base source and capping agent. Alkaloids in GPLE were hydrolyzed in water and hydroxilated Fe2+ to form Fe3O4 nanoparticles powder through calcination. After the addition of leaf extract, MNPs formation was observed by color change from pale yellow to dark brown. The synthesized nanoparticles were characterized using UV-Vis spectrophotometer, X-Ray diffraction (XRD), and Fourier transform infra red (FTIR) spectroscopy. The results confirmed that MNPs formation indicated the surface plasmon resonance at a maximum wavelength, λmax 291 nm. The average crystallite size is 23.17 nm. The formed MNPs through green synthesis method promise in various medical applications such as drug carrier and targeted therapy.

  15. Synthesis and Characterization of Chitosan-p-t-Butylcalix[4]arene acid

    NASA Astrophysics Data System (ADS)

    Handayani, D. S.; Frimadasi, W.; Kusumaningsih, T.; Pranoto

    2018-03-01

    The synthesis of chitosan-p-t-butylcalix[4]arene acid was done with DIC (N, N’-diisopropylcarbodiimide) as the coupling agent. The structural analysis of the chitosan-p-t-butylcalix[4]arene acid was conducted by spectrophotometer Fourier Transform Infra Red (FTIR) and X-Ray Diffraction (XRD). Meanwhile, the surface area was investigated by Surface Area Analysis, the Scanning Electrone Microscope (SEM) analysed the surface morphology, and also the melting point temperature was determined. FTIR analysis on Chitosan-p-t-butylcalix[4]arene provides an overlapped absorption of -OH and -NH groups at 3438.26 cm-1. Meanwhile, a C = C aromatic bond present at 1480.43 cm-1. XRD analysis shows some broaden peaks due to the amorphous phase of the prepared material. The prepared material is a brownish yellow solid, odorless and porous. The melting point, surface area, and the average pore radius are above 300 °C, 9.42 m2 / g, and 52.5938 Å, respectively.

  16. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    PubMed Central

    Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E.; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara

    2015-01-01

    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects. PMID:26159651

  17. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  18. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    PubMed

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel.

    PubMed

    Abhari, Negar; Madadlou, Ashkan; Dini, Ali; Hosseini Naveh, Ozra

    2017-01-01

    An alkaline starch suspension was charged with citric acid and incubated for different durations (0, 8.5 or 17h). The suspension was then supplemented with caffeine and gelatinized to fabricate hydrogels which were subsequently stored for varying periods (0, 24 or 48h). Charging of the well-dissolved alkaline starch suspension with citric acid decreased at first both the flow index and consistency coefficient (K); however, starch cross-linking over time by the generated trisodium citrate increased the K value. The latter also inhibited gel syneresis and increased its water-holding capacity. Trisodium citrate did not nonetheless influence the gel hardness except for the sample incubated for maximum duration and stored for the longest period. The amount of the caffeine released from hydrogel decreased by citrate cross-linking and was higher at neutral pH than pH 2.0. Fourier-transform infra-red spectroscopy suggested that caffeine was enclosed within the gel network via non-covalent interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    NASA Astrophysics Data System (ADS)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  3. Study on structure and morphology (Boehmeria nivea) in the irregular and regular parts of the fiber after biodegumming

    NASA Astrophysics Data System (ADS)

    Wulandari, A. P.; Septarini, D.; Zainuddin, A.

    2017-05-01

    Ramie is a natural fiber that is very potential to be developed in Indonesia. Decorticated-fiber which has been known as china grass produce different structures irregular part but shows a long straight section in the middle. This study aims to determine differences in chemical components, morphology and microstructure of two different parties after biodegumming process. China grass has been processed to remove gum using pectinolytic fungus. The microstructure of the treated was further tested by Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The FTIR study indicated that during the biodegumming process, chemical bonding of non-cellulose components most removed by the activity of pectinase from the fungus. XRD analysis reflects an increase in the crystallinity of the fiber after biodegumming. Scanning electron microscopy (SEM) was used to confirm a reduction in the size of the fiber after biodegumming either in the irregular and regular part of the fiber after biodegumming.

  4. Estimating drift of airborne pesticides during orchard spraying using active Open Path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-10-01

    The use of pesticides is important to ensure food security around the world. Unfortunately, exposure to pesticides is harmful to human health and the environment. This study suggests using active Open Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for monitoring and characterizing pesticide spray drift, which is one of the transfer mechanisms that lead to inhalation exposure to pesticides. Experiments were conducted in a research farm with two fungicides (Impulse and Bogiron), which were sprayed in the recommended concentration of ∼0.1%w in water, using a tractor-mounted air-assisted sprayer. The ability to detect and characterize the pesticide spray drift was tested in three types of environments: fallow field, young orchard, and mature orchard. During all spraying experiments the spectral signature of the organic phase of the pesticide solution was identified. Additionally, after estimating the droplets' size distribution using water sensitive papers, the OP-FTIR measurements enabled the estimation of the droplets load in the line of sight.

  5. Synthesis and characterization of functionalized CNTs using soya and milk protein

    NASA Astrophysics Data System (ADS)

    saxena, Sanjay; ranu, Rachana; Hait, Chandan; Priya, Shruti

    2014-10-01

    Nanotechnology is the study of the phenomenon and manipulation of matter at atomic and molecular scale to enhance their older property and generate several new properties. Carbon nanotubes (CNTs) are one of the most commonly mentioned building blocks of nanotechnology. CNTs are very prevalent in today's world of medical research and are being highly researched in the fields of efficient drug delivery and bio sensing methods for disease treatment and health monitoring. There are number of methods for synthesizing CNTs. This is a biological method for synthesis of CNTs in which protein is used as carbon source and amino acids present in protein form complex with metal salt. The CNTs synthesized are then characterized and functionalized using techniques such as transmission electron microscopy, Fourier transform infra-red, nuclear magnetic resonance, ultra-violet visible spectroscopy, X-ray diffraction, etc. The properties of the synthesized CNTs are studied with the help of techniques such as thermo-gravimetric analysis, differential thermal analysis, and vibrating sample magnetometer, etc.

  6. A process for the development of strontium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2014-06-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.

  7. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    NASA Astrophysics Data System (ADS)

    Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra

    2016-12-01

    ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  8. Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions

    NASA Astrophysics Data System (ADS)

    Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y.

    2018-04-01

    Polymer blended nanocomposites based on polylactic acid (PLA) were prepared via a simple melting process and investigated for its biodegradation behaviour. The treated CNTs were surface modified by using acid treatment and characterisations of composites were done by using Fourier Transform Infra-Red (FTIR) and UV-Vis. FTIR spectra and UV-Vis peak confirmed the surface modification of CNTs. The water uptake and weight loss behaviour based on CNTs and m-CNTs loading at different temperatures (25° and 45°C) were studied. It was found that the water absorption and weight loss of nanocomposites increased by the incorporation of CNTs and m-CNTs. Moisture induced degradation of composite samples was significant at elevated temperature. The addition of treated CNTs successfully reduced the water uptake and weight loss of nanocomposites due to less hydrolytic effect of water on nanocomposites. In soil burial test, the weight loss increases with addition of nanofiller. The loading of m-CNT reduced the ability of nanocomposites degradation.

  9. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  10. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  11. Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management.

    PubMed

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V K; Bisht, Surendra S; Rana, Vikas; Gupta, P K

    2015-04-01

    In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH2COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH2COONa respectively for 3h reaction time. The rheological characteristics of 1-3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    PubMed

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  13. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  14. Tamoxifen citrate loaded chitosan-gellan nanocapsules for breast cancer therapy: development, characterisation and in-vitro cell viability study.

    PubMed

    Kathle, Pankaj Kumar; Gautam, Nivedita; Kesavan, Karthikeyan

    2018-06-08

    The objective of this study was to evaluate the potential of chitosan-gellan nanocapsules (CGNCs) for encapsulation and sustained release of Tamoxifen citrate (TMC) for breast cancer therapy. Polyelectrolyte complex coacervation method was used for production of CGNCs. Interaction studies were conducted by Fourier-transform infra-red (FT-IR), differential scanning colorimetric (DSC), and X-ray diffraction (XRD) to investigate any interaction between drug and excipients. Physicochemical parameters, in vitro drug release and release kinetic were studied. In vitro cell viability study using Michigan Cancer Foundation-7 (MCF-7) breast cancer cells was also investigated. CGNCs had a smooth surface and nanosize range with a positive surface charge and exhibited sustained drug release. Further, TMC loaded CGNCs were found to be more cytotoxic than the free drug in MCF-7. Thus CGNCs may be suitable for breast cancer treatment due to delivering the drug at the site of action for a prolonged period of time.

  15. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  16. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zulfa Aiza; Razak, Khairunisak Abdul; Rahman, Wan Nordiana Wan Abdul

    2018-05-01

    Bismuth oxide (Bi2O3) nanoparticles have been synthesized at different temperatures from 70 to 120˚C without any subsequent heat treatment using hydrothermal method. The particle size, and crystal structure of as-synthesized particles were investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform Infra-Red (FTIR). The nanoparticles are of a pure moniclinic Bi2O3 phase with rods shape. The average size of nanoparticles increases with the increase of reaction temperature. It was clear that longer reaction temperature allows precipitation completely occured and form larger nanoparticles (NPs). The crystallinity of Bi2O3 also are of high purity even at lower reaction temperature. The FTIR spectrum showed the absorption band at 845 cm-1 which is attributed to Bi-O-Bi bond, and the strong absorption band recorded at 424 cm-1 that is due to the stretching mode of Bi-O.

  17. Benzene Formation on Interstellar Icy Mantles Containing Propargyl Alcohol

    NASA Astrophysics Data System (ADS)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B.

    2015-01-01

    Propargyl alcohol (CHCCH2OH) is a known stable isomer of the propenal (CH2CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm-1. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C6H6) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C3H3) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C6H6 in the interstellar icy mantles.

  18. Structural changes of a-CNx thin films induced by thermal annealing

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Aisyah Abd; Awang, Rozidawati

    2018-04-01

    In this work, amorphous carbon nitride (a-CNx) thin films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique at different RF powers of 60, 70, 80, 90 and 100 W for 30 min. These films were prepared using a mixture of acetylene (C2H2) at 20 sccm and nitrogen (N2) gases at 50 sccm. The films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The chemical bondings of the film were analyzed by Fourier Transform Infra-red Spectroscopy (FTIR) while surface morphology and film roughness were determined by Atomic Force Microscopy (AFM). The FTIR analysis reveals that annealing resulted in the loss of C-H and C-N bonds and formation of graphitic sp2C cluster with the dissociation of N and C in the films. AFM indicates that the film surface becomes less rough which effectually enhances structural modifications and the rearrangement of the microstructure of the films after annealing.

  19. Effect of ball-milling to the surface morphology of CaCO3

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.

  20. Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Mat, Hanapi

    2014-01-01

    In this study, elemental mercury (EM) adsorbents were synthesized using tetraethyl orthosilicate (TEOS) and 3-mercaptopropyl trimethoxysilane as silica precursors. The synthesized silica gel (SG)-TEOS was further functionalized through impregnation with elemental sulphur and carbon disulphide (CS2). The SG adsorbents were then characterized by using scanning electron microscope, Fourier transform infra-red spectrophotometer, nitrogen adsorption/desorption, and energy-dispersive X-ray diffractometer. The EM adsorption of the SG adsorbents was determined using fabricated fixed-bed adsorber. The EM adsorption results showed that the sulphur-functionalized SG adsorbents had a greater Hgo breakthrough adsorption capacity, confirming that the presence of sulphur in silica matrices can improve Hgo adsorption performance due to their high affinity towards mercury. The highest Hgo adsorption capacity was observed for SG-TEOS(CS2) (82.62 microg/g), which was approximately 2.9 times higher than SG-TEOS (28.47 microg/g). The rate of Hgo adsorption was observed higher for sulphur-impregnated adsorbents, and decreased with the increase in the bed temperatures.

  1. High accuracy broadband infrared spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan

    Mueller matrix spectroscopy or Spectropolarimetry combines conventional spectroscopy with polarimetry, providing more information than can be gleaned from spectroscopy alone. Experimental studies on infrared polarization properties of materials covering a broad spectral range have been scarce due to the lack of available instrumentation. This dissertation aims to fill the gap by the design, development, calibration and testing of a broadband Fourier Transform Infra-Red (FT-IR) spectropolarimeter. The instrument operates over the 3-12 mum waveband and offers better overall accuracy compared to the previous generation instruments. Accurate calibration of a broadband spectropolarimeter is a non-trivial task due to the inherent complexity of the measurement process. An improved calibration technique is proposed for the spectropolarimeter and numerical simulations are conducted to study the effectiveness of the proposed technique. Insights into the geometrical structure of the polarimetric measurement matrix is provided to aid further research towards global optimization of Mueller matrix polarimeters. A high performance infrared wire-grid polarizer is characterized using the spectropolarimeter. Mueller matrix spectrum measurements on Penicillin and pine pollen are also presented.

  2. Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies.

    PubMed

    Gopikrishnan, Ramya; Zhang, Kai; Ravichandran, Prabakaran; Biradar, Santhoshkumar; Ramesh, Vani; Goornavar, Virupaxi; Jeffers, Robert B; Pradhan, Aswini; Hall, Joseph C; Baluchamy, Sudhakar; Ramesh, Govindarajan T

    2011-10-01

    Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.

  3. Guar gum based biodegradable, antibacterial and electrically conductive hydrogels.

    PubMed

    Kaith, Balbir S; Sharma, Reena; Kalia, Susheel

    2015-04-01

    Guar gum-polyacrylic acid-polyaniline based biodegradable electrically conductive interpenetrating network (IPN) structures were prepared through a two-step aqueous polymerization. Hexamine and ammonium persulfate (APS) were used as a cross linker-initiator system to crosslink the poly(AA) chains on Guar gum (Ggum) backbone. Optimum reaction conditions for maximum percentage swelling (7470.23%) were time (min) = 60; vacuum (mmHg) = 450; pH = 7.0; solvent (mL) = 27.5; [APS] (mol L(-1)) = 0.306 × 10(-1); [AA] (mol L(-1)) = 0.291 × 10(-3) and [hexamine] (mol L(-1))=0.356 × 10(-1). The semi-interpenetrating networks (semi-IPNs) were converted into IPNs through impregnation of polyaniline chains under acidic and neutral conditions. Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques were used to characterize the semi-IPNs and IPNs. Synthesized semi-IPNs and IPNs were further evaluated for moisture retention in different soils, antibacterial and biodegradation behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Studies on surface morphology and electrical conductivity of PEDOT:PSS thin films in presence of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2018-04-01

    PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.

  5. Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach.

    PubMed

    Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2008-01-01

    Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.

  6. Helicopter discrimination apparatus for the murine radar

    DOEpatents

    Webb, Jr., John G.; Gray, Roger M.

    1977-01-01

    A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.

  7. Radiographic and Thermal Testing, Aviation Quality Control (Advanced): 9227.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction deals with the study of X-ray and Gamma Ray Radiographic Testing and infra-red thermal testing of specimens without destruction. Theory and principles are covered in detail. Many known samples are used as standards and considerable laboratory and field use of this equipment is involved. Motion picture films and color…

  8. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  9. Combustion Science to Reduce PM Emissions for Military Platforms

    DTIC Science & Technology

    2012-01-01

    355 7.0 References 356 Appendix: List of Archival Publications and Conference Papers 376 vi List...carbonaddition HITRAN Database of infra-red spectra HP High Pressure HW Harris and Weiner ICCD Intensified charge coupled device ID internal diameter IR ...archival publication based on this work received a distinguished outstanding paper award at the 32nd International Combustion Symposium

  10. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.

    2013-12-01

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  11. A Wind-Forced Modeling Study of the Canary Current System from 30 Degrees N to 42.5 Degrees N

    DTIC Science & Technology

    1998-06-01

    and Haynes and Barton (1990), using high resolution infra-red images from NOAA7 and NOAA9 and numerous in- situ measurements, reveal the existence of...dinamica das Aguas costeiras de Portugal. Dissertacao apresentada a Universidade de Lisboa para obtencao do grau de Doutor em Fisica, especializacao

  12. Using Multi-Angle WorldView-2 Imagery to Determine Ocean Depth Near Oahu, Hawaii

    DTIC Science & Technology

    2012-09-01

    Reflection geometry used in the definition of BRDF (From McConnon [2010...Visible/InfraRed Imaging Spectrometer BRDF : Bidirectional Reflectance Distribution Function DHMs: Digital Height Maps DNs: Digital Numbers EM...navigation and fisheries management, and are also helpful for improving models of ocean circulation, air-sea interaction, weather forecasting, and

  13. Pre-discovery detections and progenitor candidate for SPIRITS17qm in NGC 1365

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report the detection of a pre-discovery outburst of SPIRITS17qm, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  14. Pre-discovery detections and progenitor candidate for SPIRITS17pc in NGC 4388

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Bond, H. E.; Adams, S. M.; Kasliwal, M. M.

    2018-04-01

    We report detections of pre-discovery outbursts of SPIRITS17pc, discovered as part of the ongoing Spitzer InfraRed Intensive Transients Survey (SPIRITS) using the 3.6 and 4.5 micron imaging channels ([3.6] and [4.5]) of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (ATel #11575).

  15. Autofluorescence detection and imaging of bladder cancer realized through a cystoscope

    DOEpatents

    Demos, Stavros G [Livermore, CA; deVere White, Ralph W [Sacramento, CA

    2007-08-14

    Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  16. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    PubMed

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  17. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: An example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada

    USGS Publications Warehouse

    Mastalerz, Maria; Bustin, R.M.

    1996-01-01

    The applicability of the reflectance micro-Fourier Transform infra-red spectroscopy (FTIR) technique for analyzing the distribution of functional groups in coal macerals is discussed. High quality of spectra, comparable to those obtained using other FTIR techniques (KBr pellet and transmission micro-FTIR), indicate this technique can be applied to characterizing functional groups under most conditions. The ease of sample preparation, the potential to analyze large intact samples, and ability to characterize organic matter in areas as small as 20 ??m are the main advantages of reflectance micro-FTIR. The quantitative aspects of reflectance micro-FTIR require further study. The examples from the coal seams of the Mist Mountain Formation, British Columbia show that at high volatile bituminous rank, reflectance micro-FTIR provides valuable information on the character of aliphatic chains of vitrinite and liptinite macerals. Because the character of aliphatic chains influences bond disassociation energies, such information is useful from a hydrocarbon generation viewpoint. In medium volatile bituminous coal liptinite macerals are usually not detectable but this technique can be used to study the degree of oxidation and reactivity of vitrinite and semifusinite.

  18. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    PubMed Central

    Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130

  19. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  20. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  1. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  2. Analysis of various quality attributes of sunflower and soybean plants by near infra-red reflectance spectroscopy: Development and validation calibration models

    USDA-ARS?s Scientific Manuscript database

    Sunflower and soybean are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems. Rapid and low cost methods of analyzing plant quality would be helpful for crop management. We developed and validated calibration models for Near-infrar...

  3. Alkylation of Silicon(111) surfaces

    NASA Astrophysics Data System (ADS)

    Rivillon, S.; Chabal, Y. J.

    2006-03-01

    Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.

  4. Using AVIRIS to assess hemlock abundance and early decline in the Catskills, New York

    Treesearch

    Jennifer Pontius; Richard Hallett; Mary Martin

    2005-01-01

    In order to aid land managers in monitoring and controlling the ongoing hemlock woolly adelgid outbreak, more accurate landscape scale tools are required to locate the hemlock resource, identify infestation and spot early decline. To this end, NASA's Airborne Visible Infra-red Imaging Spectrometer was flown over the infestation front in the Catskills region of New...

  5. VizieR Online Data Catalog: RMS survey: NIR spectroscopy of massive YSOs (Cooper+, 2013)

    NASA Astrophysics Data System (ADS)

    Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.

    2014-04-01

    Spectroscopic observations of the YSO candidates were made using the UIST instrument at the United Kingdom Infra-Red Telescope (UKIRT) observatory from 2002 to 2008. 247 objects were successfully observed over 84 nights. Sources were selected from the ~2000 candidate MYSOs found using the MSX catalogue in the preceding stages of the RMS survey. (6 data files).

  6. New Millenium Inflatable Structures Technology

    NASA Technical Reports Server (NTRS)

    Mollerick, Ralph

    1997-01-01

    Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.

  7. Water Ordering Controls the Dynamic Equilibrium of Micelle-Fiber Formation in Self-Assembly of Peptide Amphiphiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less

  8. Water Ordering Controls the Dynamic Equilibrium of Micelle-Fiber Formation in Self-Assembly of Peptide Amphiphiles

    DOE PAGES

    Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh; ...

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less

  9. The effect of autoclave resterilisation on polyester vascular grafts.

    PubMed

    Riepe, G; Whiteley, M S; Wente, A; Rogge, A; Schröder, A; Galland, R B; Imig, H

    1999-11-01

    polyester grafts are expensive, single-use items. Some manufacturers of uncoated, woven grafts include instructions for autoclave resterilisation to be performed at the surgeon's own request. Others warn against such manipulation. Theoretically, the glass transition point of polyester at 70-80 degrees C and the possible acceleration of hydrolysis suggest that autoclave resterilisation at 135 degrees C might be a problem. a DeBakey Soft Woven Dacron Vascular Prosthesis (Bard) and a Woven Double Velour Dacron Graft (Meadox) were autoclave-resterilised 0 to 20 times, having been weighed before and after sterilisation. Tactile testing was performed. Mechanical properties were examined by probe puncture and single-filament testing, the surface was examined by scanning electron microscopy and the degree of hydrolysis by infra-red spectroscopy. tactile testing revealed a change of feeling with increasing cycles of resterilisation. Investigation of weight, textile strength, single-filament strength, electron microscopy of the surface and infra-red spectroscopy showed no change of the material. changes felt are presumably a surface phenomenon, not measurably affecting strength or chemistry of material after autoclave resterilisation. We therefore feel that it is safe to use once-autoclave-resterilised surplus uncoated polyester grafts, provided that sterility is guaranteed. Copyright 1999 Harcourt Publishers Ltd.

  10. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  11. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  12. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  13. 360 degree vision system: opportunities in transportation

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2007-09-01

    Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.

  14. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  15. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. Infra-red thermometry: the reliability of tympanic and temporal artery readings for predicting brain temperature after severe traumatic brain injury.

    PubMed

    Kirk, Danielle; Rainey, Timothy; Vail, Andy; Childs, Charmaine

    2009-01-01

    Temperature measurement is important during routine neurocritical care especially as differences between brain and systemic temperatures have been observed. The purpose of the study was to determine if infra-red temporal artery thermometry provides a better estimate of brain temperature than tympanic membrane temperature for patients with severe traumatic brain injury. Brain parenchyma, tympanic membrane and temporal artery temperatures were recorded every 15-30 min for five hours during the first seven days after admission. Twenty patients aged 17-76 years were recruited. Brain and tympanic membrane temperature differences ranged from -0.8 degrees C to 2.5 degrees C (mean 0.9 degrees C). Brain and temporal artery temperature differences ranged from -0.7 degrees C to 1.5 degrees C (mean 0.3 degrees C). Tympanic membrane temperature differed from brain temperature by an average of 0.58 degrees C more than temporal artery temperature measurements (95% CI 0.31 degrees C to 0.85 degrees C, P < 0.0001). At temperatures within the normal to febrile range, temporal artery temperature is closer to brain temperature than is tympanic membrane temperature.

  1. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  2. Study on the Feasibility of RGB Substitute CIR for Automatic Removal Vegetation Occlusion Based on Ground Close-Range Building Images

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, F.; Liu, Y.; Li, X.; Liu, P.; Xiao, B.

    2012-07-01

    Building 3D reconstruction based on ground remote sensing data (image, video and lidar) inevitably faces the problem that buildings are always occluded by vegetation, so how to automatically remove and repair vegetation occlusion is a very important preprocessing work for image understanding, compute vision and digital photogrammetry. In the traditional multispectral remote sensing which is achieved by aeronautics and space platforms, the Red and Near-infrared (NIR) bands, such as NDVI (Normalized Difference Vegetation Index), are useful to distinguish vegetation and clouds, amongst other targets. However, especially in the ground platform, CIR (Color Infra Red) is little utilized by compute vision and digital photogrammetry which usually only take true color RBG into account. Therefore whether CIR is necessary for vegetation segmentation or not has significance in that most of close-range cameras don't contain such NIR band. Moreover, the CIE L*a*b color space, which transform from RGB, seems not of much interest by photogrammetrists despite its powerfulness in image classification and analysis. So, CIE (L, a, b) feature and support vector machine (SVM) is suggested for vegetation segmentation to substitute for CIR. Finally, experimental results of visual effect and automation are given. The conclusion is that it's feasible to remove and segment vegetation occlusion without NIR band. This work should pave the way for texture reconstruction and repair for future 3D reconstruction.

  3. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  4. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak

    NASA Astrophysics Data System (ADS)

    Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.

    2017-09-01

    Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.

  5. Robotics research projects report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, T.C.

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  6. Analysis of various quality attributes of sunflower and soybean plants by near infra-red reflectance spectroscopy: Development and validation of calibration models

    USDA-ARS?s Scientific Manuscript database

    Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant quality would be helpf...

  7. Bruce Grossan's Home Page

    Science.gov Websites

    Generation Rapid-Optical Response GRB Mission (ADS link) now on web (i.e. arxiv link). First Spitzer Paper the Infra-Red (2.1 micron K' band), taken at the Wyoming IR Observatory (WIRO) 4/16/94. The galaxy is largest, most sensitive map of a low-dust region made with the Spitzer 160 µm Camera. The cosmic far-IR

  8. NOAA Photo Library - NOAA In Space Collection/Space Vehicles

    Science.gov Websites

    Collections page. Takes you to the search page. Takes you to the Links page. NOAA In Space space vehicles banner How do you get cameras, infra-red sensors, microwave sensors into space so they can observe the the above option to view ALL current images. NOAA In Space ~ Space Vehicles Album drawing of TIROS

  9. Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Evenson, K. M.; Park, K.; Radostitz, J. V.; Jennings, D. A.; Nolt, I. G.; Vanek, M. D.

    1991-01-01

    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY).

  10. Effect of H2O on the morphological changes of KNO3 formed on K2O/Al2O3 NOx storage materials: Fourier transform infra-red (FTIR) and time-resolved x-ray diffraction (TR-XRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos

    Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnatedmore » sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.« less

  11. Humidity Sensor Based on PEDOT:PSS and Zinc Stannate Nano-composite

    NASA Astrophysics Data System (ADS)

    Aziz, Shahid; Chang, Dong Eui; Doh, Yang Hoi; Kang, Chul Ung; Choi, Kyung Hyun

    2015-10-01

    A composite of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and zinc stannate (ZnSnO3) has been introduced for impedance-based humidity sensing, owing to its high sensitivity, good stability, very fast response (˜0.2 s) and recovery time (˜0.2 s), small hysteresis, repeatability, low-cost fabrication and wide range of sensitivity. Both materials were mixed in three different weight percentage ratios, to optimize the performance of the sensors. Best response was observed for 5 wt.% PEDOT:PSS and 5 wt.% ZnSnO3. The impedance of the sensor was dropped immensely from 1.5 MΩ to 50 kΩ by changing relative humidity from 0% to 90%. The reason for this improvement in sensitivity was analyzed by virtue of sensing mechanisms and different characterizations (three dimensional (3D) nano-profiler, optical microscope, and fourier transform infra-red (FTIR) spectroscopy) revealing the surface morphology and chemical structure of the film. Due to its response and ability to sense human breath and skin humidity, it is suitable for environmental, artificial skin and food industry applications.

  12. Synthesis and characterization of immobilized Ni-Co bimetallic using Tapanuli clay for catalyst application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryanti,; Juwono, Ariadne L., E-mail: ariadne@sci.ui.ac.id; Krisnandi, Yuni K.

    2016-04-19

    Heterogeneous catalysts hold various advantages, namely, easy to separate from their products, reusable and regarded as environmental friendly materials. The synthesis of immobilized Ni monometallic, Co monometallic and Ni-Co bimetallic by Tapanuli clay were carried out using intercalation method. Firstly, the synthesis of Na-Bentonite was conducted to provide sufficient area to immobilize bimetal in the clay interlayer. Secondly, Ni, Co and Ni-Co were immobilized in the Tapanuli clay interlayer. Several techniques, such as X-Ray Diffraction, Fourier Transform Infra Red and Energy Dispersive X-Ray Analysis were applied to characterize and compare the properties of the synthesized materials. The results showed thatmore » the insertion of Ni, Co and Ni-Co in the clay interlayer occurred through a cation exchange reaction. The Energy Dispersive X-Ray analysis for Ni-Co bimetallic showed that the immobilized Ni and Co in the clay is in the ratio of 1:1. Catalytic test with Gas Chromatography showed that Ni-Co bimetallic generates a higher yield percentage compared to Ni and Co monometallic.« less

  13. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  14. A new μ3-oxo-centered tri-nuclear carboxyl bridged iron (III) complex with thio-methyl groups in the periphery: Structural, spectroscopic and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Lu, Maofeng; Chen, Tingting; Wang, Miao; Jiang, Guomin; Lu, Tianhong; Jiang, Guoqing; Du, Jiangyan

    2014-02-01

    A tri-nuclear iron (III) complex [Fe3(μ3-O)(O2CC6H4SCH3)6(Py)3]FeCl4 has been synthesized and characterized by X-ray crystallography, Surface enhanced Raman Scattering (SERS), Fourier Transform Infra Red (FT-IR), Ultraviolet-Visible (UV-Vis) spectroscopy and Thermogravimetric analysis (TGA)/Differential scanning calorimetry (DSC). The functionalized thio-methyl groups around the periphery of the complex 1 may provide binding sites to the surface of some specific materials, such as noble metals. The Ag sols and complex 1-Ag sol had been characterized by SERS and UV-Vis spectroscopy. The complex 1 were also self-assembled on gold electrode by AuS bond, exhibiting an irreversible process at E1/2 = 0.967 V (ΔE = 0.525 V). Meanwhile the Raman spectra were compared with FT-IR, and the results indicated that the strong Raman lines either correspond to weak Infrared absorptions or are absent in the Infrared spectra.

  15. Effect of heating on the structural and optical properties of TiO2 nanoparticles: antibacterial activity

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Javed, Rehan; Mahfooz-ur-Rehman; Shahid, Muhammad

    2018-02-01

    TiO2 nanoparticles were synthesized at room temperature by chemical precipitation method and were then heated at 120, 300, 600 and 900 °C temperatures. The phase transition and crystallite size variation were determined by X-rays diffraction (XRD) analysis. The surface area, pore volume and pore size were measured using Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The optical activity of heat treated and non-heat treated samples were carried out by diffuse reflectance (DR) spectroscopy. Four different methods were used to calculate band gap energy. The results obtained from thermogravimetric and differential thermal gravimetric (TG/TDG) analyses and Fourier transform infra-red (FTIR) spectroscopy agreed with each other. Agar well diffusion method has been applied to explore the antibacterial activity of nanoparticles against different bacterial strains such as Bacillus subtilis, Staphylococcus Aureus, Escherichia coli and Pseudomonas Aeruginosa. It was observed that TiO2 nanoparticles heated at 120 °C displayed maximum antibacterial activity while those heated at higher temperature showed no activity against the examined bacteria.

  16. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin.

    PubMed

    Caccamo, Maria Teresa; Zammuto, Vincenzo; Gugliandolo, Concetta; Madeleine-Perdrillat, Claire; Spanò, Antonio; Magazù, Salvatore

    2018-07-15

    To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of molybdenum on gamma ray shielding and structural properties of PbO-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-04-01

    The present study is aimed at developing new shielding materials for gamma ray shielding applications. Transparent glasses of the composition xMoO3-0.7PbO-(0.3-x)B2O3 where x= 0.03 to 0. 06 (mole fraction) have been prepared by using melt-quenchingtechnique. Gamma ray shielding properties have been evaluated in terms of mass attenuation coefficient and half value layer parameter at photon energies 662 and 1173 keV. These shielding parameters are also compared with standard shielding material`concretes'. It has been found that prepared glass system shows better shielding properties than barite and ordinary concretes proving the possibility of its usage as an alternate to conventional concrete for gamma ray shielding applications. The density, molar volume, X-Ray Diffraction, Fourier Transform InfraRed and Raman studies have been performed to study the structural properties of the glass system. It has been analyzed from FTIR and Raman studies that bridging oxygens increase with the decrease of MoO3 content in the glass composition.

  18. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  19. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    PubMed

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  20. The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model.

    PubMed

    Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J

    2018-08-15

    Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer.

    PubMed

    Bhatia, Meenakshi; Ahuja, Munish; Mehta, Heena

    2015-10-20

    Thiol-derivatization of xanthan gum polysaccharide was carried out by esterification with mercaptopropionic acid and thioglycolic acid. Thiol-derivatization was confirmed by Fourier-transformed infra-red spectroscopy. Xanthan-mercaptopropionic acid conjugate and xanthan-thioglycolic acid conjugate were found to possess 432.68mM and 465.02mM of thiol groups as determined by Ellman's method respectively. Comparative evaluation of mucoadhesive property of metronidazole loaded buccal pellets of xanthan and thiolated xanthan gum using chicken buccal pouch membrane revealed higher ex vivo bioadhesion time of thiolated xanthan gum as compared to xanthan gum. Improved mucoadhesive property of thiolated xanthan gum over the xanthan gum can be attributed to the formation of disulfide bond between mucus and thiolated xanthan gum. In vitro release study conducted using phosphate buffer (pH 6.8) revealed a sustained release profile of metronidazole from thiolated xanthan pellets as compared to xanthan pellets. In conclusion, thiolation of xanthan improves its mucoadhesive property and sustained the release of metronidazole over a prolonged period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  3. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    NASA Astrophysics Data System (ADS)

    Suraja, P. V.; Binitha, N. N.; Yaakob, Z.; Silija, P. P.

    2011-02-01

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4·3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  4. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    PubMed

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Blue emitting ZnO nanostructures grown through cellulose bio-templates.

    PubMed

    Oudhia, Anjali; Sharma, Savita; Kulkarni, Pragya; Kumar, Rajesh

    2016-06-01

    This paper presents a green and cost-effective recipe for the synthesis of blue-emitting ZnO nanoparticles (NPs) using cellulose bio-templates. Azadirachta indica (neem) leaf extract prepared in different solvents were used as biological templates to produce nanostructures of wurtzite ZnO with a particle size ~12-36 nm. A cellulose-driven capping mechanism is used to describe the morphology of ZnO NPs. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and photoluminescence (PL) studies showed that solvents affect the growth process and the capping mechanism of bio-template severely. Structural changes in ZnO NPs were evident with variation in pH, dielectric constants (DC) and boiling points (BP) of solvents. Furthermore, an energy band model is proposed to explain the origin of the blue emission in the as-obtained ZnO NPs. PL excitation studies and the theoretical enthalpy values of individual defects were used to establish the association between the interstitial-zinc-related defect levels and the blue emission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The effect of ionotropic gelation residence time on alginate cross-linking and properties.

    PubMed

    Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith

    2017-01-02

    The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch.

    PubMed

    Shah, Umar; Gani, Adil; Ashwar, Bilal Ahmad; Shah, Asima; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2016-03-01

    Starch extracted from Indian Horse Chestnut (IHCN) was subjected to infrared and microwave radiations for different time intervals (15 s, 30 s, & 45 s) at constant dose. The structural change of MW and IR radiated IHCN starches were determined by Fourier transform-infra red spectroscopy. The increased peak intensity at 3240 cm(-1) of treated starch represents more exposure of hydroxyl groups due to radiation. Granule morphology of native starch showed round and elliptical granules with smooth surfaces. However radiation treatment resulted in the development of surface cracks. Effect of radiation on physicochemical properties of starch revealed increase in water absorption capacity and light transmittance and decrease in apparent amylose content, pH, and syneresis. The peak, trough, final, and setback viscosities were significantly reduced with increase in treatment time. Radiated starches displayed significantly lower values of To,Tp, and ΔHgel than native starch. Further antioxidant activities were evaluated by DPPH and FRAP assays. Results showed significant improvement in antioxidant activity of starch by both MW and IR treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Impact of gamma radiation on the eruption rate of rat incisors

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; El-Haddad, Khaled; Ali, Mohamed; Talaat, Mona

    2015-09-01

    The present work aims to test the effect of gamma radiation on the rate of eruption of rat incisors. One hundred and five adult male albino rats were used and irradiated at different gamma doses. The effects of irradiation were investigated by numerical measurements of eruption rate, histological investigation using light microscope and spectral analysis using Fourier Transform Infra-Red (FTIR). No detectable changes were observed in the groups with smaller radiation doses. There was a significant decrease in the eruption rate starting from the 4 Gy radiation dose. The observation of histological sections revealed disturbance in cellular elements responsible for eruption as well as periodontal disturbance in the samples irradiated with 4 and 6 Gy. FTIR Spectroscopy of control group and the group irradiated by 0.5 Gy showed similar absorption bands with minor differences. However, samples irradiated by 1 Gy showed significant changes in both molecular structure and conformation related to carbonates and hydroxyl groups. From the previous results, it could be concluded that gamma irradiation negatively affects the eruption rate of the rat incisors especially with higher doses.

  9. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  10. Synthesis of Gold Nanoparticles Using Garcinia Indica Fruit Rind Extract

    NASA Astrophysics Data System (ADS)

    Krishnaprabha, M.; Pattabi, Manjunatha

    2016-10-01

    This report presents the easily reproducible biosynthesis of gold nanoparticles (AuNPs) at room temperature with extract prepared using three year old dried Garcinia Indica (GI) fruit rind. Due to the presence of two major bioactive compounds garcinol and hydroxy citric acid, rinds of GI fruit exhibit anti-cancer and anti-obesity properties. The quantity of fruit rind extract directed the morphology of the as synthesized particles. The nucleation and growth of AuNPs and catalytic activity are studied using UV-Vis spectroscopy. The crystalline nature of biosynthesized AuNPs is corroborated by X-ray Diffraction techniques. The morphology is studied using field emission scanning electron microscopy (FESEM). Fourier transform infra-red (FTIR) spectroscopy analysis revealed that biomolecules were involved in the synthesis and capping of AuNPs. As the Fermi potential of noble metal NPs becomes more negative, they are used in various electron transfer processes. The AuNPs produced using GI extract showed excellent catalytic activity when used as a catalyst in the reduction of well-known toxic pollutant 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) in the presence of excess sodium borohydride.

  11. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  12. Banana peel extract mediated synthesis of gold nanoparticles.

    PubMed

    Bankar, Ashok; Joshi, Bhagyashree; Kumar, Ameeta Ravi; Zinjarde, Smita

    2010-10-01

    Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures.

  13. Analysis of Radial Segregation in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.

    2003-01-01

    Bridgman growth experiments were performed on Hg(0.89)Mn(0.11)Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 p d s and in axial thermal gradients of 83 and 68"C/cm. Wavelength Dispersive Spectroscopy (WDS) and Fourier Transform Infra-Red (FTIR) analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5 to 6 cm of directional solidification. For all growth runs, the measured radial coinpositional variations were on the order of 0.01 molar percent MnTe in the steady state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the solid-liquid interface. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.

  14. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.

    Propargyl alcohol (CHCCH{sub 2}OH) is a known stable isomer of the propenal (CH{sub 2}CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm{sup –1}. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM.more » Moreover, our experiments clearly show benzene (C{sub 6}H{sub 6}) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C{sub 3}H{sub 3}) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C{sub 6}H{sub 6} in the interstellar icy mantles.« less

  15. Preparation of nanobiochar as magnetic solid acid catalyst by pyrolysis-carbonization from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Jenie, S. N. Aisyiyah; Kristiani, Anis; Kustomo, Simanungkalit, Sabar; Mansur, Dieni

    2017-11-01

    Nanomaterials based on carbon exhibits unique properties, both physical and chemical, that can be utilized in various application, including catalyst. These nanomaterials were prepared through pyrolysis-carbonization process of biomass, oil palm empty fruit bunches. The effect of carbonization temperature in range of 500°C-600°C were also studied. The magnetic nanobiochar samples, MBC, were sulfonated by using sulfuric acid to increase their properties as solid acid catalyst. Their chemical and physical properties were characterized by Surface Area Analyzer and Porositymeter, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infra-Red. The magnetic biochar samples obtained from carbonization at 873 K, MBC02-SO3H, was proven to have higher surface area, crystallinity properties and surface chemical composition after sulfonation process, which were confirmed by the BET, XRD and FT-IR analysis. Moreover, sample MBC02-SO3H exhibit promising catalytic acitivity in a catalysed esterification reaction, producing an ester yield of 64%. The result from this work opens new opportunities for the development of magnetic heterogenous acid catalyst from biomass waste.

  16. Kyllinga brevifolia mediated greener silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-12-01

    Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.

  17. A novel pH-responsive interpolyelectrolyte hydrogel complex for the oral delivery of levodopa. Part II: characterization and formulation of an IPEC-based tablet matrix.

    PubMed

    Ngwuluka, Ndidi C; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Khan, Riaz A; Pillay, Viness

    2015-03-01

    This study was undertaken in order to apply a synthesized interpolyelectrolyte complex (IPEC) of polymethacrylate and carboxymethylcellulose as a controlled release oral tablet matrix for the delivery of the model neuroactive drug levodopa. The IPEC (synthesized in Part I of this work) was characterized by techniques such as Fourier Transform Infra-Red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Advanced DSC (ADSC), and Scanning Electron Microscopy (SEM). The tablet matrices were formulated and characterized for their drug delivery properties and in vitro drug release. FTIR confirmed the interaction between the two polymers. The IPEC composite generated tablet matrices with a hardness ranging from 19.152-27.590 N/mm and a matrix resilience ranging between 42 and 46%. An IPEC of polymethacrylate and carboxymethylcellulose was indeed an improvement on the inherent properties of the native polymers providing a biomaterial with the ability to release poorly soluble drugs such as levodopa at a constant rate over a prolonged period of time. © 2014 Wiley Periodicals, Inc.

  18. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  19. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  20. Far Infrared Measurements of Cirrus

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Vanek, M. D.; Tappan, N. D.; Minnis, P.; Alltop, J. L.; Ade, A. R.; Lee, C.; Hamilton, P. A.; Evans, K. F.; Evans, A. H.

    1999-01-01

    Improved techniques for remote sensing of cirrus are needed to obtain global data for assessing the effect of cirrus in climate change models. Model calculations show that the far infrared/sub-millimeter spectral region is well suited for retrieving cirrus Ice Water Path and particle size parameters. Especially useful cirrus information is obtained at frequencies below 60 cm-1 where single particle scattering dominates over thermal emission for ice particles larger than about 50 m. Earth radiance spectra have been obtained for a range of cloud conditions using an aircraft-based Fourier transform spectrometer. The Far InfraRed Sensor for Cirrus (FIRSC) is a Martin-Puplett interferometer which incorporates a polarizer for the beamsplitter and can be operated in either intensity or linear polarization measurement mode. Two detector channels span 10 to 140 cm-1 with a spectral resolution of 0.1 cm-1; achieving a Noise Equivalent Temperature of approximately 1K at 30 cm-1 in a 4 sec scan. Examples are shown of measured and modeled Earth radiance for a range of cloud conditions from 1998 and 1999 flights.

  1. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  3. Sensor Functionality of Conducting Polyaniline-Metal Oxide (TiO2/SnO2) Hybrid Materials Films toward Benzene and Toluene Vapors at Room Temperature

    NASA Astrophysics Data System (ADS)

    Subramanian, E.; Santhanamari, P.; Murugan, C.

    2018-05-01

    Polyaniline-metal oxide (TiO2/SnO2) organic-inorganic hybrid materials films were fabricated in situ on a printed circuit board (PCB) via drop coating technique. The mixture of aniline and metal oxide (TiO2/SnO2) dispersed in ethanol was applied along with an oxidant for the coating process. The formed material films were characterized by Fourier transform infra-red spectroscopy, x-ray diffraction and scanning electron microscopy techniques. The sensor functionality of the prepared films on PCB was investigated individually for the detection of benzene or toluene vapor at room temperature. The promptness of sensor response to analyte vapor and its recovery to air, as well as the concentration-dependent sensor functionality of the hybrid material films were investigated. The film form of hybrid materials has shown much improved sensor efficiency even at ambient air condition compared to the pellet form of the polyaniline-SnO2 hybrid material reported earlier, which sensed the same analytes only in nitrogen atmosphere.

  4. Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties.

    PubMed

    Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G

    2003-02-01

    The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.

  5. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses).

    PubMed

    Srivastava, Abhinay Kumar; Tripathi, Abhishek Dutt; Jha, Alok; Poonia, Amrita; Sharma, Nitya

    2015-06-01

    In the present work Lactobacillus delbrueckii was used to utilize agro-industrial byproduct (cane molasses) for lactic acid production under submerged fermentation process. Screening of LAB was done by Fourier transform infra red spectroscopy (FTIR). Effect of different amino acids (DL-Phenylalanine, L-Lysine and DL-Aspartic acid) on the fermentation process was done by high performance liquid chromatography (HPLC). Central composite rotatable design (CCRD) was used to optimize the levels of three parameters viz. tween 80, amino acid and cane molasses concentration during fermentative production of lactic acid. Under optimum condition lactic acid production was enhanced from 55.89 g/L to 84.50 g/L. Further, validation showed 81.50 g/L lactic acid production. Scale up was done on 7.5 L fermentor. Productivity was found to be 3.40 g/L/h which was higher than previous studies with reduced fermentation time from 24 h to 12 h. Further characterization of lactic acid was done by FTIR.

  6. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  7. Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) Hoek.

    PubMed

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R(2) = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter R(L) is found in the range of 0.0639 to 0.1925 (0 < R(L) < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C-H stretching vibrations of -CH3 and -CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II).

  8. Rivastigmine hydrogen tartrate polymorphs: Solid-state characterisation of transition and polymorphic conversion via milling

    NASA Astrophysics Data System (ADS)

    Amaro, Maria Inês; Simon, Alice; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira; Healy, Anne Marie

    2015-11-01

    Rivastigmine (RHT) is an active pharmaceutical ingredient that is used for the treatment of mild to moderately severe dementia in Alzheimer's disease, and is known to present two polymorphic forms and to amorphise upon granulation. To date there is no information in the scientific or patent literature on polymorphic transition and stability. Hence, the aim of the current study was to gain a fundamental understanding of the polymorphic forms by (1) evaluating RHT thermodynamic stability (monotropy or enantiotropy) and (2) investigating the potential for polymorphic transformation upon milling. The two polymorphic and amorphous forms were characterised using X-ray powder diffractometry, thermal analyses, infra-red spectroscopy and water sorption analysis. The polymorphic transition was found to be spontaneous (ΔG0 < 0) and exothermic (ΔH0 < 0), indicative of a monotropic polymorph pair. The kinetic studies showed a fast initial polymorphic transition characterised by a heterogeneous nucleation, followed by a slow crystal growth. Ball milling can be used to promote the polymorphic transition and for the production of RHT amorphous form.

  9. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    NASA Astrophysics Data System (ADS)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  10. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics.

    PubMed

    Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  12. Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization.

    PubMed

    Robles-García, Miguel Ángel; Del-Toro-Sánchez, Carmen Lizette; Márquez-Ríos, Enrique; Barrera-Rodríguez, Arturo; Aguilar, Jacobo; Aguilar, José A; Reynoso-Marín, Francisco Javier; Ceja, I; Dórame-Miranda, R; Rodríguez-Félix, Francisco

    2018-07-15

    In this study, cellulose of bagasse from Agave tequilana Weber var. azul was extracted to elaborate nanofibers by the electrospinning technique. Fiber characterization was performed using Transmission Electron Microscopy (TEM), x-ray, Fournier Transform-InfraRed (FT-IR) spectroscopy, and thermal analysis by Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA). Different diameters (ranging from 54.57 ± 0.02 to 171 ± 0.01 nm) of nanofibers were obtained. Cellulose nanofibers were analyzed by means of x-ray diffraction, where we observed a total loss of crystallinity in comparison with the cellulose, while FT-IR spectroscopy revealed that the hemicellulose and lignin present in the agave bagasse were removed. Thermal analysis showed that nanofibers exhibit enhanced thermal properties, and the zeta potential value (-32.5 mV) demonstrated moderate stability in the sample. In conclusion, the nanofibers obtained provide other alternatives-of-use for this agro-industrial residue and could have potential in various industrial applications, among these encapsulation of bioactive compounds and reinforcing material, to mention a few. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Device level optimization of poly(vinylidene fluoride-trifluoroethylene)–zinc oxide polymer nanocomposite thin films for ferroelectric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C K, Subash, E-mail: cksubash08@gmail.com; Valiyaneerilakkal, Uvais; Varghese, Soney

    Polymer nanocomposite was prepared using poly(vinylidene fluoride-trifluoroethylene) and zinc oxide (ZnO) nanopowder, which are ferroelectric in nature. Nanocomposite was prepared in various concentrations(0.2, 0.4, 0.8, and 1 wt. %) using probe ultra-sonication, followed by spin coating and annealing at 120 °C for 2 h to improve the formation of β-phase. Metal-ferroelectric-metal capacitor was fabricated using this optimized thin film as a ferroelectric layer. Device level optimization was carried out by polarization-electric field (P-E) hysteresis studies of this film, which shows polarization enhancement of composite. Various characterization techniques like atomic force microscopy, Fourier transform infra-red spectroscopy (FT-IR), Differential scanning calorimetry, and X-ray diffractionmore » were used to study the β-phase formation of nancomposite. The capacitance–voltage (C-V) and current-voltage (I-V) characteristics were studied through varying frequency and temperature. C-V measurements show an increase of 79% in the capacitance of polymer nanocomposite, which can be used for the fabrication of ferroelectric devices.« less

  14. Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film.

    PubMed

    Batra, Bhawna; Lata, Suman; Pundir, C S

    2013-11-01

    A method is described for construction of an improved amperometric acrylamide biosensor based on covalent immobilization of hemoglobin (Hb) onto nanocomposite of carboxylated multi-walled carbon nanotubes (cMWCNT) and iron oxide nanoparticles (Fe3O4NPs) electrodeposited onto Au electrode through chitosan (CHIT) film. The Hb/cMWCNT-Fe3O4NP/CHIT/Au electrode was characterized by scanning electron microscopy, Fourier transform infra-red spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry at different stages of its construction. The biosensor was based on interaction between acrylamide and Hb, which led to decrease in the electroactivity of Hb, i.e., current generated during its reversible conversion [Fe(II)/Fe(III)]. The biosensor showed optimum response within 8 s at pH 5.0 and 30 °C. The linear working range for acrylamide was 3-90 nM, with a detection limit of 0.02 nM and sensitivity of 36.9 μA/nM/cm(2). The biosensor was evaluated and employed for determination of acrylamide in potato crisps.

  15. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode.

    PubMed

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90s at an accumulation potential of 0.75V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05-80 μM and a detection limit (S/N=3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. Copyright © 2015. Published by Elsevier B.V.

  16. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states

    NASA Astrophysics Data System (ADS)

    Gandolfo, D. S.; Mortimer, H.; Woodhall, J. W.; Boonham, N.

    2016-06-01

    FTIR spectroscopy coupled with an Attenuated Total Reflection (ATR) sampling probe has been demonstrated as a technique for detecting disease in plants. Spectral differences were detected in Japanese Larch (Larix kaempferi) infected with Phytophthora ramorum at 3403 cm-1 and 1730 cm-1, from pine (Pinus spp.) infected with Bursaphelenchus xylophilus at 1070 cm-1, 1425 cm-1, 1621 cm-1 and 3403 cm-1 and from citrus (Citrus spp.) infected with 'Candidatus liberibacter' at 960 cm-1, 1087 cm-1, 1109 cm-1, 1154 cm-1, 1225 cm-1, 1385 cm-1, 1462 cm-1, 1707 cm-1, 2882 cm-1, 2982 cm-1 and 3650 cm-1. A spectral marker in healthy citrus has been identified as Pentanone but is absent from the diseased sample spectra. This agrees with recent work by Aksenov, 2014. Additionally, the spectral signature of Cutin was identified in the spectra of Pinus spp. and Citrus spp. and is consistent with work by Dubis, 1999 and Heredia-Guerrero, 2014.

  17. Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity.

    PubMed

    El-Batal, Ahmed Ibrahim; Hashem, Abd-Algawad M; Abdelbaky, Noha M

    2013-12-01

    Aspergillus oryzae was used to enhance the mobilization of antioxidants of soybean matrix along with garlic as a co-substrate by modulating polyphenolic substances during solid-state fermentation. Mobilized polyphenols were used as a green tool for synthesis and stabilization of gold nanoparticles (AuNPs). The radiation-induced AuNPs synthesis is a simple, clean and inexpensive process which involves radiolysis of aqueous solution that provides an efficient method to reduce metal ions. Gamma irradiated aqueous extract of fermented soybean and garlic was used for rapid preparation of AuNPs combining both effects of radiolytic reactions by radiation and stabilization by bioactive components of fermented extract. The synthesized AuNPs were confirmed by UV-Visible spectrophotometry, dynamic light scattering (DLS), Fourier Transform infra red (FT-IR) spectrophotometry, and transmission electron microscope (TEM) analysis which revealed morphology of spherical AuNPs with size ranging from 7-12 nm. The synthesized AuNPs exhibited antimicrobial activity against both Gram positive and Gram negative bacteria, as measured by well diffusion assay.

  18. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza

    2015-04-15

    A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Machine learning techniques for medical diagnosis of diabetes using iris images.

    PubMed

    Samant, Piyush; Agarwal, Ravinder

    2018-04-01

    Complementary and alternative medicine techniques have shown their potential for the treatment and diagnosis of chronical diseases like diabetes, arthritis etc. On the same time digital image processing techniques for disease diagnosis is reliable and fastest growing field in biomedical. Proposed model is an attempt to evaluate diagnostic validity of an old complementary and alternative medicine technique, iridology for diagnosis of type-2 diabetes using soft computing methods. Investigation was performed over a close group of total 338 subjects (180 diabetic and 158 non-diabetic). Infra-red images of both the eyes were captured simultaneously. The region of interest from the iris image was cropped as zone corresponds to the position of pancreas organ according to the iridology chart. Statistical, texture and discrete wavelength transformation features were extracted from the region of interest. The results show best classification accuracy of 89.63% calculated from RF classifier. Maximum specificity and sensitivity were absorbed as 0.9687 and 0.988, respectively. Results have revealed the effectiveness and diagnostic significance of proposed model for non-invasive and automatic diabetes diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  1. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: Application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine)

    NASA Astrophysics Data System (ADS)

    Garnier, Nicolas; Rolando, Christian; Høtje, Jakob Munk; Tokarski, Caroline

    2009-07-01

    This work presents the precise identification of triacylglycerols (TAGs) extracted from archaeological samples using a methodology based on nanoelectrospray and Fourier transform mass spectrometry. The archaeological TAG identification needs adapted sample preparation protocols to trace samples in advanced degradation state. More precisely, the proposed preparation procedure includes extraction of the lipid components from finely grinded ceramic using dichloromethane/methanol mixture with additional ultrasonication treatment, and TAG purification by solid phase extraction on a diol cartridge. Focusing on the analytical approach, the implementation of "in-house" species-dependent TAG database was investigated using MS and InfraRed Multiphoton Dissociation (IRMPD) MS/MS spectra; several vegetal oils, dairy products and animal fats were studied. The high mass accuracy of the Fourier transform analyzer ([Delta]m below 2.5 ppm) provides easier data interpretation, and allows distinction between products of different origins. In details, the IRMPD spectra of the lithiated TAGs reveal fragmentation reactions including loss of free neutral fatty acid and loss of fatty acid as [alpha],[beta]-unsaturated moieties. Based on the developed preparation procedure and on the constituted database, TAG extracts from 5th century BC to 4th century AD Olbia lamps were analyzed. The structural information obtained succeeds in identifying that bovine/ovine fats were used as fuel used in these archaeological Olbia lamps.

  2. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain.

    PubMed

    Preston, L J; Shuster, J; Fernández-Remolar, D; Banerjee, N R; Osinski, G R; Southam, G

    2011-05-01

    One of the keys to understanding and identifying life on other planets is to study the preservation of organic compounds and their precursor micro-organisms on Earth. Rio Tinto in southwestern Spain is a well documented site of microbial preservation within iron sulphates and iron oxides over a period of 2.1 Ma. This study has investigated the preservation of filamentous iron oxidising bacteria and organics through optical microscopy, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) spectroscopy, from laboratory cultures of natural samples to contemporary natural materials to million-year old river terraces. Up to 40% elemental carbon and >7% nitrogen has been identified within microbial filaments and cell clusters in all samples through SEM EDS analyses. FTIR spectroscopy identified C-H(x) absorption bands between 2960 and 2800 cm(-1), Amide I and II absorption bands at 1656 and 1535 cm(-1), respectively and functional group vibrations from within nucleic acids at 917, 1016 and 1124 cm(-1). Absorption bands tracing the diagenetic transformation of jarosite to goethite to hematite through the samples are also identified. This combination of mineralogy, microbial morphology and biomolecular evidence allows us to further understand how organic fossils are created and preserved in iron-rich environments, and ultimately will aid in the search for the earliest life on Earth and potential organics on Mars. © 2011 Blackwell Publishing Ltd.

  3. STUDIES UPON THE EFFECT OF LIGHT ON BLOOD AND TISSUE CELLS

    PubMed Central

    Earle, W. R.

    1928-01-01

    1. An extreme and rapid degeneration which occurred in tissue cultures of leucocytes from the blood of cats, guinea pigs, and rabbits, is described in detail. 2. This degeneration was found to appear in the culture when the cells were planted in any of the culture media tried, some of which were autogenous heparin plasma, autogenous plasma, autogenous serum, Tyrode solution, and mixtures of these with embryo juice. 3. The specific cellular changes which occurred are described for the different leucocytes. In general, there was first a latent period during which no change could be observed in the cell. Following this there was a period of stimulation during which the motion of the cell was greatly accelerated. This second stage has been observed in all cells except the lymphocyte, in which it may possibly occur to a slight degree. Finally there was the terminal stage, the stage of degeneration, in which the cell rounded up, lost its motility, and either became badly swollen or else underwent a more or less complete coagulation. 4. The factor causing this degeneration was found to be exposure of the culture to light, as, for example, during microscopic examination. 5. By a reduction of the infrared part of the spectrum, it was indicated that the effect was not due to a heat coagulation of the cells. 6. This degeneration was also found to occur in the complete absence of ultra-violet wave-lengths. 7. Further, it was shown that this degeneration was caused by light which lay within each of the three wave-length zones (1) 430µµ to 550µµ; infra-red; (2) 475µµ to 630µµ; 690µµ to infra-red; (3) 600µµ to infra-red. 8. No indication was given as to whether all regions of these zones were active in causing the degeneration, or whether the active rays are limited to certain wave-length bands lying within these zones. 9. This degeneration of the leucocytes under the action of light was also found to occur upon irradiation of hanging drops of whole blood. This is interpreted as showing conclusively that the degeneration was not dependent upon the additional factors of centrifugation, continued lowering of temperature, or the presence of abnormal saline solution. 10. It was noted, however, that the leucocytes in hanging drop cultures required a markedly longer time for their degeneration under the action of light than did the leucocytes in cultures prepared from the buffy coat and inoculated in serum. This is considered as possibly due, either to injury to the cell during centrifugation and subsequent handling, or to some action of the red blood cells present in large amounts in the hanging drops of whole blood. 11. In these hanging drop cultures of whole blood degeneration of the leucocytes was also found to occur when the light reaching the culture was first freed from the larger part of its infra-red and from all of its ultra-violet. 12. It was also shown that the same degeneration was produced by wave-lengths of light lying within each of the three wave-length zones defined in Section 6 of this summary. PMID:19869498

  4. Deciphering Structural Intermediates and Genotoxic Fibrillar Aggregates of Albumins: A Molecular Mechanism Underlying for Degenerative Diseases

    PubMed Central

    Naeem, Aabgeena; Amani, Samreen

    2013-01-01

    The misfolding and aggregation of proteins is involved in some of the most prevalent neurodegenerative disorders. The importance of human serum albumin (HSA) stems from the fact that it is involved in bio-regulatory and transport phenomena. Here the effect of acetonitrile (ACN) on the conformational stability of HSA and by comparison, ovalbumin (OVA) has been evaluated in the presence and absence of NaCl. The results show the presence of significant amount of secondary structure in HSA at 70% ACN and in OVA at 50% ACN, as evident from far-UV Circular Dichroism (CD) and Attenuated Total Reflection Fourier transformed infra red spectroscopy (ATR-FTIR). Tryptophan and 8-Anilino-1-Naphthalene-Sulphonic acid (ANS) fluorescence indicate altered tryptophan environment and high ANS binding suggesting a compact “molten globule”-like conformation with enhanced exposure of hydrophobic surface area. However, in presence of NaCl no intermediate state was observed. Detection of aggregates in HSA and OVA was possible at 90% ACN. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and ATR-FTIR. These aggregates exhibit increase Thioflavin T (Th T) fluorescence with a red shift of Congo red (CR) absorption spectrum. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis confirmed the presence of fibrillar aggregates. Single cell gel electrophoresis (SCGE) assay of these fibrillar aggregates showed the DNA damage resulting in cell necrosis confirming their genotoxic nature. Some proteins not related to any human disease form fibrils in vitro. In the present study ACN gives access to a model system to study the process of aggregation. PMID:23342075

  5. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods.

    PubMed

    Depciuch, J; Parlinska-Wojtan, M

    2018-02-20

    Depression is a serious mental illness. To study the mechanism of depression and search for new, more effective therapies, animal models are often used. Unfortunately, none of the available models reflects all the symptoms of depression. Therefore researchers are looking for new tools to diagnose depression. Unfortunately, the nowadays-available depression diagnosis methods are only psychological tests. However, it is known, that the amount of phospholipids, proteins and lipids decreases during depression. Raman and FTIR (Fourier Transform Infra Red) spectroscopies provide information on the chemical compounds in the measured sample e.g. blood serum. These spectroscopic techniques may thus become reliable and accurate tools for evaluating changes in the amount of phospholipids and proteins in depression disease. In this study differences between dried and liquid blood serum samples of healthy and depressed individuals measured by Raman (range 0-3000cm -1 ) and FTIR (Fourier Transform Infrared) (range 900-3000cm -1 ) spectroscopy were evaluated. The resulting spectra and accurate analysis led to the conclusion that an appropriate measurement of the background and the elimination of peaks from water had the greatest impact on the reliability of the results. Furthermore, after detailed studies of FTIR and Raman spectra of dried and liquid blood serum samples, including a complete analysis of peaks after Kramers-Kröning (KK) transformation, it was found that the sample preparation did not affect the results obtained by Raman spectroscopy. In FTIR measurements only a minimal effect on peak intensity was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Seventh Colloquium on High Resolution Molecular Spectroscopy 14 to 18 September 1981 (Septieme Colloque sur la Spectroscopie Moleculaire a Haute Resolution 14 a 18 Septembre 1981).

    DTIC Science & Technology

    1981-01-01

    K61n, D-5000 K61n 41 In our attempt to observe the high resolution infra- red spectra of the astrophysically interesting cyanopolyyne molecules, we...cyclobutylsilane could exist in two possible con- formations with the silylgroup in either the axial or equatorial position with respect to the puckered

  7. Sensing of Living Casualties on the Modern Integrated Battlefield

    DTIC Science & Technology

    1983-11-01

    spa- tial and energy resolution this technology is not considered to be appropriate to our task. Acoustic sensors including infrasonic (seismic... sonic , and ultrasonic have found application in detecting vehicle and troop movements. This type of sensor may be a useful indicator of notion and, hence...Street Columbus, OH 43210 DAVE NORDIN Monitoring of CO , Blood Resuscitation Products Manager pressure, pH, u trasound, McMinnville Division infra -red

  8. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    DTIC Science & Technology

    2012-11-01

    IR Faraday Rotational Spectroscopy Method to quantify HO2 29 30 Brian Brumfield, Wenting Sun, Gerard Wysock, and Yinguang Ju, submitted...to JACS, 2012 7.1 μm Mid infra-red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 Quantitative HO2 Measurement (very challenging!): 2L + 1...paramagnetic species Polarization rotation detection Linearly-polarized laser light 610 Hz oscillating magnetic field 125 Gauss rms Sub-ppm level

  9. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  10. Results of Absolute Cavity Pyrgeometer (ACP), InfraRed Integrating Sphere (IRIS), and Atmospheric Emitted Radiance Interferometer (AERI) Comparisons and CIMO Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim M; Dooraghi, Michael R; Sengupta, Manajit

    Presenting results of five comparisons between ACPs and IRISs and the difference between the longwave irradiance measured by the ACPs and IRISs versus the average irradiance measured by the WISG. The process of CIMO recommendation to establish the world reference for measuring the atmospheric longwave irradiance with traceability to the International System of Units (SI) is also presented.

  11. 75 FR 11624 - Highway Safety Programs; Conforming Products List of Evidential Breath Alcohol Measurement Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... either 110 volts AC or 12 volts DC, such as from a car battery. The Alcotest 9510 uses fuel cell and...-dispersive infra-red device that is powered by either 120 volts AC power or 12 volts DC, such as from a car.... Louis, Missouri: Photo Electric Intoximeter *...... X GC Intoximeter MK II X X GC Intoximeter MK IV X X...

  12. New Agricultural Settlement, Meheba River, Zambia, Africa

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This infra-red view of a new settlement along the Meheba River, Zambia, Africa (12.5S, 26.0E) resembles the resettlement clusters in the Amazon basin of Brazil. However, this settlement is on savanna land not a tropical forest region, so relatively little land clearing was required. The familiar pattern of small single family plots, no large commercial fields, along the branches of a herringbone road network is evident.

  13. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  14. Vesta Mineralogy: VIR maps Vesta's surface

    NASA Technical Reports Server (NTRS)

    Coradina, A.; DeSanctis, M.; Ammannito, E.; Capaccioni, F.; Capria, T.; Carraro, F.; Cartacci, M.; Filacchione, G.; Fonte, S.; Magni, G.; hide

    2011-01-01

    The Dawn mission will have completed Survey orbit around 4 Vesta by the end of August 2011. We present a preliminary analysis of data acquired by the Visual and InfraRed Spectrometer (VIR) to map Vesta mineralogy. Thermal properties and mineralogical data are combined to provide constraints on Vesta's formation and thermal evolution. delivery of exogenic materials, space weathering processes, and origin of the howardite. eucrite, and diogenite (HED) meteorites.

  15. SAT's infrared equipment using second-generation detectors

    NASA Astrophysics Data System (ADS)

    Siriex, Michel B.

    1995-09-01

    In 1982 SAT proposed for the first time a second generation detector in the design of FLIRs for the TRIGAT program, since then different types of IR equipment have been developed on the basis of this technology: (1) An infra-red seeker for the MICA missile. (2) Three types of IRST: VAMPIR MB for naval applications, SIRENE for the Army and OSF for the Rafale aircraft. (3) Three thermal imagers: Condor 1 for the mast mounted sight equipping the long range anti tank system, Tiger installed on the sight of the medium range antitank system, and Condor 2 for the pilot sight of the TRIGAT French-German helicopter. Infra-red detectors are MCT IR-CCD focal plane arrays developed by SOFRADIR with the objective of the best standardization possible in spite of different configurations and specifications for each program. In this paper, we intend to present the main features of this technology for these programs and the advantages obtained by comparison with the first generation in terms of performance. Industrialization of these products is starting now, and a specific effort has been made to standardize the components, especially the driving and read out electronics. A set of ASICs has been developed to make compact detection modules including a detector in his dewar, a cooling machine, and a proximity electronic.

  16. Calculation of lava discharge rates during effusive eruptions: an empirical approach using MODIS Middle InfraRed data

    NASA Astrophysics Data System (ADS)

    Coppola, Diego; Laiolo, Marco; Cigolini, Corrado

    2016-04-01

    The rate at which the lava is erupted is a crucial parameter to be monitored during any volcanic eruption. However, its accurate and systematic measurement, throughout the whole duration of an event, remains a big challenge, also for volcanologists working on highly studied and well monitored volcanoes. The thermal approach (also known as thermal proxy) is actually one of most promising techniques adopted during effusive eruptions, since it allows to estimate Time Averaged lava Discharge Rates (TADR) from remote-sensed infrared data acquired several time per day. However, due to the complexity of the physic behind the effusive phenomenon and the difficulty to have field validations, the application of the thermal proxy is still debated and limited to few volcanoes only. Here we present the analysis of MODIS Middle InfraRed data, collected by during several distinct eruptions, in order to show how an alternative, empirical method (called radiant density approach; Coppola et al., 2013) permit to estimate TADRs over a wide range of emplacement styles and lava compositions. We suggest that the simplicity of this empirical approach allows its rapid application during eruptive crisis, and provides the basis for more complex models based on the cooling and spreading processes of the active lava bodies.

  17. A new CMOS SiGeC avalanche photo-diode pixel for IR sensing

    NASA Astrophysics Data System (ADS)

    Augusto, Carlos; Forester, Lynn; Diniz, Pedro C.

    2009-05-01

    Near-infra-red sensing with silicon is limited by the bandgap of silicon, corresponding to a maximum wavelength of absorption of 1.1 μm. A new type of CMOS sensor is presented, which uses a SiGeC epitaxial film in conjunction with novel device architecture to extend absorption into the infra-red. The SiGeC film composition and thickness determine the spectrum of absorption; in particular for SiGeC superlattices, the layer ordering to create pseudo direct bandgaps is the critical parameter. In this new device architecture, the p-type SiGeC film is grown on an active region surrounded by STI, linked to the S/D region of an adjacent NMOS, under the STI by a floating N-Well. On a n-type active, a P-I-N device is formed, and on a p-type active, a P-I-P device is formed, each sensing different regions of the spectrum. The SiGeC films can be biased for avalanche operation, as the required vertical electric field is confined to the region near the heterojunction interface, thereby not affecting the gate oxide of the adjacent NMOS. With suitable heterojunction and doping profiles, the avalanche region can also be bandgap engineered, allowing for avalanche breakdown voltages that are compatible with CMOS devices.

  18. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  19. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  20. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting it up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shintani, Seine A.; Oyama, Kotaro; Fukuda, Norio, E-mail: noriof@jikei.ac.jp

    2015-02-06

    Highlights: • We tested the effects of infra-red laser irradiation on cardiac sarcomere dynamics. • A rise in temperature (>∼38 °C) induced high-frequency sarcomeric auto-oscillations. • These oscillations occurred with and without blockade of intracellular Ca{sup 2+} stores. • Cardiac sarcomeres can play a role as a temperature-dependent rhythm generator. - Abstract: In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >∼38 °C induced [Ca{sup 2+}]{sub i}-independent high-frequency (∼5–10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intactmore » sarcoplasmic reticular functions, HSOs coexisted with [Ca{sup 2+}]{sub i}-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (∼10 and ∼1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.« less

  5. New characterization techniques for LSST sensors

    DOE PAGES

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  6. InP Transferred Electron Cathodes: Basic to Manufacturing Methods

    DTIC Science & Technology

    2007-08-29

    Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a

  7. Synthesis and Crystal Structures of Benzimidazole-2-thione Derivatives by Alkylation Reactions.

    PubMed

    El Ashry, El Sayed H; El Kilany, Yeldez; Nahas, Nariman M; Barakat, Assem; Al-Qurashi, Nadia; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-12-22

    Alkylated, benzylated and bromoalkylated benzimidazole-thione that intramolecularly heterocyclized to 3,4-dihydro-2H-[1,3]thiazino[3,2-a]benzimidazole were synthesized. The chemical structure of the synthesized product was characterized by Infra Red, ¹H-NMR, (13)C-NMR, and Mass spectroscopy. Furthermore, the molecular structures of 8 and 9 were confirmed by X-ray single crystallography in different space groups, Pbca and P2₁/c, respectively.

  8. Isolation and identification of an ester from a crude oil

    USGS Publications Warehouse

    Phillips, H.F.; Breger, I.A.

    1958-01-01

    A dioctylphthalate has been isolated from a crude oil by means of adsorption column chromatography. The ester was identified by means of elemental analysis, refractive index, and its infra-red absorption spectrum. Saponification of the isolate and examination of the resultant alcohol by means of infrared absorption spectra led to the conclusion that the ester is a branched chain dioctylphthalate. This is the first reported occurrence of an ester in crude petroleum. ?? 1958.

  9. Design trade-offs for homing missiles

    NASA Astrophysics Data System (ADS)

    Spencer, Allen; Moore, William

    1992-05-01

    Major design considerations, trade-offs and technology issues for future hypervelocity, anti-missile interceptors are presented in an overview format. Two classes of interceptors are considered: a low altitude interceptor using an active radar seeker for defense against tactical ballistic missiles (TBMs) and a higher altitude interceptor using a passive infra-red seeker for defense against ICBMs. Considerations are presented in the areas of mission requirements, seeker selection, aerodynamic and aerothermal environments, control systems, and guidance performance.

  10. Annual Technical Report, Materials Research Laboratory, 1 July 1982 - 30 June 1983.

    DTIC Science & Technology

    1983-06-30

    array of 10 determine the gnajlerial properties to strain rates infra-red radiation detectors , each of which measures greater than 10 s’. temperature...linear array of detectors which will allow us a closer num a drop in temperature raises the flow stress, look at the temperature profile, especially...Hartley, M.S. example, experimental evidence for quantum-me- Thesis, June, 1983. chanical tunneling effects on the viscoelastic relaxa- tion in poly

  11. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  12. Soil Moisture Estimation Using Hyperspectral SWIR Imagery

    NASA Astrophysics Data System (ADS)

    Lewis, D.

    2007-12-01

    The U.S. Geological Survey (USGS) is engaged with the U.S. Department of Agriculture's (USDA) Agricultural Research Service (ARS) and the University of Georgia's National Environmentally Sound Production Agriculture Laboratory (NESPAL) both in Tifton, Georgia, USA, to develop transformations for medium and high resolution remotely sensed images to generate moisture indicators for soil. The Institute for Technology Development (ITD) is located at the Stennis Space Center in southern Mississippi and has developed hyperspectral sensor systems that, when mounted in aircraft, collect electromagnetic reflectance data of the terrain. The sensor suite consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near InfraRed (VNIR) and Short Wave InfraRed (SWIR). The USDA/ ARS' Southeast Watershed Research Laboratory has probes that measure and record soil moisture. Data taken from the ITD SWIR sensor and the USDA/ARS soil moisture meters were analyzed to study the informatics relationships between SWIR data and measured soil moisture. The geographic locations of 29 soil moisture meters provided by the USDA/ARS are in the vicinity of Tifton, Georgia. Using USGS Digital Ortho Quads (DOQ), flightlines were drawn over the 29 soil moisture meters. The SWIR sensor was installed into an aircraft. The coordinates for the flightlines were also loaded into the navigational system of the aircraft. This airborne platform was used to collect the data over these flightlines. In order to prepare the data set for analysis, standard preprocessing was performed. These standard processes included sensor calibration, spectral subsetting, and atmospheric calibration. All 60 bands of the SWIR data were collected for each line in the image data, 15 bands of which were stripped from the data set leaving 45 bands of information in the wavelength range of 906 to 1705 nanometers. All the image files were calibrated using the regression equations generated by using radiometer data collected over calibration tarps. Regions of Interest (ROI) were drawn over the image data set corresponding with the location of the soil moisture meters. Scripts written in ENVI's Interactive Data Language (IDL) were developed to extract the spectra from each of the processed hyperspectral image data over each soil moisture meter from its corresponding ROI. The informatics relationship between soil moisture and SWIR spectra was identified by using the resulting data set.

  13. Colour dependence of zodiacal light models

    NASA Technical Reports Server (NTRS)

    Giese, R. H.; Hanner, M. S.; Leinert, C.

    1973-01-01

    Colour models of the zodiacal light in the ecliptic have been calculated for both dielectric and metallic particles in the sub-micron and micron size range. Two colour ratios were computed, a blue ratio and a red ratio. The models with a size distribution proportional to s to the -2.5 power ds (where s is the particle radius) generally show a colour close to the solar colour and almost independent of elongation. Especially in the blue colour ratio there is generally no significant dependence on the lower cutoff size (0.1-1 micron). The main feature of absorbing particles is a reddening at small elongations. The models for size distributions proportional to s to the -4 power ds show larger departures from solar colour and more variation with model parameters. Colour measurements, including red and near infra-red, therefore are useful to distinguish between flat and steep size spectra and to verify the presence of slightly absorbing particles.

  14. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  15. In vitro TAXOL production, by Pestalotiopsis breviseta--a first report.

    PubMed

    Kathiravan, Govindarajan; Sri Raman, Vithiyanathan

    2010-09-01

    Coelomycetous fungi were screened for the production of TAXOL. TAXOL production of Pestalotiopsis breviseta fungi is confirmed by Ultra Violet (UV) spectroscopic analysis, Infra Red (IR) analysis, high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and LC-MASS spectroscopy. TAXOL isolated from the P. breviseta fungus was identical with authentic TAXOL and produces 0.064 mg/L (0.128% dry weight of fungal mat). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Corrosion Chemistry in Inhibited HDA.

    DTIC Science & Technology

    1980-11-30

    mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap

  17. Structural Characterization of the Putative Cholinergic Binding Region alpha(179-201) of the Nicotinic Acetylcholine Receptor. Part 1. Review and Experimental Design.

    DTIC Science & Technology

    1993-04-01

    SUBJCT TERMS .. 15. NUMBER OF PAGES Nicotinic acetylcholine receptor FTIR 21 Vibrational spectroscopy Cholinergic 16. PRICE COOE Resonance raman 17...Wilson et al 1955). FMR spectroscopy measures the absorbance of infra-red rad iation, where as Raman spectroscopy measures inelastic scattering of...frequency is domrunated by that chromophore, then Raman scattering involving vibrations localized in that chromophore will be sharply enhanced(Cantor and

  18. Infra-red signature neutron detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  19. Optical properties of Si+ implanted PMMA

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.

    2010-04-01

    In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.

  20. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    DTIC Science & Technology

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  1. Evaluating De-centralised and Distributional Options for the Distributed Electronic Warfare Situation Awareness and Response Test Bed

    DTIC Science & Technology

    2013-12-01

    effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple

  2. Extending ORAC-DR for Offline Processing of ESO, INGRID, and Classic Cam data

    NASA Astrophysics Data System (ADS)

    Currie, M. J.

    2004-07-01

    ORAC-DR--a flexible reduction pipeline---was originally developed by the Joint Astronomy Centre for real-time inspection of reduced data at its telescopes. Starlink is extending ORAC-DR to process at home institutions data from other observatories, notably ESO, whose instruments make no provision for ORAC-DR. I outline the problems encountered and solutions implemented or proposed to apply ORAC-DR to the infra-red instruments ISAAC, NACO, INGRID, and Classic~Cam.

  3. Stress-Engineered Quantum Dots for Multispectral Infra-Red Detector Arrays

    DTIC Science & Technology

    2006-06-30

    moment in self-assembled InAs/GaAs(001) QDs. Simultaneously, the interband dipole moment is also determined [publication 25]. 10. Observed temperature... dependence of intraband transition induced dipole moment in self-assembled InAs/GaAs(001) QDs [unpublished]. 11. Utilized cathodoluminescence...001) QDs than that of GaAs capped InAs/GaAs(0O1) QDs [publications 8, 11]. 12. Studied the substrate orientation dependence of the formation of InSb

  4. Observations of Tropospheric Carbon Monoxide From the Atmospheric InfraRed Sounder (AIRS): An Alternative Retrieval Scheme and Its Validation.

    NASA Astrophysics Data System (ADS)

    Douglass, D. H.; Kalnay, E.; Li, H.; Cai, M.

    2005-05-01

    Carbon monoxide (CO) is present in the troposphere as a product of fossil fuel combustion, biomass burning and the oxidation of volatile hydrocarbons. It is the principal sink of the hydroxyl radical (OH), thereby affecting the concentrations of greenhouse gases such as CH4 and O3. In addition, CO has a lifetime of 1-3 months, making it a good tracer for studying the long range transport of pollution. Satellite observations present a valuable tool in the investigation of tropospheric CO. The Atmospheric InfraRed Sounder (AIRS), onboard the Aqua satellite, is sensitive to tropospheric CO in a number of its 2378 channels. This sensitivity to CO, combined with the daily global coverage provided by AIRS, makes AIRS a potentially useful instrument for observing CO sources and transport. A maximum a posteriori (MAP) retrieval scheme (Rodgers 2000) has been developed for AIRS, to provide CO profiles from near-surface altitudes to around 150 hPa. An extensive validation data set, consisting of over 50 in-situ aircraft CO profiles, has been constructed. This data set combines CO data from a number of independent aircraft campaigns. Results from this validation study and comparisons with the AIRS level 2 CO product will be presented. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding : Theory and Practice, World Scientific, Singapore.

  5. Near infra red spectroscopy as a multivariate process analytical tool for predicting pharmaceutical co-crystal concentration.

    PubMed

    Wood, Clive; Alwati, Abdolati; Halsey, Sheelagh; Gough, Tim; Brown, Elaine; Kelly, Adrian; Paradkar, Anant

    2016-09-10

    The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team

    2016-11-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan.

  7. The UKIRT Hemisphere Survey: definition and J-band data release

    NASA Astrophysics Data System (ADS)

    Dye, S.; Lawrence, A.; Read, M. A.; Fan, X.; Kerr, T.; Varricatt, W.; Furnell, K. E.; Edge, A. C.; Irwin, M.; Hambly, N.; Lucas, P.; Almaini, O.; Chambers, K.; Green, R.; Hewett, P.; Liu, M. C.; McGreer, I.; Best, W.; Zhang, Z.; Sutorius, E.; Froebrich, D.; Magnier, E.; Hasinger, G.; Lederer, S. M.; Bold, M.; Tedds, J. A.

    2018-02-01

    This paper defines the UK Infra-Red Telescope (UKIRT) Hemisphere Survey (UHS) and release of the remaining ∼12 700 deg2 of J-band survey data products. The UHS will provide continuous J- and K-band coverage in the Northern hemisphere from a declination of 0° to 60° by combining the existing Large Area Survey, Galactic Plane Survey and Galactic Clusters Survey conducted under the UKIRT Infra-red Deep Sky Survey (UKIDSS) programme with this new additional area not covered by UKIDSS. The released data include J-band imaging and source catalogues over the new area, which, together with UKIDSS, completes the J-band UHS coverage over the full ∼17 900 deg2 area. 98 per cent of the data in this release have passed quality control criteria. The remaining 2 per cent have been scheduled for re-observation. The median 5σ point source sensitivity of the released data is 19.6 mag (Vega). The median full width at half-maximum of the point spread function across the data set is 0.75 arcsec. In this paper, we outline the survey management, data acquisition, processing and calibration, quality control and archiving as well as summarizing the characteristics of the released data products. The data are initially available to a limited consortium with a world-wide release scheduled for 2018 August.

  8. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. Below the rocket is the flame trench, and in the foreground is the overflow pool. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  9. New and improved infra-red absorption cross sections and ACE-FTS retrievals of carbon tetrachloride (CCl4)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.; Boone, Christopher D.; Bernath, Peter F.

    2017-01-01

    Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models. This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over the spectral range 700-860 cm-1 for a range of temperatures and pressures (7.5-760 Torr and 208-296 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases. The second describes a new, preliminary ACE-FTS carbon tetrachloride retrieval that improves upon the v3.0/v3.5 data products, which are biased high by up to 20-30% relative to ground measurements. Making use of the new spectroscopic data, this retrieval also improves the microwindow selection, contains additional interfering species, and utilises a new instrumental lineshape; it will form the basis for the upcoming v4.0 CCl4 data product.

  10. Burnscar analysis using normalized burning ratio (NBR) index during 2015 forest fire at Merang-Kepahyang peat forest, South Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Saputra, Agus Dwi; Setiabudidaya, Dedi; Setyawan, Dwi; Khakim, M. Yusup Nur; Iskandar, Iskhaq

    2017-07-01

    Forest fire, classified as a natural hazard or human-induced hazard, has negative impacts on humans. These negative impacts are including economic loss, health problems, transportation disruption and land degradation or even biodiversity loss. During 2015, forest fire had occurred at the Merang-Kepahyang peat forest that has a total area of about 69.837,00 ha. In order to set a rehabilitation plan for recovering the impact of forest fire, information on the total burnscar area and severity level is required. In this study, the total burnscar area and severity level is evaluated using a calculation on the Normalized Burning Ratio (NBR) Index. The calculation is based on the Near Infra Red (NIR) and Short Wave Infra Red (SWIR) of the satellite imageries from LANDSAT. The images of pre-and post-fire are used to evaluate the severity level, which is defined as a difference in NBR Index of pre- and post-fire. It is found that about 42.906,00 ha of the total area of Merang-Kepahyang peat area have been fired in 2015. These burned area are classified into four categories, i.e., unburned, low, extreme and moderate extreme. By overlying the spatial map of burning level with other thematic maps, it is expected that strategy for rehabilitation plan can be well developed.

  11. A new laser pain threshold model detects a faster onset of action from a liquid formulation of 1 g paracetamol than an equivalent tablet formulation

    PubMed Central

    Sutton, J A; Gillin, W P; Grattan, T J; Clarke, G D; Kilminster, S G

    2002-01-01

    Aims To discover whether a new infra-red laser method could detect a change in pain threshold after as mild an analgesic as paracetamol and whether an effervescent liquid formulation produced a faster onset of action than tablets. Methods This double-blind, placebo controlled randomized study used a portable, infra-red laser to measure ‘first pain’ thresholds on the nondominant forearm in 12 normal volunteers before and after 1 g of paracetamol or placebo. The mean of six recordings was determined three times before dosing, the first being used as a familiarization procedure, and 14 times after dosing. Results We detected a small (2%), statistically significant difference in pain threshold between a liquid formulation of paracetamol and placebo at 30 and 60 min (P = 0.004 and P = 0.001), but not between tablets and placebo. Liquid also increased the threshold significantly compared with tablets at 60 min (P = 0.01). Conclusions To detect such a small increase in pain threshold requires a highly consistent measure and the coefficient of variation was 2% for the study overall, surprisingly low for a subjective phenomenon. The reasons for this include minimizing reflectance by blacking the skin, using a nonhairy site, averaging six data points at each sample time and controlling closely the ambient conditions and the subjects’ preparation for studies. PMID:11849194

  12. Diamond Turning Of Infra-Red Components

    NASA Astrophysics Data System (ADS)

    Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.

    1986-05-01

    Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.

  13. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  14. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    NASA Astrophysics Data System (ADS)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  15. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  16. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    NASA Astrophysics Data System (ADS)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  17. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water.

    PubMed

    Oyewo, Opeyemi A; Onyango, Maurice S; Wolkersdorfer, Christian

    2016-11-01

    Transformation of agricultural waste such as banana peels into a valuable sorbent material has been proven effective and efficient in wastewater treatment. Further, transformation into nanosorbent to enhance the removal capacity of actinides (uranium and thorium) from synthetic and real mine water is extensively investigated in this study. The nanosorbent samples before and after adsorption were characterised by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), zetasizer nanoseries and scanning electron microscopy (SEM) while the amount of radioactive substances adsorbed was determined by inductively coupled plasma optical emission spectroscopy. Results revealed that there was a crystallite size and particle size reduction from 108 to 12 nm and <65,000 nm to <25 nm respectively as a function of milling time. Furthermore, appearance and disappearance of nanofibers via milling was noticed during structural analysis. The functional groups responsible for the banana peels capability to coordinate and remove metal ions were identified at absorption bands of 1730 cm -1 (carboxylic groups) and 889 cm -1 (amine groups) via FTIR analysis. Equilibrium isotherm results demonstrated that the adsorption process was endothermic for both uranium and thorium. The Langmuir maximum adsorption capacity was 27.1 mg g -1 , 34.13 mg g -1 for uranium and 45.5 mg g -1 , 10.10 mg g -1 for thorium in synthetic and real mine water, respectively. The results obtained indicate that nanostructured banana peels is a potential adsorbent for the removal of radioactive substances from aqueous solution and also from real mine water. However, the choice of this sorbent material for any application depends on the composition of the effluent to be treated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    PubMed

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    NASA Astrophysics Data System (ADS)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  20. Synthesis and characterization of hydroxyapatite nanoparticles by chemical precipitation method for potential application in water treatment

    NASA Astrophysics Data System (ADS)

    Joshi, Parth; Patel, Chirag; Vyas, Meet

    2018-05-01

    Hydroxyapatite (HA) is a unique material having high adsorption capacity of heavy metals, high ion exchange capacity, high biological compatibility, low water solubility, high stability under reducing and oxidizing conditions, availability and low cost. As the starting reagents, analytical grade Ca(NO3)2.4H2O, (NH4)2HPO4 and NaOH were used. In order to study the factors that have an important influence on the chemical precipitation process a experimental platform has been designed for hydroxyapatite synthesis. The addition of Phosphorus pentaoxide to Calcium hydroxide was carried out slowly with simultaneous stirring. After addition, solution was aged for maturation. The precipitate was dried at 80°C overnight and further heat treated at 600°C for 2 hours. The dried and calcined particles were characterized by Fourier transform infra-red spectroscopy and Thermo gravimetric analysis. The particle size and morphology were studied using transmission electron microscopy. TEM examination of the treated powders displayed particles of polygon morphology with dimensions 30-70 nm in length. The FT-IR spectra for sample confirmed the formation of hydroxyapatite. Purity of the prepared Hydroxyapatite has been confirmed by XRD analysis.

  1. Time-of-flight depth image enhancement using variable integration time

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  2. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    NASA Astrophysics Data System (ADS)

    Assari, Mohamad javad; Rezaee, Abbas; Rangkooy, Hossinali

    2015-07-01

    The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg0) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV-VIS-NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg0 determination. Dynamic capacity of nanocomposite for Hg0 was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg0. It could be applied for the laboratory and field studies.

  3. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    NASA Astrophysics Data System (ADS)

    Deshpande, Aniruddha S.; Khomane, Ramdas B.; Vaidya, Bhalchandra K.; Joshi, Renuka M.; Harle, Arti S.; Kulkarni, Bhaskar D.

    2008-06-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+ malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 and n-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5 15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  4. A novel conformation of gel grown biologically active cadmium nicotinate

    NASA Astrophysics Data System (ADS)

    Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.

    2017-11-01

    The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.

  5. Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate

    NASA Astrophysics Data System (ADS)

    Widjonarko, D. M.; Mayasari, O. D.; Wahyuningsih, S.; Nugrahaningtyas, K. D.

    2018-03-01

    Modification of montmorillonite (MMt) with cetyltrimethylammonium bromide (CTAB) and tetraethyl ortosilicate (TEOS) has been done. The aim of the research is to study the effect of TEOS and CTAB into MMt. This research is a preliminary step to invent material that can be modified with other functional materials. The study was conducted by recting TEOS with MMt and varying CTAB concentration on MMt previously modified with TEOS. The TEOS concentration was 4.72 M while CTAB concentration was 0.25; 0.5; 2; 3.5; and 5 mmol/g in MMt which has been reacted with TEOS. Material characterization was done by X-Ray Diffraction (XRD), Fourrier Transform Infra-Red Spectrophotometer (FTIR) and Scanning Electron Microscope (SEM). Cation exchange capacity (CEC) of materials was analyzed by titration method. The results show that TEOS and CTAB successfully modified. TEOS adsorbed onto MMt. It was identified from increased basal spacing, specific group and also by its elemental composition, originally having basal spacing 16 Å. After modification with CTAB, basal spacing increased to 28.45 Å or 77.64%. This indicates that CTAB is intercalated within the MMt layers. The CEC of new material is 0.93 meq/g, increase from 0.83 meq/g.

  6. Effects of packaging environments on free radicals in gamma-irradiated UHMWPE resin powder blend with vitamin E.

    PubMed

    Ridley, M D; Jahan, M S

    2009-03-15

    Ultra-high molecular weight polyethylene (UHMWPE) powder (GUR 1020) was blended with high concentration (20%) of vitamin E (alpha-Tocopherol (alpha-T)) for direct detection of alpha-T radicals in presence of PE radicals. Samples were gamma-irradiated in sealed packages filled with N(2), or in open air. Free radicals were measured in open air environment for 71 days using electron spin resonance (ESR) technique. When irradiated in air, both alpha-T and alpha-T-resin produced identical ESR signals characteristics of tochopheroxyl radicals (alpha-T-O(*)), suggesting that PE radicals are quenched by alpha-T. There was no indication of growth of oxygen-induced radicals (OIR) either. However, when alpha-T-resin was irradiated in N(2), presence of both PE and alpha-T radicals were evident in the ESR spectra. And, OIR were produced by the same samples when they were subsequently exposed to air (for 71 days). Oxidation data recorded 85 days after postirradiation aging in air using Fourier transform infra-red (FTIR) spectroscopy, however, did not show any measurable difference between samples irradiated in N(2) and air.

  7. Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks

    NASA Astrophysics Data System (ADS)

    Nor, Nurazira Mohd; Derawi, Darfizzi; Salimon, Jumat

    2018-04-01

    RBD palm oil become one of the interesting renewable resources in biolubricant application. However, palm oil cannot be used directly as lubricant due to some performance limitations such as thermal and oxidative stability. This drawback can be overcome by chemical modification through esterification with polyhydric alcohol such as trimethylolpropane (TMP). The synthesis of ester was carried out via esterification of palm oil fatty acid (POFA) with TMP in the presence of 2% sulphuric acid as catalyst at 150 °C for 5 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage composition of POTMP ester. The structure confirmation of POTMP ester was proven by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The result showed that POTMP ester has successfully synthesized with 97.7% composition of triesters (TE), proved by GC chromatogram. Presence of ester group also evidenced by 1H NMR at 2.27-2.30 ppm and 13C NMR at 173.52-173.54 ppm. The percentage yield of POTMP ester produced was 82% and exist in liquid form at room temperature.

  8. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  9. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.

    PubMed

    Beakou, Buscotin Horax; El Hassani, Kaoutar; Houssaini, Mohammed Amine; Belbahloul, Mounir; Oukani, Elhassan; Anouar, Abdellah

    2017-09-01

    The adsorptive removal of Malachite Green (MG) by a novel biochar namely Cassava Rind Carbon (CRC) was studied in a batch system. Moreover, Box-Behnken Response Surface Methodology was used to optimize operating conditions of the adsorption process. Characterization was done by Thermo Gravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infra-Red Spectroscopy (ATR/FTIR), Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and pH zero charge point (pH ZCP ). The pseudo-second-order model and Langmuir model provided the best fit for kinetic and isotherm, respectively. The maximum capacity of dye adsorbed was 932.98 mg/g at 25 °C. The influence of temperature, the mass of adsorbent and the concentration of dye was studied. The optimal amount of adsorbed MG was 1,363.58 mg/g corresponding to 50 °C, 5 mg of CRC and 150 mg/L of dye. According to the high performance exhibited by CRC in this study, Manihot esculenta Crantz waste can be used as a better and low-cost biomass for wastewater decolourization.

  10. I-SCAD® standoff chemical agent detector overview

    NASA Astrophysics Data System (ADS)

    Popa, Mirela O.; Griffin, Matthew T.

    2012-06-01

    This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.

  11. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rahmani Afje, F.; Ehsani, M. H.

    2018-04-01

    Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.

  12. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  13. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.

    PubMed

    Hegde, Ullas; Chang, Tsan-Chang; Yang, Shang-Shyng

    2003-09-01

    To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.

  14. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route

    NASA Astrophysics Data System (ADS)

    Rahmawati, R.; Melati, A.; Taufiq, A.; Sunaryono; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D.

    2017-05-01

    The composites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sand were successfully prepared via the sonochemical route. In this experiment, the MWCNT-Fe3O4 nanocomposites were prepared with different compositions of MWCNT (0.01%, 0.02%, and 0.04%) with the constant composition of Fe3O4 particles. The characterizations were performed by means of X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer and Scanning Electron Microscopy (SEM) integrated with Energy Dispersive X-Ray (EDX). The XRD data analysis showed that the Fe3O4 crystallize in spinel structure in nanometric size. Furthermore, the crystallinity of the samples tended to reduce by increasing the MWCNT compositions. The SEM images showed that Fe3O4 tend to agglomerate in nanometric size. The FTIR spectra detected the functional groups of Fe-O bonding that showed the existence of Fe2+ and Fe3+. In the composites, the Fe3O4 nanoparticles were physically mixed with the MWCNTs constructing a unique structure. The as prepared MWCNT-Fe3O4 nanocomposites have the potential for bio-applications.

  15. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    NASA Astrophysics Data System (ADS)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  16. Optimization Properties of Environmentally Friendly Paper Coating Based Starch-Polyethylene glycol (PEG) Mixture

    NASA Astrophysics Data System (ADS)

    Galih Saputri, Diani; Khairuddin; Dwi Nurhayati, Nanik; Pham, Trinh

    2017-11-01

    The use of starch as biodegradable base material for packaging application was of great interest as an environmentally friendly alternative to the present use of polyethylene and polyvinyl chloride. However, starch tended to be brittle and had a lack of stability due to exposure to water. Several aproaches have been done to improve shellac properties including through chemical modification, mixing with polymers, clays, and plasticizers. The present study related to optimization of starch properties when mixing with polyethylene glycol (PEG) coated on the paper. The aim was to obtain the temperature and mixing time between starch and PEG so produced composites with optimal barrier properties. The composites of PEG/starch 10 % w/w were prepared using solvent casting and coated on paper surface, and dried in the oven for 12 hours at 40°C. Water Vapour Transmitter Rate (WVTR) (Payne cup method) showed that 70°C was the optimum temperature when mixing time was 30 minutes. Moreover, it showed that the optimum mixing time was 30 minutes when mixing temperature was 80 and 70 °C. Fourier Transform Infra Red (FTIR) showed a strong interaction between PEG400 and starch.

  17. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.

    PubMed

    Hadad, D; Geresh, S; Sivan, A

    2005-01-01

    To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.

  18. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul

    2018-05-01

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  19. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  20. WIRC-POL: A near-IR spectro-polarimetric imager at Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Nilsson, Ricky; Tinyanont, Samaporn; Mawet, Dimitri; Knutson, Heather; WIRC-POL Team

    2017-01-01

    The 200-inch Hale Telescope at Palomar Observatory is the largest equatorial-mounted telescope in the world. Combining a large aperture, extremely stable tracking, and no differential motion of optics, it introduces low and stable instrument polarization, making it uniquely suited for time-resolved polarimetry. Its prime focus currently hosts the Wide-field InfraRed Camera (WIRC), which is being refurbished with a new H2 detector, 32 channel readout electronics, grism, focal-plane mask and polarization grating. This will transform it into WIRC-POL — a machine for high-precision photometry, and slitless low-resolution (R~150) spectroscopy and spectro-polarimetry. Two key science programs are starting in 2017: (1) a large spectro-polarimetric survey of approximately 1000 LTY field brown dwarfs, probing atmospheric composition, physical properties, and cloud dynamics at the L-T transition, and (2) a survey of transiting exoplanets, using the high photometric stability and slitless spectroscopy mode to characterize exoplanet atmospheres from spectra obtained in transit and secondary eclipse, and search for transit-timing variations in multiple planet systems. Here we present an overview of the instrument upgrades and the exciting scientific questions we aim to address.

  1. Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN

    NASA Astrophysics Data System (ADS)

    Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo

    2017-10-01

    Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.

  2. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation.

    PubMed

    Jayalakshmi, G; Saravanan, K; Panigrahi, B K; Sundaravel, B; Gupta, Mukul

    2018-05-04

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar + -ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2 -hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar + -ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  3. Removal of Pb (II) Ions from Aqueous Solutions by Cladophora rivularis (Linnaeus) Hoek

    PubMed Central

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R 2 = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter R L is found in the range of 0.0639 to 0.1925 (0 < R L < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C–H stretching vibrations of –CH3 and –CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II). PMID:22629198

  4. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    NASA Astrophysics Data System (ADS)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  5. Bile salt incorporated polypyrrole thin film for ethanol sensing.

    PubMed

    Sharma, Partha P D; Sarkar, D

    2015-04-01

    Polypyrrole (PPy)-bile salt composite was used for sensing ethanol vapor. PPy was synthesized by interface polymerization for subsequent fabrication of thin film of its composite with bile salt, by in-situ co-dispersion method and then exposed to ethanol vapour. Sensing was visualized through changes in morphological, structural and optical characterizations. The ethanol exposed film showed larger agglomeration as revealed in its surface morphology on scanning electron microscope (SEM) and greater crystallinity as seen through X-Ray diffraction (XRD). Fourier transform infra red (FTIR) and nuclear magnetic resonance spectroscopy (NMR) of the ethanol incorporated film also gave signature of the presence of bile salt and alcohol. Alcohol incorporation pattern resulted in increase in electrical conductance from 7.08539 x 10(-5) mA/V to 8.0356 x 10(-5) mA/V, as determined from current voltage characterizations. Average molecular weight (M(n)) obtained from gel permeation chromatography changed from 6160 to 10300 on ethanol intake. Photoluminescence (PL) intensity was quenched and the PL peak shifted from 430 to 409 on ethanol exposure. Changes in morphological, structural, optical and electrical properties of the composite on ethanol exposure showed its prospective application for sensing ethanol.

  6. 3D Printed "Starmix" Drug Loaded Dosage Forms for Paediatric Applications.

    PubMed

    Scoutaris, Nicolaos; Ross, Steven A; Douroumis, Dennis

    2018-01-16

    Three- dimensional (3D) printing has received significant attention as a manufacturing process for pharmaceutical dosage forms. In this study, we used Fusion Deposition Modelling (FDM) in order to print "candy - like" formulations by imitating Starmix® sweets to prepare paediatric medicines with enhanced palatability. Hot melt extrusion processing (HME) was coupled with FDM to prepare extruded filaments of indomethacin (IND), hypromellose acetate succinate (HPMCAS) and polyethylene glycol (PEG) formulations and subsequently feed them in the 3D printer. The shapes of the Starmix® objects were printed in the form of a heart, ring, bottle, ring, bear and lion. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infra-red Spectroscopy (FT-IR) and confocal Raman analysis were used to assess the drug - excipient interactions and the content uniformity. Physicochemical analysis showed the presence of molecularly dispersed IND in the printed tablets. In vivo taste masking evaluation demonstrated excellent masking of the drug bitterness. The printed forms were evaluated for drug dissolution and showed immediate IND release independently of the printed shape, within 60 min. 3D printing was used successfully to process drug loaded filaments for the development of paediatric printed tablets in the form of Starmix® designs.

  7. Innovative material containing the natural product curcumin, with enhanced antimicrobial properties for active packaging.

    PubMed

    Papadimitriou, A; Ketikidis, I; Stathopoulou, M-E K; Banti, C N; Papachristodoulou, C; Zoumpoulakis, L; Agathopoulos, S; Vagenas, G V; Hadjikakou, S K

    2018-03-01

    Curcumin (Curc) reacts with zinc di‑iodine (ZnI 2 ) in 2:1molar ratio in the presence of an excess of a base triethylamine ((CH 3 CH 2 ) 3 N) in methanol (CH 3 OH) solution towards the amorphous solid material of formula [ZnI 2 (Curc) 2 ] (1). The complex was characterized by melting point (m.p.), Fourier Transform-Infra Red (FT-IR) and Nuclear Magnetic Resonance of hydrogen nucleus ( 1 H NMR) spectroscopy. The formula of 1 was determined by X-ray fluorescence (XRF) analysis. The retention of the structure in solution was confirmed by 1 H NMR spectroscopy. The antimicrobial activity of the complex has been studied against the bacteria Pseudomonas aeruginosa (PAO1). The Minimum Inhibitory Concentrations (MIC) of the compounds 1 and Curc against P. aeruginosa (PAO1) are: 71.3μΜ (75.3μg/mL) for [ZnI 2 (Curc) 2 ] and 339μM (125μg/mL) for Curc, respectively. Moreover, the antimicrobial activity of the new material which was diffused in polystyrene against biofilm formed by PAO1 was also calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of oil residues in Roman amphorae (Monte Testaccio, Rome): a comparative FTIR spectroscopic study of archeological and artificially aged samples.

    PubMed

    Tarquini, Gabriele; Nunziante Cesaro, Stella; Campanella, Luigi

    2014-01-01

    The application of Fourier Transform InfraRed (FTIR) spectroscopy to the analysis of oil residues in fragments of archeological amphorae (3rd century A.D.) from Monte Testaccio (Rome, Italy) is reported. In order to check the possibility to reveal the presence of oil residues in archeological pottery using microinvasive and\\or not invasive techniques, different approaches have been followed: firstly, FTIR spectroscopy was used to study oil residues extracted from roman amphorae. Secondly, the presence of oil residues was ascertained analyzing microamounts of archeological fragments with the Diffuse Reflectance Infrared Spectroscopy (DRIFT). Finally, the external reflection analysis of the ancient shards was performed without preliminary treatments evidencing the possibility to detect oil traces through the observation of the most intense features of its spectrum. Incidentally, the existence of carboxylate salts of fatty acids was also observed in DRIFT and Reflectance spectra of archeological samples supporting the roman habit of spreading lime over the spoil heaps. The data collected in all steps were always compared with results obtained on purposely made replicas. © 2013 Elsevier B.V. All rights reserved.

  9. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  10. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  11. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications.

    PubMed

    Rimell, J T; Marquis, P M

    2000-01-01

    Rapid prototyping is a relatively new technology, which although prominent in the engineering industry is only just starting to make an impact in the medical field. Its current medical uses are mainly confined to surgical planning and teaching, but the technology also has the potential to allow for patient-tailored prostheses. The work reported here describes the application of a simplified selective laser sintering apparatus with ultra high molecular weight polyethylene (UHMWPE). The morphology and chemistry of the starting powders and lased material have been characterized using Fourier Transform Infra Red spectroscopy and a combination of light and scanning electron microscopy. It was found that solid linear continuous bodies could be formed, but material shrinkage caused problems when trying to form sheet-like structures. The porosity of the formed material was also a concern. The material exposed to the laser beam was shown to have undergone degradation in terms of chain scission, cross-linking, and oxidation. It has been concluded that to apply this technology to the fabrication of UHMWPE devices requires the development of improved starting powders, in particular with increased density. Copyright 2000 John Wiley & Sons, Inc.

  12. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  13. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    PubMed Central

    2008-01-01

    Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

  14. Investigation on the mechanical properties of polyurea (PU)/melamine formaldehyde (MF) microcapsules prepared with different chain extenders.

    PubMed

    Hu, Jianfeng; Zhang, Xiaotong; Qu, Jinqing

    2018-05-02

    There is lack of understanding on controlling of mechanical properties of moisture-curing PU/MF microcapsules which limited its further application. PU/MF microcapsules containing a core of isophorone diisocyanate (IPDI) were prepared with different chain extenders, polyetheramine D400, H 2 O, triethylenetetramine and polyetheramine (PEA) D230 by following a two-step synthesis method in this study. Fourier transform infra-red (FTIR) spectroscopy, Malvern particle sizing, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). And micromanipulation technique was used to identify chemical bonds in the shell, size distributions, structure, thickness, and mechanical properties of microcapsules. The results show that PU/MF microcapsules were successfully prepared. Tr increased from 46.4 ± 13.9 N/m to 75.8 ± 23.3 N/m when extender changed from D400 to D230. And the Tr increased from 51.3 ± 14.1 to 94.8 ± 17.5 N/m when the swelling time increased from 1 to 3h. Morphologies of the shell were utilised to understand the mechanism of reactions in forming the shell materials.

  15. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure.

    PubMed

    Solairaj, Dhanasekaran; Rameshthangam, Palanivel; Muthukumaran, Palanisamy; Wilson, Jeyaraj

    2017-08-01

    In this study, copper nanoparticle immobilized chitin nanocomposite (CNP/CuNP) was synthesized and used for the development of non-enzymatic electrochemical sensor. The CNP/CuNP was characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy and high resolution transmission electron microscopy (HRTEM) analysis. The glucose sensing property of CNP/CuNP was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). As a result of the synergistic effect of CNP and CuNP, the modified electrode displayed effective electro-oxidation of glucose in 0.1M NaOH solution. At 0.45V potential the modified electrode showed response towards glucose in the linear range of 1-1000μM with a lowest detection limit of 0.776μM with better selectivity and stability. In addition, the antimicrobial activity of CNP/CuNP was evaluated against bacterial and fungal strains. CNP/CuNP displayed enhanced antimicrobial activity when compared to CNP and CuNP alone. Similarly, cytotoxicity of CNP/CuNP was tested against Artemia salina, which showed no toxic effect in the tested concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High-pressure studies on nanocrystalline borderline Co1-xFexS2 (x = 0.4 and 0.5) using Mössbauer spectroscopic and electrical resistivity techniques up to 8 GPa

    NASA Astrophysics Data System (ADS)

    Chandra, Usha; Sharma, Pooja; Parthasarathy, G.

    2016-12-01

    Like bulk, Co1-xFexS2 nanoparticles also display an anomaly at x = 0.5. The borderline contiguous Co1-xFexS2 (x = 0.4 and 0.5) nanoparticles were synthesized with colloidal method and characterized for pyrite structure using various techniques, viz., X-ray diffraction, energy dispersive X-ray analysis (EDAX), S K-edge X-ray absorption near edge spectra, transmission electron microscopy (TEM) and Fourier transformed infra-red spectroscopy. The report presents the effect of high pressure on the borderline compositions using the Mössbauer spectroscopic and electrical resistivity techniques. Magnetic measurements on the system showed drastic lowering of Tc due to nanosize of the particles. With increased pressure, quadrupole splitting showed an expected trend of increase to attain a peak representing a second-order phase transition between 4 and 5 GPa for both the compositions. The pressure coefficient of electrical resistivity varied from -0.02 GPa to -0.06 GPa across transition pressure indicating a sluggish nature of transition. This is the first report of pressure effect on nanosized borderline compositions.

  17. Analysis of an MCU HEPA filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Fondeur, F. F.

    A series of direct analyses on three portions (inlet, center, and outlet) of the High Efficiency Particulate Air (HEPA) filter material from the Modular Caustic-Side Solvent Extraction Unit (MCU) have been performed; this includes x-ray methods such as X-Ray Diffraction (XRD), Contained Scanning Electron Microscopy (CSEM) and X-Ray Fluorescence (XRF), as well as Fourier Transform InfraRed spectroscopy (FTIR). Additionally, two leaching studies (one with water, one with dichloromethane) have been performed on three portions (inlet, center, and outlet) of the HEPA filter material, with the leachates being analyzed by Inductively-coupled plasma emission spectroscopy (ICPES), Semi-Volatile Organic Analysis (SVOA) and gammascan.more » From the results of the analyses, SRNL feels that cesium-depleted solvent is being introduced into the HEPA filter. The most likely avenue for this is mechanical aerosolization of solvent, where the aerosol is then carried along an airstream into the HEPA filter. Once introduced into the HEPA filter media, the solvent wicks throughout the material, and migrates towards the outlet end. Once on the outlet end, continual drying could cause particulate flakes to exit the filter and travel farther down the airstream path.« less

  18. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  19. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria.

    PubMed

    Kumari, Madhuree; Pandey, Shipra; Giri, Ved Prakash; Bhattacharya, Arpita; Shukla, Richa; Mishra, Aradhana; Nautiyal, C S

    2017-04-01

    Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens. Copyright © 2016. Published by Elsevier Ltd.

  20. Characterisation and sintering of nanophase hydroxyapatite synthesised by a species of Serratia

    NASA Astrophysics Data System (ADS)

    LSammons, R.; Thackray, A. C.; Medina Ledo, H.; Marquis, P. M.; Jones, I. P.; Yong, P.; Macaskie, L. E.

    2007-12-01

    The bacterium Serratia sp. NCIMB40259, which grows as a biofilm on polymeric, glass and metal substrates, produces extracellular crystals of hydroxyapatite (HA) by enzymatic cleavage of β-glycerophosphate in the presence of calcium chloride. Following growth on polyurethane foam, biomineralisation and subsequent sintering, an HA scaffold is formed whose three-dimensional architecture replicates that of the foam and the biofilm. Serratia HA was characterised using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The nascent, unsintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61+/- 0.06 and crystal size (TEM) of 50 +/- 10nm length. ED of unsintered crystals and crystals sintered at 600° C showed resolvable ring (unsintered) or dot (600° C) patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. Material sintered at 1200° C consisted of needle-like crystals of length range 54-111nm (XRD) with lattice parameters of a = 9.441 Å and c = 6.875 Å, consistent with HA.

  1. Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLennan, D.A.; Turner, B.P.; Dolan, J.T.

    1994-12-31

    Fusion Systems Corporation has developed a mercury-free, low infra-red, efficient microwave lamp using a benign sulfur based fill optimized for visible light. Our literature search and discussions with researchers directed us to enhance the bulbs red output. We have demonstrated a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 1.3 micro-moles per joule at the power main. Recent work has shown we can make additional increases in overall system efficiency. During the next two years, we expect to demonstrate a system capable of producing more than 1.5 micro-moles/joule measured at the power main with significantlymore » less IR than alternative lamp systems.« less

  2. A mobile laboratory for surface and subsurface imaging in geo-hazard monitoring activity

    NASA Astrophysics Data System (ADS)

    Cornacchia, Carmela; Bavusi, Massimo; Loperte, Antonio; Pergola, Nicola; Pignatti, Stefano; Ponzo, Felice; Lapenna, Vincenzo

    2010-05-01

    A new research infrastructure for supporting ground-based remote sensing observations in the different phases of georisk management cycle is presented. This instrumental facility has been designed and realised by TeRN, a public-private consortium on Earth Observations and Natural Risks, in the frame of the project "ImpresAmbiente" funded by Italian Ministry of Research and University. The new infrastructure is equipped with ground-based sensors (hyperspectral cameras, thermal cameras, laser scanning and electromagnetic antennae) able to remotely map physical parameters and/or earth-surface properties (temperature, soil moisture, land cover, etc…) and to illuminate near-surface geological structures (fault, groundwater tables, landslide bodies etc...). Furthermore, the system can be used for non-invasive investigations of architectonic buildings and civil infrastructures (bridges, tunnel, road pavements, etc...) interested by natural and man-made hazards. The hyperspectral cameras can acquire high resolution images of earth-surface and cultural objects. They are operating in the Visible Near InfraRed (0.4÷1.0μm) with 1600 spatial pixel and 3.7nm of spectral sampling and in the Short Wave InfraRed (1.3÷2.5µm) spectral region with 320 spatial pixel and 5nm of spectral sampling. The IR cameras are operating in the Medium Wavelength InfraRed (3÷5µm; 640x512; NETD< 20 mK) and in the Very Long Wavelength InfraRed region (7.7÷11.5 µm; 320x256; NETD<25 mK) with a frame rate higher than 100Hz and are both equipped with a set of optical filters in order to operate in multi-spectral configuration. The technological innovation of ground-based laser scanning equipment has led to an increased resolution performances of surveys with applications in several field, as geology, architecture, environmental monitoring and cultural heritage. As a consequence, laser data can be useful integrated with traditional monitoring techniques. The Laser Scanner is characterized by very high data acquisition repetition rate up to 500.000 pxl/sec with a range resolution of 0.1 mm, vertical and horizontal FoV of 310° and 360° respectively with a resolution of 0.0018°. The system is also equipped with a metric camera allows to georeference the high resolution images acquired. The electromagnetic sensors allow to obtain in near real time high-resolution 2D and 3D subsurface tomographic images. The main components are a fully automatic resistivity meter for DC electrical surveys (resistivity) and Induced Polarization, a Ground Penetrating Radar with antennas covering range for 400 MHz to 1.5 GHz and a gradiometric magnetometric system. All the sensors can be installed on a mobile van and remotely controlled using wi-fi technologies. An all-time network connection capability is guaranteed by a self-configurable satellite link for data communication, which allows to transmit in near-real time experimental data coming from the field surveys and to share other geospatial information. This ICT facility is well suited for emergency response activities during and after catastrophic events. Sensor synergy, multi-temporal and multi-scale resolutions of surface and sub-surface imaging are the key technical features of this instrumental facility. Finally, in this work we shortly present some first preliminary results obtained during the emergence phase of Abruzzo earthquake (Central Italy).

  3. The Sensor Irony: How Reliance on Sensor Technology is Limiting Our View of the Battlefield

    DTIC Science & Technology

    2010-05-10

    thermal ) camera, as well as a laser illuminator/range finder.73 Similar to the MQ- 1 , the MQ-9 Reaper is primarily a strike asset for emerging targets...Wescam 14TS. 1 Both systems have an Electro-optical (daylight) TV camera, an Infra-red ( thermal ) camera, as well as a laser illuminator/range finder...Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour

  4. Near Infra-Red Spectroscopy to Reduce Prophylactic Fasciotomies for and Missed Cases of Acute Compartment Syndrome in Soldiers Injured in OEF/OIF

    DTIC Science & Technology

    2013-10-01

    demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to increases...on 60 healthy participants. Our results indicated that NIRS was able to detect changes in oxygen saturation of muscle with exercise in all 60...Model 41 Introduction 42 Over the last two decades, tissue oxygenation saturation (StO2) measured by near infrared 43 spectroscopy (NIRS) has

  5. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  6. Visual Aids and Eye Protection for the Aviator

    DTIC Science & Technology

    1976-10-01

    pigmentosa patients. Retinitis pigmen- toss robs you of your night vision very quickly. You still can see centrally and in the daytime but very little at...AND VISUAL AIDS by D.H.Brennan CI INTEGRATION OF AVIATOR’S EYE PROTECTION AND VISUAL AIDS by G.TChisum and P.E.Morway C2 PROTECTION FROM RETINAL BURNS...ensure that infra red wavelengths outside the visible band (MOO-1400 nm) are also attenuated to avoid any possibility of retinal burns. Short ultra

  7. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  8. Noninvasive Spatially Offset and Transmission Raman Mapping of Breast Tissue: A Multimodal Approach Towards the In Vivo assessment of Tissue Pathology

    DTIC Science & Technology

    2013-04-01

    liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable

  9. Incoherent and Laser Photodeposition on Thin Films.

    DTIC Science & Technology

    1980-09-01

    wavelength, an incoherent Oriel Mercury arc lamp (model HR-l) with a 1000 watt u-v out- a put centered at 2537A was used. This source emitted o down...Royal Society of London Series A, 156: 108-129 (1936). 18. Gutowsky, H.S.. "The Infra-Red and Raman Spectra of Dimethyl Mercury and Dimethyl Zinc," The...II), - Cadmium (II) and - Mercury (II)," Spectrochimica Acta, 33A: 669-680 (1977). 20. Bakke, A.M.W.. "A Molecular Structure Study of Dimethylmercury

  10. Low-Loss Fiber Waveguides.

    DTIC Science & Technology

    1980-10-01

    infra- red (IR) fiber waveguides for use in sensor and communication systems and for applications requiring power delivery, such as in CO2 laser...shown in Figure 11, is conventional except for the addition of a ZnSe beam splitter used to monitor the incident power , I . The beam splitter is essential...higher-quality fiber than KRS-5 from BDH. In fact, we found that not only was the initial 28 / 9508-8 POWER METER 10 POWER METER fl 2.5 cm ZnSe LENS

  11. Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Asner, Gregory P.

    2010-01-01

    This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.

  12. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  13. Near Infra-Red Spectroscopy to Reduce the Phrophylactic Fasciotomies for and Missed Cases of Acute Compartment Syndrome in Solders Injured in OEF/OIF

    DTIC Science & Technology

    2011-10-01

    accuracy and reliability of a specific NIRS sensor (Equanox 7600 Oximeter, Nonin , Inc, Plymouth, MN) in diagnosing acute compartment syndrome in injured...conduct at the conclusion of this research project. The current FDA approved indication for the Nonin Equanox Oximeter is for "monitoring" regional...Somanetics, Inc to Covidien, Inc. producing a need to find a new NIRS COTS provider ( Nonin , Inc. the NIRS COTS provider for the METRC Acute

  14. International Conference on Thermoelectrics(16th), Proceedings, ICT 󈨥 Held in Dresden, Germany on August 26-29, 1997

    DTIC Science & Technology

    1998-05-08

    mixed valence state, i.e., Ru2+ and Ru4+. Such valence fluctuations were recently confirmed by x - ray absorption near-edge structure analysis [44... Kanatzidis , H. B. Lyon, Jr., and G. Mahan, page 55, Materials Research Society Press, Pittsburgh, PA, 1997. 23 T. Koga, S. B. Cronin, T. C. Harman, X ...are generally for detectors of all sorts: infra-red, X ray , gamma ray etc. because lowering the temperature reduces the noise and increases the

  15. Introduction to AIRS and CrIS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2004-01-01

    "Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.

  16. In situ X-ray fluorescence-based method to differentiate among red ochre pigments and yellow ochre pigments thermally transformed to red pigments of wall paintings from Pompeii.

    PubMed

    Marcaida, Iker; Maguregui, Maite; Fdez-Ortiz de Vallejuelo, Silvia; Morillas, Héctor; Prieto-Taboada, Nagore; Veneranda, Marco; Castro, Kepa; Madariaga, Juan Manuel

    2017-06-01

    Most of the magnificent wall paintings from the ancient city of Pompeii are decorated with red and yellow colors coming from the ochre pigments used. The thermal impact of the pyroclastic flow from the eruption of Vesuvius, in AD 79, promoted the transformation of some yellow painted areas to red. In this work, original red ochre, original yellow ochre, and transformed yellow ochre (nowadays showing a red color) of wall paintings from Pompeian houses (House of Marcus Lucretius and House of Gilded Cupids) were analyzed by means of a handheld energy-dispersive X-ray fluorescence spectrometer to develop a fast method that allows chemical differentiation of the original red ochre and the transformed yellow ochre. Principal component analysis of the multivariate obtained data showed that arsenic is the tracer element to distinguish between both red colored ochres. Moreover, Pompeian raw red and yellow ochre pigments recovered from the burial were analyzed in the laboratory with use of a benchtop energy-dispersive X-ray fluorescence spectrometer to confirm the elemental composition and the conclusions drawn from the in situ analysis according to the yellow ochre pigment transformation in real Pompeian wall paintings.

  17. Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment

    NASA Astrophysics Data System (ADS)

    Boulanger, Joan; Charette, André

    2005-03-01

    This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.

  18. Heat-enhanced peptide synthesis on Teflon-patterned paper.

    PubMed

    Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir

    2016-06-14

    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.

  19. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  20. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

    NASA Astrophysics Data System (ADS)

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.

    2017-05-01

    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.

  1. Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST)

    NASA Astrophysics Data System (ADS)

    Arroyave, Jeison Manuel; Puccia, Virginia; Zanini, Graciela P.; Avena, Marcelo J.

    2018-06-01

    Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH 5.5 at a surface coverage of 2.0 μmol m-2, with a mononuclear monoprotonated species predominating at pH > 5.5 and a mononuclear diprotonated species prevailing at pH < 5.5. On the contrary, at the low surface coverage of 0.7 μmol m-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.

  2. Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot

    PubMed Central

    Raissi, Mahfoudh; Pellegrin, Yann; Jobic, Stéphane; Boujtita, Mohammed; Odobel, Fabrice

    2016-01-01

    Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications. PMID:27125454

  3. In and ex-vivo Myocardial Tissue Temperature Monitoring by Combined Infrared and Ultrasonic Thermometries

    NASA Astrophysics Data System (ADS)

    Engrand, C.; Laux, D.; Ferrandis, J.-Y.; Sinquet, J.-C.; Demaria, R.; Le Clézio, E.

    The success of cardiac surgery essentially depends on tissue preservation during intervention. Consequently a hypothermic cardio-plegia is applied in order to avoid ischemia. However, myocardial temperature is not monitored during operation. The aim of this study is then to find a relevant and simple method for myocardial global temperature estimation in real time using both ultrasounds and infra-red thermography. In order to quantify the sensitivity of ultrasonic velocity to temperature, a 2.25 MHz ultrasonic probe was used for ex-vivo tests. Pig myocards (n=25) were placed in a thermostatically-controlled water bath and measurements of the ultrasound velocity were realized from 10 to 30 ˚C. The results of this study indicate that the specificity and sensitivity of the ultrasonic echo delay induced by the modification of temperature can be exploited for in-depth thermometry. In parallel, for TIR experiments, a bolometer was used to detect the myocardium surface thermal evolution during in-vivo pig heart experiments. Hypothermic cardioplegic solutions were injected and infra-red surface imaging was performed during one hour. In the near futur, the correlation of the ultrasound and the infrared measurements should allow the real time estimation of the global temperature of the heart. The final objective being to realize in vivo measurements on human hearts, this information may have a very high importance in terms of per-operation inspection as well as decision making process during medical interventions.

  4. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heatmore » pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.« less

  5. Coherent Infra-Red as logically necessary to explain Piagetian psychology and neuro-microanatomy — Two independent corroborations for Gurwitsch's findings, and the importance of self-consistent theory

    NASA Astrophysics Data System (ADS)

    Traill, Robert R.

    2011-12-01

    We can infer mechanisms underlying advanced human intelligence via •physics, chemistry and information-technology; but also •epistemology: analysing all knowledge-building processes (based on selection amongst micro-ideas). Hence Piaget offered "schèmes" as such items of thought/action, to account for actual human behaviour. In microphysiological terms, basic "schèmes" should have digital properties and a one-dimensional organization. That implied RNA-like molecules (and their "chorus" groups). — However for the necessary fast intermolecular communication, traditional action-potential "spikes" would be much too coarse. The alternative is Infra-Red. It then appears that myelinated nerve fibres seem suitable for an unexpected second role as coaxial cables for IR! Such opticalinterpretations also explain several enigmas: •What keeps (myelin-thickness / axon-diameter) ≈ constant? — (a mystery since 1905). •Why PNS myelination is delayed until the axon diameter reaches 1μm. •Why myelin often stops growing at a predictable angle in its wrapping. •Callahan's anomalous failure to detect sensory action-potentials even though his insects were responding to invisible IR signals. (Meanwhile RNA-like coding explains inherited behavioural traits, and memory-"recording" as Darwinian!) The important point: Here IR is independently identified as a necessary solution to logistical problems. In contrast the Gurwitsch tradition first discovered emissions, and then sought explanations. Thus the two approaches corroborate.

  6. Merging Satellite Optical Sensors and Radar Altimetry for Daily River Discharge Estimation

    NASA Astrophysics Data System (ADS)

    Tarpanelli, A.; Santi, E. S.; Tourian, M. J.; Filippucci, P.; Amarnath, G.; Brocca, L.; Benveniste, J.

    2017-12-01

    River discharge is a fundamental physical variable of the hydrological cycle and notwithstanding its importance the monitoring of the flow in many parts of the Earth is still an open issue. Satellite sensors have great potential in offering new ways to monitor river discharge, because they guarantees regular, uniform and global measurements for long period thanks to the large number of satellites launched during the last twenty-five years. The multi-mission approach has been becoming a useful tool to integrate measurements and intensify the number of samples in space and time. In this study, we investigated the possibility to merge data from optical, i.e. Near InfraRed bands (from MODIS, MERIS, Landsat, and OLCI) and altimetry data (from Topex-Poseidon, Envisat/RA-2, Jason-2, SARAL/AltiKa and CryoSat-2) for estimating daily river discharge in Nigeria and Italy. The merging procedure is carried out by using artificial neural networks. Regarding the optical sensors, results are more affected by the temporal resolution than the spatial resolution. Landsat fails in the estimation of extreme events missing most of the peak values because of the long revisit time (14-16 days). Better performances are obtained with the Near InfraRed bands from MODIS and MERIS that give similar results in river discharge estimation. Finally, the multi-mission approach involving also radar altimetry data is found to be the most reliable tool to estimate river discharge in medium to large rivers.

  7. Onboard electrical calibration of the ASTER VNIR

    NASA Astrophysics Data System (ADS)

    Sakuma, Fumihiro; Kikuchi, Masakuni; Inada, Hitomi

    2013-10-01

    The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) is one of the five sensors on the NASA's Terra satellite on orbit since December 1999. ASTER consists of three radiometers, the Visible and Near InfraRed (VNIR), the Short-Wave InfraRed (SWIR) and Thermal InfraRed (TIR) whose spatial resolutions are 15 m, 30 m and 90 m, respectively. Unfortunately the SWIR image data are saturated since April 2008 due to the offset rise caused by the cooler temperature rise, but the VNIR and the TIR are taking Earth images of good quality. The VNIR and the TIR experienced responsivity degradation while the SWIR showed little change. From the lamp calibration, Band 1 decreased the most among three VNIR bands and 31% in thirteen years. The VNIR has the electrical calibration mode to check the healthiness of the electrical circuits through the charge coupled device (CCD). Four voltage levels from Line 1 to Line 4, which are from 2.78 V to 3.10 V, are input to the CCD in the onboard calibration sequence and the output digital numbers (DNs) are detected in the images. These input voltages are monitored as telemetry data and have been stable up to now. From the electrical calibration we can check stabilities of the offset, gain ratio and gain stability of the electric circuit. The output level of the Line1 input is close to the offset level which is measured while observing the earth at night. The trend of the Line 1 output is compared to the offset level. They are similar but are not exactly the same. The trend of the even pixel and odd pixel is the same so the saturated offset levels of the odd pixel is corrected by using the even pixel trend. The gain ratio trend shows that the ratio is stable. But the ratio values are different from those measured before launch. The difference comes up to 10% for the Band 2. The correct gain ratio should be applied to the vicarious calibration result because the onboard calibration is measured with the Normal gain whereas the vicarious calibration often measures with the High gain. The cause of the VNIR responsivity degradation is not known but one of the causes might be the change of the electric circuit. The band 3 gain shows 16 % decrease whereas the gain changes of the band 1 and band 2 are 5% to 8%. The responsivity decrease after 1000 days since launch might be controlled by the electric circuit change.

  8. Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis.

    PubMed

    Dotto, G L; Lima, E C; Pinto, L A A

    2012-01-01

    The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g(-1) and 1619.4 mg g(-1), respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2>0.99 and ARE<5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Metalorganic vapor phase epitaxial growth of red and infrared vertical-cavity surface-emitting laser diodes

    NASA Astrophysics Data System (ADS)

    Schneider, R. P.; Lott, J. A.; Lear, K. L.; Choquette, K. D.; Crawford, M. H.; Kilcoyne, S. P.; Figiel, J. J.

    1994-12-01

    Metalorganic vapor phase epitaxy (MOVPE) is used for the growth of vertical-cavity surface-emitting laser (VCSEL) diodes. MOVPE exhibits a number of important advantages over the more commonly-used molecular-beam epitaxial (MBE) techniques, including ease of continuous compositional grading and carbon doping for low-resistance p-type distributed Bragg reflectors (DBRs), higher growth rates for rapid throughput and greater versatility in choice of materials and dopants. Planar gain-guided red VCSELs based on AlGaInP/AlGaAs heterostructures lase continuous-wave at room temperature, with voltage thresholds between 2.5 and 3 V and maximum power outputs of over 0.3 mW. Top-emitting infra-red (IR) VCSELs exhibit the highest power-conversion (wall-plug) efficiencies (21%), lowest threshold voltage (1.47 V), and highest single mode power (4.4 mW from an 8 μm device) yet reported. These results establish MOVPE as a preferred growth technique for this important new family of photonic devices.

  10. Optical classification for quality and defect analysis of train brakes

    NASA Astrophysics Data System (ADS)

    Glock, Stefan; Hausmann, Stefan; Gerke, Sebastian; Warok, Alexander; Spiess, Peter; Witte, Stefan; Lohweg, Volker

    2009-06-01

    In this paper we present an optical measurement system approach for quality analysis of brakes which are used in high-speed trains. The brakes consist of the so called brake discs and pads. In a deceleration process the discs will be heated up to 500°C. The quality measure is based on the fact that the heated brake discs should not generate hot spots inside the brake material. Instead, the brake disc should be heated homogeneously by the deceleration. Therefore, it makes sense to analyze the number of hot spots and their relative gradients to create a quality measure for train brakes. In this contribution we present a new approach for a quality measurement system which is based on an image analysis and classification of infra-red based heat images. Brake images which are represented in pseudo-color are first transformed in a linear grayscale space by a hue-saturation-intensity (HSI) space. This transform is necessary for the following gradient analysis which is based on gray scale gradient filters. Furthermore, different features based on Haralick's measures are generated from the gray scale and gradient images. A following Fuzzy-Pattern-Classifier is used for the classification of good and bad brakes. It has to be pointed out that the classifier returns a score value for each brake which is between 0 and 100% good quality. This fact guarantees that not only good and bad bakes can be distinguished, but also their quality can be labeled. The results show that all critical thermal patterns of train brakes can be sensed and verified.

  11. Bioapatite Recrystallization During Burning and its Effects on Phosphate Stable Oxygen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-04-01

    Stable oxygen isotopic compositions of phosphate from mammal bones are commonly used in palaeoenvironmental reconstructions. However, preservation of the primary bone oxygen isotopic composition is of concern during post-mortem alteration. Particularly in studies of archaeological interest, bone samples are often obtained from contexts where they have been heated, either in middens, or near hearths. Hence, in addition to alteration resulting from natural diagenetic processes, burning may also have contributed to modification of the primary oxygen isotopic signal. Various techniques can be employed to evaluate the degree of preservation of bone during burning. Anthropologists commonly use colour comparisons (Munsell Colour Chart) to assess the temperature of burning. Recrystallization of the carbonated hydroxyapatite, i.e., bioapatite, in bone is more rigorously assessed using X-ray diffraction and infra-red spectroscopy. In this study, freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned, incrementally burned, colour-typed, ground to a standardized grain-size (45<63mm), and analysed using differential thermal analysis (DTA), thermogravimetric analysis (TGA), rotating anode X-ray diffraction (XRD), and Fourier transform infra-red spectroscopy (FTIR). Heating temperatures ranged from 25 to 900^oC, increasing in intervals of 25^oC. Two major stages of weight loss were recorded in the DTA/TGA data, 25-260^oC representing dehydration, and 270-600^oC reflecting incineration of organic matter. The end-product (900^oC) resembled pure hydroxyapatite. XRD patterns of the bioapatite remained virtually unchanged from 25-250^oC, after which peak intensity, sharpness and the XRD crystallinity index (XRD CI) increased from 0.80 at 250^oC to 1.26 at 900^oC. FTIR patterns showed analogous behaviour, demonstrating minimal fluctuations in the FTIR crystallinity index (FTIR CI) from 2.86 at 25^oC to 2.56 at 250^oC, and then an overall increasing trend from 2.54 at 275^oC to a maximum of 4.72 at 825^oC as v4PO4 peak splitting intensified. Initial results show that the δ18O (VSMOW) values of bioapatite phosphate decreased from 15.0 ppm at 300^oC to 10.6 ppm at 750^oC. These data suggest that primary phosphate oxygen isotopic compositions can be significantly altered during burning, even when only modest changes in crystallinity are indicated by XRD or FTIR.

  12. USGS Spectral Library Version 7

    USGS Publications Warehouse

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and bandpasses, and resampled to selected broadband multispectral sensors. The native file format of the library is the SPECtrum Processing Routines (SPECPR) data format. This report describes how to access freely available software to read the SPECPR format. To facilitate broader access to the library, we produced generic formats of the spectra and metadata in text files. The library is provided on digital media and online at https://speclab.cr.usgs.gov/spectral-lib.html. A long-term archive of these data are stored on the USGS ScienceBase data server (https://dx.doi.org/10.5066/F7RR1WDJ).

  13. Diffusion and chaos from near AdS 2 horizons

    DOE PAGES

    Blake, Mike; Donos, Aristomenis

    2017-02-03

    We calculate the thermal diffusivity D =more » $$\\kappa/c_\\rho$$ and butterfy velocity $$\\upsilon_\\beta$$ in holographic models that flow to $$AdS_2$$ x $R^d$ fixed points in the infra-red. We show that both these quantities are governed by the same irrelevant deformation of $$AdS_2$$ and hence establish a simple relationship between them. When this deformation corresponds to a universal dilaton mode of dimension $$\\Delta$$ = 2 then this relationship is always given by D = $$\\upsilon_B^2$$/(2$$\\pi$$T).« less

  14. Optomechanical design of TMT NFIRAOS Subsystems at INO

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre

    2017-08-01

    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.

  15. Review of Virtual Environment Interface Technology.

    DTIC Science & Technology

    1996-03-01

    1.9 SpacePad 56 1.10 CyberTrack 3.2 57 1.11 Wayfinder-VR 57 1.12 Mouse-Sense3D 57 1.13 Selcom AB, SELSPOT H 57 1.14 OPTOTRAK 3020 58 1.15...Wayfinder-VR 57 Figure 38. Mouse-Sense3D 57 Figure 39. SELSPOTII 58 Figure 40. OPTOTRAK 3020 58 Figure 41. MacReflex 58 Figure 42. DynaSight 59...OPTOTRAK3020 The OPTOTRAK 3020 by Northern Digital Inc. is an infra-red (IR)-based, non- contact position and motion measurement sys- tem. Small IR LEDs

  16. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    DTIC Science & Technology

    2010-12-29

    1997), the 2 Micron All Sky Survey ( 2MASS ; Skrutskie et al. 2006), the Midcourse Space Experiment (MSX) catalogue, and the Infra- Red Astronomical...made for these sources with a search radius of 3.′′0 with DENIS and 2MASS , and 30.′′0 for identification with an MSX or IRAS counterpart. The... 2MASS and DENIS counterpart (depending on the field, between 3.1% and 6.7% of the sources), or (ii) a DENIS and 2MASS counterpart at a distance

  17. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    PubMed

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  18. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  19. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  20. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

Top