Sample records for transform spectrometer located

  1. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  2. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  3. Equations for solar tracking.

    PubMed

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  4. Equations for Solar Tracking

    PubMed Central

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019

  5. MEMS based digital transform spectrometers

    NASA Astrophysics Data System (ADS)

    Geller, Yariv; Ramani, Mouli

    2005-09-01

    Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.

  6. SWIFTS: on-chip very high spectral resolution spectrometer

    NASA Astrophysics Data System (ADS)

    le Coarer, E.; Venancio, L. G.; Kern, P.; Ferrand, J.; Puget, P.; Ayraud, M.; Bonneville, C.; Demonte, B.; Morand, A.; Boussey, J.; Barbier, D.; Blaize, S.; Gonthiez, T.

    2017-11-01

    The size and the weight of state of the art spectrometers is a serious issue regarding space applications. SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer) is a new FTS family without any moving part. This very promising technology is an original way to fully sample the Fourier interferogram obtained in a waveguide by either a reflection (SWIFTS Lippmann) or counter-propagative (SWIFTS Gabor) interference phenomenon. The sampling is simultaneously performed the optical path thanks to "nano-detectors" located in the evanescent field of the waveguide. For instance a 1.7cm long waveguide properly associated to the detector achieves directly a resolution of 0.13cm-1 on a few centimetre long instruments. Here, firstly we present the development status of this new kind of spectrometers and the first results obtained with on going development of spectrometer covering simultaneously the visible domain from 400 to 1000 nm like an Echelle spectrometer. Valuable technologies allows one to extend the concept to various wavelength domains. Secondly, we present the results obtained in the frame of an activity funded by the European Space Agency where several potential applications in space missions have been identified and studied.

  7. The application and improvement of Fourier transform spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  8. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  9. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  10. Nadir Measurements of Carbon Monoxide Distributions by the Tropospheric Emission Spectrometer Instrument Onboard the Aura Spacecraft: Overview of Analysis Approach and Examples of Initial Results

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Luo, Ming; Logan, Jennifer A.; Beer, Reinhard; Worden, Helen; Kulawik, Susan S.; Rider, David; Osterman, Greg; Gunson, Michael; Eldering, Annmarie; hide

    2006-01-01

    We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06/cm spectral resolution with a nadir footprint of 5 x 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.

  11. Nadir measurements of carbon monoxide distributions by the Tropospheric Emission Spectrometer instrument onboard the Aura Spacecraft: Overview of analysis approach and examples of initial results

    NASA Astrophysics Data System (ADS)

    Rinsland, Curtis P.; Luo, Ming; Logan, Jennifer A.; Beer, Reinhard; Worden, Helen; Kulawik, Susan S.; Rider, David; Osterman, Greg; Gunson, Michael; Eldering, Annmarie; Goldman, Aaron; Shephard, Mark; Clough, Shepard A.; Rodgers, Clive; Lampel, Michael; Chiou, Linda

    2006-11-01

    We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06-cm-1 spectral resolution with a nadir footprint of 5 × 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.

  12. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  13. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  14. A practical Hadamard transform spectrometer for astronomical application

    NASA Technical Reports Server (NTRS)

    Tai, M. H.

    1977-01-01

    The mathematical properties of Hadamard matrices and their application to spectroscopy are discussed. A comparison is made between Fourier and Hadamard transform encoding in spectrometry. The spectrometer is described and its laboratory performance evaluated. The algorithm and programming of inverse transform are given. A minicomputer is used to recover the spectrum.

  15. Validation of ACE-FTS measurements of CFC-11, CFC-12, and HCFC-22 using ground-based FTIR spectrometers

    NASA Astrophysics Data System (ADS)

    Kolonjari, F.; Walker, K. A.; Mahieu, E.; Batchelor, R. L.; Bernath, P. F.; Boone, C.; Conway, S. A.; Dan, L.; Griffin, D.; Harrett, A.; Kasai, Y.; Kagawa, A.; Lindenmaier, R.; Strong, K.; Whaley, C.

    2013-12-01

    Satellite datasets can be an effective global monitoring tool for long-lived compounds in the atmosphere. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT-1. The primary instrument on SCISAT-1 is a high-resolution infrared Fourier transform spectrometer (ACE-FTS) which is capable of measuring a range of gases including key chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) species. These families of species are of interest because of their significant contribution to anthropogenic ozone depletion and to global warming. To assess the quality of data derived from satellite measurements, validation using other data sources is essential. Ground-based Fourier transform infrared (FTIR) spectrometers are particularly useful for this purpose. In this study, five FTIR spectrometers located at four sites around the world are used to validate the CFC-11 (CCl3F), CFC-12 (CCl2F2), and HCFC-22 (CHClF2) retrieved profiles from ACE-FTS measurements. These species are related because HCFC-22 was the primary replacement for CFC-11 and CFC-12 in refrigerant and propellant applications. The FTIR spectrometers used in this study record solar absorption spectra at Eureka (Canada), Jungfraujoch (Switzerland), Poker Flat (USA), and Toronto (Canada). The retrieval of CFC-11, CFC-12, and HCFC-22 are not standard products for many of these instruments, and as such, a harmonization of retrieval parameters between the sites has been conducted. The retrievals of these species from the FTIR spectra are sensitive from the surface to approximately 20 km, while the ACE-FTS profiles extend from approximately 6 to 30 km. For each site, partial column comparisons between coincident measurements of the three species and a validation of the observed trends will be discussed.

  16. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  17. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  18. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  19. CO2 variability from in situ and vertical column measurements in Mexico City

    NASA Astrophysics Data System (ADS)

    Baylon, J. L.; Grutter, M.; Stremme, W.; Bezanilla, A.; Plaza, E.

    2014-12-01

    UNAM started a program to measure, among many other atmospheric parameters, greenhouse gas concentrations at six stations in the Mexican territory as part of the "Red Universitaria de Observatorios Atmosfericos", RUOA (www.ruoa.unam.mx). In this work we present recent time series of CO2 measured at the station located in the university campus in Mexico City, and compare them to total vertical columns of this gas measured at the same location. In situ measurements are continuously carried out with a cavity ring-down spectrometer (Picarro Inc., G2401) since July 2014 and the columns are retrieved from solar absorption measurements taken with a Fourier transform infrared spectrometer (Bruker, Vertex 80) when conditions allow. The retrieval method is described and results of the comparison of both techniques and a detailed analysis of the variability of this important greenhouse gas is presented. Simultaneous surface and column CO2 data are useful to constrain models and estimate emissions.

  20. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  1. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  2. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  3. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  4. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  5. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  6. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  7. [A digital micromirror device-based Hadamard transform near infrared spectrometer].

    PubMed

    Liu, Jia; Chen, Fen-Fei; Liao, Cheng-Sheng; Xu, Qian; Zeng, Li-Bo; Wu, Qiong-Shui

    2011-10-01

    A Hadamard transform near infrared spectrometer based on a digital micromirror device was constructed. The optical signal was collected by optical fiber, a grating was used for light diffraction, a digital micromirror device (DMD) was applied instead of traditional mechanical Hadamard masks for optical modulation, and an InGaAs near infrared detector was used as the optic sensor. The original spectrum was recovered by fast Hadamard transform algrithms. The advantages of the spectrometer, such as high resolution, signal-noise-ratio, stability, sensitivity and response speed were proved by experiments, which indicated that it is very suitable for oil and food-safety applications.

  8. Preflight and Inflight Calibration of TES and AES

    NASA Technical Reports Server (NTRS)

    Rider, David M.

    1997-01-01

    The Thermal Emission Spectrometer (TES), an EOS CHEM platform instrument, and its companion instrument, the Airborne Emission Spectrometer (AES), are both Fourier transform spectrometers designed for remote sensing of the troposphere.

  9. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  10. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  11. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    PubMed

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  12. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  13. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  14. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  15. Novel Hadamard transform spectrometer realized using a dynamically driven micromirror array as a light modulator

    NASA Astrophysics Data System (ADS)

    Hanf, Marian; Schaporin, Alexey V.; Hahn, Ramon; Doetzel, Wolfram; Gessner, Thomas

    2005-01-01

    The paper deals with a novel setup of a Hadamard transform spectrometer (HTS) which encoding mask is realized by a micro mirror array. In contrast to other applications of an HTS the mirrors of the array are not statically switched but dynamically driven to oscillate at the same frequency. The Hadamard transform is obtained by shifting the phase shift of oscillation. The paper gives a brief introduction in the entity of the Hadamard transform technique. The driving and detection circuits are presented and first measurement results are discussed.

  16. Accurate Transmittance Measurements of Thick, High-Index, High- Dispersion, IR Windows, Using a Fourier Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Kupferberg, Lenn C.

    1996-03-01

    Fourier transform IR [FT-IR] spectrometers have virtually replaced scanned grating IR spectrometers in the commercial market. While FTIR spectrometers have been a boon for the chemist, they present problems for the measurement of transmittance of thick, high-index, high-dispersion, IR windows. Reflection and refraction of light by the windows introduce measurement errors. The principles of the FT-IR spectrometer will be briefly reviewed. The origins of the measurement errors will be discussed. Simple modifications to the operation of commercially available instruments will be presented. These include using strategically placed apertures and the use of collimated vs. focused beams at the sample position. They are essential for removing the effects of reflected light entering the interferometer and limiting the divergence angle of light in the interferometer. The latter minimizes refractive effects and insures consistent underfilling of the detector. Data will be shown from FT-IR spectrometers made by four manufactures and compared to measurements from a dispersive spectrometer.

  17. VizieR Online Data Catalog: Cyanoacetylene (HC3N) infrared spectrum (Bizzocchi+,

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Tamassia, F.; Laas, J.; Giuliano, B. M.; Degli Esposti, C.; Dore, L.; Melosso, M.; Cane, E.; Pietropolli Charmet, A.; Muller, H. S. P.; Spahn, H.; Belloche, A.; Caselli, P.; Menten, K. M.; Garrod, R. T.

    2018-01-01

    A substantial amount of new spectroscopic data of HC3N was col in four laboratories located in Bologna, Italy and in Cologne and Munich, Germany. The infrared spectra in the 450-1100cm-1 range were recorded in Bologna using a Bomem DA3.002 Fourier-transform spectrometer. The resolution was generally 0.004cm-1. New mm-wave spectra in selected frequency intervals between 80 and 400GHz were observed in Bologna using a frequency-modulation (FM) mm-wave spectrometer whose details are reported elsewhere (see, e.g., Bizzocchi+ 2016, J/ApJ/820/L26). Further measurements of the sub-mm-wave spectrum of HC3N in the 200-690GHz frequency range were carried out at the Center for Astrochemical Studies (MPE Garching). The measurements performed in Cologne were carried out with leftover samples from previous studies (Yamada+ 1995ZNatA..50.1179Y ; Thorwirth+ 2000JMoSp.204..133T). Further measurements were made using the Cologne Terahertz Spectrometer. See section 2 for further explanations. (2 data files).

  18. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  19. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  20. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  1. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  2. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed usingmore » a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.« less

  3. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    PubMed

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

  4. Quadrupole mass spectrometer driver with higher signal levels

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2003-01-01

    Driving a quadrapole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  5. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    NASA Technical Reports Server (NTRS)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  6. Development of a Fourier-transform ion cyclotron resonance mass spectrometer-ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Bluhm, Brian K.; Gillig, Kent J.; Russell, David H.

    2000-11-01

    In an effort to incorporate ion-molecule reaction chemistry with ion mobility measurements we designed and constructed a novel instrument that combines a Fourier-transform ion cyclotron resonance (ICR) mass spectrometer with an ion mobility drift cell and a time-of-flight mass spectrometer. Measured mobilities for Ar+ and CO+ in helium are in excellent agreement with accepted literature values demonstrating that there are no adverse effects from the magnetic field on ion mobility measurements. Drift cell pressure, extracted from the measured mobility of Ar+ in helium, indicate that a pressure of ˜0.25 Torr is achieved in the present configuration. There are significant technological challenges associated with combining ICR and ion mobility that occurred during construction of this instrument, such as differential pumping and aperture alignment are presented.

  7. FIR and sub-mm direct detection spectrometers for spaceborne astronomy

    NASA Astrophysics Data System (ADS)

    Wijnbergen, Jan J.; de Graauw, Thijs

    1990-12-01

    Candidate spaceborne sub-mm instrumentation proposed for space projects with large passively cooled telescopes are reviewed. Grating instruments and Fourier transform spectroscopy (FTS) spectrometers are discussed. Particular attention is given to imaging Fabry-Perot spectrometers. The special needs of the Large Deployable Reflector (LDR) and for the Far InfraRed Space Telescope (FIRST) missions in this area are outlined. Possible Fabry-Perot spectrometer setups are diagrammed and outlined. The use of spherical and multiplex Fabry-Perot spectrometers is discussed.

  8. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) Hyperspectral Data

    DTIC Science & Technology

    2002-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric

  9. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    PubMed

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  10. Gas Measurement Using Static Fourier Transform Infrared Spectrometers

    PubMed Central

    Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.

    2017-01-01

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193

  11. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.

    1995-12-31

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. The authors will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less

  12. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.

    1995-04-01

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less

  13. [Micro Hadamard transform near-infrared spectrometer].

    PubMed

    Zhang, Zhi-hai; Muo, Xiang-xia; Guo, Yuan-jun; Wang, Wei

    2011-07-01

    A new type micro Hadamard transform (HT) near-infrared (NIR) spectrometer is proposed in the present paper. It has a MOEMS (Micro-Opto-Electro-Mechanical Systems) blazed grating HT mask. It has merits of compactness, agility of dynamic mask generation and high scan speed. The structure and theory of this spectrometer are analyzed. The 63-order Hadamard-S matrix and mask are designed. The mask is dynamically generated by program of MOEMS blazed gratings. The spectrum is in agreement with that measured by Shimadzu spectrometer in experiments. It has a wavelength range between 900 and 1 700 nm, spectral resolution of 19 nm, single scan time of 2.4 s, SNR of 44.67:1, optical path of 70 mm x 130 mm, and weight under 1 kg. It can meet the requirement of real time detection and portable application.

  14. Iterative and function-continuation Fourier deconvolution methods for enhancing mass spectrometer resolution

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.; Ioup, G. E.; Rayborn, G. H., Jr.; Wood, G. M., Jr.; Upchurch, B. T.

    1984-01-01

    Mass spectrometer data in the form of ion current versus mass-to-charge ratio often include overlapping mass peaks, especially in low- and medium-resolution instruments. Numerical deconvolution of such data effectively enhances the resolution by decreasing the overlap of mass peaks. In this paper two approaches to deconvolution are presented: a function-domain iterative technique and a Fourier transform method which uses transform-domain function-continuation. Both techniques include data smoothing to reduce the sensitivity of the deconvolution to noise. The efficacy of these methods is demonstrated through application to representative mass spectrometer data and the deconvolved results are discussed and compared to data obtained from a spectrometer with sufficient resolution to achieve separation of the mass peaks studied. A case for which the deconvolution is seriously affected by Gibbs oscillations is analyzed.

  15. Wideband Spectroscopy: The Design and Implementation of a 3 GHz Bandwidth, 8192 Channel, Polyphase Digital Spectrometer

    NASA Technical Reports Server (NTRS)

    Monroe, Ryan M.

    2011-01-01

    A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters, (ADC). This 6 Gsps (giga-sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. the implementation, results and underlying math for this spectrometer, as well as, potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.

  16. Wideband Spectroscopy: The Design and Implementation of a 3 GHz, 2048 Channel Digital Spectrometer

    NASA Technical Reports Server (NTRS)

    Monroe, Ryan M.

    2011-01-01

    A state-of-the-art digital Fourier Transform spectrometer has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters (ADC). This 6 Gsps (giga sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. The implementation, results and underlying math for this spectrometer, as well as potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.

  17. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  18. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Hyperspectral Data

    DTIC Science & Technology

    2003-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer ( GIFTS ) Hyperspectral Data Dr. Allen H.-L. Huang...ssec.wisc.edu Award Number: N000140110850 Grant Number: 144KE70 http://www.ssec.wisc.edu/ gifts /navy/ LONG-TERM GOALS This Office of Naval...objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS hyperspectral data processing system with the potential for a

  19. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  20. [The investigation and simulation of a novel spatially modulated micro-Fourier transform spectrometer].

    PubMed

    Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun

    2009-04-01

    Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.

  1. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  2. Note: Modification of an FTIR spectrometer for optoelectronic characterizations.

    PubMed

    Puspitosari, N; Longeaud, C

    2017-08-01

    We propose a very simple system to be adapted to a Fourier Transform Infra-Red (FTIR) spectrometer with which three different types of characterizations can be done: the Fourier transform photocurrent spectroscopy, the recording of reflection-transmission spectra of thin film semiconductors, and the acquisition of spectral responses of solar cells. In addition to gather three techniques into a single apparatus, this FTIR-based system also significantly reduces the recording time and largely improves the resolution of the measured spectra compared to standard equipments.

  3. The Application of MP-FTS to Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Hattori, M.; Ohta, I. S.; Matsuo, H.; Shibata, Y.

    2000-12-01

    The application of the Martin-Puplett type Fourier transform spectrometer to aperture synthesis is considered. The configuration of the mirrors and beam splitters and the fundamental mathematical elements of the system are summarized. We show that the system can measure spectrally resolved spatial distribution of the Stokes parameters of sources as interfered signals. An original Martin-Puplett type Fourier transform spectrometer that can be applied to aperture synthesis in mm and sub-mm wave bands has been constructed. The preliminary results of our laboratory experiments are reported.

  4. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  5. Note: Modification of an FTIR spectrometer for optoelectronic characterizations

    NASA Astrophysics Data System (ADS)

    Puspitosari, N.; Longeaud, C.

    2017-08-01

    We propose a very simple system to be adapted to a Fourier Transform Infra-Red (FTIR) spectrometer with which three different types of characterizations can be done: the Fourier transform photocurrent spectroscopy, the recording of reflection-transmission spectra of thin film semiconductors, and the acquisition of spectral responses of solar cells. In addition to gather three techniques into a single apparatus, this FTIR-based system also significantly reduces the recording time and largely improves the resolution of the measured spectra compared to standard equipments.

  6. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  7. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158more » molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).« less

  8. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  9. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  10. GIFTS EDU Ground-based Measurement Experiment

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, W. L., Sr.; Zollinger, L. J.; Huppi, R. J.; Reisse, R. A.; Larar, A. M.; Liu, X.; Tansock, J. J., Jr.; Jensen, S. M.; Revercomb, H. E.; hide

    2007-01-01

    Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. The EDU groundbased measurement experiment was held in Logan, Utah during September 2006 to demonstrate its extensive capabilities for geosynchronous and other applications.

  11. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    PubMed

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  12. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  13. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  14. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  15. Resampling algorithm for the Spatial Infrared Imaging Telescope (SPIRIT III) Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Sargent, Steven D.; Greenman, Mark E.; Hansen, Scott M.

    1998-11-01

    The Spatial Infrared Imaging Telescope (SPIRIT III) is the primary sensor aboard the Midcourse Space Experiment (MSX), which was launched 24 April 1996. SPIRIT III included a Fourier transform spectrometer that collected terrestrial and celestial background phenomenology data for the Ballistic Missile Defense Organization (BMDO). This spectrometer used a helium-neon reference laser to measure the optical path difference (OPD) in the spectrometer and to command the analog-to-digital conversion of the infrared detector signals, thereby ensuring the data were sampled at precise increments of OPD. Spectrometer data must be sampled at accurate increments of OPD to optimize the spectral resolution and spectral position of the transformed spectra. Unfortunately, a failure in the power supply preregulator at the MSX spacecraft/SPIRIT III interface early in the mission forced the spectrometer to be operated without the reference laser until a failure investigation was completed. During this time data were collected in a backup mode that used an electronic clock to sample the data. These data were sampled evenly in time, and because the scan velocity varied, at nonuniform increments of OPD. The scan velocity profile depended on scan direction and scan length, and varied over time, greatly degrading the spectral resolution and spectral and radiometric accuracy of the measurements. The Convert software used to process the SPIRIT III data was modified to resample the clock-sampled data at even increments of OPD, using scan velocity profiles determined from ground and on-orbit data, greatly improving the quality of the clock-sampled data. This paper presents the resampling algorithm, the characterization of the scan velocity profiles, and the results of applying the resampling algorithm to on-orbit data.

  16. [The optimizing design and experiment for a MOEMS micro-mirror spectrometer].

    PubMed

    Mo, Xiang-xia; Wen, Zhi-yu; Zhang, Zhi-hai; Guo, Yuan-jun

    2011-12-01

    A MOEMS micro-mirror spectrometer, which uses micro-mirror as a light switch so that spectrum can be detected by a single detector, has the advantages of transforming DC into AC, applying Hadamard transform optics without additional template, high pixel resolution and low cost. In this spectrometer, the vital problem is the conflict between the scales of slit and the light intensity. Hence, in order to improve the resolution of this spectrometer, the present paper gives the analysis of the new effects caused by micro structure, and optimal values of the key factors. Firstly, the effects of diffraction limitation, spatial sample rate and curved slit image on the resolution of the spectrum were proposed. Then, the results were simulated; the key values were tested on the micro mirror spectrometer. Finally, taking all these three effects into account, this micro system was optimized. With a scale of 70 mm x 130 mm, decreasing the height of the image at the plane of micro mirror can not diminish the influence of curved slit image in the spectrum; under the demand of spatial sample rate, the resolution must be twice over the pixel resolution; only if the width of the slit is 1.818 microm and the pixel resolution is 2.2786 microm can the spectrometer have the best performance.

  17. Line Parameters Of CH3CN From 305 To 415 cm-1

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Kamadjeu, D. A.; Kleiner, I.; Orphal, J.; Sams, R. L.

    2006-12-01

    Mapping important compounds, such as hydrocarbons and nitriles, is needed in order to understand the photochemical cycle of Titan and how it couples with the dynamics to produce organic aerosols. For this, the CIRS spectrometer (Composite Infrared Spectrometer) on board Cassini is currently recording rotation and vibration-rotation spectra of Titan between 10 and 1400 cm-1. To support analysis of these data, high resolution laboratory spectra of CH3CN have been recorded using Fourier transform spectrometers at PNL and LISA. This paper presents a prediction of line positions and intensities of CH3 CN for the ν&8 fundamental and the 2ν8 -ν8 hot band (located near 360 cm&-1). Analyses of the two fundamentals near 10 microns are in progress. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration. I.K, J. O and A. D. also want to thank the Programme National de Planétologie for funding part of this research. This research was supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and the experimental part was performed at the W. R, Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC06-76RLO 1830. We wish to thank Drs R. Antilla and S. Alanko for kindly making available supplemental data in electronic and paper forms. #

  18. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P.; Jaselskis, Edward J.

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  19. Line positions and intensities of the phosphine (PH 3) Pentad near 4.5μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Kleiner, Isabelle; Sams, Robert L.

    2014-04-01

    In order to improve the spectroscopic database for remote sensing of the giant planets, line positions and intensities are determined for the five bands (2ν 2, ν 2 + ν 4, 2ν 4, ν 1 and ν 3) that comprise the Pentad of PH 3 between 1950 and 2450 cm -1. Knowledge of PH 3 spectral line parameters in this region is important for the exploration of dynamics and chemistry on Saturn, (using existing Cassini/VIMS observations) and future near-IR data of Jupiter from Juno and ESA’s Jupiter Icy Moons Explorer (JUICE). For this study, spectra of pure PH 3 frommore » two Fourier transform spectrometers were obtained: (a) five high-resolution (0.00223 cm -1), high signal-to-noise (~1800) spectra recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), Richland, Washington and (b) four high-resolution (at 0.0115 cm -1 resolution), high signal-to-noise (~700) spectra recorded at room temperature in the region 1800–5200 cm -1 using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak. Individual line parameters above 2150 cm -1 were retrieved by simultaneous multispectrum fittings of all five Bruker spectra, while retrievals with the four Kitt Peak spectra were done in the 1938–2168 cm -1 range spectrum by spectrum and averaged. In all, positions and intensities were obtained for more than 4400 lines. These included 53 A+A- split pairs of transitions (arising due to vibration–rotation interactions (Coriolis-type interaction) between the ν 3 and ν 1 fundamental bands) for K" = 3, 6, and 9. Over 3400 positions and 1750 intensities of these lines were ultimately identified as relatively unblended and modeled up to J = 14 and K = 12 with rms values of 0.00133 cm -1 and 7.7%, respectively. The PH 3 line parameters (observed positions and measured intensities with known quantum assignments) and Hamiltonian constants are reported. Finally, comparisons with other recent studies are discussed.« less

  20. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  1. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

    NASA Technical Reports Server (NTRS)

    Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

    1993-01-01

    Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

  2. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    PubMed

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  3. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  4. A novel dual-detector micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas

    2005-01-01

    Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.

  5. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  6. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  7. PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

    DTIC Science & Technology

    2016-12-22

    23 6 Band-averaged radiance image with checkerboard is shown in the upper left. The 2-D Fourier transform of the image is...red is 1) that is multiplied by the Fourier transform of the original image. The inverse Fourier transform is then taken to get the final image with...Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IFTS Imaging Fourier Transform Spectrometer

  8. Isotopic anomalies of H2 and C in the peat from the Tunguska meteorite impact area

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. M.

    Core samples of peat collected at the site of the Tunguska meteorite impact were mixed with CuO and burned inside evacuated and sealed quartz ampules. As a result, the organic components of peat were transformed to H2O and CO2 which were then separated and analyzed using a mass spectrometer. Results show that layers located above the level dated by 1908 are characterized by lighter H2 isotopes and heavier C isotopes, compared with lower layers. These effects are ascribed to the conservation and gradual redistribution of cosmic matter (e.g., regular chondrites, achondrites, and C4-type carbon chondrites) in the upper peat layers.

  9. Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.

    2009-06-01

    Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.

  10. Nighttime and daytime variation of atmospheric NO2 from ground-based infrared measurements

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Brault, J. W.; Rinsland, C. P.; Cariolle, D.

    1988-01-01

    During the period of Feb. 28 to Mar. 2, 1986, 19 high resolution atmospheric spectra have been recorded during the night using the moon or during the day using the sun as a source with the Fourier transform spectrometer at the McMath Solar telescope on Kitt Peak. The NO2 absorption peak located at 2914.65/cm has been used to derive from the spectra the total vertical column densities of atmospheric NO2. A rather rapid decrease of the NO2 amount during the night has been observed, and its daytime increase from sunrise to sunset has been confirmed. A comparison with the predictions of a photochemical model is given.

  11. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  12. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  13. High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application. Final Report, 1 Sep. 1973 - 28 Apr. 1977. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Tai, M. H.; Harwit, M.; Melnick, G.; Dain, F. W.; Stasavage, G.; Briotta, D. A., Jr.; King, L. W.; Kameth, M.

    1977-01-01

    Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements.

  14. Fourier Transform Methods. Chapter 4

    NASA Technical Reports Server (NTRS)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  15. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    NASA Astrophysics Data System (ADS)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  16. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.

    PubMed

    Zhang, Lin; Small, Gary W; Arnold, Mark A

    2003-11-01

    The transfer of multivariate calibration models is investigated between a primary (A) and two secondary Fourier transform near-infrared (near-IR) spectrometers (B, C). The application studied in this work is the use of bands in the near-IR combination region of 5000-4000 cm(-)(1) to determine physiological levels of glucose in a buffered aqueous matrix containing varying levels of alanine, ascorbate, lactate, triacetin, and urea. The three spectrometers are used to measure 80 samples produced through a randomized experimental design that minimizes correlations between the component concentrations and between the concentrations of glucose and water. Direct standardization (DS), piecewise direct standardization (PDS), and guided model reoptimization (GMR) are evaluated for use in transferring partial least-squares calibration models developed with the spectra of 64 samples from the primary instrument to the prediction of glucose concentrations in 16 prediction samples measured with each secondary spectrometer. The three algorithms are evaluated as a function of the number of standardization samples used in transferring the calibration models. Performance criteria for judging the success of the calibration transfer are established as the standard error of prediction (SEP) for internal calibration models built with the spectra of the 64 calibration samples collected with each secondary spectrometer. These SEP values are 1.51 and 1.14 mM for spectrometers B and C, respectively. When calibration standardization is applied, the GMR algorithm is observed to outperform DS and PDS. With spectrometer C, the calibration transfer is highly successful, producing an SEP value of 1.07 mM. However, an SEP of 2.96 mM indicates unsuccessful calibration standardization with spectrometer B. This failure is attributed to differences in the variance structure of the spectra collected with spectrometers A and B. Diagnostic procedures are presented for use with the GMR algorithm that forecasts the successful calibration transfer with spectrometer C and the unsatisfactory results with spectrometer B.

  17. Mapping TES Aerobreaking Data of The Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.; AlShamsi, M. R.; AlJanaahi, A. A.

    2016-12-01

    The purpose of this paper is to create maps of the north and south Mars polar caps using Thermal Emission Spectrometer (TES) aerobreaking surface temperature data in south and north as well as Lambert albedo data in the south. TES is an instrument on board the Mars Global Surveyor (MGS) spacecraft. It has six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km; however, given the elliptical nature of the orbit during aerobreaking the footprint can be significantly larger (10s of km), especially over the southern hemisphere. TES is a Fourier transform infrared spectrometer designed to study the Martian surface and atmosphere using thermal infrared emission spectroscopy. It is composed of 2 separate channels, a broadband visible/near-infrared bolometer and hyperspectral thermal infrared spectrometer with a broadband thermal infrared bolometer. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. To determine the footprint location on the surface, geometry is calculated using the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) Toolkit. These data were then binned and mapped to surface in polar stereographic projection. While some early studies focused on these data, we have expanded upon the ranges, generated time-/seasonally-binned data, and re-examined this largely underutilized set of data from TES ultimately extending the record of polar science on Mars.

  18. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  19. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; hide

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  20. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  1. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del [Livermore, CA; Klunder, Gregory L [Oakland, CA

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  2. Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments

    NASA Astrophysics Data System (ADS)

    Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation would have been too challenging so far.

  3. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    NASA Astrophysics Data System (ADS)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  4. SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.

    PubMed

    Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E

    2012-06-01

    To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.

  5. Four Fourier transform spectrometers and the Arctic polar vortex: instrument intercomparison and ACE-FTS validation at Eureka during the IPY springs of 2007 and 2008

    NASA Astrophysics Data System (ADS)

    Batchelor, R. L.; Kolonjari, F.; Lindenmaier, R.; Mittermeier, R. L.; Daffer, W.; Fast, H.; Manney, G.; Strong, K.; Walker, K. A.

    2009-11-01

    The Canadian Arctic Atmospheric Chemistry Experiment Validation Campaigns have been carried out at Eureka, Nunavut (80.05° N, 86.42° W) during the polar sunrise period since 2004. During the International Polar Year (IPY) springs of 2007 and 2008, three ground-based Fourier transform infrared (FTIR) spectrometers were operated simultaneously. This paper presents a comparison of trace gas measurements of stratospherically important species involved in ozone depletion, namely O3, HCl, ClONO2, HNO3 and HF, recorded with these three spectrometers. Total column densities of the gases measured with the new Canadian Network for the Detection of Atmospheric Change (CANDAC) Bruker 125HR are shown to agree to within 3.5% with the existing Environment Canada Bomem DA8 measurements. After smoothing both of these sets of measurements to account for the lower spectral resolution of the University of Waterloo Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the measurements were likewise shown to agree with PARIS-IR to within 7%. Concurrent measurements of these gases were also made with the satellite-based Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) during overpasses of Eureka during these time periods. While one of the mandates of the ACE satellite mission is to study ozone depletion in the polar spring, previous validation exercises have identified the highly variable polar vortex conditions of the spring period to be a challenge for validation efforts. In this work, comparisons between the CANDAC Bruker 125HR and ACE-FTS have been used to develop strict criteria that allow the ground- and satellite-based instruments to be confidently compared. When these criteria are taken into consideration, there is shown to be no significant bias between the ACE-FTS and ground-based FTIR spectrometer for any of these gases.

  6. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror.

    PubMed

    Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai

    2016-10-03

    A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.

  7. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can provide the full capabilities of a complete IFTS in the FUV/EUV spectral range.

  8. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  9. Analysis of the Advantages and Limitations of Stationary Imaging Fourier Transform Spectrometer. Revised

    NASA Technical Reports Server (NTRS)

    Beecken, Brian P.; Kleinman, Randall R.

    2004-01-01

    New developments in infrared sensor technology have potentially made possible a new space-based system which can measure far-infrared radiation at lower costs (mass, power and expense). The Stationary Imaging Fourier Transform Spectrometer (SIFTS) proposed by NASA Langley Research Center, makes use of new detector array technology. A mathematical model which simulates resolution and spectral range relationships has been developed for analyzing the utility of such a radically new approach to spectroscopy. Calculations with this forward model emulate the effects of a detector array on the ability to retrieve accurate spectral features. Initial computations indicate significant attenuation at high wavenumbers.

  10. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.

  11. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems.

    PubMed

    Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-02-08

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  12. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

    PubMed Central

    Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-01-01

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765

  13. Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Bradley G.; Schofield, Ian; Tompkins, Gregory; Davis, Gary R.

    2003-02-01

    Astronomical spectroscopy at submillimeter wavelengths holds much promise for fields as diverse as the study of planetary atmospheres, molecular clouds and extragalactic sources. Fourier transform spectrometers (FTS) represent an important class of spectrometers well suited to observations that require broad spectral coverage at intermediate spectral resolution. In this paper we present the design and performance of a novel FTS, which has been developed for use at the James Clerk Maxwell Telescope (JCMT). The design uses two broadband intensity beamsplitters in a Mach-Zehnder configuration, which provide access to all four interferometer ports while maintaining a high and uniform efficiency over a broad spectral range. Since the interferometer processes both polarizations it is twice as efficient as the Martin-Puplett interferometer (MPI). As with the MPI, the spatial separation of the two input ports allows a reference blackbody to be viewed at all times in one port, while continually viewing the astronomical source in the other. Furthermore, by minimizing the size of the optical beam at the beamsplitter, the design is well suited to imaging Fourier transform spectroscopy (IFTS) as evidenced by its selection for the SPIRE instrument on Herschel.

  14. Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra.

    PubMed

    Desbiens, Raphaël; Tremblay, Pierre; Genest, Jérôme; Bouchard, Jean-Pierre

    2006-01-20

    The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.

  15. cSRM 2035: a rare-earth oxide glass for the wavelength calibration of near-infrared dispersive and Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Travis, John C.; Duewer, David L.

    1998-10-01

    The National Institute of Standards and Technology is developing an optical filter standard for calibration of the wavelength axis of near infrared (NIR) transmission spectrometers. A design goal for the initial candidate Standard Reference Material (cSRM) filter was to provide absorbance peaks evenly covering the spectral region between 800 nm to 1600 mm (12,000 cm-1 to 6,500 cm-1). The reproducibility of the peak location, for batch-certified filters, was to be better than 0.02 nm (approximately 0.1 cm-1). Glasses with 1 to 3 mole % Yb2O3, Sm2O3, and Nd2O3, incorporated into a commercial lanthanum oxide glass were evaluated for this proposed optical standard. An initial batch of cSRM 2035 filters was prepared based on studies of glasses made and evaluated in our laboratory. An interlaboratory comparison study was initiated in February 1997 to evaluate the utility of these filters for the chemical, pharmaceutical, instrumentation, and regulatory communities. Information concerning peak-picking algorithms, wavelength coverage, geometry preferences, and other parameters was solicited from the users. Based upon input from the participants of this interlaboratory study, we are making several changes to make SRM 2035 more useful to our customers. Two of these changes are: (1) incorporating Ho2O3 into the glass to introduce an absorbance peak at approximately 2000 nm (approximately 5000 cm-1) and (2) providing users with a standard center of gravity (COG) peak-picking algorithm to locate the absorbance peaks of the SRM filter precisely. Recent results have demonstrated that the COG method provides a 10 fold improvement in the precision of locating peaks compared with traditional peak-picking methods.

  16. Power supply with air core transformer and seperated power supplies for high dynamic range

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor)

    2001-01-01

    A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.

  17. A GPU-Based Wide-Band Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  18. Image-based spectroscopy for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Bachmakov, Eduard; Molina, Carolyn; Wynne, Rosalind

    2014-03-01

    An image-processing algorithm for use with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. The nanospectrometer chip was aligned with a 635nm laser source, objective lenses, and a CCD camera. The images from a nanospectrometer chip were collected and compared to reference spectra. Random background noise contributions were isolated and removed from the diffraction pattern image analysis via a threshold filter. Results are provided for the image-based detection of the diffraction pattern produced by the nanospectrometer. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants. MATLAB tools allow for implementation of intelligent, automatic detection of the relevant sub-patterns in the diffraction patterns and subsequent extraction of the parameters using region-detection algorithms such as the generalized Hough transform, which detects specific shapes within the image. This transform is a method for detecting curves by exploiting the duality between points on a curve and parameters of that curve. By employing this imageprocessing technique, future sensor systems will benefit from new applications such as unsupervised environmental monitoring of air or water quality.

  19. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  20. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  1. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  2. Noise-Enhanced Measurement of Weak Doublet Spectra with a Fourier-Transform Spectrometer and a 1-Bit Analog-to-Digital Converter.

    PubMed

    Lim, M; Saloma, C

    2001-04-10

    We demonstrate an efficient noise dithering procedure for measuring the power spectrum of a weak spectral doublet with a Fourier-transform spectrometer in which the subthreshold interferogram is measured by a 1-bit analog-to-digital converter without oversampling. In the absence of noise, no information is obtained regarding the doublet spectrum because the modulation term s(x) of its interferogram is below the instrumental detection limit B, i.e., |s(x)| < B, for all path difference x values. Extensive numerical experiments are carried out concerning the recovery of the doublet power spectrum that is represented by s(x) = (s(0)/2)exp(-pi(2)x(2)/beta)[cos(2pif(1)x) + cos(2pif(2)x)], where s(0) is a constant, beta is the linewidth factor, and ?f? = (f(1) + f(2))/2. Different values of ?f?, s(0), and beta are considered to evaluate thoroughly the accuracy of the procedure to determine the unknown values of f(1) and f(2), the spectral linewidth, and the peak values of the spectral profiles. Our experiments show that, even for short observation times, the resonant frequencies of s(x) could be located with high accuracy over a wide range of ?f? and beta values. Signal-to-noise ratios as high as 50 are also gained for the recovered power spectra. The performance of the procedure is also analyzed with respect to another method that recovers the amplitude values of s(x) directly.

  3. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullom, Joel

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced tomore » the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.« less

  4. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  5. GIFTS SM EDU Radiometric and Spectral Calibrations

    NASA Technical Reports Server (NTRS)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  6. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  7. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  8. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  9. Moessbauer Nose Print

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm.' The image shows the imprint of the donut-shaped plate on the rover's Moessbauer spectrometer instrument, also located on the 'arm.' The Moessbauer spectrometer was deployed within the trench to investigate the fine-grained soil for iron-bearing minerals. The area in this image measures approximately 3 centimeters (1.2 inches) across.

  10. Measurements of trace gases and particles in fresh and aged smoke from a chaparral fire in California

    Treesearch

    S. K. Akagi; J. S. Craven; J. W. Taylor; G. R. McMeeking; R. J. Yokelson; I. R. Burling; M. J. Alvarado; J. Seinfeld; H. Coe; Shawn Urbanski

    2010-01-01

    On November 17th 2009 we used a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, Licor CO2 analyzer, and a chemiluminescence ozone instrument to measure the initial emissions from a 100 hectare prescribed fire in chaparral fuels on the...

  11. Four Fourier transform spectrometers and the Arctic polar vortex: instrument intercomparison and ACE-FTS validation at Eureka during the IPY springs of 2007 and 2008

    NASA Astrophysics Data System (ADS)

    Batchelor, R. L.; Kolonjari, F.; Lindenmaier, R.; Mittermeier, R. L.; Daffer, W.; Fast, H.; Manney, G.; Strong, K.; Walker, K. A.

    2010-01-01

    The Canadian Arctic Atmospheric Chemistry Experiment Validation Campaigns have been carried out at Eureka, Nunavut (80.05° N, 86.42° W) during the polar sunrise period since 2004. During the International Polar Year (IPY) springs of 2007 and 2008, three ground-based Fourier transform infrared (FTIR) spectrometers were operated simultaneously. This paper presents a comparison of trace gas measurements of stratospherically important species involved in ozone depletion, namely O3, HCl, ClONO2, HNO3 and HF, recorded with these three spectrometers. Total column densities of the gases measured with the new Canadian Network for the Detection of Atmospheric Change (CANDAC) Bruker 125HR are shown to agree to within 3.5% with the existing Environment Canada Bomem DA8 measurements. After smoothing both of these sets of measurements to account for the lower spectral resolution of the University of Waterloo Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the measurements were likewise shown to agree with PARIS-IR to within 7%. Concurrent measurements of these gases were also made with the satellite-based Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) during overpasses of Eureka during these time periods. While one of the mandates of the ACE satellite mission is to study ozone depletion in the polar spring, previous validation exercises have identified the highly variable polar vortex conditions of the spring period to be a challenge for validation efforts. In this work, comparisons between the CANDAC Bruker 125HR and ACE-FTS have been used to develop strict criteria that allow the ground- and satellite-based instruments to be confidently compared. When these criteria are taken into consideration, the observed biases between the ACE-FTS and ground-based FTIR spectrometer are not persistent for both years and are generally insignificant, though small positive biases of ~5%, comparable in magnitude to those seen in previous validation exercises, are observed for HCl and HF in 2007, and negative biases of -15.3%, -4.8% and -1.5% are seen for ClONO2, HNO3 and O3 in 2008.

  12. Pseudo-equilibrium geometry of HNO determined by an E-Band CP-FTmmW spectrometer

    DOE PAGES

    Zaleski, Daniel P.; Prozument, Kirill

    2017-05-16

    An E-Band (60–90 GHz) chirped-pulse Fourier transform millimeter-wave spectrometer has been constructed for eventual kinetics and dynamics studies. The performance of the spectrometer is demonstrated with the molecule nitroxyl (HNO). Using the new spectrometer and by passing isotopically labelled methyl nitrite (CH 3ONO) through a pyrolysis nozzle, the spectra of minor isotopologues of HNO have been obtained. The observations on the isotopologues identified here, H 15NO, HN 18O, and D 15NO, have been combined with the earlier isotopic observations, HNO and DNO, to create a global r m (1) HNO geometry that approximates an equilibrium structure. Furthermore, the results aremore » compared to high-level ab initio calculations.« less

  13. Pseudo-equilibrium geometry of HNO determined by an E-Band CP-FTmmW spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaleski, Daniel P.; Prozument, Kirill

    An E-Band (60–90 GHz) chirped-pulse Fourier transform millimeter-wave spectrometer has been constructed for eventual kinetics and dynamics studies. The performance of the spectrometer is demonstrated with the molecule nitroxyl (HNO). Using the new spectrometer and by passing isotopically labelled methyl nitrite (CH 3ONO) through a pyrolysis nozzle, the spectra of minor isotopologues of HNO have been obtained. The observations on the isotopologues identified here, H 15NO, HN 18O, and D 15NO, have been combined with the earlier isotopic observations, HNO and DNO, to create a global r m (1) HNO geometry that approximates an equilibrium structure. Furthermore, the results aremore » compared to high-level ab initio calculations.« less

  14. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  15. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  16. Airborne mapping of chemical plumes in the aftermath of Hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Lewis, Paul E.; Thomas, Mark J.; Kroutil, Robert T.; Combs, Roger; Cummings, Alan S.; Miller, Dave; Curry, Tim; Shen, Sylvia S.

    2006-05-01

    Infrared airborne spectral measurements were collected over the Gulf Coast area during the aftermath of Hurricanes Katrina and Rita. These measurements allowed surveillance for potentially hazardous chemical vapor releases from industrial facilities caused by storm damage. Data was collected with a mid-longwave infrared multispectral imager and a hyperspectral Fourier transform infrared spectrometer operating in a low altitude aircraft. Signal processing allowed detection and identification of targeted spectral signatures in the presence of interferents, atmospheric contributions, and thermal clutter. Results confirmed the presence of a number of chemical vapors. All detection results were immediately passed along to emergency first responders on the ground. The chemical identification, location, and vapor species concentration information were used by the emergency response ground teams for identification of critical plume releases and subsequent mitigation.

  17. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  18. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  19. Extension of the measurement, assignment, and fit of the rotational spectrum of the two-top molecule methyl acetate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori

    2014-05-01

    New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.

  20. Design of an FT-NIR spectrometer for online quality analysis of traditional Chinese medicine manufacturing process

    NASA Astrophysics Data System (ADS)

    Zhu, Ren; Wu, Lan; Wang, Shiming; Ye, Linhua; Ding, Zhihua

    2008-03-01

    As a fast, non-destructive analysis method, Fourier transform (FT) near-infrared (NIR) spectroscopy is very suitable and effective for online quality analysis of traditional Chinese medicine (TCM) manufacturing process. In this thesis, the theoretics of FT-NIRS was analyzed and an FT-NIR spectrometer with 4 cm -1 resolution in the 12500-5000 cm -1 frequency range was designed. The spectrometer was based on a Michelson interferometer with Bromine tungsten lamp as the NIR light source and InGaAs detector to collect the interference signal. Each element was designed and chosen to provide maximum sensitivity in the NIR spectral region. A fiber-optic flow cell system was used to realize online analysis of traditional Chinese medicine. The performance of the spectrometer was evaluated and the feasibility of using FT-NIR spectrometer to get absorption spectra of traditional Chinese medicine was demonstrated.

  1. a Highly-Integrated Supersonic-Jet Fourier Transform Microwave Spectrometer

    NASA Astrophysics Data System (ADS)

    Gou, Qian; Feng, Gang; Grabow, Jens-Uwe

    2017-06-01

    A highly integrated supersonic-jet Fourier-transform microwave spectrometer of coaxially oriented beam-resonator arrangement (COBRA) type, covering 2-20GHz, has been recently built at Chongqing University, China. Built up almost entirely in an NI PXIe chassis, we take the advantage of the NI PXIe-5451 Dual-channel arbitrary waveform generator and the PXIe-5654 RF signal generator to create a spectrometer with wobbling capacity for fast resonator tuning. Based on the I/Q modulation, associate with PXI control and sequence boards built at the Leibniz Universitat Hannover, the design of the spectrometer is much simpler and very compact. The Fabry-Pérot resonator is semi-confocal with a spherical reflector of 630 mm diameter and a radius of 900 mm curvature and one circulator plate reflector of 630 mm diameter. The vacuum is effectuated by a three-stage mechanical (two-stage rotary vane and roots booster) pump at the fore line of a DN630 ISO-F 20000 L/s oil-diffusion pump. The supersonic-jet expansion is pulsed by a general valve Series 9 solenoid valve which is controlled by a general valve IOTA one driver governed by the experiment-sequence generation. First molecular examples to illustrate the performance of the new setup will include OCS and CF_3CHFCl.

  2. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  3. Zero-crossing sampling of Fourier-transform interferograms and spectrum reconstruction using the real-zero interpolation method.

    PubMed

    Minami, K; Kawata, S; Minami, S

    1992-10-10

    The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.

  4. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  5. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  6. New scientific results with SpIOMM: a testbed for CFHT's imaging Fourier transform spectrometer SITELLE

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Lagrois, D.; Rousseau-Nepton, L.; Bilodeau, A.; Robert, C.; Joncas, G.; Iglesias-Páramo, J.

    2012-09-01

    We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Québec. Recent technical and data reduction improvements have significantly increased SpIOMM's capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.

  7. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  8. Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.

    2010-06-01

    Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.

  9. Internal calibration on adjacent samples (InCAS) with Fourier transform mass spectrometry.

    PubMed

    O'Connor, P B; Costello, C E

    2000-12-15

    Using matrix-assisted laser desorption/ionization (MAL DI) on a trapped ion mass spectrometer such as a Fourier transform mass spectrometer (FTMS) allows accumulation of ions in the cell from multiple laser shots prior to detection. If ions from separate MALDI samples are accumulated simultaneously in the cell, ions from one sample can be used to calibrate ions from the other sample. Since the ions are detected simultaneously in the cell, this is, in effect, internal calibration, but there are no selective desorption effects in the MALDI source. This method of internal calibration with adjacent samples is demonstrated here on cesium iodide clusters, peptides, oligosaccharides, poly(propylene glycol), and fullerenes and provides typical FTMS internal calibration mass accuracy of < 1 ppm.

  10. A Fourier transform spectrometer for site testing at Dome A

    NASA Astrophysics Data System (ADS)

    Li, Xin-Xing; Paine, Scott; Yao, Qi-Jun; Shi, Sheng-Cai; Matsuo, Hiroshi; Yang, Ji; Zhang, Qi-Zhou

    2009-07-01

    Observations in tera-hertz astronomy can only be done at a site with good atmospheric transmission at millimeter and submillimeter wavelengths. With extremely dry weather and calm atmosphere resulted by high altitude and cold temperature, Dome A (or Dome Argus), Antarctica, is possibly the best site on this earth for THz astronomy. To evaluate the site condition there, we are constructing a Fourier Transform Spectrometer (FTS) based on Martin-Puplett interferometer to measure the atmospheric transmission in the frequency range of 0.75~15THz. The whole FTS system is designed for unattended and outdoor (temperatures even below -70 degrees Celsius) operation. Its total power consumption is estimated to be approximately 200W. This contribution will give a brief overview of this FTS development.

  11. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed locations on the ground. Most FTIR studies to date measure only gas compositions or ratios of gas species (Love and others, 1998; Francis and others, 1998; Horrocks and others, 1999). What all of these methods have in common, however, is the necessity to know plume velocities if accurate gas emission rates are to be calculated. Even open-path FTIR studies done in tandem with a COSPEC require knowledge of plume velocity in order to compute emission rates.

  12. [Current status and prospects of portable NIR spectrometer].

    PubMed

    Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi

    2013-11-01

    Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.

  13. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOEpatents

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  14. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De Lucia last year at the final meeting in Columbus - is what problems can we solve when real, fully capable spectrometers become essentially free to build?

  15. Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks

    2016-06-01

    Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.

  16. An automatic molecular beam microwave Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Andresen, U.; Dreizler, H.; Grabow, J.-U.; Stahl, W.

    1990-12-01

    The general setup of an automatic MB-MWFT spectrometer for use in the 4-18 GHz range and its software details are discussed. The experimental control and data handling are performed on a personal computer using an interactive program. The parameters of the MW source and the resonator are controlled via IEEE bus and several serial interface ports. The tuning and measuring processes are automated and the efficiency is increased if unknown spectra are to be scanned. As an example, the spectrum of carbonyl sulfide has been measured automatically. The spectrometer is superior to all other kinds of rotational spectroscopic methods in both speed and unambiguity.

  17. Efficient differential Fourier-transform spectrometer for precision Sunyaev-Zel'dovich effect measurements

    NASA Astrophysics Data System (ADS)

    Schillaci, Alessandro; D'Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia; Paiva Novaes, Camila; Gervasi, Massimo; Zannoni, Mario

    2014-05-01

    Context. Precision measurements of the Sunyaev-Zel'dovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage. Aims: We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optimized for measurements of faint brightness gradients at millimeter wavelengths. Methods: Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common-mode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background. Results: The instrument works in the range ~1-20 cm-1 (30-600 GHz), has a maximum spectral resolution 1 / (2 OPD) = 0.063 cm-1 (1.9 GHz), and an unvignetted throughput of 2.3 cm2sr. It occupies a volume of 0.7 × 0.7 × 0.33 m3 and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.

  18. Passive Ranging Using a Dispersive Spectrometer and Optical Filters

    DTIC Science & Technology

    2012-12-20

    transform spectrometers. These in- struments are very sensitive to vibration, however, making them difficult to use on an air or space-borne platform. This... techniques will scale to longer ranges. An instrument using filters is predicted to be more accurate at long ranges, but only if the grating...done by Leonpacher at AFIT. This research focused on the CO2 absorption feature at 4.3 µm. His technique compared the relative intensity between two

  19. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    DTIC Science & Technology

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  20. Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): Imaging and Tracking Capability

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Reisse, R. A.; Smith, W. L.; Revercomb, H. E.; Bingham, G. E.; Zollinger, L. J.; Tansock, J. J.; Huppi, Ronald J.

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 128 detector arrays with a spectral resolution of 0.57/cm with a scan duration of approx. 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  1. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; hide

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  2. Development of an on-site screening system for amphetamine-type stimulant tablets with a portable attenuated total reflection Fourier transform infrared spectrometer.

    PubMed

    Tsujikawa, Kenji; Kuwayama, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Yoshida, Takemi; Inoue, Hiroyuki

    2008-02-04

    We tried to develop a library search system using a portable, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer for on-site identification of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) tablets. The library consisted of the spectra from mixtures of controlled drugs (e.g. MDMA and ketamine), adulterants (e.g. caffeine), and diluents (e.g. lactose). In the seven library search algorithms, the derivative correlation coefficient showed the best discriminant capability. This was enhanced by segmentation of the search area. The optimized search algorithm was validated by the positive (n=154, e.g. the standard mixtures containing the controlled drug, and the MDMA/MDA tablets confiscated) and negative samples (n=56, e.g. medicinal tablets). All validation samples except for four were judged truly. Final criteria for positive identification were decided on the basis of the results of the validation. In conclusion, a portable ATR-FT-IR spectrometer with our library search system would be a useful tool for on-site identification of amphetamine-type stimulant tablets.

  3. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  4. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  5. A hybrid thermal video and FTIR spectrometer system for rapidly locating and characterizing gas leaks

    NASA Astrophysics Data System (ADS)

    Williams, David J.; Wadsworth, Winthrop; Salvaggio, Carl; Messinger, David W.

    2006-08-01

    Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality and present a loss of product for industry. Surveying a facility for potential gas leaks can be a daunting task. Industrial leak detection and repair programs can be expensive to administer. An efficient, accurate and cost effective method for detecting and quantifying gas leaks would both save industries money by identifying production losses and improve regional air quality. Specialized thermal video systems have proven effective in rapidly locating gas leaks. These systems, however, do not have the spectral resolution for compound identification. Passive FTIR spectrometers can be used for gas compound identification, but using these systems for facility surveys is problematic due to their small field of view. A hybrid approach has been developed that utilizes the thermal video system to locate gas plumes using real time visualization of the leaks, coupled with the high spectral resolution FTIR spectrometer for compound identification and quantification. The prototype hybrid video/spectrometer system uses a sterling cooled thermal camera, operating in the MWIR (3-5 μm) with an additional notch filter set at around 3.4 μm, which allows for the visualization of gas compounds that absorb in this narrow spectral range, such as alkane hydrocarbons. This camera is positioned alongside of a portable, high speed passive FTIR spectrometer, which has a spectral range of 2 - 25 μm and operates at 4 cm -1 resolution. This system uses a 10 cm telescope foreoptic with an onboard blackbody for calibration. The two units are optically aligned using a turning mirror on the spectrometer's telescope with the video camera's output.

  6. In situ X-ray fluorescence-based method to differentiate among red ochre pigments and yellow ochre pigments thermally transformed to red pigments of wall paintings from Pompeii.

    PubMed

    Marcaida, Iker; Maguregui, Maite; Fdez-Ortiz de Vallejuelo, Silvia; Morillas, Héctor; Prieto-Taboada, Nagore; Veneranda, Marco; Castro, Kepa; Madariaga, Juan Manuel

    2017-06-01

    Most of the magnificent wall paintings from the ancient city of Pompeii are decorated with red and yellow colors coming from the ochre pigments used. The thermal impact of the pyroclastic flow from the eruption of Vesuvius, in AD 79, promoted the transformation of some yellow painted areas to red. In this work, original red ochre, original yellow ochre, and transformed yellow ochre (nowadays showing a red color) of wall paintings from Pompeian houses (House of Marcus Lucretius and House of Gilded Cupids) were analyzed by means of a handheld energy-dispersive X-ray fluorescence spectrometer to develop a fast method that allows chemical differentiation of the original red ochre and the transformed yellow ochre. Principal component analysis of the multivariate obtained data showed that arsenic is the tracer element to distinguish between both red colored ochres. Moreover, Pompeian raw red and yellow ochre pigments recovered from the burial were analyzed in the laboratory with use of a benchtop energy-dispersive X-ray fluorescence spectrometer to confirm the elemental composition and the conclusions drawn from the in situ analysis according to the yellow ochre pigment transformation in real Pompeian wall paintings.

  7. Optical design of the ATMOS Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  8. An Archive of Spectra from the Mayall Fourier Transform Spectrometer at Kitt Peak

    NASA Astrophysics Data System (ADS)

    Pilachowski, C. A.; Hinkle, K. H.; Young, M. D.; Dennis, H. B.; Gopu, A.; Henschel, R.; Hayashi, S.

    2017-02-01

    We describe the SpArc science gateway for spectral data obtained using the Fourier Transform Spectrometer (FTS) in operation at the Mayall 4-m telescope at the Kitt Peak National Observatory during the period from 1975 through 1995. SpArc is hosted by Indiana University Bloomington and is available for public access. The archive includes nearly 10,000 individual spectra of more than 800 different astronomical sources including stars, nebulae, galaxies, and solar system objects. We briefly describe the FTS instrument itself and summarize the conversion of the original interferograms into spectral data and the process for recovering the data into FITS files. The architecture of the archive is discussed and the process for retrieving data from the archive is introduced. Sample use cases showing typical FTS spectra are presented.

  9. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  10. Air-Broadening of H2O as a Function of Temperature: 696 - 2163 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Toth, R. A.; Brown, L. R.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Dulick, M.

    2006-01-01

    The temperature dependence of air-broadened halfwidths are reported for some 500 transitions in the (000)-(000) and (010)-(000) bands of H2(16)O using gas sample temperatures ranging from 241 to 388 K. These observations were obtained from infrared laboratory spectra recorded at 0.006 to 0.011 cm(exp-1) resolution with the McMath-Pierce Fourier transform spectrometer located at Kitt Peak. The experimental values of the temperature dependence exponents, eta, were grouped into eight subsets and fitted to empirical functions in a semi-global procedure. Overall, the values of eta were found to decrease with increasing rotational quantum number J. The number of measurements (over 2200) and transitions (586) involved exceeds by a large margin that of any other comparable reported study.

  11. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improvedmore » ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)« less

  12. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  13. Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Tarsitano, Christopher G.; Webster, Christopher R.

    2007-01-01

    Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

  14. Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.

    2016-11-01

    We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.

  15. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  16. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  17. TES radiometric assessment

    NASA Technical Reports Server (NTRS)

    Worden, H.; Sarkissian, E.; Bowman, K.; Fisher, B.; Rider, D.; Aumann, H. H.; Apolinski, M.; Debaca, R. C.; Gluck, S.; Madatyan, M.; hide

    2005-01-01

    TES is an infrared Fourier transform spectrometer on board the EOS-Aura spacecraft launched July 15, 2004. Improvements to the radiometric calibration and consequent assessment of radiometric accuracy have been on-going since launch.

  18. High resolution Fouier transform spectrometer Serial No. 091002: Instruction manual

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A description of the spectrometer and procedures for its operation, maintenance, alignments, adjustments, and control functions are presented. The interferometer spectrometer is a modified Model 296 capable of 0.5/cm resolution over the spectral region of 5 to 15 microns configured for operation with the optical head at a temperature of approximately 80 K. Details are given on the optical system and the electronic circuits. The detector used with the optical head is mercury doped germanium kept at a temperature of about 4 K by means of liquid helium. Electronic schematics, and instruction manuals for handling the liquid helium dewars, tape recorder for analog outputs, and playback console are included.

  19. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  20. Procedures for dealing with certain types of noise and systematic errors common to many Hadamard transform optical systems

    NASA Technical Reports Server (NTRS)

    Harwit, M.

    1977-01-01

    Sources of noise and error correcting procedures characteristic of Hadamard transform optical systems were investigated. Reduction of spectral noise due to noise spikes in the data, the effect of random errors, the relative performance of Fourier and Hadamard transform spectrometers operated under identical detector-noise-limited conditions, and systematic means for dealing with mask defects are among the topics discussed. The distortion in Hadamard transform optical instruments caused by moving Masks, incorrect mask alignment, missing measurements, and diffraction is analyzed and techniques for reducing or eliminating this distortion are described.

  1. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

    NASA Astrophysics Data System (ADS)

    Griffin, Debora; Walker, Kaley A.; Conway, Stephanie; Kolonjari, Felicia; Strong, Kimberly; Batchelor, Rebecca; Boone, Chris D.; Dan, Lin; Drummond, James R.; Fogal, Pierre F.; Fu, Dejian; Lindenmaier, Rodica; Manney, Gloria L.; Weaver, Dan

    2017-09-01

    This paper presents 8 years (2006-2013) of measurements obtained from Fourier transform spectrometers (FTSs) in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W). These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April). Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5). The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF), with differences well below the estimated uncertainties ( ≤ 6  %) and with high correlations (R ≥ 0. 8). Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV). The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6  % (except for C2H6 and PARIS-IR HF), which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R) of the partial column comparisons for all eight species range from approximately 0.75 to 0.95. The comparisons show no notable increases of the mean differences over these 8 years, indicating the consistency of these datasets and suggesting that the space-borne ACE-FTS measurements have been stable over this period. In addition, changes in the amounts of these trace gases during springtime between 2006 and 2013 are presented and discussed. Increased O3 (0. 9  %  yr-1), HCl (1. 7  %  yr-1), HF (3. 8  %  yr-1), CH4 (0.5  % yr-1), and C2H6 (2. 3 % yr-1, 2009-2013) have been found with the PARIS-IR dataset, the longer of the two ground-based records.

  2. Signal processing in an acousto-optical spectral colorimeter

    NASA Astrophysics Data System (ADS)

    Emeljanov, Sergey P.; Kludzin, Victor V.; Kochin, Leonid B.; Medvedev, Sergey V.; Polosin, Lev L.; Sokolov, Vladimir K.

    2002-02-01

    The algorithms of spectrometer signals processing in the acousto-optical spectral colorimeter, proposed earlier are discussed. This processing is directional on distortion elimination of an optical system spectral characteristics and photoelectric transformations, and also for calculation of tristimulus coefficients X,Y,Z in an international colorimetric system of a CIE - 31 and transformation them in coordinates of recommended CIE uniform contrast systems LUV and LAB.

  3. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  4. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  5. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  6. Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases.

    PubMed

    Shao, Limin; Griffiths, Peter R; Leytem, April B

    2010-10-01

    The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes.

  7. A hyperspectral view of Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Alarie, Alexandre; Bilodeau, Antoine; Drissen, Laurent

    2014-07-01

    We used the imaging Fourier transform spectrometer Spectromètre Imageur de l'Observatoire du Mont-Mégantic (SpIOMM) to obtain hyperspectral cubes of the young supernova remnant Cassiopeia A (Cas A). The cubes contain over 5000 spatially resolved spectra covering the spectral range 6480-7050 Å. We first investigate the slow-moving N-rich quasi-stationary flocculi by measuring their radial velocity as well as the [N II] λ6583/Hα ratio. No correlation between their radial velocity and [N II] λ6583/Hα ratio with their location has been found. We used multi-epoch observations from the Hubble Space Telescope to create a proper motion map, showing the displacement of several filaments over the most part of Cas A. Combining data from SpIOMM and Hubble, we re-evaluate the distance to Cas A and obtained 3.33 ± 0.10 kpc, which is in good agreement with previous estimates. Finally, we obtain a three-dimensional spatial view of the [S II] λλ6716, 6731 emissions showing their location, expansion velocity and the [S II] doublet line ratio for multiple locations in the remnant. The velocity asymmetry reported by previous analyses is clearly visible. Also, the [S II] doublet ratio (with a mean value of 0.5 ± 0.2) indicates a very high and variable electronic density throughout the remnant.

  8. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  9. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  10. SCAN+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing formore » automatic unattended cask scanning that may take several hours.« less

  11. DESCANT and β-delayed neutron measurements at TRIUMF

    NASA Astrophysics Data System (ADS)

    Bildstein, V.; Garrett, P. E.; Ashley, S. F.; Ball, G. C.; Bianco, L.; Bandyopadhyay, D.; Bangay, J.; Crider, B. P.; Demand, G.; Deng, G.; Dillmann, I.; Finlay, A.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Krücken, R.; Leach, K. G.; Martin, J.-P.; McEllistrem, M. T.; Pearson, C. J.; Peters, E. E.; Prados-Estévez, F. M.; Radich, A.; Sarazin, F.; Sumithrarachchi, C.; Svensson, C. E.; Vanhoy, J. R.; Wong, J.; Yates, S. W.

    2015-05-01

    The DESCANT array (Deuterated Scintillator Array for Neutron Tagging) consists of up to 70 detectors, each filled with approximately 2 liters of deuterated benzene. This scintillator material o_ers pulse-shape discrimination (PSD) capabilities to distinguish between neutrons and γ-rays interacting with the scintillator material. In addition, the anisotropic nature of n - d scattering allows for the determination of the neutron energy spectrum directly from the pulse height spectrum, complementing the traditional time-of-flight (ToF) information. DESCANT can be coupled either to the TIGRESS (TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer) γ-ray spectrometer [1] located in the ISAC-II [2] hall of TRIUMF for in-beam experiments, or to the GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei) γ-ray spectrometer [3] located in the ISAC-I hall of TRIUMF for decay spectroscopy experiments.

  12. Calibrating AIS images using the surface as a reference

    NASA Technical Reports Server (NTRS)

    Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.

    1987-01-01

    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.

  13. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. © The Author(s) 2016.

  14. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  15. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  16. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  17. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    PubMed

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  18. The Nagoya cosmic-ray muon spectrometer 3, part 3: Automatic film scanning equipment

    NASA Technical Reports Server (NTRS)

    Shibata, S.; Kamiya, Y.; Iijima, K.; Iida, S.

    1985-01-01

    In the regular operation of the Nagoya cosmic-ray muon spectrometer, about 2000 events per day will be recorded on the photographic film. To derive the track locations from such a huge number of photographs with high accuracy in a short time, an automatic film scanning device has been developed.

  19. Galactic and Extragalactic Science with SITELLE

    NASA Astrophysics Data System (ADS)

    Martin, T. B.; Drissen, L.; Melchior, A.-L.

    2017-12-01

    We present in this paper some recent results obtained with SITELLE, an imaging Fourier transform spectrometer (iFTS) attached to the Canada-France-Hawaii telescope, in link with which the latest improvements in terms of data analysis.

  20. Astigmatism correction of a non-imaging double spectrometer fitted with a 2D array detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaney, P.P.; Ernst, S.L.; Blackshire, J.

    1992-12-01

    A SPEX 1401 double spectrometer was adapted for a liquid nitrogen cooled CCD detector to permit both spectral and spatial analysis of ceramic specimens in a laser Raman microprobe system. The exit image of the spectrometer suffers from astigmatism due to off-axis spherical mirrors. A cylindrical lens was added before the CCD to correct for the astigmatism. The spectrometer and several lenses were modeled using an optical ray tracing program to characterize the astigmatism and to optimize the locations of the lens and the detector. The astigmatism and the spot pattern sizes determined by the model were in good agreementmore » with he observed performance of the modified spectrometer-detector system. Typical spot patterns fell within the 23 {mu}m square pixel size.« less

  1. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  2. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  3. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1986-01-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  4. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, S.

    1986-10-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  5. Characterization of the Atacama B-mode Search

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Raghunathan, S.; Appel, J. W.; Becker, D. T.; Campusano, L. E.; Cho, H. M.; Essinger-Hileman, T.; Ho, S. P.; Irwin, K. D.; Jarosik, N.; Kusaka, A.; Niemack, M. D.; Nixon, G. W.; Nolta, M. R.; Page, L. A.; Palma, G. A.; Parker, L. P.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.

    2014-07-01

    The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.

  6. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon.

    PubMed

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-15

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues ( 35 Cl and 37 Cl), adopts a configuration in which the argon atom is located, close to the CF 2 Cl top, between the CCF and CCCl planes (the dihedral angle ∠ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH 3 CF 2 Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4kJmol -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  8. Surveying the IR corona during the 2017 solar eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, P.; Hannigan, J. W.; Sewell, S. D.; Judge, P. G.

    2017-12-01

    The spectral emission of the infrared solar corona is the most promising direct diagnostic of the coronal magnetic field, and yet remains poorly measured. During the 2017 total solar eclipse, we will perform the first spectral survey of the IR corona using the NCAR Airborne Interferometer. This Fourier Transform Infrared Spectrometer is configured to observe the coronal spectrum from 1.5 to 5.5 microns at R 10,000 from a ground-based site. The location is atop Casper Mountain, Wyoming (42.73ºN, 106.32ºW, 2400 masl), 8 km from the center-line of totality. In this presentation, we will outline the need for such measurements, describe the instrument design and adaptation for the eclipse measurement, observation scheme, and present preliminary results. We will also discuss implications for observing infrared coronal lines from the ground, for example with the upcoming DKIST facility.

  9. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolicmore » acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.« less

  10. a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: Construction and Measurement of the Rotational Spectra of Divinyl Silane and 3,3-DIFLUOROPENTANE

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Steber, Amanda L.; Elliott, Ashley A.; Peebles, Rebecca A.; Peebles, Sean A.; Wurrey, Charles J.; Guirgis, Gamil A.

    2010-06-01

    A chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer based on the original Pate design has been constructed to allow analysis of any 480 MHz region in the 7 - 18 GHz range. A 1 μs chirped-pulse (0 - 240 MHz) from an arbitrary function generator is mixed with output from a microwave synthesizer and used to polarize a supersonic gas expansion; the resulting free induction decay is collected over 20 μs and Fourier-transformed on a 500 MHz oscilloscope to produce a rotational spectrum. A variety of molecules have now been studied with this instrument and results will be presented for numerous conformers of divinyl silane (predicted μtotal = 0.6 - 0.7 D) and the more polar 3,3-difluoropentane (predicted μtotal = 2.5 - 2.8 D). Two of the three possible conformers of divinyl silane were assigned (both having a C_1=C_2-Si-C_3 dihedral angle of -120° and a {C_2-Si-C_3=C_4} dihedral of either 0° (C_1 symmetry) or -120° (C_2 symmetry)). For 3,3-difluoropentane, three of the four possible {conformers} were identified: anti-gauche (C_1), gauche-gauche (C_2) and anti-anti (C2v). While rotational spectra for only the silicon isotopologues were observed for divinyl silane, measurement of the 13C spectra of 3,3-difluoropentane allowed heavy atom structure determinations for the anti-gauche and gauche-gauche conformers. Initial assignments of all spectra were made on the CP-FTMW {spectrometer}, and a Balle-Flygare FTMW spectrometer was used to compare frequencies of measured transitions and also to provide Stark effect data. Substitution (r_s) and inertial fit (r_0) structures will be compared with computational data and instrumental details will be presented. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, B.H. Pate, Rev. Sci. Instrum., 79, (2008), 053103.

  11. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  12. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  13. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  14. 17. ROOM 32, SHOWING THE ORIGINAL LOCATION OF THE MASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROOM 32, SHOWING THE ORIGINAL LOCATION OF THE MASS SPECTROMETER AND EXTRACTION LINES, LOOKING SOUTH. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  15. SYSTEMATIC EFFECTS IN POLARIZING FOURIER TRANSFORM SPECTROMETERS FOR COSMIC MICROWAVE BACKGROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherentmore » to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.« less

  16. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  17. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  18. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  19. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Engel, James R.; Vaillancourt, Robert; Todd, Lori; Mottus, Kathleen

    2008-04-01

    OPTRA and University of North Carolina are developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach will be considered as a candidate referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize progress to date and overall system performance projections based on the instrument, spectroscopy, and tomographic reconstruction accuracy. We then present a preliminary optical design of the I-OP-FTIR.

  20. Definition of a metrology servo-system for a solar imaging fourier transform spectrometer working in the far UV (IFTSUV)

    NASA Astrophysics Data System (ADS)

    Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.

    2017-11-01

    The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).

  1. NASA satellite helps airliners avoid ozone concentrations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.

  2. Hydrogen leak detection in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G

    1992-01-01

    This study focuses on a helium gas jet flowing into room air. Measurements of helium concentration and velocity in the jet-air mixture are reported. The objective is to learn about jet characteristics so that dynamically similar hydrogen leaks may be located in the Space Shuttle. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers to monitor the shuttle environment for leaks. The mass spectrometers are fed by long sample tubes which draw gas from the payload bay, mid body, aft engine compartment and external tank. The overall purpose of this study is to improve the HGDS especially in its potential for locating hydrogen leaks. A rapid-response leak detection experiment was designed, built, and tested, following on the work done in this program last summer. The apparatus included a Perkin Elmer MGA-1200 mass spectrometer and air velocity transducer, both monitored by a Macintosh IIFX computer using LabVIEW software. A jet of helium flowing into the lab air simulated a gas leak. Steady helium or hydrogen-nitrogen jets were logged for concentration and velocity, and the power spectral density of each was computed. Last year, large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MGA-1200 was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MGA data. No peaks were detected in the power spectrum, so in the present study, 10 Hz bandwidth-averaged power levels were examined at regular frequency intervals. The practical consequences of last year's study are as follows: sampling frequency should be increased above the present rate of 1 sample per second so that transients could be observed and analyzed with frequency response methods. Many more experiments and conditions were observed in this second summer, including the effects of orifice diameter, jet velocity, sample tube design, radial effects, vertical flow, and low hydrogen concentrations (1 percent). A frequent observation was that the power spectrum, calculated from the Fourier transform of concentration fluctuations, gives a separate piece of information from concentration. Many of the tests suggest that power is high where mixing occurs at the helium-air interface. This fact is apparently independent of the concentration level, which could be high or low, but depends on the sample location relative to the jet (leak) origin, whereas high concentration may be due to a strong leak far away or a small leak close to the sample tube. If the power is low for any concentration level, this would signify helium is arriving at the sample tube by diffusion, not chaotic mixing caused by the jet interaction with air. The practical result is to propose a modification of the HGDL mass spectrometer data sampling and software so that sampling rates could be capable of observing at least 25 Hz fluctuations.

  3. Spectroscopy of Solid State Laser Materials

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1994-01-01

    We retrieved the vertical distribution of ozone from a series 0.005-0.013/cm resolution infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-1003.2/cm spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. The characterization and error analysis of the method have been performed. It was shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (greater than or equal to 100) the retrieval is stable, with the vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and vertical profiles have been compared with total ozone mapping spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak Measurements and about 100 ozone ozonesoundings and Brewer total column measurements from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to +/- 2%. The retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone spring maximum and fall minimum measured by Palestine sondes, but up to 15% differences in the absolute values are obtained.

  4. Balloon measurements of stratospheric HCl and HF by far infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Shibasaki, Kazuo; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Traub, Wesley A.

    1994-01-01

    We have analyzed atmospheric thermal emission spectra obtained with the balloon-borne FIRS-2 far infrared Fourier transform spectrometer during balloon flights from Palestine, Texas on May 12-13, 1988 and from Fort Sumner, New Mexico on September 26-27, 1989 and on July 4-5, 1990. Seven and two pure rotational transition lines in 100-205 cm(exp -1) range are analyzed for deriving vertical profiles of stratospheric HCl and HF, respectively. We obtain both the daytime and nighttime average vertical profiles from 15 to 50 km. We compare these profiles with the ones obtained in June, 1983 with the first version of FIRS spectrometer during the Balloon Intercomparison Campaign (BIC-2). BIC-2 results were revised to be consistent with the present analysis which uses the latest spectral parameters. According to our comparison results no increase is recognized for HCl but about 3 percent per year increase for HF from 1983 to 1990, assuming a linear trend. These annual increase rates are smaller than those reported by other groups. Recently Rinsland et al. (1991) and Wallace and Livingston (1991) reported long term behavior of total HCl and HF observed on Kit Peak between 1977 and 1990. As Kit Peak is located near both balloon launching sites, Palestine and Fort Sumner, we think our results are favorably comparable with theirs. Comparison results with ours and ground-based measurements will be presented and discussed.

  5. Line parameters of methanol (CH3OH) at 10 microns

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, L.-H.; Wang, P.; Brown, L. R.; Kleiner, I.; Johns, J. W. C.

    2003-05-01

    Laboratory spectra of methanol have been measured at high resolution and analyzed to provide spectroscopic information required for astrophysics and solar system studies. Line positions and quantum assignments have been obtained using spectra recorded at 0.002 cm-1 resolution using a modified Bomem DA3,002 spectrometer. Line intensities have been retrieved using laboratory scans from the McMath-Pierce Fourier-transform spectrometer located at the National Solar Observatory. The 10 micron region methanol absorption arises mainly from the fundamental CO-stretch mode (nu8) at 1033 cm-1, along with occasional transitions perturbed in the region by several nearby interacting states of the methyl rock (nu7), methyl bends (nu5, nu10, nu4) and the OH-bending (nu6) in combination with the torsion (nu12). Overall, the nu8 CO-stretch mode follows the traditional torsion-rotational pattern. We modeled the line positions and intensities for the CO-stretch mode with the one-dimensional torsional Hamiltonian and produced a HITRAN line list for cometary studies. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. RML and LHXu wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. IK would like to thank the French Programme National de Planétologie (PNP) for funding this research.

  6. The H1 forward proton spectrometer at HERA

    NASA Astrophysics Data System (ADS)

    van Esch, P.; Kapichine, M.; Morozov, A.; Spaskov, V.; Bartel, W.; List, B.; Mahlke-Krüger, H.; Schröder, V.; Wilksen, T.; Büsser, F. W.; Geske, K.; Karschnik, O.; Niebergall, F.; Riege, H.; Schütt, J.; van Staa, R.; Wittek, C.; Dau, D.; Newton, D.; Kotelnikov, S. K.; Lebedev, A.; Rusakov, S.; Astvatsatourov, A.; Bähr, J.; Harder, U.; Hiller, K.; Hoffmann, B.; Lüdecke, H.; Nahnhauer, R.

    2000-05-01

    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in the so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 and 90 m from the interaction point.

  7. A cryogenic scan mechanism for use in Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Blumenstock, Kenneth A.

    1995-01-01

    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described.

  8. Spaceborne Hybrid-FPGA System for Processing FTIR Data

    NASA Technical Reports Server (NTRS)

    Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad

    2008-01-01

    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.

  9. Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe

    2018-06-01

    The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.

  10. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  11. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    PubMed

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  12. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  13. FTIR MONITORING OF THE VENTILATION AIR OF CRITICAL BUILDINGS

    EPA Science Inventory

    Fourier transform infrared (FTIR) spectroscopy has been used for detailed analysis of environmental and industrial process samples for many years. FTIR spectrometers have the capability of measuring multiple compounds simultaneously, thus providing an advantage over most other me...

  14. CIRS-lite: A Fourier Transform Spectrometer for a Future Mission to Titan

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Flasar, F. Michael; Jennings, Donald E.

    2009-01-01

    The CIRS FTS, aboard the NASA/ESA Cassini-Huygens mission to Saturn, has been returning exciting science since 2004. CIRS-lire, a lightweight CIRS successor, is being designed for a follow-up Titan mission.

  15. Design of a Far-Infrared Spectrometer for Atmospheric Thermal Emission Measurements

    NASA Technical Reports Server (NTRS)

    Johnson, David G.

    2004-01-01

    Global measurements of far infrared emission from the upper troposphere are required to test models of cloud radiative forcing, water vapor continuum emission, and cooling rates. Spectra with adequate resolution can also be used for retrieving atmospheric temperature and humidity profiles, and yet there are few spectrally resolved measurements of outgoing longwave flux at wavelengths longer than 16 m. It has been difficult to make measurements in the far infrared due to the need for liquid-helium cooled detectors and large optics to achieve adequate sensitivity and bandwidth. We review design considerations for infrared Fourier transform spectrometers, including the dependence of system performance on basic system parameters, and discuss the prospects for achieving useful sensitivity from a satellite platform with a lightweight spectrometer using uncooled detectors.

  16. Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, S.

    2018-04-01

    The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  17. Comparison of functional group selective ion-molecule reactions of trimethyl borate in different ion trap mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M

    2011-02-01

    We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implementedmore » to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.« less

  18. Composite Infrared Spectrometer (CIRS) on Cassini

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A.; Segura, M. E.; Romani, P. N.; Gorius, N.; Albright, S.; Brasunas, J. C.; Carlson, R. C.; hide

    2017-01-01

    The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.

  19. Development of near infrared spectrometer for gem materials study

    NASA Astrophysics Data System (ADS)

    Jindata, W.; Meesiri, W.; Wongkokua, W.

    2015-07-01

    Most of gem materials can be characterized by infrared absorption spectroscopy. Normally, mid infrared absorption technique has been applied for investigating fundamental vibrational modes. However, for some gem materials, such as tourmaline, NIR is a better choice due to differentiation. Most commercial NIR spectrometers employ complicated dispersive grating or Fourier transform techniques. In this work, we developed a filter type NIR spectrometer with the availability of high efficiency and low-cost narrow bandpass NIR interference filters to be taught in a physics laboratory. The instrument was designed for transmission-mode configuration. A 50W halogen lamp was used as NIR source. There were fourteen NIR filters mounted on a rotatory wheel for wavelength selection ranging from 1000-1650 nm with steps of 50 nm. A 1.0 mm diameter of InGaAs photodiode was used as the detector for the spectrometer. Hence, transparent gem materials can be used as samples for experiment. Student can learn vibrational absorption spectroscopy as well as Beer-Lambert law from the development of this instrument.

  20. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    PubMed

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  2. Mark of the Moessbauer

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by an instrument called the microscopic imager on the Mars Exploration Rover Spirit, reveals an imprint left by another instrument, the Moessbauer spectrometer. The imprint is at a location within the rover wheel track named 'Middle of Road.' Both instruments are located on the rover's instrument deployment device, or 'arm.'

    Not only was the Moessbauer spectrometer able to gain important mineralogical information about this site, it also aided in the placement of the microscopic imager. On hard rocks, the microscopic imager uses its tiny metal sensor to determine proper placement for best possible focus. However, on the soft martian soil this guide would sink, prohibiting proper placement of the microscopic imager. After the Moessbauer spectrometer's much larger, donut-shaped plate touches the surface, Spirit can correctly calculate where to position the microscopic imager.

    Scientists find this image particularly interesting because of the compacted nature of the soil that was underneath the Moessbauer spectrometer plate. Also of interest are the embedded, round grains and the fractured appearance of the material disturbed within the hole. The material appears to be slightly cohesive. The field of view in this image, taken on Sol 43 (February 16, 2004), measures approximately 3 centimeters (1.2 inches) across.

  3. Headspace Analysis of Volatile Compounds Using Segemented Chirped-Pulse Fourier Transform Mm-Wave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Steber, Amanda; Pate, Brooks

    2014-06-01

    A chirped-pulse Fourier transform mm-wave spectrometer has been tested in analytical chemistry applications of headspace analysis of volatile species. A solid-state mm-wave light source (260-290 GHz) provides 30-50 mW of power. This power is sufficient to achieve optimal excitation of individual transitions of molecules with dipole moments larger than about 0.1 D. The chirped-pulse spectrometer has near 100% measurement duty cycle using a high-speed digitizer (4 GS/s) with signal accumulation in an FPGA. The combination of the ability to perform optimal pulse excitation and near 100% measurement duty cycle gives a spectrometer that is fully optimized for trace detection. The performance of the instrument is tested using an EPA sample (EPA VOC Mix 6 - Supelco) that contains a set of molecules that are fast eluting on gas chromatographs and, as a result, present analysis challenges to mass spectrometry. The ability to directly analyze the VOC mixture is tested by acquiring the full bandwidth (260-290 GHz) spectrum in a "high dynamic range" measurement mode that minimizes spurious spectrometer responses. The high-resolution of molecular rotational spectroscopy makes it easy to analyze this mixture without the need for chemical separation. The sensitivity of the instrument for individual molecule detection, where a single transition is polarized by the excitation pulse, is also tested. Detection limits in water will be reported. In the case of chloromethane, the detection limit (0.1 microgram/L), matches the sensitivity reported in the EPA measurement protocol (EPA Method 524) for GC/MS.

  4. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  5. Retrieval Analysis of the CO2 1.6 μm Band in Solar Absorption Spectra Measured by a Ground-Based High-Resolution Fourier Transform Spectrometer at Tsukuba

    NASA Astrophysics Data System (ADS)

    Ohyama, H.; Morino, I.; Nagahama, T.; Suto, H.; Oguma, H.; Machida, T.; Sugimoto, N.; Nakane, H.; Nakagawa, K.

    2006-12-01

    The global measurements of greenhouse gases from space are being planned, such as GOSAT (Greenhouse gases Observing SATellite) and OCO (Orbiting Carbon Observatory). Satellite remote sensing needs validations with other measurement techniques, for example, in-situ or sampling measurement by aircraft or ground station, or remote sensing measurement by ground-based Fourier Transform Spectrometer (FTS). The ground-based FTS measurement can provide the column amounts of atmospheric composition by a retrieval analysis with relatively high precision. In 2001, we started a project to observe the atmospheric compositions in solar absorption spectra by a ground- based high-resolution FTS (Bruker IFS 120 HR) located at Tsukuba, Japan. Three years ago, optical components of the FTS were replaced for measuring greenhouse gases such as carbon dioxide (CO2) and methane (CH4) in the near-infrared region: a CaF2 beam splitter, an InSb detector, and a 1.4-2.4 μm optical filter. The measurements were carried out once a day for ~100 days per year. We also made simultaneous FTS and aircraft in-situ measurements on August 10, 2004 and March 30, 2005. The retrieval analysis was performed for the measured spectra in the CO2 1.6 μm band. We used SEASCRAPE PLUS (Sequential Evaluation Algorithm for Simultaneous and Concurrent Retrieval of Atmospheric Parameter Estimates PLUS, Remote Sensing Analysis Systems, Inc.) as a retrieval analysis program. The column amounts were compared with those derived from in-situ measurements complemented by model data; differences are less than 1%. We have derived the diurnal variations of CO2 on the same days as in-situ measurements, and they showed tendencies similar to the tower measurements at the Meteorological Research Institute in Tsukuba.

  6. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  7. Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.

    PubMed

    Rowell, N L; Wang, E A

    1996-06-01

    We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).

  8. Push-broom imaging spectrometer based on planar lightwave circuit MZI array

    NASA Astrophysics Data System (ADS)

    Yang, Minyue; Li, Mingyu; He, Jian-Jun

    2017-05-01

    We propose a large aperture static imaging spectrometer (LASIS) based on planar lightwave circuit (PLC) MZI array. The imaging spectrometer works in the push-broom mode with the spectrum performed by interferometry. While the satellite/aircraft is orbiting, the same source, seen from the satellite/aircraft, moves across the aperture and enters different MZIs, while adjacent sources enter adjacent MZIs at the same time. The on-chip spectrometer consists of 256 input mode converters, followed by 256 MZIs with linearly increasing optical path delays and a detector array. Multiple chips are stick together to form the 2D image surface and receive light from the imaging lens. Two MZI arrays are proposed, one works in wavelength ranging from 500nm to 900nm with SiON(refractive index 1.6) waveguides and another ranging from 1100nm to 1700nm with SOI platform. To meet the requirements of imaging spectrometer applications, we choose large cross-section ridge waveguide to achieve polarization insensitive, maintain single mode propagation in broad spectrum and increase production tolerance. The SiON on-chip spectrometer has a spectral resolution of 80cm-1 with a footprint of 17×15mm2 and the SOI based on-chip spectrometer has a resolution of 38cm-1 with a size of 22×19mm2. The spectral and space resolution of the imaging spectrometer can be further improved by simply adding more MZIs. The on-chip waveguide MZI array based Fourier transform imaging spectrometer can provide a highly compact solution for remote sensing on unmanned aerial vehicles or satellites with advantages of small size, light weight, no moving parts and large input aperture.

  9. The open-source neutral-mass spectrometer on Atmosphere Explorer-C, -D, and -E.

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Potter, W. E.; Hickman, D. R.; Mauersberger, K.

    1973-01-01

    The open-source mass spectrometer will be used to obtain the number densities of the neutral atmospheric gases in the mass range 1 to 48 amu at the satellite location. The ion source has been designed to allow gas particles to enter the ionizing region with the minimum practicable number of prior collisions with surfaces. This design minimizes the loss of atomic oxygen and other reactive species due to reactions with the walls of the ion source. The principal features of the open-source spectrometer and the laboratory calibration system are discussed.

  10. Airborne gamma-ray spectra processing: Extracting photopeaks.

    PubMed

    Druker, Eugene

    2018-07-01

    The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    PubMed

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  12. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    EPA Science Inventory

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  13. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  14. Scientific Results from the FIRST Instrument Deployment to Cerro Toco, Chile and from the Flight of the INFLAME Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Cageao, Richard P.; Johnson, David G.

    2011-01-01

    Results from the FIRST and INFLAME infrared Fourier Transform Spectrometers are presented. These are comprehensive measurements of the far-IR spectrum (FIRST) and the net infrared fluxes within the atmosphere (INFLAME).

  15. The Infrared Spectrum of H(sub 2)S from 1 to 5 Mm

    NASA Technical Reports Server (NTRS)

    Bykov, A. D.; Naumenko, O. V.; Smirnov, M. A.; Sinitsa, L. N.; Brown, L. R.; Crisp, J.; Crisp, D.

    1994-01-01

    The absorption spectra of H2S from 2000 to 11,147/cm have been obtained with spectral resolutions of 0.006, 0.012 and 0.021/cm using the Fourier transform spectrometer at Kitt Peak National Observatory.

  16. Using Chemistry and Color To Analyze Household Products: A 10-12-Hour Laboratory Project at the General Chemistry Level.

    ERIC Educational Resources Information Center

    Bosma, Wayne B.

    1998-01-01

    Describes a set of experiments using a UV-VIS spectrometer to identify food colorings and to measure the pH of soft drinks. The first laboratory component uses locations and shapes of visible absorption peaks as a means of identifying dyes while the second portion uses the spectrometer for determining pH. (PVD)

  17. Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking

    DTIC Science & Technology

    2010-12-01

    Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction

  18. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  19. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  20. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  1. Simple Parametric Model for Intensity Calibration of Cassini Composite Infrared Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Mamoutkine, A.; Gorius, N.

    2016-01-01

    Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans.

  2. In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose I.; Na-Nakornpanom, Arthur

    2012-01-01

    The Tropospheric Emission Spectrometer (TES) is an infrared, high spectral resolution Fourier transform spectrometer with a 3.3 to 15.4 micron wavelength coverage. TES is a scanning instrument intended for determining the chemical state of the Earth's lower atmosphere (troposphere) from the surface to 30+ km. TES produces vertical profiles of important pollutant and greenhouse gases such as carbon monoxide, ozone, methane, and water vapor on a global scale every other day. TES was launched into orbit onboard NASA's earth Observing System Aura spacecraft on July 15, 2004 from Vandenberg Air Force Base, California.

  3. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  4. Gamma-Ray Spectroscopy at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Svensson, C. E.; Ball, G. C.; Hackman, G.; Zganjar, E. F.; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Chan, S.; Coombes, H.; Churchman, R.; Chakrawarthy, R. S.; Finlay, P.; Grinyer, G. F.; Hyland, B.; Illes, E.; Jones, G. A.; Kulp, W. D.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Regan, P. H.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Walker, P. M.; Williams, S. J.; Waddington, J. C.; Watters, L. M.; Wong, J.; Wood, J. L.

    2006-03-01

    The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world's most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC.

  5. Amping it up on a small budget: Transforming inexpensive, commercial audio and video components into a useful charged particle spectrometer

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur

    Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.

  6. Outdoor chamber measurements of biological aerosols with a passive FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    D'Amico, Francis M.; Emge, Darren K.; Roelant, Geoffrey J.

    2004-02-01

    Outdoor measurements of dry bacillus subtilis (BG) spores were conducted with a passive Fourier transform infrared (FTIR) spectrometer using two types of chambers. One was a large open-ended cell, and the other was a canyon of similar dimensions. The canyon exposes the aerosol plume to downwelling sky radiance, while the open-ended cell does not. The goal of the experiments was to develop a suitable test methodology for evaluation of passive standoff detectors for open-air aerosol measurements. Dry BG aerosol particles were dispersed with a blower through an opening in the side of the chamber to create a pseudo-stationary plume, wind conditions permitting. Numerous trials were performed with the FTIR spectrometer positioned to view mountain, sky and mixed mountain-sky backgrounds. This paper will discuss the results of the FTIR measurements for BG and Kaolin dust releases.

  7. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    NASA Astrophysics Data System (ADS)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  8. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  9. Atmospheric limb sounding with imaging FTS

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Riese, Martin; Preusse, Peter; Oelhaf, Hermann; Fischer, Herbert

    Imaging Fourier transform spectrometers in the thermal infrared are a promising new class of sensors for atmospheric science. The availability of fast and sensitive large focal plane arrays with appropriate spectral coverage in the infrared region allows the conception and construction of innovative sensors for Nadir and Limb geometry. Instruments in Nadir geometry have already reached prototype status (e.g. Geostationary Imaging Fourier Transform Spectrometer / U. Wisconsin and NASA) or are in Phase A study (infrared sounding mission on Meteosat third generation / ESA and EUMETSAT). The first application of the new technical possibilities to atmospheric limb sounding from space, the Imaging Michelson Interferometer for Passive Atmospheric Sounding (IMIPAS), is currently studied by industry in the context of preparatory work for the next set of ESA earth explorers. The scientific focus of the instrument is on the processes controlling the composition of the mid/upper troposphere and lower stratosphere. The instrument concept of IMIPAS has been conceived at the research centres Karlsruhe and J¨lich. The development of a precursor instrument (GLORIA-AB) at these research institutions u started already in 2005. The instrument will be able to fly on board of various airborne platforms. First scientific missions are planned for the second half of the year 2009 on board the new German research aircraft HALO. This airborne sensor serves its own scientific purpose, but it also provides a test bed to learn about this new instrument class and its peculiarities and to learn to exploit and interpret the wealth of information provided by a limb imaging IR Fourier transform spectrometer. The presentation will discuss design considerations and challenges for GLORIA-AB and put them in the context of the planned satellite application. It will describe the solutions found, present first laboratory figures of merit for the prototype instrument and outline the new scientific possibilities.

  10. A Wide Field of View Plasma Spectrometer

    DOE PAGES

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...

    2016-07-01

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  11. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  12. Fourier-transform optical microsystems

    NASA Technical Reports Server (NTRS)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  13. A compact LWIR hyperspectral system employing a microbolometer array and a variable gap Fabry-Perot interferometer employed as a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Hinrichs, John L.; Akagi, Jason

    2012-06-01

    A prototype long wave infrared Fourier transform spectral imaging system using a wedged Fabry-Perot interferometer and a microbolometer array was designed and built. The instrument can be used at both short (cm) and long standoff ranges (infinity focus). Signal to noise ratios are in the several hundred range for 30 C targets. The sensor is compact, fitting in a volume about 12 x12 x 4 inches.

  14. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  15. PROGRAM ASPECT - FOR REMOTE SENSING OF AIRBORNE PLUMES

    EPA Science Inventory

    The SAFEGUARD program is a multi-sensor program for the detection and imaging of chemical plumes and vapors. The system is composed of an airborne sensor suite including an infrared line scanner and a high-speed fourier transform infrared spectrometer. Both systems are integrat...

  16. Fourier transform spectrometer for spectral emissivity measurement in the temperature range between 60 and 1500°C

    NASA Astrophysics Data System (ADS)

    Dai, Jingmin; Wang, Xinbei; Yuan, Guibin

    2005-01-01

    A new spectral emissivity measurement system has been developed at Harbin Institute of Technology (HIT) by using a Fourier transform infrared (FTIR) spectrometer. The spectral range between 0.6 and 25 µm was covered by a photovoltaic HgCdTe and a silicon photodiode detector. A SiC heater with a black hole was employed for heating the sample. The temperature of the sample can be controlled in a range between 60 and 1500°C with an error of less than 1°C. The system was calibrated against two high quality reference blackbodies: a low temperature heat-pipe blackbody operated in the temperature range between 60°C and 300°C and a high temperature blackbody with SiC heater operated in the temperature range between 300°C and 1500°C. Several tests were done for this new system. The estimated uncertainty of emissivity measurement is better than 3%.

  17. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  18. LIFT a future atmospheric chemistry sensor

    NASA Astrophysics Data System (ADS)

    Pailharey, E.; Châteauneuf, F.; Aminou, D.

    2017-11-01

    Natural and anthropogenic trace constituents play an important role for the ozone budget and climate as well as in other problems of the environment. In order to prevent the dramatic impact of any climate change, exchange processes between the stratosphere and troposphere as well as the distribution and deposition of tropospheric trace constituents are investigated. The Limb Infrared Fourier Transform spectrometer (LIFT) will globally provide calibrated spectra of the atmosphere as a function of the tangent altitude. LIFT field of view will be 30 km × 30 km. The resolution is 30 km in azimuth corresponding to the full field of view, and 2 km in elevation, obtained by using a matrix of 15×15 detectors. The instrument will cover the spectral domain 5.7-14.7 μm through 2 different bands respectively 13.0-9.5 μm, 9.5-5.7 μm. With a spectral resolution of 0.1 cm-1, LIFT is a high class Fourier Transform Spectrometer compliant with the challenging constraints of limb viewing and spaceborne implementation.

  19. Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.

    2002-01-01

    This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).

  20. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  1. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  2. Miniaturised Space Payloads for Outdoor Environmental Applications

    NASA Astrophysics Data System (ADS)

    de Souza, P. A.

    2012-12-01

    The need for portable, robust and acurate sensors has increased in recent years resulting from industrial and environmental needs. This paper describes a number of applications of engineering copies of those Moessbauer spectrometers (MIMOS II) used by Mars Exploration Rovers, and the use of portable XRF spectrometers in the analysis of heavy metals in sediments. MIMOS II has been applied in the characterisation of Fe-bearing phases in airborne particles in industrialised urban centres, The results have allowed an identification of sources or air pollution in near-real-time. The results help to combine production parameters with pollution impact in the urban area. MIMOS II became a powerful tool because its constructive requirements to flight has produced a robust, power efficient, miniaturised, and light. On the limitation side, the technique takes sometime to produce a good result and the instrument requires a radioactive source to operate. MIMOS II Team has reported a new generation of this instrument incorporating a XRF spectrometer using the radioactive source to generate fluorescence emissions from sample. The author, and its research group, adapted a portable XRF spectrometer to an autonomous underwater vehicle (AUV) and conducted heavy metals survey in sediments across the Derwent Estuary in Tasmania, Australia. The AUV lands on suitable locations underwater, makes the chemical analysis and decide based on the result to move to a closer location, should high concentration of chemicals of interest be found, or to another distant location otherwise. Beyond environmental applications, these instruments were applied in archaeology and in industrial process control.oessbauer spectra recorded on airborne particles (Total Suspended Particles) collected at Ilha do Boi, VItoria, ES, Brazil. SIRO's Autonomous Underwater Vehicle carring a miniaturised XRF spectrometer for underwater chemistry. Students involved in this Project: Mr Jeremy Breen and Mr Andrew Davie. Collaborators: Dr. Greg Timms (CSIRO) and Dr. Robert Ollington (UTAS). This AUV us 1.2m long.

  3. Aerobic activated sludge transformation of vincristine and identification of the transformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; Heath, Ester; López de Alda, Miren; Barceló, Damià

    2018-01-01

    This study aims to identify (bio)transformation products of vincristine, a plant alkaloid chemotherapy drug. A batch biotransformation experiment was set-up using activated sludge at two concentration levels with and without the addition of a carbon source. Sample analysis was performed on an ultra-high performance liquid chromatograph coupled to a high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometer. To identify molecular ions of vincristine transformation products and to propose molecular and chemical structures, we performed data-dependent acquisition experiments combining full-scan mass spectrometry data with product ion spectra. In addition, the use of non-commercial detection and prediction algorithms such as MZmine 2 and EAWAG-BBD Pathway Prediction System, was proven to be proficient for screening for transformation products in complex wastewater matrix total ion chromatograms. In this study eleven vincristine transformation products were detected, nine of which were tentatively identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Miniaturized spectrometer for stand-off chemical detection

    NASA Astrophysics Data System (ADS)

    Henning, Patrick F.; Chadha, Suneet; Damren, Richard; Rowe, Rebecca C.; Stevenson, Chuck; Curtiss, Lawrence E.; DiGiuseppe, Thomas G.

    2002-02-01

    Advanced autonomous detection of both chemical warfare agents and toxic industrial chemicals has long been of major military concern and is becoming an increasingly realistic need. Foster-Miller has successfully designed and demonstrated a high spectral throughput monolithic wedge spectrometer capable of providing early, stand-off detection of chemical threats. Recent breakthrough innovations in IR source technologies, high D* multispectral array detectors, and IR waveguide materials has allowed for the development of a robust, miniature, monolithic infrared spectrometer. Foster-Miller recently demonstrated a high resolution spectrometer operating in the 8 to 12 micron region for chemical agent detection. Results will be presented demonstrating the feasibility of adapting the wedge spectrometer to operate as an upward looking ground sensor for stand-off chemical detection. Our miniaturized spectrometer forms the basis for deploying low cost, lightweight sensors which may be used for reconnaissance missions or delivered to remote locations for unattended operation. The ability of perform passive stand-off infrared chemical agent and chemical emissions detection with a low cost, compact device that can operate autonomously in remote environments has broad applications in both the military and commercial marketplace.

  5. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  6. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE PAGES

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; ...

    2016-11-10

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  7. Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis vinifera L.) and Calibration Transfer.

    PubMed

    Xiao, Hui; Sun, Ke; Sun, Ye; Wei, Kangli; Tu, Kang; Pan, Leiqing

    2017-11-22

    Near-infrared (NIR) spectroscopy was applied for the determination of total soluble solid contents (SSC) of single Ruby Seedless grape berries using both benchtop Fourier transform (VECTOR 22/N) and portable grating scanning (SupNIR-1500) spectrometers in this study. The results showed that the best SSC prediction was obtained by VECTOR 22/N in the range of 12,000 to 4000 cm -1 (833-2500 nm) for Ruby Seedless with determination coefficient of prediction (R p ²) of 0.918, root mean squares error of prediction (RMSEP) of 0.758% based on least squares support vector machine (LS-SVM). Calibration transfer was conducted on the same spectral range of two instruments (1000-1800 nm) based on the LS-SVM model. By conducting Kennard-Stone (KS) to divide sample sets, selecting the optimal number of standardization samples and applying Passing-Bablok regression to choose the optimal instrument as the master instrument, a modified calibration transfer method between two spectrometers was developed. When 45 samples were selected for the standardization set, the linear interpolation-piecewise direct standardization (linear interpolation-PDS) performed well for calibration transfer with R p ² of 0.857 and RMSEP of 1.099% in the spectral region of 1000-1800 nm. And it was proved that re-calculating the standardization samples into master model could improve the performance of calibration transfer in this study. This work indicated that NIR could be used as a rapid and non-destructive method for SSC prediction, and provided a feasibility to solve the transfer difficulty between totally different NIR spectrometers.

  8. Metrology for terahertz time-domain spectrometers

    NASA Astrophysics Data System (ADS)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  9. The new double energy-velocity spectrometer VERDI

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan

    2017-09-01

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.

  10. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  11. Interface for liquid chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  12. Interface for liquid chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  13. First characterization of a static Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lacan, A.; Bréon, F.-M.; Rosak, A.; Pierangelo, C.

    2017-11-01

    A new instrument concept for a Static Fourier Transform Spectrometer has been developed and characterized by CNES. This spectrometer is based on a Michelson interferometer concept, but a system of stepped mirrors generates all interference path differences simultaneously, without any moving parts. The instrument permits high spectral resolution measurements (≍0.1 cm-1) adapted to the sounding and the monitoring of atmospheric gases. Moreover, its overall dimensions are compatible with a micro satellite platform. The stepped mirrors are glued using a molecular bonding technique. An interference filter selects a waveband only a few nanometers wide. It limits the number of sampling points (and consequently the steps number) necessary to achieve the high resolution. The instrument concept can be optimized for the detection and the monitoring of various atmospheric constituents. CNES has developed a version whose measurements are centered on the CO2 absorption lines at 1573 nm (6357 cm-1). This model has a theoretical resolution of 40 pm (0.15 cm-1) within a 5 nm (22.5 cm-1) wide spectral window. It is aimed at the feasibility demonstration for atmospheric CO2 column measurements with a very demanding accuracy of better than 1%. Preliminary measurements indicate that, although high quality spectra are obtained, the theoretical performances are not yet achieved. We discuss the causes for the achieved performances and describe foreseen methods for their improvements.

  14. Correcting the extended-source calibration for the Herschel-SPIRE Fourier-transform spectrometer

    NASA Astrophysics Data System (ADS)

    Valtchanov, I.; Hopwood, R.; Bendo, G.; Benson, C.; Conversi, L.; Fulton, T.; Griffin, M. J.; Joubaud, T.; Lim, T.; Lu, N.; Marchili, N.; Makiwa, G.; Meyer, R. A.; Naylor, D. A.; North, C.; Papageorgiou, A.; Pearson, C.; Polehampton, E. T.; Scott, J.; Schulz, B.; Spencer, L. D.; van der Wiel, M. H. D.; Wu, R.

    2018-03-01

    We describe an update to the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier-transform spectrometer (FTS) calibration for extended sources, which incorporates a correction for the frequency-dependent far-field feedhorn efficiency, ηff. This significant correction affects all FTS extended-source calibrated spectra in sparse or mapping mode, regardless of the spectral resolution. Line fluxes and continuum levels are underestimated by factors of 1.3-2 in thespectrometer long wavelength band (447-1018 GHz; 671-294 μm) and 1.4-1.5 in the spectrometer short wavelength band (944-1568 GHz; 318-191 μm). The correction was implemented in the FTS pipeline version 14.1 and has also been described in the SPIRE Handbook since 2017 February. Studies based on extended-source calibrated spectra produced prior to this pipeline version should be critically reconsidered using the current products available in the Herschel Science Archive. Once the extended-source calibrated spectra are corrected for ηff, the synthetic photometry and the broad-band intensities from SPIRE photometer maps agree within 2-4 per cent - similar levels to the comparison of point-source calibrated spectra and photometry from point-source calibrated maps. The two calibration schemes for the FTS are now self-consistent: the conversion between the corrected extended-source and point-source calibrated spectra can be achieved with the beam solid angle and a gain correction that accounts for the diffraction loss.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  16. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  17. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  18. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Chen, Zhou; Tong, Qiu-Nan; Zhang, Cong-Cong; Hu, Zhan

    2015-04-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11374124).

  19. Upgrade of the compact neutron spectrometer for high flux environments

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  20. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  1. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  2. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI.

    PubMed

    Gulkis, S

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  3. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, Samuel

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  4. Variables that Impact on the Results of Breath-Alcohol Tests

    ERIC Educational Resources Information Center

    Labianca, Dominick A.

    2004-01-01

    In a 2003 issue of the "Journal of Chemical Education," Kniesel and Bellamy describe a timely and pedagogically effective experiment involving breath-alcohol analysis using an FTIR (Fourier Transform Infrared Spectroscopy) spectrometer. The present article clarifies some of the information presented in the 2003 article.

  5. Bringing NMR and IR Spectroscopy to High Schools

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.

    2017-01-01

    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  6. Field test method to determine presence and quantity of modifiers in liquid asphalt - follow-up data analysis.

    DOT National Transportation Integrated Search

    2015-08-01

    In an earlier study under the contract grant number BDV25-977-06, two portable Fourier transform infrared spectrometer : (FTIR) were evaluated for their ability to quickly detect and/or quantify the presence of polymer modifiers, including styrene : ...

  7. VizieR Online Data Catalog: IR absorbance spectra of CH4, C2H6, C3H8 & C4H10 (Turner+, 2018)

    NASA Astrophysics Data System (ADS)

    Turner, A. M.; Abplanalp, M. J.; Blair, T. J.; Dayuha, R.; Kaiser, R. I.

    2018-03-01

    In situ infrared data were collected by a Nicolet 6700 Fourier Transform Infrared Spectrometer at 4cm-1 resolution throughout the irradiation and temperature programmed desorption (TPD). (2 data files).

  8. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.

    PubMed

    Rummel, Julia L; Steill, Jeffrey D; Oomens, Jos; Contreras, Cesar S; Pearson, Wright L; Szczepanski, Jan; Powell, David H; Eyler, John R

    2011-06-01

    Infrared multiple photon dissociation (IRMPD) was used to generate vibrational spectra of ions produced with a direct analysis in real time (DART) ionization source coupled to a 4.7 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The location of protonation on the nerve agent simulants diisopropyl methylphosphonate (DIMP) and dimethyl methylphosphonate (DMMP) was studied while solutions of the compounds were introduced for extended periods of time with a syringe pump. Theoretical vibrational spectra were generated with density functional theory calculations. Visual comparison of experimental mid-IR IRMPD spectra and theoretical spectra could not establish definitively if a single structure or a mixture of conformations was present for the protonated parent of each compound. However, theoretical calculations, near-ir IRMPD spectra, and frequency-to-frequency and statistical comparisons indicated that the protonation site for both DIMP and DMMP was predominantly, if not exclusively, the phosphonyl oxygen instead of one of the oxygen atoms with only single bonds.

  9. Evolution of Microwave Spectroscopy at the National Bureau of Standards (NBS) and the National Institute of Standards and Technology (NIST)

    PubMed Central

    Lovas, F. J.; Lide, D. R.; Suenram, R. D.; Johnson, D. R.

    2012-01-01

    This paper describes the beginning and evolution of microwave rotational spectroscopic research starting in 1954 at the National Bureau of Standards (NBS), located at that time in Washington, DC, through the present at NIST in Gaithersburg, MD. David Lide was hired in 1954 to start this research employing Stark modulated waveguide septum cells. When Donald R. Johnson joined the lab in 1968, he developed parallel plate cells coupled with rf and DC discharge methods to study free radicals and transient species. In the mid 1980s Lovas and Suenram constructed a pulsed molecular beam Fourier Transform microwave (FTMW) spectrometer to study hydrogen bonded and van der Waals dimers and trimers. This article describes the types of molecules studied and the type molecular properties derived from these measurements as well as some of the instruments developed for these studies. The two major areas of application described are atmospheric chemistry and molecular radio astronomy. PMID:26900528

  10. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  11. Evolution of Microwave Spectroscopy at the National Bureau of Standards (NBS) and the National Institute of Standards and Technology (NIST).

    PubMed

    Lovas, F J; Lide, D R; Suenram, R D; Johnson, D R

    2012-01-01

    This paper describes the beginning and evolution of microwave rotational spectroscopic research starting in 1954 at the National Bureau of Standards (NBS), located at that time in Washington, DC, through the present at NIST in Gaithersburg, MD. David Lide was hired in 1954 to start this research employing Stark modulated waveguide septum cells. When Donald R. Johnson joined the lab in 1968, he developed parallel plate cells coupled with rf and DC discharge methods to study free radicals and transient species. In the mid 1980s Lovas and Suenram constructed a pulsed molecular beam Fourier Transform microwave (FTMW) spectrometer to study hydrogen bonded and van der Waals dimers and trimers. This article describes the types of molecules studied and the type molecular properties derived from these measurements as well as some of the instruments developed for these studies. The two major areas of application described are atmospheric chemistry and molecular radio astronomy.

  12. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  13. Customized altitude-azimuth mount for a raster-scanning Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Durrenberger, Jed E.; Gutman, William M.; Gammill, Troy D.; Grover, Dennis H.

    1996-10-01

    Applications of the Army Research Laboratory Mobile Atmospheric Spectrometer Remote Sensing Rover required development of a customized computer-controlled mount to satisfy a variety of requirements within a limited budget. The payload was designed to operate atop a military electronics shelter mounted on a 4-wheel drive truck to be above most atmospheric ground turbulence. Pointing orientation in altitude is limited by constraints imposed by use of a liquid nitrogen detector Dewar in the spectrometer. Stepper motor drives and control system are compatible with existing custom software used with other instrumentation for controlled incremental raster stepping. The altitude axis passes close to the center of gravity of the complete payload to minimize load eccentricity and drive torque requirements. Dovetail fixture mounting enables quick service and fine adjustment of balance to minimize stepper/gearbox drive backlash through the limited orientation range in altitude. Initial applications to characterization of remote gas plumes have been successful.

  14. Bi-dimensional empirical mode decomposition based fringe-like pattern suppression in polarization interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Ren, Wenyi; Cao, Qizhi; Wu, Dan; Jiang, Jiangang; Yang, Guoan; Xie, Yingge; Wang, Guodong; Zhang, Sheqi

    2018-01-01

    Many observers using interference imaging spectrometer were plagued by the fringe-like pattern(FP) that occurs for optical wavelengths in red and near-infrared region. It brings us more difficulties in the data processing such as the spectrum calibration, information retrieval, and so on. An adaptive method based on the bi-dimensional empirical mode decomposition was developed to suppress the nonlinear FP in polarization interference imaging spectrometer. The FP and corrected interferogram were separated effectively. Meanwhile, the stripes introduced by CCD mosaic was suppressed. The nonlinear interferogram background removal and the spectrum distortion correction were implemented as well. It provides us an alternative method to adaptively suppress the nonlinear FP without prior experimental data and knowledge. This approach potentially is a powerful tool in the fields of Fourier transform spectroscopy, holographic imaging, optical measurement based on moire fringe, etc.

  15. A Sagnac Fourier spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2017-03-09

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  16. A Sagnac Fourier spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzner, Matthias; Diels, Jean -Claude

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  17. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Johnson, N. J. E.

    1980-01-01

    Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.

  19. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGES

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  20. Superpixel Based Factor Analysis and Target Transformation Method for Martian Minerals Detection

    NASA Astrophysics Data System (ADS)

    Wu, X.; Zhang, X.; Lin, H.

    2018-04-01

    The Factor analysis and target transformation (FATT) is an effective method to test for the presence of particular mineral on Martian surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES) and near-infrared (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM) hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC) algorithm was used to partition the CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our experimental results indicate that the proposed method work well both in simulated and real data sets.

  1. SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Bernier, A.-P.; Rousseau-Nepton, L.; Alarie, A.; Robert, C.; Joncas, G.; Thibault, S.; Grandmont, F.

    2010-07-01

    We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  2. The optical design of a far infrared imaging FTS for SPICA

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao

    2014-08-01

    This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

  3. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  4. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  5. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  6. Spatial Heterodyne Spectroscopy for Long-Wave Infrared: First Measurements of Broadband Spectra

    DTIC Science & Technology

    2009-10-01

    are grating spectrometers,1 imaging and nonim- ging Fourier transform spectrometers FTS,2–6 Fabry- erot interferometers,7 and prism spectrographs.8...Same as Report (SAR) 18 . NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 b s p i r b n p s t c 2 c t w l S v s a 2 T p t m t s t f o s a 2 T l t o o l F

  7. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  8. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    NASA Astrophysics Data System (ADS)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather Prediction Center (SWPC) NOAA. Thereafter, Callisto spectrometer at Sumedang also observed several solar radio bursts in various types. This paper describes the system configuration of Callisto spectrometer installed at Sumedang, RFI measurement and chosen observation strategy, real time data transfer and processing, as well as several samples of present results of solar radio burst monitoring at Sumedang, and future development plan of Callisto spectrometer in Indonesia which will be able to cover 14 hours of day solar observation. Keywords: Callisto spectrometer, solar radio observation, SWIFtS.

  9. Core Facility of the Juelich Observatory for Cloud Evolution (JOYCE - CF)

    NASA Astrophysics Data System (ADS)

    Beer, J.; Troemel, S.

    2017-12-01

    A multiple and holistic multi-sensor monitoring of clouds and precipitation processes is a challenging but promising task in the meteorological community. Instrument synergies offer detailed views in microphysical and dynamical developments of clouds. Since 2017 The the Juelich Observatory for Cloud Evolution (JOYCE) is transformed into a Core Facility (JOYCE - CF). JOYCE - CF offers multiple long-term remote sensing observations of the atmosphere, develops an easy access to all observations and invites scientists word wide to exploit the existing data base for their research but also to complement JOYCE-CF with additional long-term or campaign instrumentation. The major instrumentation contains a twin set of two polarimetric X-band radars, a microwave profiler, two cloud radars, an infrared spectrometer, a Doppler lidar and two ceilometers. JOYCE - CF offers easy and open access to database and high quality calibrated observations of all instruments. E.g. the two polarimetric X-band radars which are located in 50 km distance are calibrated using the self-consistency method, frequently repeated vertical pointing measurements as well as instrument synergy with co-located micro-rain radar and distrometer measurements. The presentation gives insights into calibration procedures, the standardized operation procedures and recent synergistic research exploiting our radars operating at three different frequencies.

  10. International Space Station Columbus Payload SoLACES Degradation Assessment

    NASA Technical Reports Server (NTRS)

    Harman, William; Schmidl, William; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian

    2014-01-01

    SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 100 um). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers). The SolACES payload includes a set of 4 spectrometers that measure the solar EUV flux from 17 nm to 220 nm. One of these 4 spectrometers failed early on (before deployment). EUV data is important in understanding the solar dynamo. Also, EUV flux is the source of most of the ionization that produces the ionosphere plasma. Plasma production is important in understanding the ionosphere environment. The ionosphere conditions affect many subjects including spacecraft charging, dynamo processes, instabilities, and communications. The 3 remaining spectrometers have collected valuable data during the historically low solar cycle 24. Some of this data will be presented. A significant trend in degradation of the remaining SolACES spectrometers was observed towards the end of CY2010 (GMT 310) through mid CY 2011 (GMT 132). The Principle Investigators of SolACES initiated a Mission Evaluation Room (MER) Chit to request an investigation of the degradation in CY 2011 (GMT 230). The Boeing Space Environments team was asked to respond to the ESA initiated MER Chit request to investigate the cause of the degradation. This paper will discuss the findings of that investigation.

  11. Laboratory and Field Spectroscopy of Moon analogue material

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard H.

    2016-07-01

    Samples derived from terrestrial analogue sites are studied to gain insight into lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during our latest field campaigns in November 2015 and February 2016 (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. We also use a documented set of Moon-Mars relevant minerals curated at VU Amsterdam. We are using systematically for all samples UV-VIS and NIR reflectance spectrometers, and sporadically a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer and a Raman laser spectrometer on control samples. Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. The Raman, UV-VIS and NIR are also used in combination with the ExoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011) also brought again to Eifel in February 2016, to prove the applicability of the equipment in the field. Acknowledgements: we thank Dominic Doyle for ESTEC optical lab support, Euan Monaghan (Leiden U) for FTIR measurement support, Wim van Westrenen for access to VU samples, Oscar Kamps (Utrecht U./ESTEC), Aidan Cowley (EAC) and Matthias Sperl (DLR) for support discussions

  12. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  13. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  14. Status of astigmatism-corrected Czerny-Turner spectrometers

    NASA Astrophysics Data System (ADS)

    Li, Xinhang; Dong, Keyan; An, Yan; Wang, Zhenye

    2016-10-01

    In order to analysis and design the Czerny-Turner structure spectrometer with the high resolution and high energy reception, various astigmatism methods of the Czerny-Turner structure are reported. According to the location of plane grating, the astigmatism correction methods are divided into two categories, one is the plane grating in divergent illumination, another is the plane grating in parallel illumination. Basing on the different methods, the anastigmatic principle and methods are analyzed, the merits and demerits of the above methods are summarized and evaluated. The theoretical foundation for design of broadband eliminating astigmatism Czerny-Turner spectrometer and the reference value for the further design work are laid by the summary and analyzing in this paper.

  15. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  16. Extending Raman's reach: enabling applications via greater sensitivity and speed

    NASA Astrophysics Data System (ADS)

    Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely

    2018-02-01

    Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.

  17. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  18. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  19. A Fully Redundant On-Line Mass Spectrometer System Used to Monitor Cryogenic Fuel Leaks on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, T. P.; Naylor, G. R.; Haskell, W. D.; Breznik, G. S.; Mizell, C. A.; Steinrock, Todd (Technical Monitor)

    2001-01-01

    This paper presents an on-line mass spectrometer designed to monitor for cryogenic leaks on the Space Shuttle. The topics include: 1) Hazardous Gas Detection Lab; 2) LASRE Test Support; 3) Background; 4) Location of Systems; 5) Sample Lines for Gas Detection; 6) Problems with Current Systems; 7) Requirements for New System (Nitrogen and Helium Background); and 8) HGDS 2000. This paper is in viewgraph form.

  20. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments Database

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  1. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  2. Transformation and birth processes of the transient luminous phenomena's in the low atmosphere of the Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Strand, Erling

    2013-04-01

    Transient louminous phenomenas has been observed in and over the Hessdalen valley for over 100 years. These phenomena's has been nicknamed "Hessdalen phenomenas", HP, and has been under permanent scientific investigation since 1998, when Norwegian, Italian and later French researchers installed different types of monitoring equipment in the valley. The earth's magnetic field, electromagnetic radiation in different bands, radioactive radiation, electrical resistance in the ground, ultrasound, and seismic activity are some of the signals/parameters that has been monitored. The valley has also been surveillanced by radar, optical spectrometers and automatic video recording devices. So far no electromagnetic radiation, except in the optical band, has been detected that can be coupled to the HP. The phenomenon is characterized by its horizontal movement, intense optical radiation when a transformation process occurs, different colours where white/yellow dominates, no sound, high speed, unpredictable flight patterns, seen by radar while optical invisible and often observed with continuous optical spectrum. The phenomena have been seen touching ground, without leaving burning marks and flying in higher altitudes over the valley apparently ignoring wind/weather conditions. The Hessdalen valley is located in the middle of Norway and is famous for its mines with iron, zinc and copper ore. Big deposits of ore still reside inside the valley, and the mountains are penetrated by several mineshafts, some has depth down to 1000m. No exact birthplace has been located and the phenomenon seems to emerge "out of thin air" anywhere in the valley. Any activity coupled to mineshafts has not been observed. In September 2006 a birth and transformation process was observed and several optical spectrums was obtained. The phenomena appear as a big white light possibly not more than some hundred meters above the ground in a desolated area. The phenomenon starts a transformation process dividing itself into two light balls where the light-intensity increases and showing a continuous optical spectrum. Later on the light intensity decreases and the continuous optical spectrum is broken up and emission lines appearing, as if the phenomenon goes from a plasma to a gas state. The process ends up when two round light balls are formed, with low optical intensity and red colour, showing sign of a thermal process loosing energy. This observation is to be documented and analyzed.

  3. Spectral analysis of lunar analogue samples

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard

    2016-04-01

    Analyses of samples derived from terrestrial analogue sites are used to study lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during field campaigns (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. Equipment used in the laboratory consists of a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer, a Raman laser spectrometer, as well as UV-VIS and NIR reflectance spectrometers. The Raman, UV-VIS and NIR are also used in combination with the EXoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011). Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Calibration of the devices by creating a new dark and reference spectra has to take place after every sample measurement. In this way we take into account changes that occur in the signal due to the eating of the devices during the measurements. Moreover, the integration time is adjusted to obtain a clear signal without leading to oversaturation in the reflectance spectrum. The typical integration times for the UV-VIS reflectance spectrometer vary between 1 - 18 s, depending on the amount of daylight during experiments. For the NIR reflectance spectrometer the integration time resulting in the best signals is approximately 150 ms in combination with a broad spectrum light source. Together with taking an average over ±600 measurements per sample this leads to the best spectral signals that can be acquired with this set-up. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. Future campaigns involving the employment of the spectrometers on the ExoGeoLab lander would prove the applicability of the equipment in the field.

  4. Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F

    NASA Astrophysics Data System (ADS)

    Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao

    2004-10-01

    We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.

  5. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen J.; Kaiser, Ralf I.

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm-1), and Fourier transform infrared (FTIR) (10 000-500 cm-1) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory.

  6. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (HyTES), retrievals which interrogate spectral features in the 7.5 to 8.5 μm region. Here we discuss preliminary results from the JPL activities during the RMOTC controlled release experiment, including capabilities of airborne sensors for total columnar atmospheric methane detection and comparison to results from ground measurements and dispersion models. Potential application areas for these remote sensing technologies include assessment of anthropogenic and natural methane sources over wide spatial scales that represent significant unconstrained factors to the global methane budget.

  7. VALIDATION OF A METHOD FOR ESTIMATING POLLUTION EMISSION RATES FROM AREA SOURCES USING OPEN-PATH FTIR SEPCTROSCOPY AND DISPERSION MODELING TECHNIQUES

    EPA Science Inventory

    The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...

  8. Infrared spectral properties of germ, pericarp, and endosperm sections of sound wheat kernels and those damaged by Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Mid-infrared attenuated total reflectance (MIR-ATR) spectra (4000-380 cm-1) of pericarp, germ, and endosperm sections from sound and Fusarium-damaged wheat kernels of cultivars Everest and Tomahawk were collected using a Fourier Transform Infrared (FTIR) spectrometer. The differences in infrared abs...

  9. Fourier transform spectrometer observations of solar carbon monoxide. III - Time-resolved spectroscopy of the Delta V = 1 bands

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brault, James W.

    1990-11-01

    Time series of the 2100/cm Delta v = 1 absorption bands of CO at the center of the solar disk and at the extreme limb have been recorded by Fourier transform spectrometer. The photospheric 5-min oscillation appears prominently at sun center. The peak-to-peak brightness temperature amplitude is roughly 300 K, and the peak-to-peak Doppler shift is roughly 1100 m/s. The 70 deg phase lag of maximum core intensity with respect to maximum redshift for the strongest Delta v = 1 absorptions is less than the 90 deg expected in the adiabatic limit. No dominant four-minute signal in the line intensity like that reported by Deming et al. (1984, 1986, and 1987) is found, nor is evidence for extreme fluctuations on short time scales like those proposed by Kalkofen et al. (1984). The strong Delta v = 1 lines exhibit systematic Doppler shifts of less than about 1 km/s, contrary to the predictions of transonic redshifts if the CO 'clouds' are associated with a dynamic cooling phase of the Ca II 'cell flashes.'

  10. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Microwave spectroscopy and curious molecular dynamics of ethyl trifluoroacetate

    NASA Astrophysics Data System (ADS)

    Bohn, Robert K.; Montgomery, John A.; Harvey Michels, H.; Acharte, Christian

    2017-05-01

    The first ethyl ester whose structure was determined by microwave spectroscopy is ethyl formate. It exists in two conformations. In the 1970s, that study was used as a model to determine the structures of other ethyl esters, ethyl cyanoformate, chloroformate, and trifluoroacetate. They display the same conformations as ethyl formate. But under the experimental conditions used, Stark modulation with a maximum electric field, static low pressure gas, rapid sweeping, and long detector time constants, each of those esters displays bands of an additional third species. A careful, high resolution study of ethyl cyanoformate only observed two conformers. A model has been proposed that the third species derives from a dense array of torsionally excited states with broadened transitions due to short lifetimes. The present study of ethyl trifluoroacetate in a pulsed jet Fourier Transform spectrometer is intended to clarify the earlier results. Two conformers are observed including all their monosubstituted 13C and 18O isotopologs. In a pulsed jet Fourier Transform spectrometer using argon as the carrier gas, only one conformer is observed. Switching to helium as the carrier gas, another, higher energy conformer is also observed.

  12. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  13. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

    NASA Astrophysics Data System (ADS)

    Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami

    1996-07-01

    A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.

  14. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    PubMed

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  16. Detection of explosives in soils

    DOEpatents

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  17. Laboratory spectroscopy of Mars Analogue materials and latest field results from Iceland and Eifel

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard H.

    2016-07-01

    We have established a collection of samples, and measured them in the laboratory towards a spectrometric database that could be used as a reference for future orbital or in situ measurements. We are using systematically for all samples UV-VIS and NIR reflectance spectrometers, and sporadically a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer and a Raman laser spectrometer on control samples. We also used a documented set of Moon-Mars relevant minerals curated at VU Amsterdam, as well as samples retrieved from Mars analogue campaigns in Utah (Foing et al., 2011, 2016), Iceland (Mid-Atlantic ridge spreading and magma-ice interaction), La Réunion hot spot volcano and Eifel volcanic region (mixed hotspot and melt-ascent through crust fractures) from recent campaigns in 2015 and 2016.. We discuss samples spectral diagnostics of volcanic processes and hydrous alterations that can inform recent or upcoming measurements from Mars orbit or in situ rovers. Acknowledgements: we thank Dominic Doyle for ESTEC optical lab support, Euan Monaghan (Leiden U) for FTIR measurement support, Wim van Westrenen for access to VU samples, Oscar Kamps (Utrecht U), Aidan Cowley (EAC) and Matthias Sperl (DLR) for support discussions

  18. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  19. Transformation zone location and intraepithelial neoplasia of the cervix uteri.

    PubMed Central

    Autier, P.; Coibion, M.; Huet, F.; Grivegnee, A. R.

    1996-01-01

    We examined the relationship between the frequency of premalignant lesions of the cervix and location of the transformation zone on the cervix among 8758 women as assessed using cervicography. An endo- and exocervical smear test was performed at the same time. Women with smear test classified CIN I or more were recalled and any abnormal area was biopsied under colposcopy. The transformation zone was located on the exocervix in 94% of women younger than 25 years old; as age increased, the proportion of women with a transformation zone located on the exocervix steadily decreased to reach less than 2% after 64 years old. As compared with women having a transformation zone in the endocervical canal, the age-adjusted likelihood of discovering a histologically proven dysplastic lesion was 1.8 times more frequent among women with a transformation zone located on the exocervix (95% confidence interval 1.1-2.9). This higher frequency seemed not attributable to a lower sensitivity of the smear test when the transformation zone was hidden. The results also showed that deliveries tended significantly to maintain the transformation zone on the exocervix. Parity is a known risk factor for cervix cancer, but the mechanism by which it favours malignant lesions remain unknown. Our results suggest that with increasing numbers of livebirths, the transformation zone is directly exposed for longer periods to external agents involved in dysplastic lesions. PMID:8695371

  20. Investigating shape representation using sensitivity to part- and axis-based transformations.

    PubMed

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2016-09-01

    Part- and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location - a biomechanically implausible shape transformation - was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Infrared Spectroscopy on Smoke Produced by Cauterization of Animal Tissue

    PubMed Central

    Gianella, Michele; Sigrist, Markus W.

    2010-01-01

    In view of in vivo surgical smoke studies a difference-frequency-generation (DFG) laser spectrometer (spectral range 2900–3144 cm−1) and a Fourier-transform infrared (FTIR) spectrometer were employed for infrared absorption spectroscopy. The chemical composition of smoke produced in vitro with an electroknife by cauterization of different animal tissues in different atmospheres was investigated. Average concentrations derived are: water vapor (0.87%), methane (20 ppm), ethane (4.8 ppm), ethene (17 ppm), carbon monoxide (190 ppm), nitric oxide (25 ppm), nitrous oxide (40 ppm), ethyne (50 ppm) and hydrogen cyanide (25 ppm). No correlation between smoke composition and the atmosphere or the kind of cauterized tissue was found. PMID:22319267

  2. Remote sensing of the troposphere by infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Glavich, Thomas A.

    1989-01-01

    This paper describes the concept of a cryogenic IR imaging Fourier transform spectrometer, called the Tropospheric Emission Spectrometer (TES), designed for observations of the troposphere and lower stratosphere from a near-earth orbit, using natural thermal emission and reflected sunlight. The principal molecular species to be measured by TES are O3, CO, CO2, N2O, H2O, H2O2, NO, NO2, HNO3, NH3, CH4, C2H6, C2H2, SO2, COS, CFCl3, and CF2Cl2. The TES is scheduled for a launch on the second polar platform of the Earth Observing System in 1998.

  3. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  4. 140 GHz pulsed fourier transform microwave spectrometer

    DOEpatents

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  5. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  6. Analysis of phase transformations in Inconel 738C alloy after regenerative heat treatment

    NASA Astrophysics Data System (ADS)

    Kazantseva, N.; Davidov, D.; Vinogradova, N.; Ezhov, I.; Stepanova, N.

    2018-03-01

    Study is based on the characterization of the chemical composition the phase transformations in Inconel 738C gas turbine blade after standard regenerative heat treatment. The microstructure and chemical composition were examined by scanning electron microscope and transmission electron microscope equipped with an energy dispersive X-ray spectrometer. It was found the degradation of microstructure of the blade feather. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the blade feather. The carbide transformation and sigma phase were found in the structure of the blade feather. It is found that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not effect on carbides transformation, TCP σ-phase dissolution, and thus do not guarantee the full recovery of the IN738 gas turbine blade.

  7. Miniature high-performance infrared spectrometer for space applications

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2004-06-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  8. Miniature high-performance infrared spectrometer for space applications

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2017-11-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  9. Simulation of the CRIPT Detector

    DTIC Science & Technology

    2015-03-01

    National Defence, 2015 c© Sa Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2015 Abstract The...iron slabs of the spectrometer. The red plates are the panels containing the scintillator bars. 3 3 Monte Carlo Geometry The geometry of the detector is...instead of hollow), • parts were in wrong location (eg. spectrometer iron plates). To fix this, Computer Aided Design ( CAD ) drawings were provided for

  10. The GRB All-sky Spectrometer Experiment I: Instrument Overview and Science Drivers

    NASA Astrophysics Data System (ADS)

    Martinot, Zachary; Voigt, Elana; Banks, Zachary; Pober, Jonathan; Morales, Miguel F.

    2015-01-01

    The GRB All-sky Spectrometer Experiment (GASE) is an experiment designed to detect low frequency highly dispersed radio emission in the afterglow of a GRB. The detection of such a signal could provide a probe of IGM density as well as the conditions near the source of a GRB. The instrument used is an eight-element array of dipole antennas located on the University of Washington campus. This poster will further elaborate the design of the instrument and its scientific goals.

  11. Operational Experience with the MICE Spectrometer Solenoid System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, Sandor; Bross, Alan; Hanlet, Pierrick

    The Muon Ionization Cooling Experiment located at Rutherford Appleton Laboratory in England utilizes a supercon-ducting solenoid system for the muon cooling channel that also holds particle tracking detectors and muon absorbers inside their bores. The solenoid system installation was completed in summer of 2015 and after commissioning the system it has been running successfully. As a result, this paper summarizes the commissioning results and operational experience with the magnets focusing on the per-formance of the two Spectrometer Solenoids built by the US.

  12. Operational Experience with the MICE Spectrometer Solenoid System

    DOE PAGES

    Feher, Sandor; Bross, Alan; Hanlet, Pierrick

    2018-01-11

    The Muon Ionization Cooling Experiment located at Rutherford Appleton Laboratory in England utilizes a supercon-ducting solenoid system for the muon cooling channel that also holds particle tracking detectors and muon absorbers inside their bores. The solenoid system installation was completed in summer of 2015 and after commissioning the system it has been running successfully. As a result, this paper summarizes the commissioning results and operational experience with the magnets focusing on the per-formance of the two Spectrometer Solenoids built by the US.

  13. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  14. The Use of Aerosol Optical Depth in Estimating Trace Gas Emissions from Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Jones, N.; Paton-Walsh, C.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Murcray, F.

    2003-12-01

    We have observed significant correlations between aerosol optical depth (AOD) at 500 nm and column amounts of a number of biomass burning indicators (carbon monoxide, hydrogen cyanide, formaldehyde and ammonia) in bushfire smoke plumes over SE Australia during the 2001/2002 and 2002/2003 fire seasons from remote sensing measurements. The Department of Chemistry, University of Wollongong, operates a high resolution Fourier Transform Spectrometer (FTS), in the city of Wollongong, approximately 80 km south of Sydney. During the recent bushfires we collected over 1500 solar FTIR spectra directly through the smoke over Wollongong. The total column amounts of the biomass burning indicators were calculated using the profile retrieval software package SFIT2. Using the same solar beam, a small grating spectrometer equipped with a 2048 pixel CCD detector array, was used to calculate simultaneous aerosol optical depths. This dataset is therefore unique in its temporal sampling, location to active fires, and range of simultaneously measured constituents. There are several important applications of the AOD to gas column correlation. The estimation of global emissions from biomass burning currently has very large associated uncertainties. The use of visible radiances measured by satellites, and hence AOD, could significantly reduce these uncertainties by giving a direct estimate of global emissions of gases from biomass burning through application of the AOD to gas correlation. On a more local level, satellite-derived aerosol optical depth maps could be inverted to infer approximate concentration levels of smoke-related pollutants at the ground and in the lower troposphere, and thus can be used to determine the nature of any significant health impacts.

  15. Line shape parameters of PH3 transitions in the Pentad near 4-5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3 in particular.

  16. Line shape parameters of PH 3 transitions in the Pentad near 4–5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathy Devi, V.; Benner, D. C.; Kleiner, Isabelle

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH 3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH 3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν 4, ν 2 + ν 4, ν 1 andmore » ν 3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH 3 pressures (~2–50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν 4, ν 1 and ν 3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν 1 and ν 3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν 2 and ν 4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C 3v symmetry in general, and of PH 3 in particular.« less

  17. Design of a Slab Waveguide Multiaperture Fourier Spectrometer for Water Vapor Measurements in Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel

    Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE, Volume 7208 (2009)., pp. 72080G-72080G-7 (2009).

  18. Attempt of Serendipitous Science During the Mojave Volatile Prospector Field Expedition

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Colaprete, A.; Heldmann, J.; Lim, D. S. S.; Cook, A.; Elphic, R.; Deans, M.; Fluckiger, L.; Fritzler, E.; Hunt, David

    2015-01-01

    On 23 October a partial solar eclipse occurred across parts of the southwest United States between approximately 21:09 and 23:40 (UT), with maximum obscuration, 36%, occurring at 22:29 (UT). During 21-26 October 2014 the Mojave Volatile Prospector (MVP) field expedition deployed and operated the NASA Ames Krex2 rover in the Mojave desert west of Baker, California (Fig. 1, bottom). The MVP field expedition primary goal was to characterize the surface and sub-surface soil moisture properties within desert alluvial fans, and as a secondary goal to provide mission operations simulations of the Resource Prospector (RP) mission to a Lunar pole. The partial solar eclipse provided an opportunity during MVP operations to address serendipitous science. Science instruments on Krex2 included a neutron spectrometer, a near-infrared spectrometer with associated imaging camera, and an independent camera coupled with software to characterize the surface textures of the areas encountered. All of these devices are focused upon the surface and as a result are downward looking. In addition to these science instruments, two hazard cameras are mounted on Krex2. The chief device used to monitor the partial solar eclipse was the engineering development unit of the Near-Infrared Volatile Spectrometer System (NIRVSS) near-infrared spectrometer. This device uses two separate fiber optic fed Hadamard transform spectrometers. The short-wave and long-wave spectrometers measure the 1600-2400 and 2300-3400 nm wavelength regions with resolutions of 10 and 13 nm, respectively. Data are obtained approximately every 8 seconds. The NIRVSS stares in the opposite direction as the front Krex2.

  19. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  20. Microwave Spectroscopy of Seven Conformers of 1,2-PROPANEDIOL

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Lovas, F. J.; Plusquellic, D. F.; Remijan, A. J.

    2009-06-01

    Previously, two conformations of 1,2-propanediol have been identified by microwave spectroscopy by Caminati. Here we report the assignment of five additional conformers, two from work on a Balle-Flygare type cavity FTMW spectrometer at NIST, operating between 8 and 26 GHz, and three from a deep average scan on the chirped pulse Fourier transform microwave (CP-FTMW) spectrometer at the University of Virginia, operating between 6.5 and 18.5 GHz. All seven of the assigned conformers contain an intramolecular hydrogen bond between the two hydroxyl groups. Stark effect measurements have been performed on the cavity FTMW spectrometer to determine the dipole moments of the three lowest energy conformers. Relative abundances of the conformers have also been determined from the CP-FTMW spectrum. A subsequent interstellar search toward Sgr B2(N) yielded negative results with an upper limit to the total column density that is less than those of glycolaldehyde and ethylene glycol. W.Caminati, J. Mol. Spectrosc. 86 (1981) 193-201.

  1. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.

    2017-03-01

    We report the first high resolution spectroscopic study of the NH3-H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3-H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3-(o)-H2 and (p)-NH3-(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3-H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  2. Red Marks the Spot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hematite abundance index map helps geologists choose hematite-rich locations to visit around Opportunity's landing site. Blue dots equal areas low in hematite and red dots equal areas high in hematite.

    Why Hematite Geologists are eager to reach the hematite-rich area in the upper left to closely examine the soil, which may reveal secrets about how the hematite got to this location. Knowing how the hematite on Mars was formed may help scientists characterize the past environment and determine whether that environment provided favorable conditions for life.

    The Plan Over the next few sols, engineers and scientists plan to drive Opportunity to the hematite-rich area then attempt a 'pre-trench' sequence, taking measurements with the Moessbauer spectrometer, alpha particle X-ray spectrometer and microscopic imager. Next, the plan is to trench the hematite rich area by spinning one wheel in place to 'dig' a shallow hole. Finally, scientists will aim the instrument arm back at the same area where it pre-trenched to get post-trench data with the same instruments to compare and contrast the levels of hematite and revel how deep the hematite lays in the dirt.

    Index Map Details The hematite abundance index map was created using data from the miniature thermal emission instrument. The first layer is a mosaic of panoramic camera images taken prior to egress, when Opportunity was still on the lander. The colored dots represent data collected by the miniature thermal emission spectrometer on sol 11, after Opportunity had rolled off of the lander and the rover was located at the center of the blue semi-circle.

    The spectrometer is located on the panoramic camera mast. On sol 11, it took a low-angle 180-degree panorama of the area in front of the rover, indicated by the blue shaded dots. The instrument then raised the angle of its field of view a few degrees higher to sweep around behind the rover, indicated by the red and yellow dots offset at the far sides of the image.

    JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Office of Space Science, Washington, D.C.

  3. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point-of-care applications. As next steps in the development, we will manufacture the different optical components and experimentally characterize the spectrometer device in more detail.

  4. Exotic Molecules in Space: A Coordinated Astronomical, Laboratory, and Theoretical Study

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1997-01-01

    The past year has been a period of spectacular progress in our investigation of exotic molecules of astrophysical interest. During this period an entirely new spectrometer for the investigation of reactive molecules was finished: a Fourier-transform microwave spectrometer with a supersonic molecular beam. The instrument is operating almost flawlessly, and during the above period of less than two years has discovered the 23 new carbon chain and ring-chain molecules. Seventeen research papers, nearly all in leading refereed journals such as the Astrophysical Journal and the Journal of Chemical Physics have been published. At least five more papers are being prepared for publication. Already four of our new molecules have been detected in space with large radio telescopes. In many ways the most interesting of these is HC(11)N, which now ranks as the largest molecule definitely identified beyond the solar system. Nearly all the other new molecules are candidates for astronomical detection, and we will be disappointed if a number of them are not found as more sensitive receivers and larger telescopes are constructed. During the next year we expect this wave of discovery to continue, and to insure rapid progress we have designed an even more sensitive spectrometer which will operate at the temperature of liquid helium. The goal of this system is to enhance the sensitivity of Fourier-transform spectroscopy by a further factor of 20 to 50, achieving this by reducing the amplifier and thermal noise to levels routinely achieved in radio astronomy. This new instrument offers a number of technical challenges in cryogenic and microwave engineering, but none of these appears to be insurmountable, and our current schedule is to have the helium cooled system operating within the next six months. A number of investigations continued with our conventional free space spectrometer, which remains a powerful complement to our new FTM instrument.

  5. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    NASA Astrophysics Data System (ADS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements.

  6. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements.

  7. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer.

    PubMed

    Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W

    2016-05-01

    The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by Mahalanobis distance plots for all polymers. © The Author(s) 2016.

  8. Fourier transform spectroscopy of the nu3 band of the N3 radical

    NASA Technical Reports Server (NTRS)

    Brazier, C. R.; Bernath, P. F.; Burkholder, James B.; Howard, Carleton J.

    1988-01-01

    The nu3 transitions of N3 radicals produced by HN3-Cl reactions in a multipass cell (effective path length 100 m) are investigated experimentally using a Fourier-transform spectrometer with maximum resolution 0.004/cm. A total of 176 rotation-vibration lines are listed in a table and used, in combination with published data on 240 optical lines (Douglas and Jones, 1965), to determine the nu3 molecular constants. The lower-than-expected value of the nu3 fundamental frequency (1644.6784/cm) is attributed to the vibronic interaction discussed by Kawaguchi et al. (1981).

  9. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  10. The pyrolysis characteristics of moso bamboo

    Treesearch

    Zehui Jiang; Zhijia Liu; Benhua Fei; Zhiyong Cai; Yan Yu; Xing’e Liu

    2012-01-01

    In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (

  11. Physiochemical/Rheological Control of Nonmetallic Materials.

    DTIC Science & Technology

    1982-08-01

    CONCLUSIONS ... .. .. . .oo.. .. .. .. .. .. .. .... 23 APPENDIX A - Infrared Spectra of Nonmetallic Consumables .. ......... 24 77’. 1SN 7.. Tiii LIST OF...Spectrometer IR Infrared Spectroscopy GC Gas Chromatrography MS Mass Spectrometry * DSC Differenitial Scanning Calorimetry RT Room Temperature ET Elevated...Linear Heating Rate *FTIR Fourier Transform Infrared TGA Thermogravimetric Analysis Vi 1.0 INTRODUCTION AND SUOARY Over the past 10 years

  12. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    EPA Science Inventory

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  13. Development of an Imaging Fourier Transform Spectrometer

    DTIC Science & Technology

    1986-05-01

    during multiple tests or concurrently applying many identical instrument systems to a single test. These difficult, expensive, and time-consuming...processes would introduce AEDC-TR-86-17 uncertainties due to nonstationary sources and instrument instability associated with multiple firings or... multiple instruments. For even moderate spatial, spectral, and temporal resolution, none of the previously mentioned approaches is reasonable. The

  14. Detection of Leaks in Water Distribution System using Non-Destructive Techniques

    NASA Astrophysics Data System (ADS)

    Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.

    2018-05-01

    Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.

  15. The ASTRO-H X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki

    2012-09-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.

  16. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    NASA Astrophysics Data System (ADS)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A heightened peak intensity of 50 percent is observed throughout the spectra of the lower temperature generated soot and smoke, with respect to the higher temperature generated soot and smoke. These observations suggest the possibility of establishing biomass reduction markers using a ratio method.

  17. Osmium coated diffraction grating in the Space Shuttle environment - Performance

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.

  18. Solar Occultation Satellite Data and Derived Meteorological Products: Sampling Issues and Comparisons with Aura MLS

    NASA Technical Reports Server (NTRS)

    Manney, Gloria; Daffer, William H.; Zawodny, Joseph M.; Bernath, Peter F.; Hoppel, Karl W.; Walker, Kaley A.; Knosp, Brian W.; Boone, Chris; Remsberg, Ellis E.; Santee, Michelle L.; hide

    2007-01-01

    Derived Meteorological Products (DMPs, including potential temperature (theta), potential vorticity, equivalent latitude (EqL), horizontal winds and tropopause locations) have been produced for the locations and times of measurements by several solar occultation (SO) instruments and the Aura Microwave Limb Sounder (MLS). DMPs are calculated from several meteorological analyses for the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer, Stratospheric Aerosol and Gas Experiment II and III, Halogen Occultation Experiment, and Polar Ozone and Aerosol Measurement II and III SO instruments and MLS. Time-series comparisons of MLS version 1.5 and SO data using DMPs show good qualitative agreement in time evolution of O3, N2O, H20, CO, HNO3, HCl and temperature; quantitative agreement is good in most cases. EqL-coordinate comparisons of MLS version 2.2 and SO data show good quantitative agreement throughout the stratosphere for most of these species, with significant biases for a few species in localized regions. Comparisons in EqL coordinates of MLS and SO data, and of SO data with geographically coincident MLS data provide insight into where and how sampling effects are important in interpretation of the sparse SO data, thus assisting in fully utilizing the SO data in scientific studies and comparisons with other sparse datasets. The DMPs are valuable for scientific studies and to facilitate validation of non-coincident measurements.

  19. Assessing Surface BRDF-related Biases Using Target Mode Retrievals from the Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Natraj, V.; McDuffie, J. L.; O'Dell, C.; Eldering, A.; Fu, D.; Wunch, D.; Wennberg, P. O.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first dedicated Earth remote sensing satellite to study atmospheric carbon dioxide from space, and was launched successfully on July 2, 2014. In the target mode of observation, the Observatory will lock its view onto a specific surface location, and will scan back and forth over that target while flying overhead. A target track pass can last for up to 9 minutes. Over that time period, the Observatory can acquire as many as 12,960 samples at local zenith angles that vary between 0° and 85°. Here, we analyze target track measurements over several of the OCO-2 validation sites where ground-based solar-looking Fourier Transform Spectrometers are located. Preliminary analysis of target mode retrievals using the operational algorithm show biases that appear to be due to not accounting for bidirectional surface reflection (BRDF) effects, i.e., the non-isotropic nature of surface reflection. To address this issue, we implement a realistic BRDF model. The column averaged CO2 dry air mole fraction (XCO2) results using this new model show much less variation with scattering angle (or airmass). Further, the retrieved aerosol optical depth (AOD) is in much better agreement with coincident AERONET values. We also use information content analysis to evaluate the degrees of freedom with respect to BRDF parameters, and investigate cross-correlations between the parameters.

  20. Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Colaprete, A.; Heldmann, J. L.; Mattes, G.; Ennico, K.; Sanders, G. B.; Quinn, J.; Fritzler, E.; Marinova, M.; Roush, T. L.; Stoker, C.; Larson, W.; Picard, M.; McMurray, R.; Morse, S.

    2012-12-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H2O/OH and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high-interest then the decision to core could be made. The coring drill (a push-tube) allowed a 1-meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  1. Near Real Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Colaprete, Anthony; Heldmann, Jennifer; Mattes, Gregory W.; Ennico, Kimberly; Sanders, Gerald; Quinn, Jacqueline; Tegnerud, Erin Leigh; Marinova, Margarita; Larson, William E.; hide

    2012-01-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H20/0H and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high -interest then the decision to core could be made. The coring drill (a push-tube) allowed a meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  2. Design and Development of an Optical Path Difference Scan Mechanism for Fourier Transform Spectrometers using High Displacement RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hardy, Robin C.; Dausch, David E.

    1997-01-01

    A new piezoelectric drive mechanism has been developed for optical translation in space-based spectrometer systems. The mechanism utilizes a stack of RAINBOW high displacement piezoelectric actuators to move optical components weighing less than 250 grams through a one centimeter travel. The mechanism uses the direct motion of the piezoelectric devices, stacked such that the displacement of the individual RAINBOW actuators is additive. A prototype device has been built which utilizes 21 RAINBOWs to accomplish the necessary travel. The mechanism weighs approximately 0.6 kilograms and uses less than 2 Watts of power at a scanning frequency of 0.5 Hertz, significantly less power than that required by state-of-the-art motor systems.

  3. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Yue, Jiang; Han, Jing; Li, Long; Jin, Yong; Gao, Yuan; Li, Baoming

    2017-12-01

    The denoising capabilities of the H-matrix and cyclic S-matrix based on the sparse reconstruction, employed in the Pixel of Focal Plane Coded Visible Spectrometer for spectrum measurement are investigated, where the spectrum is sparse in a known basis. In the measurement process, the digital micromirror device plays an important role, which implements the Hadamard coding. In contrast with Hadamard transform spectrometry, based on the shift invariability, this spectrometer may have the advantage of a high efficiency. Simulations and experiments show that the nonlinear solution with a sparse reconstruction has a better signal-to-noise ratio than the linear solution and the H-matrix outperforms the cyclic S-matrix whether the reconstruction method is nonlinear or linear.

  4. Spectroscopy using the Hadamard Transform V2

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Greenhouse, M. A.; MacKenty, J. W.; Mather, J. C.

    2009-01-01

    The IRMOS (infrared multiobject spectrometer) is an imaging dispersive spectrometer, with a micromirror array to select desired objects. In standard operation, the mirrors are "opened" in patterns such that the resulting spectra do not overlap on the detector. The IRMOS can also be operated in a Hadamard mode, in which the spectra are allowed to overlap, but are modulated by opening the mirrors in many combinations. This mode enables the entire field of view to be observed with the same sensitivity as in the standard mode if the uncertainty is dominated by the detector read noise. We explain the concept and discuss the benefits with an example observation of the Orion Trapezium using the 2.1 m telescope at Kitt Peak National Observatory.

  5. Effects of long-duration exposure on optical system components

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    The optical materials and UV detectors experiment (SOO50-1) was a set of 18 optical windows, filters, and ultraviolet detectors. The optical specimens were all retrieved in excellent condition. No delamination or blistering of the filters occurred. No discoloration of the optical window materials occurred, but the MgF2 window did experience roughing. The most notable degradation of the optics were the deposition of an organic film on the exposed surfaces. The film absorption was measured using a Fourier transform infrared spectrometer and a UV spectrometer. The 6 percent absorption at 3.4 microns corresponds to about 100 mgm/sq ft of organic film. The UV absorption was almost 100 percent at 200 nm and about 50 percent at 380 nm.

  6. A THz Superconducting Imaging Array Developed for the DATE5 Telescope

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Cai; Zhang, Wen; Li, Jing; Miao, Wei; Lin, Zhen-Hui; Lou, Zheng; Yao, Qi-Jun

    2016-08-01

    Dome A in Antarctica, located at an altitude of 4093 m and with very low temperature in winter down to -83^{circ }C, is an exceptionally dry site. Measurements of the atmospheric transmission in the range of 0.75-15 THz by a Far-infrared/THz Fourier transform spectrometer (FTS) strongly suggest that Dome A is a unique site for ground-based THz observations, especially for the 200- and 350-micron windows. A 5-m THz telescope (DATE5) is therefore proposed for Chinese Antarctic Kunlun Observatory. We are currently developing a THz superconducting imaging array (TeSIA) for the DATE5. The TeSIA will be working at the 350-\\upmu m window, with a pixel number of 32 × 32 and a sensitivity (NEP) of ˜ 10^{-16} W/Hz^{0.5}. Ti transition-edge sensors with time-domain multiplexing and TiN microwave kinetic inductance detectors with frequency-domain multiplexing are both developed for the TeSIA. In this paper, detailed system designs and some measurement results will be presented.

  7. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  8. Ground based NO2 and O3 measurements by visible spectrometer at Syowa Base (69 deg S), Antarctica

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matthews, W. A.; Johnston, Paul V.; Hayashi, M.; Koike, M.; Iwasaka, Y.; Shimizu, A.; Budiyono, A.; Yamanouchi, T.; Aoki, S.

    1994-01-01

    The column amounts of NO2 and ozone have been measured using visible spectroscopy at Syowa Base (69 deg S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO2 are presented. The column ozone values from the visible spectrometers are compared with the Dobson data. The very low values of NO2 in midwinter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO2 amounts were considerably smaller than in 1990, presumably due to the effect of Mt. Pinatubo eruption.

  9. Observing gamma-ray bursts with the INTEGRAL spectrometer SPI

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Connell, P. H.; Naya, J. E.; Seifert, H.; Teegarden, B. J.

    1997-01-01

    The spectrometer for INTEGRAL (SPI) is a germanium spectrometer with a wide field of view and will provide the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission with the opportunity of studying gamma ray bursts. Simulations carried out to assess the response of the instrument using data from real burst data as input are reported on. It is shown that, despite the angular resolution of 3 deg, it is possible to locate the direction of bursts with an accuracy of a few arcmin, while offering the high spectral resolution of the germanium detectors. It is remarked that the SPI field of view is similar to the size of the halo of bursts expected around M 31 on galactic models. The detectability of bursts with such a halo is discussed.

  10. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  11. CIRS-lite, a Fourier Transform Spectrometer for Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Bly, V.; Edgerton, M.; Gong, Q.; Hagopian, J.; Mamakos, W.; Morelli, A.; Pasquale, B.; Strojny, C.

    2011-01-01

    Passive spectroscopic remote sensing of planetary atmospheres and surfaces in the thermal infrared is a powerful tool for obtaining information about surface and atmospheric temperatures, composition, and dynamics (via the thermal wind equation). Due to its broad spectral coverage, the Fourier transform spectrometer (FTS) is particularly suited to the exploration and discovery of molecular species. NASA's Goddard Space Flight Center (GSFC) developed the CIRS (Composite Infrared Spectrometer) FTS for the NASA/ESA Cassini mission to the Saturnian system. CIRS observes Saturn, Titan, icy moons such as Enceladus, and the rings in thermal self-emission over the spectral range of 7 to 1000 ell11. CIRS has given us important new insights into stratospheric composition and jets on Jupiter and Saturn, the cryo-geyser and thermal stripes on Enceladus, and the winter polar vortex on Titan. CIRS has a mass of 43 kg, contrasted with the earlier GSFC FTS, pre-Voyager IRIS (14 kg). Future low-cost planetary missions will have very tight constraints on science payload mass, thus we must endeavor to return to IRIS-level mass while maintaining CIRS-level science capabilities ("do more with less"). CIRS-lite achieves this by pursuing: a) more sensitive infrared detectors (high Tc superconductor) to enable smaller optics. b) changed long wavelength limit from 1000 to 300 microns to reduce diffraction by smaller optics. c) CVD (chemical vapor deposition) diamond beam-splitter for broad spectral coverage. d) single FTS architecture instead of a dual FTS architecture. e) novel materials, such as single crystal silicon for the input telescope primary.

  12. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  13. Active vortex sampling system for remote contactless survey of surfaces by laser-based field asymmetrical ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexei V.

    2017-10-01

    The ways for increasing the distance of non-contact sampling up to 40 cm for a field asymmetric ion mobility (FAIM) spectrometer are formulated and implemented by the use of laser desorption and active shaper of the vortex flow. Numerical modeling of air sampling flows was made and the sampling device for a laser-based FAIM spectrometer on the basis of high speed rotating impeller, located coaxial with the ion source, was designed. The dependence of trinitrotoluene vapors signal on the rotational speed and the optimization of the value of the sampling flow were obtained. The effective distance of sampling is increased up to 28 cm for trinitrotoluene vapors detection by a FAIM spectrometer with a rotating impeller. The distance is raised up to 40 cm using laser irradiation of traces of explosives. It is shown that efficient desorption of low-volatile explosives is achieved at laser intensity 107 W / cm2 , wavelength λ=266 nm, pulse energy about 1mJ and pulse frequency not less than 10 Hz under ambient conditions. The ways of optimization of internal gas flows of a FAIM spectrometer for the work at increased sampling distances are discussed.

  14. Proportional-Integral-Derivative (PID) Temperature Control and Data Acquisition System for Faraday Filter based Sodium Spectrometer

    NASA Astrophysics Data System (ADS)

    Semerjyan, Vardan; Yuan, Tao

    2011-04-01

    Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).

  15. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    NASA Astrophysics Data System (ADS)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  16. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  17. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  18. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  19. EXPERIMENTS - APOLLO 17

    NASA Image and Video Library

    1972-11-17

    S72-53470 (November 1972) --- The Far-Ultraviolet Spectrometer, Experiment S-169, one of the lunar orbital science experiments which will be mounted in the SIM bay of the Apollo 17 Service Module. Controls for activating and deactivating the experiment and for opening and closing a protective cover are located in the Command Module. Atomic composition, density and scale height for several constituents of the lunar atmosphere will be measured by the far-ultraviolet spectrometer. Solar far-UV radiation reflected from the lunar surface as well as UV radiation emitted by galactic sources also will be detected by the instrument.

  20. Evidence for solar flare directivity from the Gamma-Ray Spectrometer aboard the SMM satellite

    NASA Technical Reports Server (NTRS)

    Vestrand, W. T.; Forrest, D. J.; Chupp, E. L.; Rieger, E.; Share, G. H.

    1986-01-01

    A number of observations from the SMM Gamma-Ray Spectrometer are presented that altogether strongly indicate that the high-energy emission from flares is anisotropic. They are: (1) the fraction of events detected at energies above 300 keV near the limb is significantly higher than is expected for isotropically emitting flares; (2) there is a statistically significant center-to-limb variation in the 300-1000-keV spectra of flares; and (3) nearly all of the events detected at above 10 MeV are located near the limb.

  1. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    PubMed

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  2. A Field Portable Hyperspectral Goniometer for Coastal Characterization

    NASA Technical Reports Server (NTRS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi

    2012-01-01

    During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.

  3. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology.

    PubMed

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-06-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions.

  4. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology

    PubMed Central

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-01-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions. PMID:27777787

  5. ExoMars: Overview of scientific programme

    NASA Astrophysics Data System (ADS)

    Rodionov, Daniel; Witasse, Olivier; Vago, Jorge L.

    The ExoMars Programme is a joint project between the European Space Agency (ESA) and the Russian Federal Space Agency (Roscosmos). The project consists of two missions with launches in 2016 and 2018. The scientific objectives of ExoMars are: begin{itemize} To search for signs of past and present life on Mars. To investigate the water/geochemical environment as a function of depth in the shallow subsurface. To study Martian atmospheric trace gases and their sources. To characterize the surface environment. The 2016 mission will be launched (January 2016) on a Proton rocket. It includes the Trace Gas Orbiter (TGO) and an Entry, descent and landing Demonstrator Module (EDM), both contributed by ESA. The TGO will carry European and Russian scientific instruments for remote observations, while the EDM will have a European payload for in-situ measurements during descent and on the Martian surface. The TGO scientific payload includes:begin{itemize} NOMAD. Suite of 2 Infrared (IR) and 1 Ultraviolet (UV) spectrometer. ACS. Suite of 2 IR echelle-spectrometers (near and middle IR) and 1 Fourier spectrometer. FREND. Neutron spectrometer with a collimation module. CaSSIS. High-resolution camera. The EDM payload includes a set of accelerometers and heat shield sensors (AMELIA), to study the Martian atmosphere and obtain images throughout the EDM’s descent, and an environmental station (DREAMS), to conduct a series of short meteorological observations at the EDM’s landing location. The 2018 mission will land a Rover, provided by ESA, making use of a Descent Module (DM) contributed by Roscosmos. The mission will be launched on a Proton rocket (May 2018). The ExoMars rover will have a nominal lifetime of approximately 6 months. During this period, it will ensure a regional mobility of several kilometres, relying on solar array electrical power. The rover’s Pasteur payload will produce self-consistent sets of measurements capable to provide reliable evidence, for or against, the existence of a range of biosignatures at each search location. Pasteur contains: panoramic instruments (wide-angle and high-resolution cameras, an infrared spectrometer, a ground-penetrating radar, and a neutron detector); contact instruments for studying rocks and collected samples (a close-up imager and an infrared spectrometer in the drill head); a subsurface drill capable of reaching a depth of 2 m to collect specimens; a Sample Preparation and Distribution System (SPDS); and the analytical laboratory, the latter including a visual and infrared imaging spectrometer, a Raman spectrometer, and a Laser-Desorption, Thermal-Volatilisation, Derivatisation, Gas Chromatograph Mass Spectrometer (LD + Der-TV GCMS). After Rover egress, the Surface Platform (SP) will conduct environmental and geophysics experiments for about a Martian year. The SP scientific payload is under selection at the moment.

  6. Development of a Spectropolarimetric Remote Sensing Capability

    DTIC Science & Technology

    2013-03-01

    34Review of passive imaging polarimetry for remote sensing applications," Appl. Opt. 45, 5453-5469 (2006). [8] D. B. Chenault, "Infrared...Annen, “Hyperspectral IR polarimetry with application in demining and unexploded ordnance detection,” SPIE Vol. 3534 (1998). [30] Pesses, M... Polarimetry , Fourier Transform Spectrometer, DOLP, Spectropolarimetry, Stokes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  7. Profiles of Stratospheric Chlorine Nitrate from ATMOS/ATLAS 1 Infrared Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ration profiles of chlorine nitrate have been retrieved from 0.01-cm(sub -1) resolution infrared solar occutation spectra recorded at latitudes between 14 degrees N and 54 degrees S by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992).

  8. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  9. Indian Ocean METOC Imager

    DTIC Science & Technology

    2002-09-30

    onr.navy.mil Mr. Wallace Harrison, GIFTS Program Manager NASA EO-3, New Millenium Program, Langley Research Center phone: 757-864-6680 fax: 757-864...Observing 3 Geostationary Imaging Fourier Transform Spectrometer ( GIFTS ) sensor development to provide this advanced capability. The IOMI program will...share costs for the GIFTS sensor development, the spacecraft bus, provide lifetime enhancements to the GIFTS sensor, and 1 Report Documentation Page

  10. Naval Research Laboratory 1984 Review.

    DTIC Science & Technology

    1985-07-16

    pulsed infrared comprehensive characterization of ultrahigh trans- sources and electronics for video signal process- parency fluoride glasses and...operates a video system through this port if desired. The optical bench in consisting of visible and infrared television cam- the trailer holds a high...resolution Fourier eras, a high-quality video cassette recorder and transform spectrometer to use in the receiving display, and a digitizer to convert

  11. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  12. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions

    ERIC Educational Resources Information Center

    Medhurst, Laura L.

    2005-01-01

    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  13. SigmaPlot 2000, Version 6.00, SPSS Inc. Computer Software Project Management, Requirements, and Design Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HURLBUT, S.T.

    2000-10-24

    SigmaPlot is a vendor software product that will be used to convert the area under an absorbance curve generated by a Fourier transform infrared spectrometer (FTIR) to a relative area. SigmaPlot will be used in conjunction with procedure ZA-565-301, ''Determination of Moisture by Supercritical Fluid Extraction and Infrared Detection.''

  14. Destriping AIS data using Fourier filtering techniques

    NASA Technical Reports Server (NTRS)

    Hlavka, C.

    1986-01-01

    Airborne Imaging Spectrometers (AIS) data collected in 1984 and 1985 showed pronounced striping in the vertical and horizontal directions. This striping reduced the signal to noise ratio so that features of the spectra of forest canopies were obscured or altered by noise. This noise was removed by application of a notch filter to the Fourier transform of the imagery in each waveband.

  15. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  16. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  17. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio

    2015-01-01

    Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin.

  18. Retrievals of methane from IASI radiance spectra and comparisons with ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Kumps, N.; de Mazière, M.; Kruglanski, M.; Senten, C.; Vanhaelewyn, G.; Vandaele, A. C.; Vigouroux, C.

    2009-04-01

    The Infrared Atmospheric Sounding Interferometer (IASI), launched on 19 October 2006, is a Fourier transform spectrometer onboard METOP-1, observing the radiance of the Earth's surface and atmosphere in nadir mode. The spectral range covers the 645 to 2760 cm-1 region with a resolution of 0.35 to 0.5 cm-1. A line-by-line spectral simulation and inversion code, ASIMUT, has been developed for the retrieval of chemical species from infrared spectra. The code includes an analytical calculation of the Jacobians for use in the inversion part of the algorithm based on the Optimal Estimation Method. In 2007 we conducted a measurement campaign at St Denis, Île de la Réunion where we performed ground-based solar absorption observations with a infrared Fourier transform spectrometer. ASIMUT has been used to retrieve methane from the ground-based and collocated satellite measurements. For the latter we selected pixels that are situated over the sea. In this presentation we will show the retrieval strategies, the resulting methane column time series above St Denis and the comparisons of the satellite data with the ground-based data sets. Vertical profile information in these data sets will also be discussed.

  19. Final design of SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Grandmont, F.; Drissen, L.; Mandar, Julie; Thibault, S.; Baril, Marc

    2012-09-01

    We report here on the current status of SITELLE, an imaging Fourier transform spectrometer to be installed on the Canada-France Hawaii Telescope in 2013. SITELLE is an Integral Field Unit (IFU) spectrograph capable of obtaining the visible (350 nm - 900 nm) spectrum of every pixel of a 2k x 2k CCD imaging a field of view of 11 x 11 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R < 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional IFUs, such as GMOS-IFU on Gemini or the upcoming MUSE on the VLT. SITELLE follows on the legacy of BEAR, an imaging conversion of the CFHT FTS and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  20. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins.

    PubMed

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-03-24

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.

  1. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins

    PubMed Central

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-01-01

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520

  2. An 18-26 GHz Segmented Chirped Pulse Fourier Transform Microwave Spectrometer for Astrochemical Applications

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    In the past decade, astrochemistry has seen an increase in interest. As higher throughput and increased resolution radio astronomy facilities come online, faster laboratory instrumentation that directly covers the frequency ranges of these facilities is needed. The 18-26 GHz region is of interest astronomically as many cold organic molecules have their peak intensity in this region. We present here a new segmented chirped pulse Fourier transform microwave (CP-FTMW) spectrometer operating between 18-26 GHz. Using state-of-the-art digital electronics and the segmented approach[1], this design has the potential to be faster and cheaper than the previously presented broadband design. Characterization of the instrument using OCS will be presented, along with a comparison to the previously built and optimized 18-26 CP-FTMW built at the University of Virginia. It will be coupled with a discharge nozzle[2], and its applications to astrochemistry will be explored in this talk. [1] Neill, J.L., Harris, B.J., Steber, A.L., Douglass, K.O., Plusquellic, D.F., Pate, B.H. Opt. Express, 21, 19743-19749, 2013. [2] McCarthy, M.C., Chen, W., Travers, M.J., Thaddeus, P. Astrophys. J. Suppl. Ser., 129, 611-623 , 2000.

  3. Ruthenium trisbipyridine as a candidate for gas-phase spectroscopic studies in a Fourier transform mass spectrometer

    DOE PAGES

    Scott, Jill R.; Ham, Jason E.; Durham, Bill; ...

    2004-01-01

    Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy) 3 ] 1+ trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×10 7 s −1 , whilemore » the rate constant using SA was 1×10 7 s −1 . Some suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy) 3 ] 1+ generated using DHB can decompose to [Ru(bpy) 2 ] 1+ , whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.« less

  4. Simple alignment procedure for a VNIR imaging spectrometer with a Shack-Hartmann wavefront sensor and a field identifier

    NASA Astrophysics Data System (ADS)

    Lee, Jun Ho; Hwang, Sunglyoung; Jeong, Dohwan; Hong, Jinsuk; Kim, Youngsoo; Kim, Yeonsoo; Kim, Hyunsook

    2017-09-01

    We report an innovative simple alignment method for a VNIR spectrometer in the wavelength region of 400-900 nm; this device is later combined with fore-optics (a telescope) to form a f/2.5 hyperspectral imaging spectrometer with a field of view of +/-7.68°. The detector at the final image plane is a 640×480 charge-coupled device with a 24 μm pixel size. We first assembled the fore-optics and the spectrometer separately and then combined them via a slit co-located on the image plane of the fore-optics and the object plane of the spectrometer. The spectrometer was assembled in three steps. In the initial step, the optics was simply assembled with an optical axis guiding He-Ne laser. In the second step, we located a pin-hole on the slit plane and a Shack-Hartmann sensor on the detector plane. The wavefront errors over the full field were scanned simply by moving the point source along the slit direction while the Shack-Hartmann sensor was constantly conjugated to the pin-hole position by a motorized stage. Optimal alignment was then performed based on the reverse sensitivity method. In the final stage, the pin-hole and the Shack-Hartmann sensor were exchanged with an equispaced 10 pin-hole slit called a field identifier and a detector. The light source was also changed from the laser (single wavelength source) to a krypton lamp (discrete multi-wavelength source). We were then easily able to calculate the distortion and keystone on the detector plane without any scanning or moving optical components; rather, we merely calculated the spectral centroids of the 10 pin-holes on the detector. We then tuned the clocking angles of the convex grating and the detector to minimize the distortion and keystone. The final assembly was tested and found to have an RMS WFE < 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm.

  5. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S.; Cordaro, J.; Holland, M.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability tomore » refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.« less

  6. Comparison of atmospheric CO2 columns at high latitudes from ground-based and satellite-based methods

    NASA Astrophysics Data System (ADS)

    Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.

    2017-12-01

    Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division at Poker Flat, Alaska, and observations from the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE) airborne operations may also be included if available.

  7. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Christensen, Philip R.; Mehall, Greg L.; Silverman, Steven H.; Anwar, Saadat; Cannon, George; Gorelick, Noel; Kheen, Rolph; Tourville, Tom; Bates, Duane; Ferry, Steven; Fortuna, Teresa; Jeffryes, John; O'Donnell, William; Peralta, Richard; Wolverton, Thomas; Blaney, Diana; Denise, Robert; Rademacher, Joel; Morris, Richard V.; Squyres, Steven

    2003-12-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) will provide remote measurements of mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers and guide the rovers to key targets for detailed in situ measurements by other rover experiments. The specific scientific objectives of the Mini-TES investigation are to (1) determine the mineralogy of rocks and soils, (2) determine the thermophysical properties of selected soil patches, and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer. The Mini-TES is a Fourier Transform Spectrometer covering the spectral range 5-29 μm (339.50 to 1997.06 cm-1) with a spectral sample interval of 9.99 cm-1. The Mini-TES telescope is a 6.35-cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly. A single deuterated triglycine sulfate (DTGS) uncooled pyroelectric detector with proven space heritage gives a spatial resolution of 20 mrad; an actuated field stop can reduce the field of view to 8 mrad. Mini-TES is mounted within the rover's Warm Electronics Box and views the terrain using its internal telescope looking up the hollow shaft of the Pancam Mast Assembly (PMA) to the fixed fold mirror and rotating elevation scan mirror in the PMA head located ~1.5 m above the ground. The PMA provides a full 360°of azimuth travel and views from 30° above the nominal horizon to 50° below. An interferogram is collected every two seconds and transmitted to the Rover computer, where the Fast Fourier Transform, spectral summing, lossless compression, and data formatting are performed prior to transmission to Earth. Radiometric calibration is provided by two calibration V-groove blackbody targets instrumented with platinum thermistor temperature sensors with absolute temperature calibration of +/-0.1°C. One calibration target is located inside the PMA head; the second is on the Rover deck. The Mini-TES temperature is expected to vary diurnally from -10 to +30°C, with most surface composition data collected at scene temperatures >270 K. For these conditions the radiometric precision for two-spectra summing is +/-1.8 × 10-8 W cm-2 sr-1/cm-1 between 450 and 1500 cm-1, increasing to ~4.2 × 10-8 W cm-2 sr-1/cm-1 at shorter (300 cm-1) and longer (1800 cm-1) wave numbers. The absolute radiance error will be <5 × 10-8 W cm-2 sr-1/cm-1, decreasing to ~1 × 10-8 W cm-2 sr-1/cm-1 over the wave number range where the scene temperature will be determined (1200-1600 cm-1). The worst-case sum of these random and systematic radiance errors corresponds to an absolute temperature error of ~0.4 K for a true surface temperature of 270 K and ~1.5 K for a surface at 180 K. The Mini-TES will be operated in a 20-mrad panorama mode and an 8-mrad targeted mode, producing two-dimensional rasters and three-dimensional hyperspectral image cubes of varying sizes. The overall Mini-TES envelope size is 23.5 × 16.3 × 15.5 cm, and the mass is 2.40 kg. The power consumption is 5.6 W average. The Mini-TES was developed by Arizona State University and Raytheon Santa Barbara Remote Sensing.

  8. Does apartment's distance to an in-built transformer room predict magnetic field exposure levels?

    PubMed

    Huss, Anke; Goris, Kelly; Vermeulen, Roel; Kromhout, Hans

    2013-01-01

    It has been shown that magnetic field exposure in apartments located directly on top or adjacent to transformer rooms is higher compared with exposure in apartments located further away from the transformer rooms. It is unclear whether this also translates into exposure contrast among individuals living in these apartments. We performed spot measurements of magnetic fields in 35 apartments in 14 apartment buildings with an in-built transformer and additionally performed 24-h personal measurements in a subsample of 24 individuals. Apartments placed directly on top of or adjacent to a transformer room had on average exposures of 0.42 μT, apartments on the second floor on top of a transformer room, or sharing a corner or edge with the transformer room had 0.11 μT, and apartments located further away from the transformer room had levels of 0.06 μT. Personal exposure levels were approximately a factor 2 lower compared with apartment averages, but still showed exposure contrasts, but only for those individuals who live in the apartments directly on top or adjacent to a transformer room compared with those living further away, with 0.23 versus 0.06 μT for personal exposure when indoors, respectively. A classification of individuals into 'high' and 'low' exposed based on the location of their apartment within a building with an in-built transformer is possible and could be applied in future epidemiological studies.

  9. Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.; hide

    2017-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.

  10. ORBS: A reduction software for SITELLE and SpiOMM data

    NASA Astrophysics Data System (ADS)

    Martin, Thomas

    2014-09-01

    ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

  11. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    NASA Astrophysics Data System (ADS)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  12. Negative Electron Transfer Dissociation Sequencing of Increasingly Sulfated Glycosaminoglycan Oligosaccharides on an Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Leach, Franklin E.; Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.; Amster, I. Jonathan

    2017-09-01

    The structural characterization of sulfated glycosaminoglycan (GAG) carbohydrates remains an important target for analytical chemists attributable to challenges introduced by the natural complexity of these mixtures and the defined need for molecular-level details to elucidate biological structure-function relationships. Tandem mass spectrometry has proven to be the most powerful technique for this purpose. Previously, electron detachment dissociation (EDD), in comparison to other methods of ion activation, has been shown to provide the largest number of useful cleavages for de novo sequencing of GAG oligosaccharides, but such experiments are restricted to Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS). Negative electron transfer dissociation (NETD) provides similar fragmentation results, and can be achieved on any mass spectrometry platform that is designed to accommodate ion-ion reactions. Here, we examine for the first time the effectiveness of NETD-Orbitrap mass spectrometry for the structural analysis of GAG oligosaccharides. Compounds ranging in size from tetrasaccharides to decasaccharides were dissociated by NETD, producing both glycosidic and cross-ring cleavages that enabled the location of sulfate modifications. The highly-sulfated, heparin-like synthetic GAG, ArixtraTM, was also successfully sequenced by NETD. In comparison to other efforts to sequence GAG chains without fully ionized sulfate constituents, the occurrence of sulfate loss peaks is minimized by judicious precursor ion selection. The results compare quite favorably to prior results with electron detachment dissociation (EDD). Significantly, the duty cycle of the NETD experiment is sufficiently short to make it an effective tool for on-line separations, presenting a straightforward path for selective, high-throughput analysis of GAG mixtures. [Figure not available: see fulltext.

  13. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, John P.

    1986-01-01

    An apparatus for measuring the overall decontamination factor of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  14. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, J.P.

    1985-07-03

    An apparatus for measuring the overall decontamination factors of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  15. Cell-phone-based platform for biomedical device development and education applications.

    PubMed

    Smith, Zachary J; Chu, Kaiqin; Espenson, Alyssa R; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-03-02

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350x microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150 x 50 with no image processing, and approximately 350 x 350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field.

  16. Cell-Phone-Based Platform for Biomedical Device Development and Education Applications

    PubMed Central

    Smith, Zachary J.; Chu, Kaiqin; Espenson, Alyssa R.; Rahimzadeh, Mehdi; Gryshuk, Amy; Molinaro, Marco; Dwyre, Denis M.; Lane, Stephen; Matthews, Dennis; Wachsmann-Hogiu, Sebastian

    2011-01-01

    In this paper we report the development of two attachments to a commercial cell phone that transform the phone's integrated lens and image sensor into a 350× microscope and visible-light spectrometer. The microscope is capable of transmission and polarized microscopy modes and is shown to have 1.5 micron resolution and a usable field-of-view of 150×150 with no image processing, and approximately 350×350 when post-processing is applied. The spectrometer has a 300 nm bandwidth with a limiting spectral resolution of close to 5 nm. We show applications of the devices to medically relevant problems. In the case of the microscope, we image both stained and unstained blood-smears showing the ability to acquire images of similar quality to commercial microscope platforms, thus allowing diagnosis of clinical pathologies. With the spectrometer we demonstrate acquisition of a white-light transmission spectrum through diffuse tissue as well as the acquisition of a fluorescence spectrum. We also envision the devices to have immediate relevance in the educational field. PMID:21399693

  17. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  18. IMPROVED Ti II log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. P.; Lawler, J. E.; Sneden, C.

    2013-10-01

    Atomic transition probability measurements for 364 lines of Ti II in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer (FTS) and a new echelle spectrometer are combined with published radiative lifetimes to determine these transition probabilities. The new results are in generally good agreement with previously reported FTS measurements. Use of the new echelle spectrometer, independent radiometric calibration methods, and independent data analysis routines enables a reduction of systematic errors and overall improvement in transition probability accuracy over previous measurements. The new Ti II data are applied to high-resolution visible and UVmore » spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ti abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. The Ti abundances derived using Ti II for these two stars match those derived using Ti I and support the relative Ti/Fe abundance ratio versus metallicity seen in previous studies.« less

  19. Developments in the realization of diffuse reflectance scales at NPL

    NASA Astrophysics Data System (ADS)

    Chunnilall, Christopher J.; Clarke, Frank J. J.; Shaw, Michael J.

    2005-08-01

    The United Kingdom scales for diffuse reflectance are realized using two primary instruments. In the 360 nm to 2.5 μm spectral region the National Reference Reflectometer (NRR) realizes absolute measurement of reflectance and radiance factor by goniometric measurements. Hemispherical reflectance scales are obtained through the spatial integration of these goniometric measurements. In the mid-infrared region (2.5 μm - 55 μm) the hemispherical reflectance scale is realized by the Absolute Hemispherical Reflectometer (AHR). This paper describes some of the uncertainties resulting from errors in aligning the NRR and non-ideality in sample topography, together with its use to carry out measurements in the 1 - 1.6 μm region. The AHR has previously been used with grating spectrometers, and has now been coupled to a Fourier transform spectrometer.

  20. Commissioning of the FTS-2 Data Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Sherwood, M.; Naylor, D.; Gom, B.; Bell, G.; Friberg, P.; Bintley, D.

    2015-09-01

    FTS-2 is the intermediate resolution Fourier Transform Spectrometer coupled to the SCUBA-2 facility bolometer camera at the James Clerk Maxwell Telescope in Hawaii. Although in principle FTS instruments have the advantage of relatively simple optics compared to other spectrometers, they require more sophisticated data processing to compute spectra from the recorded interferogram signal. In the case of FTS-2, the complicated optical design required to interface with the existing telescope optics introduces performance compromises that complicate spectral and spatial calibration, and the response of the SCUBA-2 arrays introduce interferogram distortions that are a challenge for data reduction algorithms. We present an overview of the pipeline and discuss new algorithms that have been written to correct the noise introduced by unexpected behavior of the SCUBA-2 arrays.

  1. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  2. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter Through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared (MIR) and a far-infrared interferometer (FIR) and operates at 170 Kelvin. The MIR is a Michelson Fourier transform spectrometer utilizing a 76 mm (3 inch) diameter potassium bromide beamsplitter and compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. 'Me stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  3. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James, III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared and a far-infrared interferometer and operates at 170 Kelvin. The mid-infrared interferometer is a Michelson- type Fourier transform spectrometer utilizing a 3 inch diameter potassium bromide beamsplitter/compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. The stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  4. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    NASA Astrophysics Data System (ADS)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  5. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  6. Enhanced broadband (11-15 µm) QWIP FPAs for space applications

    NASA Astrophysics Data System (ADS)

    Nedelcu, Alexandru; de l'Isle, Nadia B.; Truffer, Jean-Patrick; Belhaire, Eric; Costard, Eric; Bois, Philippe; Merken, Patrick; Saint-Pé, Olivier

    2017-11-01

    A thirty months ESA project started in March 2008, whose purpose is to expand and assess the performance of broadband (11-15μm) quantum detectors for spectro-imaging applications: Fourier Transform Spectrometers and Dispersive Spectrometers. We present here the technical requirements, the development approach chosen as well as preliminary signal to noise ratio (SNR) calculations. Our approach is fully compatible with the final array format (1024x256, pitch 50-60μm). We expect the requested uniformity, operability and SNR levels to be achieved at the goal temperatures (60K for FTS applications and 50K for DS applications). The performance level will be demonstrated on 256x256, 50μm pitch arrays. Also, operability and uniformity issues will be addressed on large mechanical 1024x256 hybrid arrays.

  7. INVESTIGATING SHAPE REPRESENTATION USING SENSITIVITY TO PART- AND AXIS-BASED TRANSFORMATIONS

    PubMed Central

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2015-01-01

    Part -and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location—a biomechanically implausible shape transformation—was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. PMID:26325393

  8. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  9. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    PubMed Central

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  10. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  11. Study of Laminar Flame 2-D Scalar Values at Various Fuel to Air Ratios Using an Imaging Fourier-Transform Spectrometer and 2-D CFD Analysis

    DTIC Science & Technology

    2013-03-01

    NASA- Glenn’s Chemical Equilibrium with Applications (CEA) program. UNICORN CFD predictions were in excellent agreement with CEA calculations at...49 Appendix A – UNICORN CFD Inputs and Instruction .....................................................50 Appendix B – NASA-Glenn...17 Figure 7: Schematic of UNICORN CFD card setup. ........................................................ 18 Figure 8: Averaged flame

  12. A large-stroke cryogenic imaging FTS system for SPICA-Safari

    NASA Astrophysics Data System (ADS)

    Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter

    2014-08-01

    The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.

  13. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Treesearch

    S. K. Akagi; R. J. Yokelson; I. R. Burling; S. Meinardi; I. Simpson; D. R. Blake; G. R. McMeeking; A. Sullivan; T. Lee; S. Kreidenweis; S. Urbanski; J. Reardon; D. W. T. Griffith; T. J. Johnson; D. R. Weise

    2013-01-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas- 5 chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling...

  14. Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells

    DTIC Science & Technology

    2006-12-31

    measurements were made using a BOMEM Fourier-transform infrared spectrometer in conjunction with a continuous flow cryostat. A low- noise current...infrared photodetector ( QWIP ). Quantum well infrared photodetectors are designed from wide bandgap (III-V) semiconductor materials in such a way where...quantum confinement is created. Unlike HgCdTe which utilizes electronic transitions across the fundamental bandgap, QWIPs relies on transitions between

  15. Mining Archived HYSPEC User Data to Analyze the Prompt Pulse at the SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael B.; Iverson, Erik B.; Gallmeier, Franz X.

    The Hybrid-Spectrometer (HYSPEC) is one of 17 instruments currently operated at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratories (ORNL). The secondary spectrometer of this instrument is located inside an out-building off the north side of the SNS instrument hall. HYSPEC has experienced a larger background feature than similar inelastic instruments since its commissioning in 2011. This background feature is caused by a phenomenon known as the “prompt pulse” which is an essential part of neutron production in a pulsed spallation source but comes with unfortunate side effects.

  16. Radon as a Tracer for Lunar Volatiles

    NASA Technical Reports Server (NTRS)

    Friesen, Larry Jay

    1992-01-01

    Radon and its decay product polonium can be used as tracers to search for lunar volatiles. One effective technique to look for them would be by using alpha-particle spectrometers from lunar orbit. Alpha spectrometers were flown in the Apollo Service Modules during the Apollo 15 and 16 missions, and did observe Rn-222 and its decay product Po-210 on the lunar surface from orbit. This demonstrates that radon and polonium can be observed from orbit; what must next be shown is that such observations can reveal something about the locations of volatiles on the Moon.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Platoro Caldera Detail Survey, Durango quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-01

    Between October 18 and November 7, 1978, a high sensitivity airborne gamma-ray spectrometer and magnetometer survey was conducted over the Durango Detailed Survey Area No. 3, which is centered about 20 miles northeast of Pagosa Springs, Colorado and located within the San Juan Mountains. The study was carried out as part of the Aerial Radiometric and Magnetic Reconnaissance Survey Program, designed to map the regional distribution of the natural radioelements for the principal rock units of the United States in support of the National Uranium Resource Evaluation (NURE) program.

  18. For geological investigations with airborne thermal infrared multispectral images: Transfer of calibration from laboratory spectrometer to TIMS as alternative for removing atmospheric effects

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Anderson, Donald L.

    1995-01-01

    This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.

  19. Line drawing of layout of Scietific Instrument Module of Apollo 16

    NASA Image and Video Library

    1972-03-01

    A line drawing illustrating the layout of the Scietific Instrument Module (SIM) of the Apollo 16 Service Module. Shown here is the location in the SIM bay of the equipment for each orbital experiment. Arrows point to various components of the SIM bay. The sensors for the gamma ray spectrometer and the mas spectrometer both extend outward on a boom about 25 feet when the instruments are in use. The subsatellite is launched while the Service Module is in orbit around the moon. The film cassettes must be retrieved prior to Command Module/Service Module separation.

  20. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  1. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less

  2. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the GeoFTS design is mature and flight ready.

  3. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  4. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  5. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer.

    PubMed

    Soriano-Disla, José M; Janik, Leslie J; McLaughlin, Michael J

    2018-02-01

    We examined the feasibility of using handheld mid-infrared (MIR) Fourier-Transform infrared (FT-IR) instrumentation for detecting and analysing cyanide (CN) contamination in field contaminated soils. Cyanide spiking experiments were first carried out, in the laboratory, to test the sensitivity of infrared Fourier transform (DRIFT) spectrometry to ferro- and ferricyanide compounds across a range of reference soils and minerals. Both benchtop and handheld diffuse reflectance infrared spectrometers were tested. Excellent results were obtained for the reference soils and minerals, with the MIR outperforming the near-infrared (NIR) range. Spectral peaks characteristic of the -C≡N group were observed near 2062 and 2118cm -1 in the MIR region for the ferro- and ferricyanide compounds spiked into soils/minerals, respectively. In the NIR region such peaks were observed near 4134 and 4220cm -1 . Cyanide-contaminated samples were then collected in the field and analyzed with the two spectrometers to further test the applicability of the DRIFT technique for soils containing aged CN residues. The prediction of total CN in dry and ground contaminated soils using the handheld MIR instrument resulted in a coefficient of determination (R 2 ) of 0.88-0.98 and root mean square error of the cross-validation (RMSE) of 21-49mgkg -1 for a CN range of 0-611mgkg -1 . A major peak was observed in the MIR at about 2092cm -1 which was attributed to "Prussian Blue" (Fe 4 [Fe(CN) 6 ] 3 ·xH 2 O). These results demonstrate the potential of handheld DRIFT instrumentation as a promising alternative to the standard laboratory method to predict CN concentrations in contaminated field soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  7. SPECTIX, a PETAL+ X-ray spectrometer: design, calibration and preliminary tests

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Bastiani, S.; Batani, D.; Brambrink, E.; Boutoux, G.; Duval, A.; Hulin, S.; Jakubowska, K.; Koenig, M.; Lantuéjoul-Thfoin, I.; Lecherbourg, L.; Szabo, C. I.; Vauzour, B.

    2018-01-01

    The present article describes the design, the calibration and preliminary tests of the X-ray transmission crystal spectrometer SPECTIX (Spectromètre PEtal à Cristaux en Transmission X) built in the framework of the PETAL (PETawatt Aquitaine Laser) project and located in the Laser MégaJoule (LMJ) facility [1,2]. SPECTIX aims at characterizing the hard x-ray Kα emission generated by the interaction of the PETAL ps ultra high-energy laser with a target. The broad spectral range covered by this spectrometer (7 to 150 keV) is achieved by using two measurement channels composed by two distinct crystals. Due to the harsh environment experienced by the spectrometer during a LMJ-PETAL shot, passive detection with image plates is used. Shielding has been dimensioned in order to protect the detector against PETAL shot products. It includes a magnetic dipole to remove electrons entering the spectrometer, a 20 mm thick tungsten frontal collimation and a 6 mm thick lead housing. The SPECTIX performances, including the shielding efficiency, have been tested during an experimental campain performed at the PICO 2000 laser facility at LULI. Improvements inferred from these tests are currently being implemented. Full commissioning of SPECTIX is planned on PETAL shots at the end of 2017.

  8. 59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN THE SIGNAL POWER CONDITIONING ROOM. THE CURRENT TRANSFORMER (UPPER RIGHT) IS AN INDUCTION COUPLED SENSOR WHICH IS USED TO REDUCE HIGH CURRENT TO ANALOGOUS LOW VALUES SAFE TO USE IN CONTROL ROOM CIRCUITRY. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  9. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    NASA Technical Reports Server (NTRS)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson measuring the atmospheric chemistry across the Los Angeles basin. Development has begun on a flight size PanFTS engineering model (EM) that addresses all critical scaling issues and demonstrates operation over the full spectral range of the flight instrument which will show the PanFTS instrument design is mature.

  10. PIR-fiber spectroscopy with FTIR and TDL spectrometers in the middle infared range of spectra

    NASA Astrophysics Data System (ADS)

    Artjushenko, Vjacheslav G.; Afanasyeva, Natalia I.; Bruch, Reinhard F.; Daniellian, G.; Stepanov, Eugene V.

    2000-07-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR- fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high resolution of TDL spectrometers with (Delta) v equals 10-4 cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors, and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  11. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  12. Exposure to 50 Hz magnetic field in apartment buildings with built-in transformer stations in Hungary.

    PubMed

    Thuróczy, György; Jánossy, Gábor; Nagy, Noémi; Bakos, József; Szabó, Judit; Mezei, Gábor

    2008-01-01

    Exposure to 50 Hz magnetic field (MF) was evaluated in 31 multi-level apartment buildings with built-in step-down transformer stations. In each building, three apartments were selected: one apartment located immediately above the transformer room (index apartment), one located on the same floor and one on a higher floor. The mean value of measured MFs was 0.98 microT in apartments above transformers, 0.13 microT on the same floor, and 0.1 microT in on higher floors. The mean measured MF value was higher than 0.2 microT in 30 (97%) index apartments, 4 (14%) on the same floor as the index apartments and 4 (13%) on higher floors. The corresponding numbers were 25 (81%), 0 and 0, respectively, when 0.4 microT was used as cut-point. It is concluded that apartments in building with built-in transformers can be reliably classified into high and low-exposure categories based on their location in relation to transformers.

  13. A multi-detector neutron spectrometer with nearly isotropic response for environmental and workplace monitoring

    NASA Astrophysics Data System (ADS)

    Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Delgado, A.; Romero, A.; Esposito, A.

    2010-01-01

    This communication describes an improved design for a neutron spectrometer consisting of 6Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10 -9 to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.

  14. TANGOO: A ground-based tilting-filter spectrometer for deriving the temperature in the mesopause region

    NASA Astrophysics Data System (ADS)

    Wildner, S.; Bittner, M.

    2009-04-01

    TANGOO (Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) is a passive, ground-based optical instrument for the purpose of a simultanously automatic long-term monitoring of OH(6-2) and O2 atm. Band (0-1) emissions (called "airglow"), yielding rotational temperatures in about 87 and 95 km, respectively. TANGOO, being a transportable and comparatively easy-to-use instrument, is the enhancement of the Argentine Airglow Spectrometer (Scheer, 1987) and shows significant improvements in the temporal resolution and throughput. It will be located on the German Enviromental Research Station "Schneefernerhaus", Zugspitze (47°,4 N, 11° E) and will start measurements in 2009. Objectives of TANGOO cover the analysis of dynamical processes such as gravity waves as well as the identification of climate signals. The observation method will be presented.

  15. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    PubMed

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  16. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  17. Photochemistry of Iron and Ruthenium Carbonyl Complexes: Evidence for Light-Induced Loss of Carbon Monoxide and Reductive Elimination of Triethylsilane from cis-mer-HM(SiEt3)(CO)3(PPh3).

    DTIC Science & Technology

    1983-05-21

    JEOL FX9OQ Fourier transform or Bruker 250 or 270 MHz Fourier transform spectrometer. Irradiations. Photochemical reactions were carried out using a...Ph 3 ) 3nd -t-Etin V,- a 313 nm quantum yield of -0.6. The process is photochemically everse if the cis-mer-HM(SiPh 3 )(CO) 3 (PPh 3) is irradiated...process is photochemically reversed if the cis-mer-HM(SiPh 3 )(CO)3 (PPh 3 ) is irradiated in t.e presence of excess Et3SiH. Irradiation of cis-mer-HM

  18. VUV Fourier-Transform absorption study of the npπ1 Πu-, v, N ←X1 Σg+, v″ = 0,N″ transitions in D2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L.

    2015-09-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q (N″) (N -N″ = 0) absorption transitions of the D2 molecule. Some 212 Q-lines were assigned and their transition frequencies determined up to excitation energies of 137 000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations which also provide predictions of the autoionization widths of the upper levels.

  19. Rapidly updated hyperspectral sounding and imaging data for severe storm prediction

    NASA Astrophysics Data System (ADS)

    Bingham, Gail; Jensen, Scott; Elwell, John; Cardon, Joel; Crain, David; Huang, Hung-Lung (Allen); Smith, William L.; Revercomb, Hank E.; Huppi, Ronald J.

    2013-09-01

    Several studies have shown that a geostationary hyperspectral imager/sounder can provide the most significant value increase in short term, regional numerical prediction weather models over a range of other options. In 1998, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) proposal was selected by NASA as the New Millennium Earth Observation 3 program over several other geostationary instrument development proposals. After the EO3 GIFTS flight demonstration program was changed to an Engineering Development Unit (EDU) due to funding limitations by one of the partners, the EDU was subjected to flight-like thermal vacuum calibration and testing and successfully validated the breakthrough technologies needed to make a successful observatory. After several government stops and starts, only EUMETSAT's Meteosat Third Generation (MTG-S) sounder is in operational development. Recently, a commercial partnership has been formed to fill the significant data gap. AsiaSat has partnered with GeoMetWatch (GMW)1 to fund the development and launch of the Sounding and Tracking Observatory for Regional Meteorology (STORMTM) sensor, a derivative of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) EDU that was designed, built, and tested by Utah State University (USU). STORMTM combines advanced technologies to observe surface thermal properties, atmospheric weather, and chemistry variables in four dimensions to provide high vertical resolution temperature and moisture sounding information, with the fourth dimension (time) provided by the geosynchronous satellite platform ability to measure a location as often as desired. STORMTM will enhance the polar orbiting imaging and sounding measurements by providing: (1) a direct measure of moisture flux and altitude-resolved water vapor and cloud tracer winds throughout the troposphere, (2) an observation of the time varying atmospheric thermodynamics associated with storm system development, and (3) the transport of tropospheric pollutant gases. The AsiaSat/GMW partnership will host the first STORMTM sensor on their AsiaSat 9 telecommunications satellite at 122 E over the Asia Pacific area. GMW's business plan is to sell the unique STORM data and data products to countries and companies in the satellite coverage area. GMW plans to place 6 STORMTM sensors on geostationary telecommunications satellites to provide global hyperspectral sounding and imaging data. Utah State University's Advanced Weather Systems Laboratory (AWS) will build the sensors for GMW.

  20. Mechanisms of Photo Degradation for Layered Silicate-Polycarbonate Nanocomposites

    DTIC Science & Technology

    2005-09-01

    crystal was used as the sampling accessory. The UV/VIS spectra were recorded using a Cary 5G UV/VIS/ near - infrared (NIR) spectrometer set to scan in...transform infrared spectroscopy. The results reveal that the carbonate linkages undergo a scission reaction upon UV exposure, thereby compromising the...were wiped clean before spectroscopic analysis. 3.3 Spectroscopic Measurements Infrared measurements were recorded on a Nicolet model 560 Magna

Top