Category's analysis and operational project capacity method of transformation in design
NASA Astrophysics Data System (ADS)
Obednina, S. V.; Bystrova, T. Y.
2015-10-01
The method of transformation is attracting widespread interest in fields such contemporary design. However, in theory of design little attention has been paid to a categorical status of the term "transformation". This paper presents the conceptual analysis of transformation based on the theory of form employed in the influential essays by Aristotle and Thomas Aquinas. In the present work the transformation as a method of shaping design has been explored as well as potential application of this term in design has been demonstrated.
General method for designing wave shape transformers.
Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu
2008-12-22
An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo
2003-08-01
In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.
Design of piezoelectric transformer for DC/DC converter with stochastic optimization method
NASA Astrophysics Data System (ADS)
Vasic, Dejan; Vido, Lionel
2016-04-01
Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.
Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H
2017-09-18
A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.
Experimental analysis and simulation calculation of the inductances of loosely coupled transformer
NASA Astrophysics Data System (ADS)
Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo
2017-11-01
The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong
2018-05-01
This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.
Designs for thermal harvesting with nonlinear coordinate transformation
NASA Astrophysics Data System (ADS)
Ji, Qingxiang; Fang, Guodong; Liang, Jun
2018-04-01
In this paper a thermal concentrating design method was proposed based on the concept of generating function without knowing the needed coordinate transformation beforehand. The thermal harvesting performance was quantitatively characterized by heat concentrating efficiency and external temperature perturbation. Nonlinear transformations of different forms were employed to design high order thermal concentrators, and corresponding harvesting performances were investigated by numerical simulations. The numerical results shows that the form of coordinate transformation directly influences the distributions of heat flows inside the concentrator, consequently, influences the thermal harvesting behaviors significantly. The concentrating performance can be actively controlled and optimized by changing the form of coordinate transformations. The analysis in this paper offers a beneficial method to flexibly tune the harvesting performance of the thermal concentrator according to the requirements of practical applications.
Innovative design method of automobile profile based on Fourier descriptor
NASA Astrophysics Data System (ADS)
Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei
2017-10-01
Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.
Analogue Transformations in Physics and their Application to Acoustics
García-Meca, C.; Carloni, S.; Barceló, C.; Jannes, G.; Sánchez-Dehesa, J.; Martínez, A.
2013-01-01
Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an “analogue transformation acoustics” formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575
Computing Instantaneous Frequency by normalizing Hilbert Transform
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2005-01-01
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Computing Instantaneous Frequency by normalizing Hilbert Transform
Huang, Norden E.
2005-05-31
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Controlling the wave propagation through the medium designed by linear coordinate transformation
NASA Astrophysics Data System (ADS)
Wu, Yicheng; He, Chengdong; Wang, Yuzhuo; Liu, Xuan; Zhou, Jing
2015-01-01
Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illusion devices are designed, which have application prospects in micro-optics and nano-optics. The simulation results demonstrate the feasibilities and the flexibilities of the method and the properties of these devices. Design details and full-wave simulation results are provided. The work in this paper comprehensively applies the fundamental theories of electromagnetism and mathematics. The method of obtaining a new solution of the Maxwell equations in a medium from a vacuum plane wave solution and a linear coordinate transformation is introduced. These have a pedagogical value and are methodologically and motivationally appropriate for physics students and teachers at the undergraduate and graduate levels.
Lenses that provide the transformation between two given wavefronts
NASA Astrophysics Data System (ADS)
Criado, C.; Alamo, N.
2016-12-01
We give an original method to design four types of lenses solving the following problems: focusing a given wavefront in a given point, and performing the transformation between two arbitrary incoming and outgoing wavefronts. The method to design the lenses profiles is based on the optical properties of the envelopes of certain families of Cartesian ovals of revolution.
On the design of recursive digital filters
NASA Technical Reports Server (NTRS)
Shenoi, K.; Narasimha, M. J.; Peterson, A. M.
1976-01-01
A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1983-01-01
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developd based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil.
Oxygen-resistant hydrogenases and methods for designing and making same
King, Paul [Golden, CO; Ghirardi, Maria L [Lakewood, CO; Seibert, Michael [Lakewood, CO
2009-03-10
The invention provides oxygen- resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.
Oxygen-resistant hydrogenases and methods for designing and making same
King, Paul; Ghirardi, Maria Lucia; Seibert, Michael
2014-03-04
The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H.sub.2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.
ERIC Educational Resources Information Center
Gutierrez, Kris D.; Vossoughi, Shirin
2010-01-01
This article examines a praxis model of teacher education and advances a new method for engaging novice teachers in reflective practice and robust teacher learning. Social design experiments--cultural historical formations designed to promote transformative learning for adults and children--are organized around expansive notions of learning and…
Scare Tactics: Evaluating Problem Decompositions Using Failure Scenarios
NASA Technical Reports Server (NTRS)
Helm, B. Robert; Fickas, Stephen
1992-01-01
Our interest is in the design of multi-agent problem-solving systems, which we refer to as composite systems. We have proposed an approach to composite system design by decomposition of problem statements. An automated assistant called Critter provides a library of reusable design transformations which allow a human analyst to search the space of decompositions for a problem. In this paper we describe a method for evaluating and critiquing problem decompositions generated by this search process. The method uses knowledge stored in the form of failure decompositions attached to design transformations. We suggest the benefits of our critiquing method by showing how it could re-derive steps of a published development example. We then identify several open issues for the method.
Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method
Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng
2016-01-01
Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358
Fast downscaled inverses for images compressed with M-channel lapped transforms.
de Queiroz, R L; Eschbach, R
1997-01-01
Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.
Scammon, Debra L; Tomoaia-Cotisel, Andrada; Day, Rachel L; Day, Julie; Kim, Jaewhan; Waitzman, Norman J; Farrell, Timothy W; Magill, Michael K
2013-01-01
Objective. To demonstrate the value of mixed methods in the study of practice transformation and illustrate procedures for connecting methods and for merging findings to enhance the meaning derived. Data Source/Study Setting. An integrated network of university-owned, primary care practices at the University of Utah (Community Clinics or CCs). CC has adopted Care by Design, its version of the Patient Centered Medical Home. Study Design. Convergent case study mixed methods design. Data Collection/Extraction Methods. Analysis of archival documents, internal operational reports, in-clinic observations, chart audits, surveys, semistructured interviews, focus groups, Centers for Medicare and Medicaid Services database, and the Utah All Payer Claims Database. Principal Findings. Each data source enriched our understanding of the change process and understanding of reasons that certain changes were more difficult than others both in general and for particular clinics. Mixed methods enabled generation and testing of hypotheses about change and led to a comprehensive understanding of practice change. Conclusions. Mixed methods are useful in studying practice transformation. Challenges exist but can be overcome with careful planning and persistence. PMID:24279836
Artifact-Based Transformation of IBM Global Financing
NASA Astrophysics Data System (ADS)
Chao, Tian; Cohn, David; Flatgard, Adrian; Hahn, Sandy; Linehan, Mark; Nandi, Prabir; Nigam, Anil; Pinel, Florian; Vergo, John; Wu, Frederick Y.
IBM Global Financing (IGF) is transforming its business using the Business Artifact Method, an innovative business process modeling technique that identifies key business artifacts and traces their life cycles as they are processed by the business. IGF is a complex, global business operation with many business design challenges. The Business Artifact Method is a fundamental shift in how to conceptualize, design and implement business operations. The Business Artifact Method was extended to solve the problem of designing a global standard for a complex, end-to-end process while supporting local geographic variations. Prior to employing the Business Artifact method, process decomposition, Lean and Six Sigma methods were each employed on different parts of the financing operation. Although they provided critical input to the final operational model, they proved insufficient for designing a complete, integrated, standard operation. The artifact method resulted in a business operations model that was at the right level of granularity for the problem at hand. A fully functional rapid prototype was created early in the engagement, which facilitated an improved understanding of the redesigned operations model. The resulting business operations model is being used as the basis for all aspects of business transformation in IBM Global Financing.
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Panoramic lens designed with transformation optics.
Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng
2017-01-06
The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.
Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy
NASA Technical Reports Server (NTRS)
Ford, G. E.
1986-01-01
To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.
NASA Technical Reports Server (NTRS)
Palmer, David; Prince, Thomas A.
1987-01-01
A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
NASA Astrophysics Data System (ADS)
Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin
2015-03-01
Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.
1980-11-01
The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed.
Harmon, Rebecca Bouterie; Fontaine, Dorrie; Plews-Ogan, Margaret; Williams, Anne
2012-01-01
To achieve transformational change, a transformational approach is needed. The Appreciative Inquiry (AI) summit is a method that has been used to achieve transformational change in business for at least 20 years, but this innovative alternative approach is unknown to nursing. At the University of Virginia School of Nursing, an AI Summit was designed to bring all staff, faculty, student representatives, and members of the community together to rewrite the school's strategic plan. New connections within the school, the university, and the community were made when 135 participants engaged in the appreciative, 4-step AI process of discovering, dreaming, designing, and creating the school's future. During the summit, 7 strategic teams formed to move the school toward the best possible future while building on the existing positive core. This article describes 10 steps needed to design an AI summit and implications for using this method at other schools of nursing. Copyright © 2012 Elsevier Inc. All rights reserved.
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
NASA Technical Reports Server (NTRS)
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
Greek classicism in living structure? Some deductive pathways in animal morphology.
Zweers, G A
1985-01-01
Classical temples in ancient Greece show two deterministic illusionistic principles of architecture, which govern their functional design: geometric proportionalism and a set of illusion-strengthening rules in the proportionalism's "stochastic margin". Animal morphology, in its mechanistic-deductive revival, applies just one architectural principle, which is not always satisfactory. Whether a "Greek Classical" situation occurs in the architecture of living structure is to be investigated by extreme testing with deductive methods. Three deductive methods for explanation of living structure in animal morphology are proposed: the parts, the compromise, and the transformation deduction. The methods are based upon the systems concept for an organism, the flow chart for a functionalistic picture, and the network chart for a structuralistic picture, whereas the "optimal design" serves as the architectural principle for living structure. These methods show clearly the high explanatory power of deductive methods in morphology, but they also make one open end most explicit: neutral issues do exist. Full explanation of living structure asks for three entries: functional design within architectural and transformational constraints. The transformational constraint brings necessarily in a stochastic component: an at random variation being a sort of "free management space". This variation must be a variation from the deterministic principle of the optimal design, since any transformation requires space for plasticity in structure and action, and flexibility in role fulfilling. Nevertheless, finally the question comes up whether for animal structure a similar situation exists as in Greek Classical temples. This means that the at random variation, that is found when the optimal design is used to explain structure, comprises apart from a stochastic part also real deviations being yet another deterministic part. This deterministic part could be a set of rules that governs actualization in the "free management space".
Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anant, K.S.
1997-06-01
In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less
NASA Astrophysics Data System (ADS)
Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou
2017-09-01
The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-02-18
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-01-01
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203
Overlapping illusions by transformation optics without any negative refraction material.
Sun, Fei; He, Sailing
2016-01-11
A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.
A broadband transformation-optics metasurface lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui
2014-04-14
We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.
The Transformation of Personal Themas in Literary Creation.
ERIC Educational Resources Information Center
Barron, Frank
Many methods in clinical and personality psychology has as their implicit if not explicit aim the eliciting of transformations so that the mind of the subject may be better understood. By offering a graduate seminar in "Psychobiography and Historiometry," the author hoped to deal with the problem of design and transformation in the study…
A study on thermal characteristics analysis model of high frequency switching transformer
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyung; Jung, Tae-Uk
2015-05-01
Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.
A miniature transformer/dc-dc converter for implantable medical devices
NASA Astrophysics Data System (ADS)
Mohammed, Osama A.; Jones, W. Kinzy
1988-11-01
This paper presents a new technique for the design of a miniature dc-dc converter used in energy producing implantable devices such as defibrillators and advanced pacemakers. This converter is inserted in such a device and is used to boost the voltage from a low voltage implanted battery to high voltage energy storage capacitors in a short period of time. The stored energy is then delivered, when needed, through an energy delivery circuit in order to stimulate or defibrillate the heart. The converter takes the form of a flyback topology which includes a miniature transformer and a specialized control circuit. The transformer was designed using a new numerical synthesis method which utilizes finite elements and dynamic programming for predicting the geometries of the transformer's magnetic circuit. The final transformer design satisfied the performance criteria and provided means for selecting the converter components. The obtained performance results for the transformer and the dc-dc converter were in excellent agreement with laboratory performance tests.
Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain
NASA Astrophysics Data System (ADS)
Tischler, N.; Rockstuhl, C.; Słowik, K.
2018-04-01
Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994), 10.1103/PhysRevLett.73.58] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Development of 600 kV triple resonance pulse transformer.
Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou
2015-06-01
In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.
ERIC Educational Resources Information Center
Head, Annabel; Ellis-Caird, Helen; Rhodes, Louisa; Parkinson, Kathie
2018-01-01
Background: People with learning disabilities are moving out of hospitals as part of the Transforming Care programme, although thus far their views on how they have experienced this have not been researched. Materials and Methods: A qualitative design was used to explore how people with learning disabilities experienced moving as part of…
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
DRS: Derivational Reasoning System
NASA Technical Reports Server (NTRS)
Bose, Bhaskar
1995-01-01
The high reliability requirements for airborne systems requires fault-tolerant architectures to address failures in the presence of physical faults, and the elimination of design flaws during the specification and validation phase of the design cycle. Although much progress has been made in developing methods to address physical faults, design flaws remain a serious problem. Formal methods provides a mathematical basis for removing design flaws from digital systems. DRS (Derivational Reasoning System) is a formal design tool based on advanced research in mathematical modeling and formal synthesis. The system implements a basic design algebra for synthesizing digital circuit descriptions from high level functional specifications. DRS incorporates an executable specification language, a set of correctness preserving transformations, verification interface, and a logic synthesis interface, making it a powerful tool for realizing hardware from abstract specifications. DRS integrates recent advances in transformational reasoning, automated theorem proving and high-level CAD synthesis systems in order to provide enhanced reliability in designs with reduced time and cost.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
Scammon, Debra L; Tomoaia-Cotisel, Andrada; Day, Rachel L; Day, Julie; Kim, Jaewhan; Waitzman, Norman J; Farrell, Timothy W; Magill, Michael K
2013-12-01
To demonstrate the value of mixed methods in the study of practice transformation and illustrate procedures for connecting methods and for merging findings to enhance the meaning derived. An integrated network of university-owned, primary care practices at the University of Utah (Community Clinics or CCs). CC has adopted Care by Design, its version of the Patient Centered Medical Home. Convergent case study mixed methods design. Analysis of archival documents, internal operational reports, in-clinic observations, chart audits, surveys, semistructured interviews, focus groups, Centers for Medicare and Medicaid Services database, and the Utah All Payer Claims Database. Each data source enriched our understanding of the change process and understanding of reasons that certain changes were more difficult than others both in general and for particular clinics. Mixed methods enabled generation and testing of hypotheses about change and led to a comprehensive understanding of practice change. Mixed methods are useful in studying practice transformation. Challenges exist but can be overcome with careful planning and persistence. © Health Research and Educational Trust.
A novel method for inverse fiber Bragg grating structure design
NASA Astrophysics Data System (ADS)
Yin, Yu-zhe; Chen, Xiang-fei; Dai, Yi-tang; Xie, Shi-zhong
2003-12-01
A novel grating inverse design method is proposed in this paper, which is direct in physical meaning and easy to accomplish. The key point of the method is design and implement desired spectra response in grating strength modulation domain, while not in grating period chirp domain. Simulated results are in good coincidence with design target. By transforming grating period chirp to grating strength modulation, a novel grating with opposite dispersion characters is proposed.
A Unified Approach to IRT Scale Linking and Scale Transformations. Research Report. RR-04-09
ERIC Educational Resources Information Center
von Davier, Matthias; von Davier, Alina A.
2004-01-01
This paper examines item response theory (IRT) scale transformations and IRT scale linking methods used in the Non-Equivalent Groups with Anchor Test (NEAT) design to equate two tests, X and Y. It proposes a unifying approach to the commonly used IRT linking methods: mean-mean, mean-var linking, concurrent calibration, Stocking and Lord and…
General optical discrete z transform: design and application.
Ngo, Nam Quoc
2016-12-20
This paper presents a generalization of the discrete z transform algorithm. It is shown that the GOD-ZT algorithm is a generalization of several important conventional discrete transforms. Based on the GOD-ZT algorithm, a tunable general optical discrete z transform (GOD-ZT) processor is synthesized using the silica-based finite impulse response transversal filter. To demonstrate the effectiveness of the method, the design and simulation of a tunable optical discrete Fourier transform (ODFT) processor as a special case of the synthesized GOD-ZT processor is presented. It is also shown that the ODFT processor can function as a real-time optical spectrum analyzer. The tunable ODFT has an important potential application as a tunable optical demultiplexer at the receiver end of an optical orthogonal frequency-division multiplexing transmission system.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
Wu, Linzhi
2016-01-01
Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884
NASA Astrophysics Data System (ADS)
Prawata, Albertus Galih
2017-11-01
The architectural design stages in architectural practices or in architectural design studio consist of many aspects. One of them is during the early phases of the design process, where the architects or designers try to interpret the project brief into the design concept. This paper is a report of the procedure of digital tools in the early design process in an architectural practice in Jakarta. It targets principally the use of BIM and digital modeling to generate information and transform them into conceptual forms, which is not very common in Indonesian architectural practices. Traditionally, the project brief is transformed into conceptual forms by using sketches, drawings, and physical model. The new method using digital tools shows that it is possible to do the same thing during the initial stage of the design process to create early architectural design forms. Architect's traditional tools and methods begin to be replaced effectively by digital tools, which would drive bigger opportunities for innovation.
Professional Development of Teacher-Educators towards Transformative Learning
ERIC Educational Resources Information Center
Meijer, Marie-Jeanne; Kuijpers, Marinka; Boei, Fer; Vrieling, Emmy; Geijsel, Femke
2017-01-01
This study explores the specific characteristics of teacher-educator professional development interventions that enhance their transformative learning towards stimulating the inquiry-based attitude of students. An educational design research method was followed. Firstly, in partnership with five experienced educators, a professional development…
Multiple feature extraction by using simultaneous wavelet transforms
NASA Astrophysics Data System (ADS)
Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio
2003-07-01
We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.
Imaging of conductivity distributions using audio-frequency electromagnetic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Morrison, H.F.
1990-10-01
The objective of this study has been to develop mathematical methods for mapping conductivity distributions between boreholes using low frequency electromagnetic (em) data. In relation to this objective this paper presents two recent developments in high-resolution crosshole em imaging techniques. These are (1) audio-frequency diffusion tomography, and (2) a transform method in which low frequency data is first transformed into a wave-like field. The idea in the second approach is that we can then treat the transformed field using conventional techniques designed for wave field analysis.
New approach to isometric transformations in oblique local coordinate systems of reference
NASA Astrophysics Data System (ADS)
Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz
2017-12-01
The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.
The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design
NASA Astrophysics Data System (ADS)
Borrmann, Dorit; Elseberg, Jan; Lingemann, Kai; Nüchter, Andreas
2011-03-01
The Hough Transform is a well-known method for detecting parameterized objects. It is the de facto standard for detecting lines and circles in 2-dimensional data sets. For 3D it has attained little attention so far. Even for the 2D case high computational costs have lead to the development of numerous variations for the Hough Transform. In this article we evaluate different variants of the Hough Transform with respect to their applicability to detect planes in 3D point clouds reliably. Apart from computational costs, the main problem is the representation of the accumulator. Usual implementations favor geometrical objects with certain parameters due to uneven sampling of the parameter space. We present a novel approach to design the accumulator focusing on achieving the same size for each cell and compare it to existing designs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo
2018-05-01
The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.
Optical chirp z-transform processor with a simplified architecture.
Ngo, Nam Quoc
2014-12-29
Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.
Heat transfer comparison of nanofluid filled transformer and traditional oil-immersed transformer
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong
2018-05-01
Dispersing nanoparticles with high thermal conductivity into transformer oil is an innovative approach to improve the thermal performance of traditional oil-immersed transformers. This mixture, also known as nanofluid, has shown the potential in practical application through experimental measurements. This paper presents the comparisons of nanofluid filled transformer and traditional oil-immersed transformer in terms of their computational fluid dynamics (CFD) solutions from the perspective of optimal design. Thermal performance of transformers with the same parameters except coolants is compared. A further comparison on heat transfer then is made after minimizing the oil volume and maximum temperature-rise of these two transformers. Adaptive multi-objective optimization method is employed to tackle this optimization problem.
A simple and reliable multi-gene transformation method for switchgrass.
Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko
2014-07-01
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
Synthesis of Hadamard transformers by use of multimode interference optical waveguides.
Gupta, Atma Ram; Tsutsumi, Kiyoshi; Nakayama, Junichi
2003-05-20
We propose a synthesis method of optical Hadamard transformer using multimode interference (MMI) couplers. By using the signal transfer matrix of 2 x 2, 4 x 4, and 8 x 8 MMI couplers, we show that sum and difference units of input signals can be synthesized. An interchange unit of two signals can also be synthesized. One synthesis method of Hadamard transformers is a combination of only 2 x 2 units, and the other is a combination of N x N(N > or = 4) units as well as 2 x 2 units. The design examples of operation units are shown, and the size and the output power of Hadamard transformers are estimated.
NASA Astrophysics Data System (ADS)
Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura
2016-09-01
The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.
NASA Astrophysics Data System (ADS)
Liu, W. L.; Li, Y. W.
2017-09-01
Large-scale dimensional metrology usually requires a combination of multiple measurement systems, such as laser tracking, total station, laser scanning, coordinate measuring arm and video photogrammetry, etc. Often, the results from different measurement systems must be combined to provide useful results. The coordinate transformation is used to unify coordinate frames in combination; however, coordinate transformation uncertainties directly affect the accuracy of the final measurement results. In this paper, a novel method is proposed for improving the accuracy of coordinate transformation, combining the advantages of the best-fit least-square and radial basis function (RBF) neural networks. First of all, the configuration of coordinate transformation is introduced and a transformation matrix containing seven variables is obtained. Second, the 3D uncertainty of the transformation model and the residual error variable vector are established based on the best-fit least-square. Finally, in order to optimize the uncertainty of the developed seven-variable transformation model, we used the RBF neural network to identify the uncertainty of the dynamic, and unstructured, owing to its great ability to approximate any nonlinear function to the designed accuracy. Intensive experimental studies were conducted to check the validity of the theoretical results. The results show that the mean error of coordinate transformation decreased from 0.078 mm to 0.054 mm after using this method in contrast with the GUM method.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
Optical calculation of correlation filters for a robotic vision system
NASA Technical Reports Server (NTRS)
Knopp, Jerome
1989-01-01
A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.
The Motivating Language of Principals: A Sequential Transformative Strategy
ERIC Educational Resources Information Center
Holmes, William Tobias
2012-01-01
This study implemented a Sequential Transformative Mixed Methods design with teachers (as recipients) and principals (to give voice) in the examination of principal talk in two different school accountability contexts (Continuously Improving and Continuously Zigzag) using the conceptual framework of Motivating Language Theory. In phase one,…
Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E
2014-01-01
This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.
Counteracting moment device for reduction of earthquake-induced excursions of multi-level buildings.
Nagaya, K; Fukushima, T; Kosugi, Y
1999-05-01
A vibration-control mechanism for beams and columns was presented in our previous report in which the earthquake force was transformed into a vibration-control force by using a gear train mechanism. In our previous report, however, only the principle of transforming the earthquake force into the control force was presented; the discussion for real structures and the design method were not presented. The present article provides a theoretical analysis of the column which is used in multi-layered buildings. Experimental tests were carried out for a model of multi-layered buildings in the frequency range of a principal earthquake wave. Theoretical results are compared to the experimental data. The optimal design of the control mechanism, which is of importance in the column design, is presented. Numerical calculations are carried out for the optimal design. It is shown that vibrations of the column involving the mechanism are suppressed remarkably. The optimal design method and the analytical results are applicable to the design of the column.
Design, Test and Demonstration of Fault Current Limiting HTS Transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazelton, Drew
The project developed new technology that enables the creation of a high temperature superconductor-based FCL power transformer. SuperPower’s research and development created new methods to bond HTS conductor to a supporting substrate, test, and insulate the resulting bonded conductor, reduce winding ac losses, ensure FCL functionality during a transformer fault and build firm superconducting joints in the transformer harnesses and cabling. The bonded conductor in this program was shown to meet the critical operating parameters of providing the superconducting transformer operation while being able to meet the target normal state resistance required for FCL operation. The bonded conductor was alsomore » shown to be able to handle the fabrication stresses associated with the manufacture of the FCL transformer while also being able to handle the high hoop stresses and axial forces during a fault transient. Much of the technology developed here is applicable to the broader applied superconductivity community. The ability to tailor the clad conductors performance characteristics gives the designer of devices utilizing HTS a broader capability to address the particular needs of an given application. SuperPower worked with its sub-recipients Waukesha Electric Systems, ORNL, Southern California Edison and University of Houston to develop the design, fabrication, installation and operational aspects of a fault current limiting transformer on the electrical grid.« less
Paraxial diffractive elements for space-variant linear transforms
NASA Astrophysics Data System (ADS)
Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan
1998-06-01
Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.
A novel body frame based approach to aerospacecraft attitude tracking.
Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung
2017-09-01
In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
An overview of very high level software design methods
NASA Technical Reports Server (NTRS)
Asdjodi, Maryam; Hooper, James W.
1988-01-01
Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.
Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang
2017-01-01
Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.
The research of full automatic oil filtering control technology of high voltage insulating oil
NASA Astrophysics Data System (ADS)
Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang
2017-09-01
In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.
[Design of the image browser for PACS image workstation].
Li, Feng; Zhou, He-Qin
2006-09-01
The design of PACS image workstation based on DICOM3.0 is introduced in the paper, then the designing method of the PACS image browser based on the control system theory is presented,focusing on two main units:DICOM analyzer and the information mapping transformer.
The application and improvement of Fourier transform spectrometer experiment
NASA Astrophysics Data System (ADS)
Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning
2017-08-01
According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.
ERIC Educational Resources Information Center
Brown, Michael H.
2001-01-01
Examines methods that are designed to expand and transform consciousness and argues that aspects of transpersonal psychology form the basis for the investigation of rituals, spiritual disciplines, and techniques that provoke shifts in awareness and energy. Outlines a psychosynthesis model for understanding these experiences, and presents a program…
Triggering Transformative Possibilities: A Case Study of Leaders' Quest in China
ERIC Educational Resources Information Center
Lau-Kwong, Kenzie
2012-01-01
This study explored the nature of transformative learning experiences among global executives who participated in Quest program, a learning journey program designed to facilitate shifting mind-sets and worldviews through 1-week intensives in countries such as China. A mixed methods, multiple case study approach was employed. First, a secondary…
ERIC Educational Resources Information Center
Smith, Daniella
2011-01-01
The purpose of this study was to determine the factors that impacted the level of self-perceived transformational leadership potential in preservice school librarians who participated in a master's degree program in library and information studies focusing on leadership development. A mixed-method concurrent triangulation research design was…
ERIC Educational Resources Information Center
He, Yong
2013-01-01
Common test items play an important role in equating multiple test forms under the common-item nonequivalent groups design. Inconsistent item parameter estimates among common items can lead to large bias in equated scores for IRT true score equating. Current methods extensively focus on detection and elimination of outlying common items, which…
Schriver, Brittany; Mandal, Mahua; Muralidharan, Arundati; Nwosu, Anthony; Dayal, Radhika; Das, Madhumita; Fehringer, Jessica
2017-11-01
As a result of new global priorities, there is a growing need for high-quality evaluations of gender-integrated health programmes. This systematic review examined 99 peer-reviewed articles on evaluations of gender-integrated (accommodating and transformative) health programmes with regard to their theory of change (ToC), study design, gender integration in data collection, analysis, and gender measures used. Half of the evaluations explicitly described a ToC or conceptual framework (n = 50) that guided strategies for their interventions. Over half (61%) of the evaluations used quantitative methods exclusively; 11% used qualitative methods exclusively; and 28% used mixed methods. Qualitative methods were not commonly detailed. Evaluations of transformative interventions were less likely than those of accommodating interventions to employ randomised control trials. Two-thirds of the reviewed evaluations reported including at least one specific gender-related outcome (n = 18 accommodating, n = 44 transformative). To strengthen evaluations of gender-integrated programmes, we recommend use of ToCs, explicitly including gender in the ToC, use of gender-sensitive measures, mixed-method designs, in-depth descriptions of qualitative methods, and attention to gender-related factors in data collection logistics. We also recommend further research to develop valid and reliable gender measures that are globally relevant.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including sensor networks and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1981-01-01
Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances
NASA Astrophysics Data System (ADS)
Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo
2018-02-01
Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.
Feedback linearization of singularly perturbed systems based on canonical similarity transformations
NASA Astrophysics Data System (ADS)
Kabanov, A. A.
2018-05-01
This paper discusses the problem of feedback linearization of a singularly perturbed system in a state-dependent coefficient form. The result is based on the introduction of a canonical similarity transformation. The transformation matrix is constructed from separate blocks for fast and slow part of an original singularly perturbed system. The transformed singular perturbed system has a linear canonical form that significantly simplifies a control design problem. Proposed similarity transformation allows accomplishing linearization of the system without considering the virtual output (as it is needed for normal form method), a technique of a transition from phase coordinates of the transformed system to state variables of the original system is simpler. The application of the proposed approach is illustrated through example.
NASA Astrophysics Data System (ADS)
Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo
2006-12-01
As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
Logarithm conformal mapping brings the cloaking effect
Xu, Lin; Chen, Huanyang
2014-01-01
Over the past years, invisibility cloaks have been extensively discussed since transformation optics emerges. Generally, the electromagnetic parameters of invisibility cloaks are complicated tensors, yet difficult to realize. As a special method of transformation optics, conformal mapping helps us design invisibility cloak with isotropic materials of a refractive index distribution. However, for all proposed isotropic cloaks, the refractive index range is at such a breadth that challenges current experimental fabrication. In this work, we propose two new kinds of logarithm conformal mappings for invisible device designs. For one of the mappings, the refractive index distribution of conformal cloak varies from 0 to 9.839, which is more feasible for future implementation. Numerical simulations by using finite element method are performed to confirm the theoretical analysis. PMID:25359138
From PCK to TPACK: Developing a Transformative Model for Pre-Service Science Teachers
NASA Astrophysics Data System (ADS)
Jang, Syh-Jong; Chen, Kuan-Chung
2010-12-01
New science teachers should be equipped with the ability to integrate and design the curriculum and technology for innovative teaching. How to integrate technology into pre-service science teachers' pedagogical content knowledge is the important issue. This study examined the impact on a transformative model of integrating technology and peer coaching for developing technological pedagogical and content knowledge (TPACK) of pre-service science teachers. A transformative model and an online system were designed to restructure science teacher education courses. Participants of this study included an instructor and 12 pre-service teachers. The main sources of data included written assignments, online data, reflective journals, videotapes and interviews. This study expanded four views, namely, the comprehensive, imitative, transformative and integrative views to explore the impact of TPACK. The model could help pre-service teachers develop technological pedagogical methods and strategies of integrating subject-matter knowledge into science lessons, and further enhanced their TPACK.
Illusion optics: Optically transforming the nature and the location of electromagnetic emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr
Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication ofmore » the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.« less
A review of parametric approaches specific to aerodynamic design process
NASA Astrophysics Data System (ADS)
Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li
2018-04-01
Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.
A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation
NASA Astrophysics Data System (ADS)
Chen, Wenxiang; Hong, Baocai
2005-02-01
A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
A program for handling map projections of small-scale geospatial raster data
Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.
2012-01-01
Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.
Rehabilitation centers in change: participatory methods for managing redesign and renovation.
Lahtinen, Marjaana; Nenonen, Suvi; Rasila, Heidi; Lehtelä, Jouni; Ruohomäki, Virpi; Reijula, Kari
2014-01-01
The aim of this article is to describe a set of participatory methods that we have either developed or modified for developing future work and service environments to better suit renewable rehabilitation processes. We discuss the methods in a larger framework of change process model and participatory design. Rehabilitation organizations are currently in transition; customer groups, financing, services, and the processes of rehabilitation centers are changing. The pressure for change challenges the centers to develop both their processes and facilities. There is a need for methods that support change management. Four participatory methods were developed: future workshop, change survey, multi-method assessment tool, and participatory design generator cards. They were tested and evaluated in three rehabilitation centers at the different phases of their change process. The developed methods were considered useful in creating a mutual understanding of the change goals between different stakeholders, providing a good picture of the work community's attitudes toward the change, forming an integrated overview of the built and perceived environment, inspiring new solutions, and supporting the management in steering the change process. The change process model described in this article serves as a practical framework that combined the viewpoints of organizational and facility development. However, participatory design continues to face challenges concerning communication between different stakeholders, and further development of the methods and processes is still needed. Intervention studies could provide data on the success factors that enhance the transformations in the rehabilitation sector. Design process, methodology, organizational transformation, planning, renovation.
Research on Visualization Design Method in the Field of New Media Software Engineering
NASA Astrophysics Data System (ADS)
Deqiang, Hu
2018-03-01
In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian
2018-06-01
Infrared (IR) small target enhancement plays a significant role in modern infrared search and track (IRST) systems and is the basic technique of target detection and tracking. In this paper, a coarse-to-fine grey level mapping method using improved sigmoid transformation and saliency histogram is designed to enhance IR small targets under different backgrounds. For the stage of rough enhancement, the intensity histogram is modified via an improved sigmoid function so as to narrow the regular intensity range of background as much as possible. For the part of further enhancement, a linear transformation is accomplished based on a saliency histogram constructed by averaging the cumulative saliency values provided by a saliency map. Compared with other typical methods, the presented method can achieve both better visual performances and quantitative evaluations.
Wavelet Filter Banks for Super-Resolution SAR Imaging
NASA Technical Reports Server (NTRS)
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
Free vibration investigation of nano mass sensor using differential transformation method
NASA Astrophysics Data System (ADS)
Zarepour, Misagh; Hosseini, S. Amirhosein; Ghadiri, Majid
2017-03-01
In the present study, transverse vibration of nano-cantilever beam with attached mass and two rotational and transverse springs at its end is studied. Resonance frequency of vibrating system is influenced by changing mass particle and stiffness coefficients. Euler-Bernoulli beam theory, nonlocal constitutive equations of Eringen, and Hamilton's principle are used to develop equations of motion. Differential transformation method (DTM) is applied to solve the governing equations of the nanobeam with attached mass particle. Accurate results with minimum mathematical calculation are the advantages of DTM. A detailed parametric study is conducted to investigate the influences of nonlocal parameter. The results can be used in designing of nanoelectromechanical systems. To verify the results, some comparisons are presented between differential transform method results and open literature to show the accuracy of this new approach.
ERIC Educational Resources Information Center
O'Halloran, Kay L.; Tan, Sabine; Pham, Duc-Son; Bateman, John; Vande Moere, Andrew
2018-01-01
This article demonstrates how a digital environment offers new opportunities for transforming qualitative data into quantitative data in order to use data mining and information visualization for mixed methods research. The digital approach to mixed methods research is illustrated by a framework which combines qualitative methods of multimodal…
1990-02-01
transform the waveforms of this event to those of the Titanial must be a band limited representation of the firing sequence. Therefore, we decided to...design a Wiener filter to transform Pn waveforms of Event Titania4 into those of Event Titanial at all sensors of NORESS. Prior to applying this technique...for transforming the Pn phases of event Titania 4 into those of event Titanial . 28 T’tania4 -* Titania3 Titania3 B5 T’tania4 Titania4 - Titania3
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a: system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The "gap" that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the ciasses of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Slant rectification in Russian passport OCR system using fast Hough transform
NASA Astrophysics Data System (ADS)
Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir
2017-03-01
In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.
Self-organization of maze-like structures via guided wrinkling.
Bae, Hyung Jong; Bae, Sangwook; Yoon, Jinsik; Park, Cheolheon; Kim, Kibeom; Kwon, Sunghoon; Park, Wook
2017-06-01
Sophisticated three-dimensional (3D) structures found in nature are self-organized by bottom-up natural processes. To artificially construct these complex systems, various bottom-up fabrication methods, designed to transform 2D structures into 3D structures, have been developed as alternatives to conventional top-down lithography processes. We present a different self-organization approach, where we construct microstructures with periodic and ordered, but with random architecture, like mazes. For this purpose, we transformed planar surfaces using wrinkling to directly use randomly generated ridges as maze walls. Highly regular maze structures, consisting of several tessellations with customized designs, were fabricated by precisely controlling wrinkling with the ridge-guiding structure, analogous to the creases in origami. The method presented here could have widespread applications in various material systems with multiple length scales.
NASA Astrophysics Data System (ADS)
Chen, Ming-Chih; Hsiao, Shen-Fu
In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
NASA Astrophysics Data System (ADS)
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
ERIC Educational Resources Information Center
Roid, Gale; And Others
Several measurement theorists have convincingly argued that methods of writing test questions, particularly for criterion-referenced tests, should be based on operationally defined rules. This study was designed to examine and further refine a method for objectively generating multiple-choice questions for prose instructional materials. Important…
Comparison of some optimal control methods for the design of turbine blades
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Grant, G. N. C.
1977-01-01
This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
Improving the quality of the ECG signal by filtering in wavelet transform domain
NASA Astrophysics Data System (ADS)
DzierŻak, RóŻa; Surtel, Wojciech; Dzida, Grzegorz; Maciejewski, Marcin
2016-09-01
The article concerns the research methods of noise reduction occurring in the ECG signals. The method is based on the use of filtration in wavelet transform domain. The study was conducted on two types of signal - received during the rest of the patient and obtained during physical activity. For each of the signals 3 types of filtration were used. The study was designed to determine the effectiveness of various wavelets for de-noising signals obtained in both cases. The results confirm the suitability of the method for improving the quality of the electrocardiogram in case of both types of signals.
Design and realization of assessment software for DC-bias of transformers
NASA Astrophysics Data System (ADS)
Liu, Chang; Liu, Lian-guang; Yuan, Zhong-chen
2013-03-01
The transformer working at the rated state will partically be saturated, and its mangetic current will be distorted accompanying with various of harmonic, increasing reactive power demand and some other affilicated phenomenon, which will threaten the safe operation of power grid. This paper establishes a transformer saturation circuit model of DCbias under duality principle basing on J-A theory which can reflect the hysteresis characteristics of iron core, and develops an software can assess the effects of transformer DC-bias using hybrid programming technology of C#.net and MATLAB with the microsoft.net platform. This software is able to simulate the mangnetizing current of different structures and assess the Saturation Level of transformers and the influnces of affilicated phenomenon accroding to the parameter of transformers and the DC equivalent voltage. It provides an effective method to assess the influnces of transformers caused by magnetic storm disaster and the earthing current of the HVDC project.
Power density of piezoelectric transformers improved using a contact heat transfer structure.
Shao, Wei Wei; Chen, Li Juan; Pan, Cheng Liang; Liu, Yong Bin; Feng, Zhi Hua
2012-01-01
Based on contact heat transfer, a novel method to increase power density of piezoelectric transformers is proposed. A heat transfer structure is realized by directly attaching a dissipater to the piezoelectric transformer plate. By maintaining the vibration mode of the transformer and limiting additional energy losses from the contact interface, an appropriate design can improve power density of the transformer on a large scale, resulting from effective suppression of its working temperature rise. A prototype device was fabricated from a rectangular piezoelectric transformer, a copper heat transfer sheet, a thermal grease insulation pad, and an aluminum heat radiator. The experimental results show the transformer maintains a maximum power density of 135 W/cm(3) and an efficiency of 90.8% with a temperature rise of less than 10 °C after more than 36 h, without notable changes in performance. © 2012 IEEE
Innovative Clinical Trial Designs
Lavori, Philip W.
2015-01-01
Whereas the 20th-century health care system sometimes seemed to be inhospitable to and unmoved by experimental research, its inefficiency and unaffordability have led to reforms that foreshadow a new health care system. We point out certain opportunities and transformational needs for innovations in study design offered by the 21st-century health care system, and describe some innovative clinical trial designs and novel design methods to address these needs and challenges. PMID:26140056
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
NASA Astrophysics Data System (ADS)
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
USDA-ARS?s Scientific Manuscript database
An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...
2015-04-20
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Designing Agent Collectives For Systems With Markovian Dynamics
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Lawson, John W.
2004-01-01
The Collective Intelligence (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided world utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics of an agent's utility function are observable. We investigate this transformation in simulations involving both hear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low opacity (analogous to having high signal to noise) but are not factored (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.
Noniterative MAP reconstruction using sparse matrix representations.
Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J
2009-09-01
We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-01-01
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958
Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.
Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan
2016-06-13
In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.
The Helicity Injected Torus Program
NASA Astrophysics Data System (ADS)
Jarboe, T. R.; Nelson, B. A.; Jewell, P. D.; Liptac, J. E.; McCollam, K. J.; Raman, R.; Redd, A. J.; Rogers, J. A.; Sieck, P. E.; Shumlak, U.; Smith, R. J.; Nagata, M.; Uyama, T.
1999-11-01
The Helicity Injected Torus--II (HIT--II) spherical torus is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. HIT--II has a major radius R = 0.3, minor radius a = 0.2, aspect ratio A = R/a = 1.5, with an on axis magnetic field of up to Bo = 0.67 T. HIT--II provides equilibrium control, CHI flux boundary conditions, and transformer action using 28 poloidal field coils, using active flux feedback control. HIT--II has driven up to 200 kA of plasma current, using either CHI or transformer drive. An overview and recent results of the HIT--II program will be presented. The development of a locked-electron current drive model for HIT and HIT--II has led to the design of a constant inductive helicity injection method for spherical torii. This method is incorporated in the design of the Helicity Injected Torus -- Steady Inductive (HIT-- SI)(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 experiment. HIT--SI can form a high-beta spheromak, a low aspect ratio RFP, or a spherical tokamak in a steady-state manner without using electrodes. The HIT--SI design and methodology will be presented.
Design and Analysis Tools for Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.; Folk, Thomas C.
2009-01-01
Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
Predictor-based control for an inverted pendulum subject to networked time delay.
Ghommam, J; Mnif, F
2017-03-01
The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear flight control design using backstepping methodology
NASA Astrophysics Data System (ADS)
Tran, Thanh Trung
The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by eliminating the pseudo control transformations. In the second part, the research focuses on nonlinear control design for flight dynamics of aircraft motion. Some assumptions on aerodynamics of the aircraft are addressed to transform full nonlinear flight dynamics into the canonical strict-feedback form. The assumptions are also analyzed, validated, and compared to show the advantages and disadvantages of the design models. With the achieved models, investigation focuses on formulating the backstepping control laws and provides an advanced control algorithm for nonlinear flight dynamics of the aircraft. Experimental and simulation studies are successfully implemented to validate the proposed control method. Advancement of nonlinear backstepping control theory and its application to nonlinear flight control are achieved in the dissertation research.
Professionalism in Culinary Arts: Perceptions and Assessments for Training and Curricular Design
ERIC Educational Resources Information Center
Mack, Glenn R.
2012-01-01
The researcher designed this mixed-methods dissertation to delve further into the definition of professionalism for cooks and chefs within the culinary arts industry. The researcher also explored the process of professionalization (i.e., the process by which members attempt to transform their occupation into a profession) within the field of…
How to Personalize Learning in K-12 Schools: Five Essential Design Features
ERIC Educational Resources Information Center
Lee, Dabae
2014-01-01
Personalized learning (PL) is spotlighted as a way to transform K-12 educational systems. PL customizes learning pace, instructional methods, and learning content to individual students. As much as PL sounds promising and complex, little guidance is available to educators and policymakers about how to effectively design PL. Five essential features…
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
New approach application of data transformation in mean centering of ratio spectra method
NASA Astrophysics Data System (ADS)
Issa, Mahmoud M.; Nejem, R.'afat M.; Van Staden, Raluca Ioana Stefan; Aboul-Enein, Hassan Y.
2015-05-01
Most of mean centering (MCR) methods are designed to be used with data sets whose values have a normal or nearly normal distribution. The errors associated with the values are also assumed to be independent and random. If the data are skewed, the results obtained may be doubtful. Most of the time, it was assumed a normal distribution and if a confidence interval includes a negative value, it was cut off at zero. However, it is possible to transform the data so that at least an approximately normal distribution is attained. Taking the logarithm of each data point is one transformation frequently used. As a result, the geometric mean is deliberated a better measure of central tendency than the arithmetic mean. The developed MCR method using the geometric mean has been successfully applied to the analysis of a ternary mixture of aspirin (ASP), atorvastatin (ATOR) and clopidogrel (CLOP) as a model. The results obtained were statistically compared with reported HPLC method.
Dynamic Architecture. New Style Forming Aspects
NASA Astrophysics Data System (ADS)
Belyaeva, T. V.
2017-11-01
The article deals with the methods of buildings and structures transformation in the light of modern solutions in dynamic architecture. The mechanism for the formation of a modern object is proposed. Such design methods are becoming rather relevant in view of today’s trends while the priority of dynamic architecture directions keeps increasing.
The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods
ERIC Educational Resources Information Center
Dean, Derek M.; Wilder, Jason A.
2011-01-01
We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…
NASA Astrophysics Data System (ADS)
Prayuni, Kinasih; Dwivany, Fenny M.
2015-09-01
Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.
NASA Astrophysics Data System (ADS)
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
Design and Experimental Results for the S407 Airfoil
2010-08-01
reduced to the inverse problem of transforming the pressure distributions into an airfoil shape. The Eppler Airfoil Design and Analysis Code (refs. 3 and...Circuit Wind Tunnel. M. S. Thesis, Pennsylvania State Univ., 1993. 3. Eppler , Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 4. Eppler ...Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard Eppler , c.2007. 5. Drela, M.: Design and Optimization Method for Multi-Element
Development of high frequency low weight power magnetics for aerospace power systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1984-01-01
A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.
Svarre, Tanja; Lunn, Tine Bieber Kirkegaard; Helle, Tina
2017-11-01
The aim of this paper is to provide the reader with an overall impression of the stepwise user-centred design approach including the specific methods used and lessons learned when transforming paper-based assessment forms into a prototype app, taking the Housing Enabler as an example. Four design iterations were performed, building on a domain study, workshops, expert evaluation and controlled and realistic usability tests. The user-centred design process involved purposefully selected participants with different Housing Enabler knowledge and housing adaptation experience. The design iterations resulted in the development of a Housing Enabler prototype app. The prototype app has several features and options that are new compared with the original paper-based Housing Enabler assessment form. These new features include a user friendly overview of the assessment form; easy navigation by swiping back and forth between items; onsite data analysis; and ranking of the accessibility score, photo documentation and a data export facility. Based on the presented stepwise approach, a high-fidelity Housing Enabler prototype app was successfully developed. The development process has emphasized the importance of combining design participants' knowledge and experiences, and has shown that methods should seem relevant to participants to increase their engagement.
NASA Astrophysics Data System (ADS)
Naidoo, Kara
2017-12-01
This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the ways in which Susan's identity as a learner and teacher of science was influenced by her experiences in the course, and to describe how she made meaning of her transformative process. The following are the three theoretical themes: (1) learning contributes to identity development, (2) identity development is a dialogical process that occurs between individuals, not within individuals, and (3) social practice leads to transformations and transformations lead to the creation of new social practices. Within each theme, specific experiences in the science methods course are identified that influenced Susan's identity development as a teacher of science. Knowing how context and experiences influence identity development can inform design decisions concerning teacher education programs, courses, and experiences for candidates.
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
NASA Technical Reports Server (NTRS)
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
Transforming Aggregate Object-Oriented Formal Specifications to Code
1999-03-01
integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development
NASA Astrophysics Data System (ADS)
Tanemura, M.; Chida, Y.
2016-09-01
There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.
Standardized Radiation Shield Design Methods: 2005 HZETRN
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.
2006-01-01
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Numerical methods for the design of gradient-index optical coatings.
Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana
2012-12-01
We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.
Linear approximations of nonlinear systems
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Su, R.
1983-01-01
The development of a method for designing an automatic flight controller for short and vertical take off aircraft is discussed. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system called the modified tangent model was introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this the linear part (about a state space point x sub 0) of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x sub 0 yields the same modified tangent model.
Advancing Crop Transformation in the Era of Genome Editing[OPEN
Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.
2016-01-01
Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450
Disc piezoelectric ceramic transformers.
Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít
2013-08-01
In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.
Planar LTCC transformers for high voltage flyback converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill
This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstratedmore » LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.« less
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
Improved digital filters for evaluating Fourier and Hankel transform integrals
Anderson, Walter L.
1975-01-01
New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Ren, Junqiang; Ding, Xiangdong
2018-05-01
In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.
Studies on the coupling transformer to improve the performance of microwave ion source.
Misra, Anuraag; Pandit, V S
2014-06-01
A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.
Studies on the coupling transformer to improve the performance of microwave ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Anuraag, E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in
A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on themore » transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.« less
Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.
Ye, Qing; Qu, Ronghui; Fang, Zujie
2007-04-10
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.
Optimal sample sizes for the design of reliability studies: power consideration.
Shieh, Gwowen
2014-09-01
Intraclass correlation coefficients are used extensively to measure the reliability or degree of resemblance among group members in multilevel research. This study concerns the problem of the necessary sample size to ensure adequate statistical power for hypothesis tests concerning the intraclass correlation coefficient in the one-way random-effects model. In view of the incomplete and problematic numerical results in the literature, the approximate sample size formula constructed from Fisher's transformation is reevaluated and compared with an exact approach across a wide range of model configurations. These comprehensive examinations showed that the Fisher transformation method is appropriate only under limited circumstances, and therefore it is not recommended as a general method in practice. For advance design planning of reliability studies, the exact sample size procedures are fully described and illustrated for various allocation and cost schemes. Corresponding computer programs are also developed to implement the suggested algorithms.
NASA Astrophysics Data System (ADS)
Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.
2017-03-01
Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.
NASA Astrophysics Data System (ADS)
Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu
2017-02-01
Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.
Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong
2016-07-01
The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.
Design of supercritical cascades with high solidity
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1982-01-01
The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.
Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo
Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l 1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l 1 regularization terms. The Split Bregman Algorithm provides a fastmore » explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l 1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l 1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less
Transforming Health Professionals into Population Health Change Agents
Naccarella, Lucio; Butterworth, Iain; Moore, Timothy
2016-01-01
Background With the recognition that professional education has not kept pace with the challenges facing the health and human service system, there has been a move to transformative education and learning professional development designed to expand the number of enlightened and empowered change agents with the competence to implement changes at an individual, organisation and systems level. Design and Methods Since 2010, the Department of Health and Human Services in Victoria, Australia, in collaboration with The University of Melbourne’s School of Population and Global Health, has delivered seven population health short courses aimed to catalyse participants’ transformation into population health change agents. This paper presents key learnings from a combination of evaluation data from six population health short courses using a transformative learning framework from a 2010 independent international commission for health professionals that was designed to support the goals of transformative and interdependent health professionals. Participatory realist evaluation approaches and qualitative methods were used. Results Evaluation findings reveal that there were mixed outcomes in facilitating participants’ implementation of population health approaches, and their transformation into population health agents upon their return to their workplaces. Core enablers, barriers and requirements, at individual, organisational and system levels influence the capability of participants to implement population health approaches. The iterative and systemic evolution of the population health short courses, from a one off event to a program of inter-dependent modules, demonstrates sustained commitment by the short course developers and organisers to the promotion of transformative population health learning outcomes. Conclusions To leverage this commitment, recognising that professional development is not an event but part of an ongoing transformative process, suggestions to further align recognition of population health professional development programs are presented. Significance for public health With decreasing health and wellbeing of whole populations, increasing inequities among specific population groups, health professional educators are increasingly turning their attention to population health. This has implications for implementing evidence into practice. Professional development short courses are being conducted to equip participants (health service managers, health promotion managers and coordinators, health planners, population health planners and senior executives) with knowledge, skills and tools to implement population health approaches and transform them into population health change agents. The findings of this study indicate there were mixed outcomes in facilitating participants’ implementation of population health approaches and their transformation into population health agents upon their return to their workplaces. The study findings informed the evolution of the short courses, from a one off event to a program of interdependent modules, and further reveal that professional development is not an event but part of an on-going transformative process,suggestions to further align recognition of population health professional development programs are presented. PMID:27190973
Villalba, Clare; Jaiprakash, Anjali; Donovan, Jared; Roberts, Jonathan; Crawford, Ross
2018-05-26
A wealth of peer-reviewed data exists regarding people's health experience, yet practical ways of using the data to understand patients' experiences and to inform health co-design are needed. This study aims to develop an applied and pragmatic method for using patient experience literature in co-design by transforming it into an accessible and creative co-design tool. A scoping literature review of the CINAHL, MEDLINE, PsycINFO and PubMed electronic databases was conducted from January 2011 through August 2016. Qualitative publications regarding the experience of living with diabetes in Australia were selected. The Results section of each paper was extracted and affinity analysis was applied to identify insights into the health experience. These insights were developed into a card tool for use in health co-design activities. Thirteen relevant papers were identified from the review, and affinity analysis of the Results sections of these papers lead to the identification of 85 insights, from 'Shock of diagnosis' (Insight 1), to 'Delay seeking care' (Insight 9), to 'Assess the quality of care' (Insight 28), to 'Avoid or adapt habits' (Insight 78). Each insight was developed into an individual card, which included a high-level theme, insight, quote and a link back to the literature, together making up the Health Experience Insight Cards, Living with Diabetes Edition. This was the first study to develop a method for transforming existing patient experience literature into a creative tool for health improvement. The Health Experience Insight Cards collate the diverse experiences of over 300 people living with diabetes in Australia, from 13 studies. Health improvement teams can use the 'Living with Diabetes Edition' cards or they can follow this pragmatic method to create their own cards focused on other health experiences to facilitate person-focused health improvements.
The MSPICE simulation of a saturating transformer
NASA Astrophysics Data System (ADS)
Maclean, David N.
A transformer is simulated using a nonlinear saturating magnetic model. Hysteresis and gradual smooth reduction of core permeability are achieved with standard SPICE networks and functions. The equations that define the nonlinear inductance and the MSPICE circuits used to simulate them are derived. A hierarchy of circuit complexity that is based on the structured logic design subcircuit method is used. An example of a push-pull buck regulator being operated in an unbalanced condition is given. Noise ripple on the input power cable generates a dc offset current in the transformer. The example demonstrates how avionics power equipment can be evaluated for large-signal ac, dc, and transient behavior.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Designing Agent Collectives For Systems With Markovian Dynamics
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Lawson, John W.; Clancy, Daniel (Technical Monitor)
2001-01-01
The "Collective Intelligence" (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided "world" utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics, in particular scenarios where not all of the arguments of an agent's utility function are observable. We investigate this transformation in simulations involving both linear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low "opacity (analogous to having high signal to noise) but are not "factored" (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.
Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.
1999-01-01
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.
Gaussian beam profile shaping apparatus, method therefore and evaluation thereof
Dickey, F.M.; Holswade, S.C.; Romero, L.A.
1999-01-26
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.
Linear parameter varying representations for nonlinear control design
NASA Astrophysics Data System (ADS)
Carter, Lance Huntington
Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that neglects a subset of possible parameter trajectories. A computational algorithm is constructed for this suboptimal solution applied to a class of linear non-quadratic cost functions.
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Measurement Matrix Design for Phase Retrieval Based on Mutual Information
NASA Astrophysics Data System (ADS)
Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.
2018-01-01
In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.
Independent Manipulation of Heat and Electrical Current via Bifunctional Metamaterials
NASA Astrophysics Data System (ADS)
Moccia, Massimo; Castaldi, Giuseppe; Savo, Salvatore; Sato, Yuki; Galdi, Vincenzo
2014-04-01
Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of given observables in different physical domains. Coordinate-transformation-based methods (e.g., transformation optics) offer a powerful and systematic approach to design anisotropic, spatially inhomogeneous artificial materials (metamaterials) capable of precisely manipulating wave-based (electromagnetic, acoustic, elastic) as well as diffusion-based (heat) phenomena in a desired fashion. However, as versatile as these approaches have been, most designs have thus far been limited to serving single-target functionalities in a given physical domain. Here, we present a step towards a "transformation multiphysics" framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents) a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical "invisibility cloak." Our numerical results open up intriguing possibilities in the largely unexplored phase space of multifunctional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic, and thermal scenarios.
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
NASA Astrophysics Data System (ADS)
Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun
2018-07-01
Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
Spacecraft transformer and inductor design
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1977-01-01
The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.
Feasibility study for automatic reduction of phase change imagery
NASA Technical Reports Server (NTRS)
Nossaman, G. O.
1971-01-01
The feasibility of automatically reducing a form of pictorial aerodynamic heating data is discussed. The imagery, depicting the melting history of a thin coat of fusible temperature indicator painted on an aerodynamically heated model, was previously reduced by manual methods. Careful examination of various lighting theories and approaches led to an experimentally verified illumination concept capable of yielding high-quality imagery. Both digital and video image processing techniques were applied to reduction of the data, and it was demonstrated that either method can be used to develop superimposed contours. Mathematical techniques were developed to find the model-to-image and the inverse image-to-model transformation using six conjugate points, and methods were developed using these transformations to determine heating rates on the model surface. A video system was designed which is able to reduce the imagery rapidly, economically and accurately. Costs for this system were estimated. A study plan was outlined whereby the mathematical transformation techniques developed to produce model coordinate heating data could be applied to operational software, and methods were discussed and costs estimated for obtaining the digital information necessary for this software.
NASA Astrophysics Data System (ADS)
Liang, Xiao; Zang, Yali; Dong, Di; Zhang, Liwen; Fang, Mengjie; Yang, Xin; Arranz, Alicia; Ripoll, Jorge; Hui, Hui; Tian, Jie
2016-10-01
Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.
NASA Astrophysics Data System (ADS)
Aznavourian, Ronald; Puvirajesinghe, Tania M.; Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien
2017-11-01
We begin with a brief historical survey of discoveries of quasi-crystals and graphene, and then introduce the concept of transformation crystallography, which consists of the application of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-projection method from periodic structures in higher-dimensional space. We analyze elastic wave propagation in the transformed crystals and (Penrose-type) quasi-crystals with the finite difference time domain freeware SimSonic. We consider geometric transforms underpinning the design of seismic cloaks with square, circular, elliptical and peanut shapes in the context of honeycomb crystals that can be viewed as scaled-up versions of graphene. Interestingly, the use of morphing techniques leads to the design of cloaks with interpolated geometries reminiscent of Victor Vasarely’s artwork. Employing the case of transformed graphene-like (honeycomb) structures allows one to draw useful analogies between large-scale seismic metamaterials such as soils structured with columns of concrete or grout with soil and nanoscale biochemical metamaterials. We further identify similarities in designs of cloaks for elastodynamic and hydrodynamic waves and cloaks for diffusion (heat or mass) processes, as these are underpinned by geometric transforms. Experimental data extracted from field test analysis of soil structured with boreholes demonstrates the application of crystallography to large scale phononic crystals, coined as seismic metamaterials, as they might exhibit low frequency stop bands. This brings us to the outlook of mechanical metamaterials, with control of phonon emission in graphene through extreme anisotropy, attenuation of vibrations of suspension bridges via low frequency stop bands and the concept of transformed meta-cities. We conclude that these novel materials hold strong applications spanning different disciplines or across different scales from biophysics to geophysics.
Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging
Zhang, Jingjing
2015-01-01
The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657
Enhancing clinical evidence by proactively building quality into clinical trials.
Meeker-O'Connell, Ann; Glessner, Coleen; Behm, Mark; Mulinde, Jean; Roach, Nancy; Sweeney, Fergus; Tenaerts, Pamela; Landray, Martin J
2016-08-01
Stakeholders across the clinical trial enterprise have expressed concern that the current clinical trial enterprise is unsustainable. The cost and complexity of trials have continued to increase, threatening our ability to generate reliable evidence essential for making appropriate decisions concerning the benefits and harms associated with clinical interventions. Overcoming this inefficiency rests on improving protocol design, trial planning, and quality oversight. The Clinical Trials Transformation Initiative convened a project to evaluate methods to prospectively build quality into the scientific and operational design of clinical trials ("quality-by-design"), such that trials are feasible to conduct and important errors are prevented rather than remediated. A working group evaluated aspects of trial design and oversight and developed the Clinical Trials Transformation Initiative quality-by-design principles document, outlining a series of factors generally relevant to the reliability of trial conclusions and to patient safety. These principles were then applied and further refined during a series of hands-on workshops to evaluate their utility in facilitating proactive, cross-functional dialogue, and decision-making about trial design and planning. Following these workshops, independent qualitative interviews were conducted with 19 workshop attendees to explore the potential challenges for implementing a quality-by-design approach to clinical trials. The Clinical Trials Transformation Initiative project team subsequently developed recommendations and an online resource guide to support implementation of this approach. The Clinical Trials Transformation Initiative quality-by-design principles provide a framework for assuring that clinical trials adequately safeguard participants and provide reliable information on which to make decisions on the effects of treatments. The quality-by-design workshops highlighted the value of active discussions incorporating the different perspectives within and external to an organization (e.g. clinical investigators, research site staff, and trial participants) in improving trial design. Workshop participants also recognized the value of focusing oversight on those aspects of the trial where errors would have a major impact on participant safety and reliability of results. Applying the Clinical Trials Transformation Initiative quality-by-design recommendations and principles should enable organizations to prioritize the most critical determinants of a trial's quality, identify non-essential activities that can be eliminated to streamline trial conduct and oversight, and formulate appropriate plans to define, avoid, mitigate, monitor, and address important errors. © The Author(s) 2016.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
Perovskites: transforming photovoltaics, a mini-review
Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; ...
2015-01-06
The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.
Parolini, Giuditta
2015-01-01
During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.
Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.
Huang, Xinbo; Zhao, Long; Chen, Guimin
2016-10-09
Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.
Computational Design of Self-Assembling Cyclic Protein Homo-oligomers
Fallas, Jorge A.; Ueda, George; Sheffler, William; Nguyen, Vanessa; McNamara, Dan E.; Sankaran, Banumathi; Pereira, Jose Henrique; Parmeggiani, Fabio; Brunette, TJ; Cascio, Duilio; Yeates, Todd R.; Zwart, Peter; Baker, David
2016-01-01
Self-assembling cyclic protein homo-oligomers play important roles in biology and the ability to generate custom homo-oligomeric structures could enable new approaches to probe biological function. Here we report a general approach to design cyclic homo-oligomers that employs a new residue pair transform method for assessing the design ability of a protein-protein interface. This method is sufficiently rapid to enable systematic enumeration of cyclically docked arrangements of a monomer followed by sequence design of the newly formed interfaces. We use this method to design interfaces onto idealized repeat proteins that direct their assembly into complexes that possess cyclic symmetry. Of 96 designs that were experimentally characterized, 21 were found to form stable monodisperse homo-oligomers in solution, and 15 (4 homodimers, 6 homotrimers, 6 homotetramers and 1 homopentamer) had solution small angle X-ray scattering data consistent with the design models. X-ray crystal structures were obtained for five of the designs and each of these were shown to be very close to their design model. PMID:28338692
Proposal for automated transformations on single-photon multipath qudits
NASA Astrophysics Data System (ADS)
Baldijão, R. D.; Borges, G. F.; Marques, B.; Solís-Prosser, M. A.; Neves, L.; Pádua, S.
2017-09-01
We propose a method for implementing automated state transformations on single-photon multipath qudits encoded in a one-dimensional transverse spatial domain. It relies on transferring the encoding from this domain to the orthogonal one by applying a spatial phase modulation with diffraction gratings, merging all the initial propagation paths by using a stable interferometric network, and filtering out the unwanted diffraction orders. The automation feature is attained by utilizing a programmable phase-only spatial light modulator (SLM) where properly designed diffraction gratings displayed on its screen will implement the desired transformations, including, among others, projections, permutations, and random operations. We discuss the losses in the process which is, in general, inherently nonunitary. Some examples of transformations are presented and, considering a realistic scenario, we analyze how they will be affected by the pixelated structure of the SLM screen. The method proposed here enables one to implement much more general transformations on multipath qudits than is possible with a SLM alone operating in the diagonal basis of which-path states. Therefore, it will extend the range of applicability for this encoding in high-dimensional quantum information and computing protocols as well as fundamental studies in quantum theory.
Simulative design in macroscale for prospective application to micro-catheters.
Ha, Cheol Woo
2018-02-09
In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
[A peak recognition algorithm designed for chromatographic peaks of transformer oil].
Ou, Linjun; Cao, Jian
2014-09-01
In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
7 CFR 3201.20 - Fluid-filled transformers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled transformers. Electric power transformers that are designed to utilize a synthetic ester-based dielectric (non...
7 CFR 3201.20 - Fluid-filled transformers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition—(1) Synthetic ester-based fluid-filled transformers. Electric power transformers that are designed to utilize a synthetic ester-based dielectric (non...
7 CFR 3201.20 - Fluid-filled transformers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition—(1) Synthetic ester-based fluid-filled transformers. Electric power transformers that are designed to utilize a synthetic ester-based dielectric (non...
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Hui, E-mail: corinna@seu.edu.cn; Key Laboratory of Computer Network and Information Integration; Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000
2015-04-15
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimagesmore » using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.« less
Chang, Xueli; Du, Siliang; Li, Yingying; Fang, Shenghui
2018-01-01
Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy. PMID:29702589
Object's optical geometry measurements based on Extended Depth of Field (EDoF) approach
NASA Astrophysics Data System (ADS)
Szydłowski, Michał; Powałka, Bartosz; Chady, Tomasz; Waszczuk, Paweł
2017-02-01
The authors propose a method of using EDoF in macro inspections using bi-telecentric lenses and a specially designed experimental machine setup, allowing accurate focal distance changing. Also a software method is presented allowing EDoF image reconstruction using the continuous wavelet transform (CWT). Exploited method results are additionally compared with measurements performed with Keyence's LJ-V Series in-line Profilometer for reference matters.
Advancing Crop Transformation in the Era of Genome Editing.
Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal
2016-07-01
Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. © 2016 American Society of Plant Biologists. All rights reserved.
Design and fabrication of planar structures with graded electromagnetic properties
NASA Astrophysics Data System (ADS)
Good, Brandon Lowell
Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
An Improved Filtering Method for Quantum Color Image in Frequency Domain
NASA Astrophysics Data System (ADS)
Li, Panchi; Xiao, Hong
2018-01-01
In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.
High temperature co-axial winding transformers
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.; Novotny, Donald W.
1993-01-01
The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.
Zero cylinder coordinate system approach to image reconstruction in fan beam ICT
NASA Astrophysics Data System (ADS)
Yan, Yan-Chun; Xian, Wu; Hall, Ernest L.
1992-11-01
The state-of-the-art of the transform algorithms has allowed the newest versions to produce excellent and efficient reconstructed images in most applications, especially in medical CT and industrial CT etc. Based on the Zero Cylinder Coordinate system (ZCC) presented in this paper, a new transform algorithm of image reconstruction in fan beam industrial CT is suggested. It greatly reduces the amount of computation of the backprojection, which requires only two INC instructions to calculate the weighted factor and the subcoordinate. A new backprojector is designed, which simplifies its assembly-line mechanism based on the ZCC method. Finally, a simulation results on microcomputer is given out, which proves this method is effective and practical.
Jiang, Hua; Lu, Wenke; Zhang, Guoan
2013-07-01
In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Global asymptotic stabilisation of rational dynamical systems based on solving BMI
NASA Astrophysics Data System (ADS)
Esmaili, Farhad; Kamyad, A. V.; Jahed-Motlagh, Mohammad Reza; Pariz, Naser
2017-08-01
In this paper, the global asymptotic stabiliser design of rational systems is studied in detail. To develop the idea, the state equations of the system are transformed to a new coordinate via polynomial transformation and the state feedback control law. This in turn is followed by the satisfaction of the linear growth condition (i.e. Lipschitz at zero). Based on a linear matrix inequality solution, the system in the new coordinate is globally asymptotically stabilised and then, leading to the global asymptotic stabilisation of the primary system. The polynomial transformation coefficients are derived by solving the bilinear matrix inequality problem. To confirm the capability of this method, three examples are highlighted.
ERIC Educational Resources Information Center
Parmelee, John H.; Perkins, Stephynie C.; Sayre, Judith J.
2007-01-01
This study uses a sequential transformative mixed methods research design to explain how political advertising fails to engage college students. Qualitative focus groups examined how college students interpret the value of political advertising to them, and a quantitative manifest content analysis concerning ad framing of more than 100 ads from…
Cooling Concepts for High Power Density Magnetic Devices
NASA Astrophysics Data System (ADS)
Biela, Juergen; Kolar, Johann W.
In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.
In-Flight System Identification
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.
Producing custom regional climate data sets for impact assessment with xarray
NASA Astrophysics Data System (ADS)
Simcock, J. G.; Delgado, M.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Nath, I.; Rising, J. A.; Rode, A.; Yuan, J.; Chong, T.; Dobbels, G.; Hussain, A.; Song, Y.; Wang, J.; Mohan, S.; Larsen, K.; Houser, T.
2017-12-01
Research in the field of climate impact assessment and valuation frequently requires the pairing of economic observations with historical or projected weather variables. Impact assessments with large geographic scope or spatially aggregated data frequently require climate variables to be prepared for use with administrative/political regions, economic districts such as utility service areas, physical regions such as watersheds, or other larger, non-gridded shapes. Approaches to preparing such data in the literature vary from methods developed out of convenience to more complex measures intended to account for spatial heterogeneity. But more sophisticated methods are difficult to implement, from both a theoretical and a technical standpoint. We present a new python package designed to assist researchers in the preparation of historical and projected climate data for arbitrary spatial definitions. Users specify transformations by providing (a) sets of regions in the form of shapefiles, (b) gridded data to be transformed, and, optionally, (c) gridded weights to use in the transformation. By default, aggregation to regions is conducted such that the resulting regional data draws from each grid cell according to the cell's share of total region area. However, researchers can provide alternative weighting schemes, such that the regional data is weighted by, for example, the population or planted agricultural area within each cell. An advantage of this method is that it enables easy preparation of nonlinear transformations of the climate data before aggregation to regions, allowing aggregated variables to more accurately capture the spatial heterogeneity within a region in the transformed data. At this session, we will allow attendees to view transformed climate projections, examining the effect of various weighting schemes and nonlinear transformations on aggregate regional values, highlighting the implications for climate impact assessment work.
Polarizing Beam Splitter: A New Approach Based on Transformation Optics
NASA Astrophysics Data System (ADS)
Mueller, Jonhatan; Wegener, Martin
Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.
Artificial retina model for the retinally blind based on wavelet transform
NASA Astrophysics Data System (ADS)
Zeng, Yan-an; Song, Xin-qiang; Jiang, Fa-gang; Chang, Da-ding
2007-01-01
Artificial retina is aimed for the stimulation of remained retinal neurons in the patients with degenerated photoreceptors. Microelectrode arrays have been developed for this as a part of stimulator. Design such microelectrode arrays first requires a suitable mathematical method for human retinal information processing. In this paper, a flexible and adjustable human visual information extracting model is presented, which is based on the wavelet transform. With the flexible of wavelet transform to image information processing and the consistent to human visual information extracting, wavelet transform theory is applied to the artificial retina model for the retinally blind. The response of the model to synthetic image is shown. The simulated experiment demonstrates that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an artificial retina.
Broadband polygonal invisibility cloak for visible light
Chen, Hongsheng; Zheng, Bin
2012-01-01
Invisibility cloaks have recently become a topic of considerable interest thanks to the theoretical works of transformation optics and conformal mapping. The design of the cloak involves extreme values of material properties and spatially dependent parameter tensors, which are very difficult to implement. The realization of an isolated invisibility cloak in the visible light, which is an important step towards achieving a fully movable invisibility cloak, has remained elusive. Here, we report the design and experimental demonstration of an isolated polygonal cloak for visible light. The cloak is made of several elements, whose electromagnetic parameters are designed by a linear homogeneous transformation method. Theoretical analysis shows the proposed cloak can be rendered invisible to the rays incident from all the directions. Using natural anisotropic materials, a simplified hexagonal cloak which works for six incident directions is fabricated for experimental demonstration. The performance is validated in a broadband visible spectrum. PMID:22355767
Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.
Dincel, Emre; Söylemez, Mehmet Turan
2018-05-02
In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Design study of a high power rotary transformer
NASA Technical Reports Server (NTRS)
Weinberger, S. M.
1982-01-01
A design study was made on a rotary transformer for transferring electrical power across a rotating spacecraft interface. The analysis was performed for a 100 KW, 20 KHz unit having a ""pancake'' geometry. The rotary transformer had a radial (vertical) gap and consisted of 4-25 KW modules. It was assumed that the power conditioning comprised of a Schwarz resonant circuit with a 20 KHz switching frequency. The rotary transformer, mechanical and structural design, heat rejection system and drive mechanism which provide a complete power transfer device were examined. The rotary transformer losses, efficiency, weight and size were compared with an axial (axial symmetric) gap transformer having the same performance requirements and input characteristics which was designed as part of a previous program. The ""pancake'' geometry results in a heavier rotary transformer primarily because of inefficient use of the core material. It is shown that the radial gap rotary transformer is a feasible approach for the transfer of electrical power across a rotating interface and can be implemented using presently available technology.
Niu, Ben; Li, Lu
2018-06-01
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
Główka, Franciszek K; Romański, Michał; Teżyk, Artur; Żaba, Czesław
2013-01-01
Treosulfan (TREO) is an alkylating agent registered for treatment of advanced platin-resistant ovarian carcinoma. Nowadays, TREO is increasingly applied iv in high doses as a promising myeloablative agent with low organ toxicity in children. Under physiological conditions it undergoes pH-dependent transformation into epoxy-transformers (S,S-EBDM and S,S-DEB). The mechanism of this reaction is generally known, but not its kinetic details. In order to investigate kinetics of TREO transformation, HPLC method with refractometric detection for simultaneous determination of the three analytes in one analytical run has been developed for the first time. The samples containing TREO, S,S-EBDM, S,S-DEB and acetaminophen (internal standard) were directly injected onto the reversed phase column. To assure stability of the analytes and obtain their complete resolution, mobile phase composed of acetate buffer pH 4.5 and acetonitrile was applied. The linear range of the calibration curves of TREO, S,S-EBDM and S,S-DEB spanned concentrations of 20-6000, 34-8600 and 50-6000 μM, respectively. Intra- and interday precision and accuracy of the developed method fulfilled analytical criteria. The stability of the analytes in experimental samples was also established. The validated HPLC method was successfully applied to the investigation of the kinetics of TREO activation to S,S-EBDM and S,S-DEB. At pH 7.4 and 37 °C the transformation of TREO followed first-order kinetics with a half-life 1.5h. Copyright © 2012 Elsevier B.V. All rights reserved.
[Research and application of computer-aided technology in restoration of maxillary defect].
Cheng, Xiaosheng; Liao, Wenhe; Hu, Qingang; Wang, Qian; Dai, Ning
2008-08-01
This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software. Thirdly, the 3D virtual restoration model of maxillary defect is obtained after designing and adjusting the initial CAD model through CAD software according to the patient's practical condition. Therefore, the 3D virtual restoration can be fitted very well with the broken part of maxilla. The exported design data can be manufactured using rapid prototyping technology and foundry technology. Finally, the result proved that this method is effective and feasible.
NASA Astrophysics Data System (ADS)
Ortiz-Matos, L.; Aguila-Tellez, A.; Hincapié-Reyes, R. C.; González-Sanchez, J. W.
2017-07-01
In order to design electrification systems, recent mathematical models solve the problem of location, type of electrification components, and the design of possible distribution microgrids. However, due to the amount of points to be electrified increases, the solution to these models require high computational times, thereby becoming unviable practice models. This study posed a new heuristic method for the electrification of rural areas in order to solve the problem. This heuristic algorithm presents the deployment of rural electrification microgrids in the world, by finding routes for optimal placement lines and transformers in transmission and distribution microgrids. The challenge is to obtain a display with equity in losses, considering the capacity constraints of the devices and topology of the land at minimal economic cost. An optimal scenario ensures the electrification of all neighbourhoods to a minimum investment cost in terms of the distance between electric conductors and the amount of transformation devices.
Reghu, T; Mandloi, V; Shrivastava, Purushottam
2016-04-01
The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.
Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip
2015-05-01
An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov
We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Kinoform design with an optimal-rotation-angle method.
Bengtsson, J
1994-10-10
Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.
Sizing Firefighters: Method and Implications
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Whisler, Richard; Routley, J. Gordon; Wilbur, Michael
2015-01-01
Objective This article reports new anthropometric information of U.S. firefighters for fire apparatus design applications (Study 1) and presents a data method to assist in firefighter anthropometric data usage for research-to-practice propositions (Study 2). Background Up-to-date anthropometric information of the U.S. firefighter population is needed for updating ergonomic and safety specifications for fire apparatus. Method A stratified sampling plan of three-age by three-race/ethnicity combinations was used to collect anthropometric data of 863 male and 88 female firefighters across the U.S. regions; 71 anthropometric dimensions were measured (Study 1). Differences among original, weighted, and normality transformed data from Study 1 were compared to allowable observer errors (Study 2). Results On average, male firefighters were 9.8 kg heavier and female firefighters were 29 mm taller than their counterparts in the general U.S. population. They also have larger upper-body builds than those of the general U.S. population. The data in weighted, unweighted, and normality transformed modes were compatible among each other with a few exceptions. Conclusion The data obtained in this study provide the first available U.S. national firefighter anthropometric information for fire apparatus designs. The data represent the demographic characteristics of the current firefighter population and, except for a few dimensions, can be directly employed into fire apparatus design applications without major weighting or nonnormality concerns. Application The up-to-date firefighter anthropometric data and data method will benefit the design of future fire apparatus and protective equipment, such as seats, body restraints, cabs, gloves, and bunker gear. PMID:25141595
Generation of dark hollow beam by use of phase-only filtering
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Dai, Jingmin; Zhao, Xiaoyi; Sun, Xiaogang; Liu, Shutian; Ashfaq Ahmad, Muhammad
2009-11-01
A simple but effective scheme to generate dark hollow beams is proposed by use of phase-only filtering and optical Fourier transform. A Gaussian beam of fundamental mode is modulated by a pre-designed phase mask, which is a piecewise modification of an axicon lens, and followed by a Fourier transform to generate an ideal dark hollow beam at the focal plane. This method has an advantage that the total energy of the beam is conserved under paraxial approximation. Numerical calculations are provided to show the validity of the proposed scheme.
Computer implemented empirical mode decomposition method, apparatus and article of manufacture
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
1999-01-01
A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis
NASA Technical Reports Server (NTRS)
Tsow, Alex
2008-01-01
Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.
Optimized nonorthogonal transforms for image compression.
Guleryuz, O G; Orchard, M T
1997-01-01
The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.
Sizing firefighters: method and implications.
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Whisler, Richard; Routley, J Gordon; Wilbur, Michael
2014-08-01
This article reports new anthropometric information of U.S. firefighters for fire apparatus design applications (Study 1) and presents a data method to assist in firefighter anthropometric data usage for research-to-practice propositions (Study 2). Up-to-date anthropometric information of the U.S. firefighter population is needed for updating ergonomic and safety specifications for fire apparatus. A stratified sampling plan of three-age by three-race/ethnicity combinations was used to collect anthropometric data of 863 male and 88 female firefighters across the U.S. regions; 71 anthropometric dimensions were measured (Study I). Differences among original, weighted, and normality transformed data from Study 1 were compared to allowable observer errors (Study 2). On average, male firefighters were 9.8 kg heavier and female firefighters were 29 mm taller than their counterparts in the general U.S. population. They also have larger upper-body builds than those of the general U.S. population. The data in weighted, unweighted, and normality transformed modes were compatible among each other with a few exceptions. The data obtained in this study provide the first available U.S. national firefighter anthropometric information for fire apparatus designs. The data represent the demographic characteristics of the current firefighter population and, except for a few dimensions, can be directly employed into fire apparatus design applications without major weighting or nonnormality concerns. The up-to-date firefighter anthropometric data and data method will benefit the design of future fire apparatus and protective equipment, such as seats, body restraints, cabs, gloves, and bunker gear.
Zhao, Huajun; Yuan, Dairong
2010-02-10
Examples of optimal designs for a fused-silica transmitted grating with high-intensity tolerance are discussed. It has the potential of placing up to 99% incident polarized light in a single diffraction order. The modal method has been used to analyze the effective indices for TE and TM polarization propagating through the grating region, and the eigenvalue equation of the modal method is transformed to a new form. It is shown that the effective indices of the first two modes depend on the value of the period under Littrow mounting with filling factor f=0.5. The polarization properties of the polarizing beam splitter are analyzed by rigorous coupled-wave analysis (RCWA) at the wavelength of 1.064 microm. The optimal design perfectly matches the RCWA simulation result.
2016-01-01
degradation of poly- and perfluoroalkyl compounds (PFCs), and potentially other water contaminants, without the need for repeated bioaugmentation with...active cultures or stimulation with nutrients. We designed a single-step method for encapsulating lignin peroxidases (LiP), manganese peroxidases (MnP
The Improvement of Efficiency in the Numerical Computation of Orbit Trajectories
NASA Technical Reports Server (NTRS)
Dyer, J.; Danchick, R.; Pierce, S.; Haney, R.
1972-01-01
An analysis, system design, programming, and evaluation of results are described for numerical computation of orbit trajectories. Evaluation of generalized methods, interaction of different formulations for satellite motion, transformation of equations of motion and integrator loads, and development of efficient integrators are also considered.
NASA Astrophysics Data System (ADS)
Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.
2009-03-01
The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented for full actuation of the SMA actuators and are given in terms of applied stress, accumulated plastic strain and number of cycles to failure. In addition, the assessment of the influence of the surface quality is supported by fatigue tests results and post-failure microstructure analysis.
Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.
Lijun Long; Jun Zhao
2017-04-01
In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.
Broadband Planar 5:1 Impedence Transformer
NASA Technical Reports Server (NTRS)
Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.
2015-01-01
This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.
Design of LPV fault-tolerant controller for pitch system of wind turbine
NASA Astrophysics Data System (ADS)
Wu, Dinghui; Zhang, Xiaolin
2017-07-01
To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.
An omnidirectional retroreflector based on the transmutation of dielectric singularities.
Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf
2009-08-01
Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.
We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less
A simple filter circuit for denoising biomechanical impact signals.
Subramaniam, Suba R; Georgakis, Apostolos
2009-01-01
We present a simple scheme for denoising non-stationary biomechanical signals with the aim of accurately estimating their second derivative (acceleration). The method is based on filtering in fractional Fourier domains using well-known low-pass filters in a way that amounts to a time-varying cut-off threshold. The resulting algorithm is linear and its design is facilitated by the relationship between the fractional Fourier transform and joint time-frequency representations. The implemented filter circuit employs only three low-order filters while its efficiency is further supported by the low computational complexity of the fractional Fourier transform. The results demonstrate that the proposed method can denoise the signals effectively and is more robust against noise as compared to conventional low-pass filters.
Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds
NASA Astrophysics Data System (ADS)
Cheng, Tian
Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A fast Fourier transform (FFT) method is presented to avoid the root-searching process in the inverse Laplace transform of multilayered walls. Generalized explicit FFT formulae for calculating the discrete Fourier transform (DFT) are developed for the first time. They can largely facilitate the implementation of FFT. The new method also provides a basis for generating the symbolic response factors. Validation simulations show that it can generate the response factors as accurate as the analytical solutions. The second method is for direct estimation of annual or seasonal cooling loads without the need for tedious hourly energy simulations. It is validated by hourly simulation results with DOE2. Then symbolic long-term cooling load can be created by combining the two methods with thermal network analysis. The symbolic long-term cooling load can keep the design parameters of interest as symbols, which is particularly useful for the optimal design and sensitivity analysis. The methodology is applied to an office building in Hong Kong for the optimal design of building envelope. Design variables such as window-to-wall ratio, building orientation, and glazing optical and thermal properties are included in the study. Results show that the selected design values could significantly impact the energy performance of windows, and the optimal design of side-lit buildings could greatly enhance energy savings. The application example also demonstrates that the developed methodology significantly facilitates the optimal building design and sensitivity analysis, and leads to high computational efficiency.
Mathematical investigation of one-way transform matrix options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, James Arlin
2006-01-01
One-way transforms have been used in weapon systems processors since the mid- to late-1970s in order to help recognize insertion of correct pre-arm information while maintaining abnormal-environment safety. Level-One, Level-Two, and Level-Three transforms have been designed. The Level-One and Level-Two transforms have been implemented in weapon systems, and both of these transforms are equivalent to matrix multiplication applied to the inserted information. The Level-Two transform, utilizing a 6 x 6 matrix, provided the basis for the ''System 2'' interface definition for Unique-Signal digital communication between aircraft and attached weapons. The investigation described in this report was carried out to findmore » out if there were other size matrices that would be equivalent to the 6 x 6 Level-Two matrix. One reason for the investigation was to find out whether or not other dimensions were possible, and if so, to derive implementation options. Another important reason was to more fully explore the potential for inadvertent inversion. The results were that additional implementation methods were discovered, but no inversion weaknesses were revealed.« less
Jin, Lei; Zhang, Xiaojun; Sun, Xiumei; Shi, Hui; Li, Tiejun
2014-10-01
A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC-MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.
Scandurra, I; Hägglund, M; Koch, S
2008-08-01
This paper presents a new multi-disciplinary method for user needs analysis and requirements specification in the context of health information systems based on established theories from the fields of participatory design and computer supported cooperative work (CSCW). Whereas conventional methods imply a separate, sequential needs analysis for each profession, the "multi-disciplinary thematic seminar" (MdTS) method uses a collaborative design process. Application of the method in elderly homecare resulted in prototypes that were well adapted to the intended user groups. Vital information in the points of intersection between different care professions was elicited and a holistic view of the entire care process was obtained. Health informatics-usability specialists and clinical domain experts are necessary to apply the method. Although user needs acquisition can be time-consuming, MdTS was perceived to efficiently identify in-context user needs, and transformed these directly into requirements specifications. Consequently the method was perceived to expedite the entire ICT implementation process.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
A Log-Euclidean polyaffine registration for articulated structures in medical images.
Martín-Fernández, Miguel Angel; Martín-Fernández, Marcos; Alberola-López, Carlos
2009-01-01
In this paper we generalize the Log-Euclidean polyaffine registration framework of Arsigny et al. to deal with articulated structures. This framework has very useful properties as it guarantees the invertibility of smooth geometric transformations. In articulated registration a skeleton model is defined for rigid structures such as bones. The final transformation is affine for the bones and elastic for other tissues in the image. We extend the Arsigny el al.'s method to deal with locally-affine registration of pairs of wires. This enables the possibility of using this registration framework to deal with articulated structures. In this context, the design of the weighting functions, which merge the affine transformations defined for each pair of wires, has a great impact not only on the final result of the registration algorithm, but also on the invertibility of the global elastic transformation. Several experiments, using both synthetic images and hand radiographs, are also presented.
Design considerations for large space electric power systems
NASA Technical Reports Server (NTRS)
Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.
1983-01-01
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.
The method of complex characteristics for design of transonic blade sections
NASA Technical Reports Server (NTRS)
Bledsoe, M. R.
1986-01-01
A variety of computational methods were developed to obtain shockless or near shockless flow past two-dimensional airfoils. The approach used was the method of complex characteristics, which determines smooth solutions to the transonic flow equations based on an input speed distribution. General results from fluid mechanics are presented. An account of the method of complex characteristics is given including a description of the particular spaces and coordinates, conformal transformations, and numerical procedures that are used. The operation of the computer program COMPRES is presented along with examples of blade sections designed with the code. A user manual is included with a glossary to provide additional information which may be helpful. The computer program in Fortran, including numerous comment cards is listed.
An efficient temporal database design method based on EER
NASA Astrophysics Data System (ADS)
Liu, Zhi; Huang, Jiping; Miao, Hua
2007-12-01
Many existing methods of modeling temporal information are based on logical model, which makes relational schema optimization more difficult and more complicated. In this paper, based on the conventional EER model, the author attempts to analyse and abstract temporal information in the phase of conceptual modelling according to the concrete requirement to history information. Then a temporal data model named BTEER is presented. BTEER not only retains all designing ideas and methods of EER which makes BTEER have good upward compatibility, but also supports the modelling of valid time and transaction time effectively at the same time. In addition, BTEER can be transformed to EER easily and automatically. It proves in practice, this method can model the temporal information well.
Cast Coil Transformer Fire Susceptibility and Reliability Study
1991-04-01
transformers reduce risk to the user compared to liquid-filled units, eliminate environmental impacts, are more efficient than most transformer designs, and...filled units, eliminate environmental impacts, arc more efficient than most transformer designs, and add minimal risk to the facility in a fire situation...add minimal risk to the facility in a fire situation. Cast coil transformers have a long record of operation and have proven to be reliable and
Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M
2018-03-01
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stegen, Ronald; Gassmann, Matthias
2017-04-01
The use of a broad variation of agrochemicals is essential for the modern industrialized agriculture. During the last decades, the awareness of the side effects of their use has grown and with it the requirement to reproduce, understand and predict the behaviour of these agrochemicals in the environment, in order to optimize their use and minimize the side effects. The modern modelling has made great progress in understanding and predicting these chemicals with digital methods. While the behaviour of the applied chemicals is often investigated and modelled, most studies only simulate parent chemicals, considering total annihilation of the substance. However, due to a diversity of chemical, physical and biological processes, the substances are rather transformed into new chemicals, which themselves are transformed until, at the end of the chain, the substance is completely mineralized. During this process, the fate of each transformation product is determined by its own environmental characteristics and the pathway and results of transformation can differ largely by substance and environmental influences, that can occur in different compartments of the same site. Simulating transformation products introduces additional model uncertainties. Thus, the calibration effort increases compared to simulations of the transport and degradation of the primary substance alone. The simulation of the necessary physical processes needs a lot of calculation time. Due to that, few physically-based models offer the possibility to simulate transformation products at all, mostly at the field scale. The few models available for the catchment scale are not optimized for this duty, i.e. they are only able to simulate a single parent compound and up to two transformation products. Thus, for simulations of large physico-chemical parameter spaces, the enormous calculation time of the underlying hydrological model diminishes the overall performance. In this study, the structure of the model ZIN-AGRITRA is re-designed for the transport and transformation of an unlimited amount of agrochemicals in the soil-water-plant system at catchment scale. The focus is, besides a good hydrological standard, on a flexible variation of transformation processes and the optimization for the use of large numbers of different substances. Due to the new design, a reduction of the calculation time per tested substance is acquired, allowing faster testing of parameter spaces. Additionally, the new concept allows for the consideration of different transformation processes and products in different environmental compartments. A first test of calculation time improvements and flexible transformation pathways was performed in a Mediterranean meso-scale catchment, using the insecticide Chlorpyrifos and two of its transformation products, which emerge from different transformation processes, as test substances.
REST: a computer system for estimating logging residue by using the line-intersect method
A. Jeff Martin
1975-01-01
A computer program was designed to accept logging-residue measurements obtained by line-intersect sampling and transform them into summaries useful for the land manager. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
NASA Astrophysics Data System (ADS)
Ma, Yan; Yao, Jinxia; Gu, Chao; Chen, Yufeng; Yang, Yi; Zou, Lida
2017-05-01
With the formation of electric big data environment, more and more big data analyses emerge. In the complicated data analysis on equipment condition assessment, there exist many join operations, which are time-consuming. In order to save time, the approach of materialized view is usually used. It places part of common and critical join results on external storage and avoids the frequent join operation. In the paper we propose the methods of selecting and placing materialized views to reduce the query time of electric transmission and transformation equipment, and make the profits of service providers maximal. In selection method we design a computation way for the value of non-leaf node based on MVPP structure chart. In placement method we use relevance weights to place the selected materialized views, which help reduce the network transmission time. Our experiments show that the proposed selection and placement methods have a high throughput and good optimization ability of query time for electric transmission and transformation equipment.
Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-01-01
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502
NASA Astrophysics Data System (ADS)
Gao, Ling; Ren, Shouxin
2005-10-01
Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.
Laser spot tracking based on modified circular Hough transform and motion pattern analysis.
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-10-27
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.
Suzuki, Yasuhiro; Kagawa, Naoko; Fujino, Toru; Sumiya, Tsuyoshi; Andoh, Taichi; Ishikawa, Kumiko; Kimura, Rie; Kemmochi, Kiyokazu; Ohta, Tsutomu; Tanaka, Shigeo
2005-01-01
There is an increasing demand for easy, high-throughput (HTP) methods for protein engineering to support advances in the development of structural biology, bioinformatics and drug design. Here, we describe an N- and C-terminal cloning method utilizing Gateway cloning technology that we have adopted for chimeric and mutant genes production as well as domain shuffling. This method involves only three steps: PCR, in vitro recombination and transformation. All three processes consist of simple handling, mixing and incubation steps. We have characterized this novel HTP method on 96 targets with >90% success. Here, we also discuss an N- and C-terminal cloning method for domain shuffling and a combination of mutation and chimeragenesis with two types of plasmid vectors. PMID:16009811
Efficient numerical method of freeform lens design for arbitrary irradiance shaping
NASA Astrophysics Data System (ADS)
Wojtanowski, Jacek
2018-05-01
A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.
Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti
2007-07-10
A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.
Dai, Sheng-Yun; Xu, Bing; Shi, Xin-Yuan; Xu, Xiang; Sun, Ying-Qiang; Qiao, Yan-Jiang
2017-03-01
This study is aimed to propose a continual improvement strategy based on quality by design (QbD). An ultra high performance liquid chromatography (UPLC) method was developed to accomplish the method transformation from HPLC to UPLC of Panax notogineng saponins (PNS) and achieve the continual improvement of PNS based on QbD, for example. Plackett-Burman screening design and Box-Behnken optimization design were employed to further understand the relationship between the critical method parameters (CMPs) and critical method attributes (CMAs). And then the Bayesian design space was built. The separation degree of the critical peaks (ginsenoside Rg₁ and ginsenoside Re) was over 2.0 and the analysis time was less than 17 min by a method chosen from the design space with 20% of the initial concentration of the acetonitrile, 10 min of the isocratic time and 6%•min⁻¹ of the gradient slope. At last, the optimum method was validated by accuracy profile. Based on the same analytical target profile (ATP), the comparison of HPLC and UPLC including chromatograph method, CMA identification, CMP-CMA model and system suitability test (SST) indicated that the UPLC method could shorten the analysis time, improve the critical separation and satisfy the requirement of the SST. In all, HPLC method could be replaced by UPLC for the quantity analysis of PNS. Copyright© by the Chinese Pharmaceutical Association.
Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle
NASA Astrophysics Data System (ADS)
Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun
2018-05-01
The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.
Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan
2009-02-01
Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.
Achieving integration in mixed methods designs-principles and practices.
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-12-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Komai, Ricardo Kiyohiro
Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic systems.
NASA Astrophysics Data System (ADS)
Kraus, Adam H.
Moisture within a transformer's insulation system has been proven to degrade its dielectric strength. When installing a transformer in situ, one method used to calculate the moisture content of the transformer insulation is to measure the dew point temperature of the internal gas volume of the transformer tank. There are two instruments commercially available that are designed for dew point temperature measurement: the Alnor Model 7000 Dewpointer and the Vaisala DRYCAPRTM Hand-Held Dewpoint Meter DM70. Although these instruments perform an identical task, the design technology behind each instrument is vastly different. When the Alnor Dewpointer and Vaisala DM70 instruments are used to measure the dew point of the internal gas volume simultaneously from a pressurized transformer, their differences in dew point measurement have been observed to vary as much as 30 °F. There is minimal scientific research available that focuses on the process of measuring dew point of a gas inside a pressurized transformer, let alone this observed phenomenon. The primary objective of this work was to determine what effect certain factors potentially have on dew point measurements of a transformer's internal gas volume, in hopes of understanding the root cause of this phenomenon. Three factors that were studied include (1) human error, (2) the use of calibrated and out-of-calibration instruments, and (3) the presence of oil vapor gases in the dry air sample, and their subsequent effects on the Q-value of the sampled gas. After completing this portion of testing, none of the selected variables proved to be a direct cause of the observed discrepancies between the two instruments. The secondary objective was to validate the accuracy of each instrument as compared to its respective published range by testing against a known dew point temperature produced by a humidity generator. In a select operating range of -22 °F to -4 °F, both instruments were found to be accurate and within their specified tolerances. This temperature range is frequently encountered in oil-soaked transformers, and demonstrates that both instruments can measure accurately over a limited, yet common, range despite their different design methodologies. It is clear that there is another unknown factor present in oil-soaked transformers that is causing the observed discrepancy between these instruments. Future work will include testing on newly manufactured or rewound transformers in order to investigate other variables that could be causing this discrepancy.
An analysis of general chain systems
NASA Technical Reports Server (NTRS)
Passerello, C. E.; Huston, R. L.
1972-01-01
A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.
The convolutional differentiator method for numerical modelling of acoustic and elastic wavefields
NASA Astrophysics Data System (ADS)
Zhang, Zhong-Jie; Teng, Ji-Wen; Yang, Ding-Hui
1996-02-01
Based on the techniques of forward and inverse Fourier transformation, the authors discussed the design scheme of ordinary differentiator used and applied in the simulation of acoustic and elastic wavefields in isotropic media respectively. To compress Gibbs effects by truncation effectively, Hanning window is introduced in. The model computation shows that, the convolutional differentiator method has the advantages of rapidity, low requirements of computer’s inner storage and high precision, which is a potential method of numerical simulation.
Martins, Silvia A; Sousa, Sergio F
2013-06-05
The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kuang, E-mail: zhangkuang@hit.edu.cn; State Key Laboratory of Millimeter Waves, Nanjing 210096; Ding, Xumin
2016-02-01
A general design of metalenses for N-beam emissions is proposed based on transformation optics. A linear mapping function is adopted to achieve the homogeneous characterization of the transforming medium, which is therefore easy to be achieved compared with previous designs limited by inhomogeneity based on transformation optics. To verify the theoretical design, a four-beam antenna constructed with ultrathin, homogenous, and uniaxial anisotropic metalens is designed, fabricated, and measured. It is shown that the realized gain of the four-beam antenna is increased by 6 dB compared with the single dipole source, while working frequency and relative bandwidth are kept unchanged. The measuredmore » far-field pattern verifies theoretical design procedure.« less
Fourier Transform Methods. Chapter 4
NASA Technical Reports Server (NTRS)
Kaplan, Simon G.; Quijada, Manuel A.
2015-01-01
This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
3-D surface profilometry based on modulation measurement by applying wavelet transform method
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao
2017-01-01
A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.
Shift-, rotation-, and scale-invariant shape recognition system using an optical Hough transform
NASA Astrophysics Data System (ADS)
Schmid, Volker R.; Bader, Gerhard; Lueder, Ernst H.
1998-02-01
We present a hybrid shape recognition system with an optical Hough transform processor. The features of the Hough space offer a separate cancellation of distortions caused by translations and rotations. Scale invariance is also provided by suitable normalization. The proposed system extends the capabilities of Hough transform based detection from only straight lines to areas bounded by edges. A very compact optical design is achieved by a microlens array processor accepting incoherent light as direct optical input and realizing the computationally expensive connections massively parallel. Our newly developed algorithm extracts rotation and translation invariant normalized patterns of bright spots on a 2D grid. A neural network classifier maps the 2D features via a nonlinear hidden layer onto the classification output vector. We propose initialization of the connection weights according to regions of activity specifically assigned to each neuron in the hidden layer using a competitive network. The presented system is designed for industry inspection applications. Presently we have demonstrated detection of six different machined parts in real-time. Our method yields very promising detection results of more than 96% correctly classified parts.
Advanced stable lipid-based formulations for a patient-centric product design.
Becker, Karin; Saurugger, Eva-Maria; Kienberger, Diana; Lopes, Diogo; Haack, Detlev; Köberle, Martin; Stehr, Michael; Lochmann, Dirk; Zimmer, Andreas; Salar-Behzadi, Sharareh
2016-01-30
Multiparticulate dosage forms are a recent strategy to meet the special needs of children, elderly people and patients suffering from dysphagia. Our study presents a novel and cost-efficient approach for the manufacturing of a taste-masked multiparticulate system with a stable immediate release profile by applying lipid-based excipients in a solvent-free hot melt coating process. The thermosensitive N-acetylcysteine (N-ac) was used as model drug and hot-melt coated with a mixture of tripalmitin and polysorbate 65. A predictive in vitro method for the evaluation of the taste masking efficiency was developed based on the deprotonation of the carboxyl group of N-ac and the decline of pH, responsible for the unpleasant sour taste of the compound. The method was confirmed using in vivo studies. Differential scanning calorimetry and X-ray scattering experiments revealed polymorphic transformation and its dependency on transformation time, temperature and emulsifier concentration. During the process, the coating was transformed almost completely into the stable β-polymorph, leading to an unaltered dissolution profile during storage. A statistical design was conducted that revealed the critical process parameters affecting the taste masking efficiency and drug release. This study shows the successful application of solvent-free hot-melt coating in the development of a taste-masked and stable formulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C
2007-03-28
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.
Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network
NASA Astrophysics Data System (ADS)
Pratap, Rana; Subadra, M.
2011-10-01
An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.
Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation
NASA Astrophysics Data System (ADS)
Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot
2017-05-01
In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.
Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.
2018-05-01
The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.
X-ray diffraction analysis of residual stress in zirconia dental composites
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud
Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
Generalized serial search code acquisition - The equivalent circular state diagram approach
NASA Technical Reports Server (NTRS)
Polydoros, A.; Simon, M. K.
1984-01-01
A transform-domain method for deriving the generating function of the acquisition process resulting from an arbitrary serial search strategy is presented. The method relies on equivalent circular state diagrams, uses Mason's formula from flow-graph theory, and employs a minimum number of required parameters. The transform-domain approach is briefly described and the concept of equivalent circular state diagrams is introduced and exploited to derive the generating function and resulting mean acquisition time for three particular cases of interest, the continuous/center Z search, the broken/center Z search, and the expanding window search. An optimization of the latter technique is performed whereby the number of partial windows which minimizes the mean acquisition time is determined. The numerical results satisfy certain intuitive predictions and provide useful design guidelines for such systems.
Toward End-to-End Face Recognition Through Alignment Learning
NASA Astrophysics Data System (ADS)
Zhong, Yuanyi; Chen, Jiansheng; Huang, Bo
2017-08-01
Plenty of effective methods have been proposed for face recognition during the past decade. Although these methods differ essentially in many aspects, a common practice of them is to specifically align the facial area based on the prior knowledge of human face structure before feature extraction. In most systems, the face alignment module is implemented independently. This has actually caused difficulties in the designing and training of end-to-end face recognition models. In this paper we study the possibility of alignment learning in end-to-end face recognition, in which neither prior knowledge on facial landmarks nor artificially defined geometric transformations are required. Specifically, spatial transformer layers are inserted in front of the feature extraction layers in a Convolutional Neural Network (CNN) for face recognition. Only human identity clues are used for driving the neural network to automatically learn the most suitable geometric transformation and the most appropriate facial area for the recognition task. To ensure reproducibility, our model is trained purely on the publicly available CASIA-WebFace dataset, and is tested on the Labeled Face in the Wild (LFW) dataset. We have achieved a verification accuracy of 99.08\\% which is comparable to state-of-the-art single model based methods.
Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.
Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan
2016-06-01
This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.
ERIC Educational Resources Information Center
King, Kathleen P.
2009-01-01
Based on the theory of transformative learning (Mezirow, 1980) and critical pedagogy (Freire, 1980), mixed-methods research (Tashakkori & Teddlie, 1998) of a hospital workers' union and training organization addressed the impact of a custom-designed, group-focused, results-driven professional development model with 130 participants. Employees…
ERIC Educational Resources Information Center
Bogotch, Ira; Maslin-Ostrowski, Patricia
2010-01-01
Purpose: This study describes how an educational leadership department transformed its regional identity and localized practices over a ten-year period (1997-2007) to become internationalized in terms of research, teaching, and service. Research Methods/Approach (e.g., Setting, Participants, Research Design, Data Collection and Analysis): A basic…
Toxic Remediation System And Method
Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.
1996-07-23
What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.
Driving Objectives and High-level Requirements for KP-Lab Technologies
ERIC Educational Resources Information Center
Lakkala, Minna; Paavola, Sami; Toikka, Seppo; Bauters, Merja; Markannen, Hannu; de Groot, Reuma; Ben Ami, Zvi; Baurens, Benoit; Jadin, Tanja; Richter, Christoph; Zoserl, Eva; Batatia, Hadj; Paralic, Jan; Babic, Frantisek; Damsa, Crina; Sins, Patrick; Moen, Anne; Norenes, Svein Olav; Bugnon, Alexandra; Karlgren, Klas; Kotzinons, Dimitris
2008-01-01
One of the central goals of the KP-Lab project is to co-design pedagogical methods and technologies for knowledge creation and practice transformation in an integrative and reciprocal manner. In order to facilitate this process user tasks, driving objectives and high-level requirements have been introduced as conceptual tools to mediate between…
The "Frankenplasmid" lab: an investigative exercise for teaching recombinant DNA methods.
Dean, Derek M; Wilder, Jason A
2011-01-01
We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform E. coli with this mixture of ligated DNA, and plate the cells on media that specifically select for hybrid plasmids. The main goal of the assignment is for students to deduce the gene map of one hybrid "Frankenplasmid" using the LacZ phenotype of its transformants, PCR, and restriction mapping. Our protocol results in a number of possible outcomes, meaning that students are mapping truly unknown plasmids. The open-ended nature of this assignment results in an effective module that teaches recombinant DNA procedures while engaging students with its investigative approach, increasing complexity, and puzzle-like quality. Moreover, the modular design of the activity allows it to be adapted to a more limited schedule, introductory courses, or more advanced courses. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Deng, Zhengping; Li, Shuanggao; Huang, Xiang
2018-06-01
In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.
A novel double loop control model design for chemical unstable processes.
Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He
2014-03-01
In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.
High-Efficiency, Low-Weight Power Transformer
NASA Technical Reports Server (NTRS)
Welsh, J. P.
1986-01-01
Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.
A 16X16 Discrete Cosine Transform Chip
NASA Astrophysics Data System (ADS)
Sun, M. T.; Chen, T. C.; Gottlieb, A.; Wu, L.; Liou, M. L.
1987-10-01
Among various transform coding techniques for image compression the Discrete Cosine Transform (DCT) is considered to be the most effective method and has been widely used in the laboratory as well as in the market, place. DCT is computationally intensive. For video application at 14.3 MHz sample rate, a direct implementation of a 16x16 DCT requires a throughput, rate of approximately half a billion multiplications per second. In order to reduce the cost of hardware implementation, a single chip DCT implementation is highly desirable. In this paper, the implementation of a 16x16 DCT chip using a concurrent architecture will be presented. The chip is designed for real-time processing of 14.3 MHz sampled video data. It uses row-column decomposition to implement the two-dimensional transform. Distributed arithmetic combined with hit-serial and hit-parallel structures is used to implement the required vector inner products concurrently. Several schemes are utilized to reduce the size of required memory. The resultant circuit only uses memory, shift registers, and adders. No multipliers are required. It achieves high speed performance with a very regular and efficient integrated circuit realization. The chip accepts 0-bit input and produces 14-bit DCT coefficients. 12 bits are maintained after the first one-dimensional transform. The circuit has been laid out using a 2-μm CMOS technology with a symbolic design tool MULGA. The core contains approximately 73,000 transistors in an area of 7.2 x 7.0
Quantitative characterization of genetic parts and circuits for plant synthetic biology.
Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok
2016-01-01
Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.
Spectral analysis method and sample generation for real time visualization of speech
NASA Astrophysics Data System (ADS)
Hobohm, Klaus
A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.
Ethanol production by recombinant hosts
Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie
1996-01-01
Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.
Ethanol production by recombinant hosts
Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.
1995-01-01
Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.
NASA Technical Reports Server (NTRS)
Boriakoff, Valentin; Chen, Wei
1990-01-01
The NASA-Cornell Univ.-Worcester Polytechnic Institute Fast Fourier Transform (FFT) chip based on the architecture of the systolic FFT computation as presented by Boriakoff is implemented into an operating device design. The kernel of the system, a systolic inner product floating point processor, was designed to be assembled into a systolic network that would take incoming data streams in pipeline fashion and provide an FFT output at the same rate, word by word. It was thoroughly simulated for proper operation, and it has passed a comprehensive set of tests showing no operational errors. The black box specifications of the chip, which conform to the initial requirements of the design as specified by NASA, are given. The five subcells are described and their high level function description, logic diagrams, and simulation results are presented. Some modification of the Read Only Memory (ROM) design were made, since some errors were found in it. Because a four stage pipeline structure was used, simulating such a structure is more difficult than an ordinary structure. Simulation methods are discussed. Chip signal protocols and chip pinout are explained.
Transforming Multidisciplinary Customer Requirements to Product Design Specifications
NASA Astrophysics Data System (ADS)
Ma, Xiao-Jie; Ding, Guo-Fu; Qin, Sheng-Feng; Li, Rong; Yan, Kai-Yin; Xiao, Shou-Ne; Yang, Guang-Wu
2017-09-01
With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.
Function combined method for design innovation of children's bike
NASA Astrophysics Data System (ADS)
Wu, Xiaoli; Qiu, Tingting; Chen, Huijuan
2013-03-01
As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children's tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children's bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.
Design of electromagnetic refractor and phase transformer using coordinate transformation theory.
Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang
2008-05-12
We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.
Tichy, Diana; Pickl, Julia Maria Anna; Benner, Axel; Sültmann, Holger
2017-03-31
The identification of microRNA (miRNA) target genes is crucial for understanding miRNA function. Many methods for the genome-wide miRNA target identification have been developed in recent years; however, they have several limitations including the dependence on low-confident prediction programs and artificial miRNA manipulations. Ago-RNA immunoprecipitation combined with high-throughput sequencing (Ago-RIP-Seq) is a promising alternative. However, appropriate statistical data analysis algorithms taking into account the experimental design and the inherent noise of such experiments are largely lacking.Here, we investigate the experimental design for Ago-RIP-Seq and examine biostatistical methods to identify de novo miRNA target genes. Statistical approaches considered are either based on a negative binomial model fit to the read count data or applied to transformed data using a normal distribution-based generalized linear model. We compare them by a real data simulation study using plasmode data sets and evaluate the suitability of the approaches to detect true miRNA targets by sensitivity and false discovery rates. Our results suggest that simple approaches like linear regression models on (appropriately) transformed read count data are preferable. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dynamic-ETL: a hybrid approach for health data extraction, transformation and loading.
Ong, Toan C; Kahn, Michael G; Kwan, Bethany M; Yamashita, Traci; Brandt, Elias; Hosokawa, Patrick; Uhrich, Chris; Schilling, Lisa M
2017-09-13
Electronic health records (EHRs) contain detailed clinical data stored in proprietary formats with non-standard codes and structures. Participating in multi-site clinical research networks requires EHR data to be restructured and transformed into a common format and standard terminologies, and optimally linked to other data sources. The expertise and scalable solutions needed to transform data to conform to network requirements are beyond the scope of many health care organizations and there is a need for practical tools that lower the barriers of data contribution to clinical research networks. We designed and implemented a health data transformation and loading approach, which we refer to as Dynamic ETL (Extraction, Transformation and Loading) (D-ETL), that automates part of the process through use of scalable, reusable and customizable code, while retaining manual aspects of the process that requires knowledge of complex coding syntax. This approach provides the flexibility required for the ETL of heterogeneous data, variations in semantic expertise, and transparency of transformation logic that are essential to implement ETL conventions across clinical research sharing networks. Processing workflows are directed by the ETL specifications guideline, developed by ETL designers with extensive knowledge of the structure and semantics of health data (i.e., "health data domain experts") and target common data model. D-ETL was implemented to perform ETL operations that load data from various sources with different database schema structures into the Observational Medical Outcome Partnership (OMOP) common data model. The results showed that ETL rule composition methods and the D-ETL engine offer a scalable solution for health data transformation via automatic query generation to harmonize source datasets. D-ETL supports a flexible and transparent process to transform and load health data into a target data model. This approach offers a solution that lowers technical barriers that prevent data partners from participating in research data networks, and therefore, promotes the advancement of comparative effectiveness research using secondary electronic health data.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
A Concept Transformation Learning Model for Architectural Design Learning Process
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming
2016-01-01
Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…
Model based analysis of piezoelectric transformers.
Hemsel, T; Priya, S
2006-12-22
Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.
Methods for genetic transformation of filamentous fungi.
Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen
2017-10-03
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
Duschenes, Ronaldo; Mendes, Andressa; Betiol, Adriana; Barreto, Suzana
2012-01-01
This paper presents a case study of the application of user centered design methodologies in the product development for a line of ergonomic office furniture. The study aimed to analyze the experience of using a workstation from the perspective of two groups of users, installers and end users. The observation of users in their natural context of use not only allowed the development team to identify key needs and strategies of the users, transforming them into design solutions, but mainly it warned them of the importance and impact of user involvement in the product development cycle.
ERIC Educational Resources Information Center
Provident, Ingrid; Salls, Joyce; Dolhi, Cathy; Schreiber, Jodi; Mattila, Amy; Eckel, Emily
2015-01-01
Written reflections of 113 occupational therapy clinical doctoral students who graduated from an online program between 2007 and 2013 were analyzed for themes which reflected transformative learning and characteristics of curricular design which promoted transformative learning. Qualitative analyses of written reflections were performed. Several…
Learning in Transformational Computer Games: Exploring Design Principles for a Nanotechnology Game
ERIC Educational Resources Information Center
Masek, Martin; Murcia, Karen; Morrison, Jason; Newhouse, Paul; Hackling, Mark
2012-01-01
Transformational games are digital computer and video applications purposefully designed to create engaging and immersive learning environments for delivering specified learning goals, outcomes and experiences. The virtual world of a transformational game becomes the social environment within which learning occurs as an outcome of the complex…
Using Data Collection Apps and Single-Case Designs to Research Transformative Learning in Adults
ERIC Educational Resources Information Center
Roessger, Kevin M.; Greenleaf, Arie; Hoggan, Chad
2017-01-01
To overcome situational hurdles when researching transformative learning in adults, we outline a research approach using single-case research designs and smartphone data collection apps. This approach allows researchers to better understand learners' current lived experiences and determine the effects of transformative learning interventions on…
NASA Astrophysics Data System (ADS)
Nabavi, N.
2018-07-01
The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Modeling the peak of emergence in systems: Design and katachi.
Cardier, Beth; Goranson, H T; Casas, Niccolo; Lundberg, Patric; Erioli, Alessio; Takaki, Ryuji; Nagy, Dénes; Ciavarra, Richard; Sanford, Larry D
2017-12-01
It is difficult to model emergence in biological systems using reductionist paradigms. A requirement for computational modeling is that individual entities can be recorded parametrically and related logically, but their transformation into whole systems cannot be captured this way. The problem stems from an inability to formally represent the implicit influences that inform emergent organization, such as context, shifts in causal agency or scale, and self-reference. This lack hampers biological systems modeling and its computational counterpart, indicating a need for new fundamental abstraction frameworks that support system-level characteristics. We develop an approach that formally captures these characteristics, focusing on the way they come together to enable transformation at the 'peak' of the emergent process. An example from virology is presented, in which two seemingly antagonistic systems - the herpes cold sore virus and its host - are capable of altering their basic biological objectives to achieve a new equilibrium. The usual barriers to modeling this process are overcome by incorporating mechanisms from practices centered on its emergent peak: design and katachi. In the Japanese science of form, katachi refers to the emergence of intrinsic structure from real situations, where an optimal balance between implicit influences is achieved. Design indicates how such optimization is guided by principles of flow. These practices leverage qualities of situated abstraction, which we understand through the intuitive method of physicist Kôdi Husimi. Early results indicate that this approach can capture the functional transformations of biological emergence, whilst being reasonably computable. Due to its geometric foundations and narrative-based extension to logic, the method will also generate speculative predictions. This research forms the foundations of a new biomedical modeling platform, which is discussed. Copyright © 2017. Published by Elsevier Ltd.
Bar piezoelectric ceramic transformers.
Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš
2013-07-01
Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.
Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin
2014-11-01
A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing fast determination of gasoline induction period, and of a positive meaning in the evaluation of fuel quality.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2018-03-01
The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.
Direct manipulation of wave amplitude and phase through inverse design of isotropic media
NASA Astrophysics Data System (ADS)
Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2017-07-01
In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
NASA Astrophysics Data System (ADS)
Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet
2010-11-01
Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.
Box-Cox transformation for QTL mapping.
Yang, Runqing; Yi, Nengjun; Xu, Shizhong
2006-01-01
The maximum likelihood method of QTL mapping assumes that the phenotypic values of a quantitative trait follow a normal distribution. If the assumption is violated, some forms of transformation should be taken to make the assumption approximately true. The Box-Cox transformation is a general transformation method which can be applied to many different types of data. The flexibility of the Box-Cox transformation is due to a variable, called transformation factor, appearing in the Box-Cox formula. We developed a maximum likelihood method that treats the transformation factor as an unknown parameter, which is estimated from the data simultaneously along with the QTL parameters. The method makes an objective choice of data transformation and thus can be applied to QTL analysis for many different types of data. Simulation studies show that (1) Box-Cox transformation can substantially increase the power of QTL detection; (2) Box-Cox transformation can replace some specialized transformation methods that are commonly used in QTL mapping; and (3) applying the Box-Cox transformation to data already normally distributed does not harm the result.
Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI
Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid
2017-01-01
Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329
Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.
Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho
2018-03-14
In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Kumar, Ashok
2017-11-01
Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure having an MR damper at the ground floor level subjected to three different near-fault historical earthquake time histories, and the outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-storey drift, relative displacement, and acceleration response.
Transforming care: medical practice design and information technology.
Kilo, Charles M
2005-01-01
The transformation of the medical practice is possible today because of the advancement of system design knowledge coupled with innovations in information technology (IT). Examples of such transformed care are present today, and they are creating a roadmap for others. Those efforts are also elucidating critical issues in the use of IT to advance health care quality. Connectivity, electronic integration, and knowledge management are the key functionalities emerging as levers to promote this transformation.
Robust Learning Control Design for Quantum Unitary Transformations.
Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi
2017-12-01
Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.
Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves
NASA Astrophysics Data System (ADS)
Chang, Yu-Hsuan; Lin, De-Hone
2014-01-01
Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.
Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics
Zeng, Chao; Liu, Xueming; Wang, Guoxi
2014-01-01
The past few years have witnessed tremendous achievements of transformation optics applied to metallic plasmonic systems. Due to the poor tunability of metals, however, the ultimate control over surface plasmons remains a challenge. Here we propose a new type of graphene plasmonic (GP) metasurfaces by shaping the dielectrics underneath monolayer graphene into specific photonic crystals. The radial and axial gradient-index (GRIN) lenses are implemented to demonstrate the feasibility and versatility of the proposal. It is found that the designed GP-GRIN lenses work perfectly well for focusing, collimating, and guiding the GP waves. Especially, they exhibit excellent performances in the THz regime as diverse as ultra-small focusing spot (λ0/60) and broadband electrical tunability. The proposed method offers potential opportunities in exploiting active transformational plasmonic elements operating at THz frequencies. PMID:25042132
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
Gallopin, Mélina; Rau, Andrea; Jaffrézic, Florence
2013-01-01
Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data. PMID:24147011
Makrakis, Vassilios; Kostoulas-Makrakis, Nelly
2016-02-01
Quantitative and qualitative approaches to planning and evaluation in education for sustainable development have often been treated by practitioners from a single research paradigm. This paper discusses the utility of mixed method evaluation designs which integrate qualitative and quantitative data through a sequential transformative process. Sequential mixed method data collection strategies involve collecting data in an iterative process whereby data collected in one phase contribute to data collected in the next. This is done through examples from a programme addressing the 'Reorientation of University Curricula to Address Sustainability (RUCAS): A European Commission Tempus-funded Programme'. It is argued that the two approaches are complementary and that there are significant gains from combining both. Using methods from both research paradigms does not, however, mean that the inherent differences among epistemologies and methodologies should be neglected. Based on this experience, it is recommended that using a sequential transformative mixed method evaluation can produce more robust results than could be accomplished using a single approach in programme planning and evaluation focussed on education for sustainable development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
ERIC Educational Resources Information Center
MELLON, JOHN C.
THIS STUDY REPORTS AN EXPERIMENT ON THE HYPOTHESIS THAT GRAMMAR-RELATED SENTENCE-COMBINING PRACTICE WILL MEANINGFULLY ENHANCE THE NORMAL GROWTH OF SYNTACTIC FLUENCY. TRADITIONAL STUDIES ON ERROR THERAPY AND SENTENCE STRUCTURE ARE REVIEWED, AND DESIGN AND RATIONALE ARE INFERRED FROM THE RESEARCH OF BATEMAN AND ZIDONIS. RULE LEARNING, PATTERN…
ERIC Educational Resources Information Center
Feinberg, Melanie; Bullard, Julia; Carter, Daniel
2013-01-01
Introduction: Star and Bowker describe the residual as what does not fit into a category system and as an inevitable byproduct of classification. In this project, we explore what happens when we attempt to give prominence to the residual instead of minimizing it. Methods: The three authors created three "transformations" of a small…
ERIC Educational Resources Information Center
Tsai, Chia-Wen
2013-01-01
In modern business environments, work and tasks have become more complex and require more interdisciplinary skills to complete, including collaborative and computing skills for website design. However, the computing education in Taiwan can hardly be recognised as effective in developing and transforming students into competitive employees. In this…
Blurring the Boundaries? Supporting Students and Staff within an Online Learning Environment
ERIC Educational Resources Information Center
Quinsee, Susannah; Hurst, Judith
2005-01-01
The inclusion of online learning technologies into the higher education (HE) curriculum is frequently associated with the design and development of new models of learning. One could argue that e-learning even demands a reconfiguration of traditional methods of learning and teaching. One of the key elements of this transformational process is…
Enabling Transformative Learning in the Workplace: An Educative Research Intervention
ERIC Educational Resources Information Center
Wilhelmson, Lena; Åberg, Marie Moström; Backström, Tomas; Olsson, Bengt Köping
2015-01-01
The aim of this article is to discuss the potential of an educative research intervention to influence the quality of the learning outcome in the workplace as interpreted from the perspectives of adult learning theory. The research project was designed as a quasi-experimental, mixed-methods study. In this article, quantitative survey data were…
Daniel Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams; Cory Cleveland; Lisa Eby; Solomon Dobrowski; Erin Towler
2016-01-01
Current projections of future climate change foretell potentially transformative ecological changes that threaten communities globally. Using two case studies from the United States Intermountain West, this article highlights the ways in which a better articulation between theory and methods in research design can generate proactive applied tools that enable...
Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science
ERIC Educational Resources Information Center
Macinko Kovac, Maja; Eret, Lidija
2012-01-01
This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…
Learning Methods for Efficient Adoption of Contemporary Technologies in Architectural Design
ERIC Educational Resources Information Center
Mahdavinejad, Mohammadjavad; Dehghani, Sohaib; Shahsavari, Fatemeh
2013-01-01
The interaction between technology and history is one of the most significant issues in achieving an efficient and progressive architecture in any era. This is a concept which stems from lesson of traditional architecture of Iran. Architecture as a part of art, has permanently been transforming just like a living organism. In fact, it has been…
Evidence-Based Administration for Decision Making in the Framework of Knowledge Strategic Management
ERIC Educational Resources Information Center
Del Junco, Julio Garcia; Zaballa, Rafael De Reyna; de Perea, Juan Garcia Alvarez
2010-01-01
Purpose: This paper seeks to present a model based on evidence-based administration (EBA), which aims to facilitate the creation, transformation and diffusion of knowledge in learning organizations. Design/methodology/approach: A theoretical framework is proposed based on EBA and the case method. Accordingly, an empirical study was carried out in…
Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals
NASA Astrophysics Data System (ADS)
Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei
2018-01-01
Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.
NASA Technical Reports Server (NTRS)
Won, C. C.
1993-01-01
This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.
Hooper, I R; Philbin, T G
2013-12-30
We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded profiles that are all-dielectric, do not require materials with unrealistic values, and that are impedance matched to the bounding medium. This is achieved by transmuting the singularities (or zeros) using the formalism of transformation optics, but with an additional boundary condition requiring the gradient of the co-ordinate transformation be continuous. This additional boundary condition ensures that the device is impedance matched to the bounding medium when the spatially varying permittivity and permeability profiles are scaled to realizable values. We demonstrate the method in some detail for an Eaton lens, before describing the profiles for an "invisible disc" and "multipole" lenses.
NASA Technical Reports Server (NTRS)
Book, W. J.
1973-01-01
An investigation is reported involving a mathematical procedure using 4 x 4 transformation matrices for analyzing the vibrations of flexible manipulators. Previous studies with the procedure are summarized and the method is extended to include flexible joints as well as links, and to account for the effects of various power transmission schemes. A systematic study of the allocation of structural material and the placement of components such as motors and gearboxes was undertaken using the analytical tools developed. As one step in this direction the variables which relate the vibration parameters of the arm to the task and environment of the arm were isolated and nondimensionalized. The 4 x 4 transformation matrices were also used to develop analytical expressions for the terms of the complete 6 x 6 compliance matrix for the case of two flexible links joined by a rotating joint, flexible about its axis of rotation.
Controlling matter waves in momentum space
NASA Astrophysics Data System (ADS)
Lin, De-Hone
2014-07-01
The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.
ERIC Educational Resources Information Center
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
ERIC Educational Resources Information Center
Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee
2013-01-01
This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…
ERIC Educational Resources Information Center
Ross, Andrew L.
2007-01-01
Transformation Education, an organizational philosophy and operating system, is designed to increase service quality and effectiveness of group care through aligning its organizational structure with its purpose. This alignment is achieved through creating a culture designed to dispense transformation rather than treatment. The author presents how…
Information theoretic comparisons of original and transformed data from Landsat MSS and TM
NASA Technical Reports Server (NTRS)
Malila, W. A.
1985-01-01
The dispersion and concentration of signal values in transformed data from the Landsat-4 MSS and TM instruments are analyzed using a communications theory approach. The definition of entropy of Shannon was used to quantify information, and the concept of mutual information was employed to develop a measure of information contained in several subsets of variables. Several comparisons of information content are made on the basis of the information content measure, including: system design capacities; data volume occupied by agricultural data; and the information content of original bands and Tasseled Cap variables. A method for analyzing noise effects in MSS and TM data is proposed.
Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery
NASA Technical Reports Server (NTRS)
Smith, Jeffrey
2012-01-01
The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.
NASA Astrophysics Data System (ADS)
Tiunov, V. V.
2018-02-01
The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.
Emitter signal separation method based on multi-level digital channelization
NASA Astrophysics Data System (ADS)
Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan
2018-02-01
To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.
Hardware-in-the-loop grid simulator system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos
A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises anmore » improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.« less
Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms
Morales, Juan; Benavides-Piccione, Ruth; Pastor, Luis; Yuste, Rafael; DeFelipe, Javier
2014-01-01
Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns. PMID:22644869
Visual improvement for bad handwriting based on Monte-Carlo method
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2014-03-01
A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.
Complete set of invariants of a 4th order tensor: the 12 tasks of HARDI from ternary quartics.
Papadopoulo, Théo; Ghosh, Aurobrata; Deriche, Rachid
2014-01-01
Invariants play a crucial role in Diffusion MRI. In DTI (2nd order tensors), invariant scalars (FA, MD) have been successfully used in clinical applications. But DTI has limitations and HARDI models (e.g. 4th order tensors) have been proposed instead. These, however, lack invariant features and computing them systematically is challenging. We present a simple and systematic method to compute a functionally complete set of invariants of a non-negative 3D 4th order tensor with respect to SO3. Intuitively, this transforms the tensor's non-unique ternary quartic (TQ) decomposition (from Hilbert's theorem) to a unique canonical representation independent of orientation - the invariants. The method consists of two steps. In the first, we reduce the 18 degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an orthogonal transformation. This transformation is designed to enhance a rotation-invariant property of choice of the 3D 4th order tensor. In the second, we further reduce 3-DOFs via a 3D rotation transformation of coordinates to arrive at a canonical set of invariants to SO3 of the tensor. The resulting invariants are, by construction, (i) functionally complete, (ii) functionally irreducible (if desired), (iii) computationally efficient and (iv) reversible (mappable to the TQ coefficients or shape); which is the novelty of our contribution in comparison to prior work. Results from synthetic and real data experiments validate the method and indicate its importance.
Transformer overload characteristics---Bubble evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, E.E.; Wendel, R.C.; Dresser, R.D.
1988-08-01
Project RP1289-3 explores significant parameters affecting bubble evolution from transformer oil under high temperature operating conditions to address the question: Does ''real life'' operation of a transformer cause harmful bubbling conditions. Studies outlined in the project are designed to determine when bubbling occurs in transformers and if bubbling can be harmful during the normal operation of these transformers. Data obtained from these studies should provide a basis for utilities to perform risk assessments in relation to their loading practices. The program is designed to demonstrate those conditions under which bubbling occurs in transformers by using controlled models and actual signalmore » phase transformers that were designed to give access to both high and low voltage windings for the purpose of viewing bubble generation. Results and observations from tests on the full-size transformers, thermal models, and electrical models have led to the conclusion that bubbles can occur under operating conditions. The electrical models show that dielectric strength can be reduced by as much as 40 percent due to the presence of bubbles. Because of factory safety considerations, the transformers could not be tested at hot spot temperatures greater than 140/degree/C. Therefore, there is no information on the dielectric strength of the full-size transformers under bubbling conditions. 4 refs., 28 figs., 45 tabs.« less
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168
Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia
2017-04-01
It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.
Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot
NASA Technical Reports Server (NTRS)
Schmidt, Stanley F.; Harper, Eleanor V.
1959-01-01
Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.
Optimum aerodynamic design via boundary control
NASA Technical Reports Server (NTRS)
Jameson, Antony
1994-01-01
These lectures describe the implementation of optimization techniques based on control theory for airfoil and wing design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. Recently the method has been implemented in an alternative formulation which does not depend on conformal mapping, so that it can more easily be extended to treat general configurations. The method has also been extended to treat the Euler equations, and results are presented for both two and three dimensional cases, including the optimization of a swept wing.
NASA Astrophysics Data System (ADS)
Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen
2014-05-01
The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.
Fast Fourier Transform algorithm design and tradeoffs
NASA Technical Reports Server (NTRS)
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
NASA Astrophysics Data System (ADS)
Yang, Thomas; Shen, Yang; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh
2017-03-01
Silicon testing results are regularly collected for a particular lot of wafers to study yield loss from test result diagnostics. Product engineers will analyze the diagnostic results and perform a number of physical failure analyses to detect systematic defects which cause yield loss for these sets of wafers in order to feedback the information to process engineers for process improvements. Most of time, the systematic defects that are detected are major issues or just one of the causes for the overall yield loss. This paper will present a working flow for using design analysis techniques combined with diagnostic methods to systematically transform silicon testing information into physical layout information. A new set of the testing results are received from a new lot of wafers for the same product. We can then correlate all the diagnostic results from different periods of time to check which blocks or nets have been highlighted or stop occurring on the failure reports in order to monitor process changes which impact the yield. The design characteristic analysis flow is also implemented to find 1) the block connections on a design that have failed electrical test or 2) frequently used cells that been highlighted multiple times.
NASA Astrophysics Data System (ADS)
Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan
2018-04-01
It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.
NASA Astrophysics Data System (ADS)
Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia
2014-01-01
The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.
NASA Technical Reports Server (NTRS)
Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)
2003-01-01
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
The Coordinate Transformation Method of High Resolution dem Data
NASA Astrophysics Data System (ADS)
Yan, Chaode; Guo, Wang; Li, Aimin
2018-04-01
Coordinate transformation methods of DEM data can be divided into two categories. One reconstruct based on original vector elevation data. The other transforms DEM data blocks by transforming parameters. But the former doesn't work in the absence of original vector data, and the later may cause errors at joint places between adjoining blocks of high resolution DEM data. In view of this problem, a method dealing with high resolution DEM data coordinate transformation is proposed. The method transforms DEM data into discrete vector elevation points, and then adjusts positions of points by bi-linear interpolation respectively. Finally, a TIN is generated by transformed points, and the new DEM data in target coordinate system is reconstructed based on TIN. An algorithm which can find blocks and transform automatically is given in this paper. The method is tested in different terrains and proved to be feasible and valid.
NASA Astrophysics Data System (ADS)
Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin
2018-02-01
A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
Image restoration method based on Hilbert transform for full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2008-01-01
A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.
NASA Astrophysics Data System (ADS)
Tuckerman, Mark
2006-03-01
One of the computational grand challenge problems is to develop methodology capable of sampling conformational equilibria in systems with rough energy landscapes. If met, many important problems, most notably protein folding, could be significantly impacted. In this talk, two new approaches for addressing this problem will be presented. First, it will be shown how molecular dynamics can be combined with a novel variable transformation designed to warp configuration space in such a way that barriers are reduced and attractive basins stretched. This method rigorously preserves equilibrium properties while leading to very large enhancements in sampling efficiency. Extensions of this approach to the calculation/exploration of free energy surfaces will be discussed. Next, a new very large time-step molecular dynamics method will be introduced that overcomes the resonances which plague many molecular dynamics algorithms. The performance of the methods is demonstrated on a variety of systems including liquid water, long polymer chains simple protein models, and oligopeptides.
Designing Student Citizenship: Internationalised Education in Transformative Disciplines
ERIC Educational Resources Information Center
Mendoza, Hannah Rose; Matyok, Tom
2013-01-01
Design is a transformative, socially engaged practice and design education must provide a platform from which that practice can grow. Education plays a vital role in preparing design students to move beyond a purely reactive state to one in which they are actively engaged in shaping the world around them. Such a shift is built upon the provision…
Rotary transformer design with fixed magnetizing and/or leakage inductances
NASA Technical Reports Server (NTRS)
Stuart, T. A.; King, R. J.; Shamseddin, H.
1985-01-01
A design algorithm is considered for transformers that must transfer electric power across a rotating interface. Among other features, this procedure allows the designer to minimize either weight or losses for either a fixed magnetizing inductance or a fixed leakage inductance. Numerical results are included to indicate the design trade-offs between various parameters.
NASA Astrophysics Data System (ADS)
German, Brian Joseph
This research develops a technique for the solution of incompressible equivalents to planar steady subsonic potential flows. Riemannian geometric formalism is used to develop a gauge transformation of the length measure followed by a curvilinear coordinate transformation to map the given subsonic flow into a canonical Laplacian flow with the same boundary conditions. The effect of the transformation is to distort both the immersed profile shape and the domain interior nonuniformly as a function of local flow properties. The method represents the full nonlinear generalization of the classical methods of Prandtl-Glauert and Karman-Tsien. Unlike the classical methods which are "corrections," this method gives exact results in the sense that the inverse mapping produces the subsonic full potential solution over the original airfoil, up to numerical accuracy. The motivation for this research was provided by an observed analogy between linear potential flow and the special theory of relativity that emerges from the invariance of the d'Alembert wave equation under Lorentz transformations. This analogy is well known in an operational sense, being leveraged widely in linear unsteady aerodynamics and acoustics, stemming largely from the work of Kussner. Whereas elements of the special theory can be invoked for compressibility effects that are linear and global in nature, the question posed in this work was whether other mathematical techniques from the realm of relativity theory could be used to similar advantage for effects that are nonlinear and local. This line of thought led to a transformation leveraging Riemannian geometric methods common to the general theory of relativity. A gauge transformation is used to geometrize compressibility through the metric tensor of the underlying space to produce an equivalent incompressible flow that lives not on a plane but on a curved surface. In this sense, forces owing to compressibility can be ascribed to the geometry of space in much the same way that general relativity ascribes gravitational forces to the curvature of space-time. Although the analogy with general relativity is fruitful, it is important not to overstate the similarities between compressibility and the physics of gravity, as the interest for this thesis is primarily in the mathematical framework and not physical phenomenology or epistemology. The thesis presents the philosophy and theory for the transformation method followed by a numerical method for practical solutions of equivalent incompressible flows over arbitrary closed profiles. The numerical method employs an iterative approach involving the solution of the equivalent incompressible flow with a panel method, the calculation of the metric tensor for the gauge transformation, and the solution of the curvilinear coordinate mapping to the canonical flow with a finite difference approach for the elliptic boundary value problem. This method is demonstrated for non-circulatory flow over a circular cylinder and both symmetric and lifting flows over a NACA 0012 profile. Results are validated with accepted subcritical full potential test cases available in the literature. For chord-preserving mapping boundary conditions, the results indicate that the equivalent incompressible profiles thicken with Mach number and develop a leading edge droop with increased angle of attack. Two promising areas of potential applicability of the method have been identified. The first is in airfoil inverse design methods leveraging incompressible flow knowledge including heuristics and empirical data for the potential field effects on viscous phenomena such as boundary layer transition and separation. The second is in aerodynamic testing using distorted similarity-scaled models.
New Horizons through Systems Design.
ERIC Educational Resources Information Center
Banathy, Bela H.
1991-01-01
Continuing use of outdated design is the main source of the crisis in education. The existing system should be "trans-formed" rather than "re-formed." Transformation requires the development of organizational capacity and collective capability to engage in systems design with a broad vision of what should be. (Author/JOW)
Project Lifespan-based Nonstationary Hydrologic Design Methods for Changing Environment
NASA Astrophysics Data System (ADS)
Xiong, L.
2017-12-01
Under changing environment, we must associate design floods with the design life period of projects to ensure the hydrologic design is really relevant to the operation of the hydrologic projects, because the design value for a given exceedance probability over the project life period would be significantly different from that over other time periods of the same length due to the nonstationarity of probability distributions. Several hydrologic design methods that take the design life period of projects into account have been proposed in recent years, i.e. the expected number of exceedances (ENE), design life level (DLL), equivalent reliability (ER), and average design life level (ADLL). Among the four methods to be compared, both the ENE and ER methods are return period-based methods, while DLL and ADLL are risk/reliability- based methods which estimate design values for given probability values of risk or reliability. However, the four methods can be unified together under a general framework through a relationship transforming the so-called representative reliability (RRE) into the return period, i.e. m=1/1(1-RRE), in which we compute the return period m using the representative reliability RRE.The results of nonstationary design quantiles and associated confidence intervals calculated by ENE, ER and ADLL were very similar, since ENE or ER was a special case or had a similar expression form with respect to ADLL. In particular, the design quantiles calculated by ENE and ADLL were the same when return period was equal to the length of the design life. In addition, DLL can yield similar design values if the relationship between DLL and ER/ADLL return periods is considered. Furthermore, ENE, ER and ADLL had good adaptability to either an increasing or decreasing situation, yielding not too large or too small design quantiles. This is important for applications of nonstationary hydrologic design methods in actual practice because of the concern of choosing the emerging nonstationary methods versus the traditional stationary methods. There is still a long way to go for the conceptual transition from stationarity to nonstationarity in hydrologic design.
Why you cannot transform your way out of trouble for small counts.
Warton, David I
2018-03-01
While data transformation is a common strategy to satisfy linear modeling assumptions, a theoretical result is used to show that transformation cannot reasonably be expected to stabilize variances for small counts. Under broad assumptions, as counts get smaller, it is shown that the variance becomes proportional to the mean under monotonic transformations g(·) that satisfy g(0)=0, excepting a few pathological cases. A suggested rule-of-thumb is that if many predicted counts are less than one then data transformation cannot reasonably be expected to stabilize variances, even for a well-chosen transformation. This result has clear implications for the analysis of counts as often implemented in the applied sciences, but particularly for multivariate analysis in ecology. Multivariate discrete data are often collected in ecology, typically with a large proportion of zeros, and it is currently widespread to use methods of analysis that do not account for differences in variance across observations nor across responses. Simulations demonstrate that failure to account for the mean-variance relationship can have particularly severe consequences in this context, and also in the univariate context if the sampling design is unbalanced. © 2017 The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Ordered fast fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1989-01-01
Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.
NASA Astrophysics Data System (ADS)
Kim, Youngsun
2017-05-01
The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Chen, Juan; Cui, Baotong; Chen, YangQuan
2018-06-11
This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schanz, Martin; Ye, Wenjing; Xiao, Jinyou
2016-04-01
Transient problems can often be solved with transformation methods, where the inverse transformation is usually performed numerically. Here, the discrete Fourier transform in combination with the exponential window method is compared with the convolution quadrature method formulated as inverse transformation. Both are inverse Laplace transforms, which are formally identical but use different complex frequencies. A numerical study is performed, first with simple convolution integrals and, second, with a boundary element method (BEM) for elastodynamics. Essentially, when combined with the BEM, the discrete Fourier transform needs less frequency calculations, but finer mesh compared to the convolution quadrature method to obtain the same level of accuracy. If further fast methods like the fast multipole method are used to accelerate the boundary element method the convolution quadrature method is better, because the iterative solver needs much less iterations to converge. This is caused by the larger real part of the complex frequencies necessary for the calculation, which improves the conditions of system matrix.
Transformer miniaturization for transcutaneous current/voltage pulse applications.
Kolen, P T
1999-05-01
A general procedure for the design of a miniaturized step up transformer to be used in the context of surface electrode based current/voltage pulse generation is presented. It has been shown that the optimum secondary current pulse width is 4.5 tau, where tau is the time constant associated with the pulse forming network associated with the transformer/electrode interaction. This criteria has been shown to produce the highest peak to average current ratio for the secondary current pulse. The design procedure allows for the calculation of the optimum turns ratio, primary turns, and secondary turns for a given electrode load/tissue and magnetic core parameters. Two design examples for transformer optimization are presented.
ERIC Educational Resources Information Center
Cai, Shengrong; Zhu, Wei
2012-01-01
This study investigated the impact of an online learning community project on university students' motivation in learning Chinese as a foreign language. A newly proposed second language (L2) motivation theory--the L2 motivational self system (Dornyei, 2005, 2009)--guided this study. A concurrent transformative mixed-methods design was employed to…
ERIC Educational Resources Information Center
Hurst, Judith; Quinsee, Susannah
2005-01-01
The inclusion of online learning technologies into the higher education (HE) curriculum is frequently associated with the design and development of new models of learning. One could argue that e-learning even demands a reconfiguration of traditional methods of learning and teaching. However, this transformation in pedagogic methodology does not…
ERIC Educational Resources Information Center
Ertürk Kara, Gözde; Aydos, E. Hande; Aydin, Özge
2015-01-01
The purpose of this study is to provide the transform of attitudes into behavior of 60-72 month of age children continued early childhood education toward environmental issues. Collaborative action research method of qualitative design was used. The whole participants of the study were 60-72 months of age children who were attending in an early…
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
ERIC Educational Resources Information Center
Ong, Jun-Yang; Chan, Shang-Ce; Hoang, Truong-Giang
2018-01-01
A Sonogashira experiment was transformed into a problem-based learning platform for third-year undergraduate students. Given a target that could be synthesized in a single step, students worked in groups to investigate which method was the best for large-scale production. Through this practical scenario, students learn to conduct a literature…
Discriminative graph embedding for label propagation.
Nguyen, Canh Hao; Mamitsuka, Hiroshi
2011-09-01
In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.
Dekkers, A L M; Slob, W
2012-10-01
In dietary exposure assessment, statistical methods exist for estimating the usual intake distribution from daily intake data. These methods transform the dietary intake data to normal observations, eliminate the within-person variance, and then back-transform the data to the original scale. We propose Gaussian Quadrature (GQ), a numerical integration method, as an efficient way of back-transformation. We compare GQ with six published methods. One method uses a log-transformation, while the other methods, including GQ, use a Box-Cox transformation. This study shows that, for various parameter choices, the methods with a Box-Cox transformation estimate the theoretical usual intake distributions quite well, although one method, a Taylor approximation, is less accurate. Two applications--on folate intake and fruit consumption--confirmed these results. In one extreme case, some methods, including GQ, could not be applied for low percentiles. We solved this problem by modifying GQ. One method is based on the assumption that the daily intakes are log-normally distributed. Even if this condition is not fulfilled, the log-transformation performs well as long as the within-individual variance is small compared to the mean. We conclude that the modified GQ is an efficient, fast and accurate method for estimating the usual intake distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.
High reliability megawatt transformer/rectifier
NASA Technical Reports Server (NTRS)
Zwass, Samuel; Ashe, Harry; Peters, John W.
1991-01-01
The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.
Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac
2017-11-01
This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fast frequency domain method to detect skew in a document image
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee
2015-12-01
In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.
NASA Astrophysics Data System (ADS)
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
7 CFR 2902.20 - Fluid-filled transformers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Fluid-filled transformers. 2902.20 Section 2902.20... Items § 2902.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled transformers. Electric power transformers that are designed to utilize a synthetic ester-based dielectric (non...
7 CFR 2902.20 - Fluid-filled transformers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Fluid-filled transformers. 2902.20 Section 2902.20... Items § 2902.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled transformers. Electric power transformers that are designed to utilize a synthetic ester-based dielectric (non...
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
Transformer partial discharge monitoring based on optical fiber sensing
NASA Astrophysics Data System (ADS)
Wang, Kun; Tong, Xinglin; Zhu, Xiaolong
2014-06-01
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.
A study to evaluate non-uniform phase maps in shape memory alloys using finite element method
NASA Astrophysics Data System (ADS)
Motte, Naren
The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators. This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool ANSYS has been used to perform a 2-D analysis of a Cu-Al-Zn-Mn SMA specimen undergoing a nontraditional loading path in two steps with stress and heating loads. In the first load step, tensile displacement is applied, followed by the second load step in which the specimen is heated while the end displacements are held constant. A number of geometric configurations are examined under the two step loading path. Strain results are used to calculate transformation strain which provides a quantitative measure of phase at a material point; when transformation strain is zero, the material point is either twinned martensite, or austenite depending on the temperature. Transformation strain value of unity corresponds to detwinned martensite. A value between zero and one indicates mixed phase. In this study, through two step loading in conjunction with transformation strain calculations, a method for mapping transient non-uniform distribution of phases in an SMA is introduced. Ability to obtain drastically different phase distributions under same loading path by modifying the geometry is demonstrated. The failure behavior of SMAs can be designed such that the load level the crack initiates and the path it propagates can be customized.
Electrostatic shielding of transformers
De Leon, Francisco
2017-11-28
Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Kitchen Science Investigators: Promoting Identity Development as Scientific Reasoners and Thinkers
ERIC Educational Resources Information Center
Clegg, Tamara Lynnette
2010-01-01
My research centers upon designing transformative learning environments and supporting technologies. Kitchen Science Investigators (KSI) is an out-of-school transformative learning environment we designed to help young people learn science through cooking. My dissertation considers the question, "How can we design a learning environment in which…
Multi-objective based spectral unmixing for hyperspectral images
NASA Astrophysics Data System (ADS)
Xu, Xia; Shi, Zhenwei
2017-02-01
Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.
PLASMA-field barrier sentry (PFBS)
NASA Astrophysics Data System (ADS)
Gonzaga, Ernesto A.; Cossette, Harold James
2013-06-01
This paper describes the concept and method in designing and developing a unique security system apparatus that will counter unauthorized personnel: to deny access to or occupy an area or facility, to control or direct crowd or large groups, and to incapacitate individuals or small groups until they can be secured by military or law enforcement personnel. The system exploits Tesla coil technology. Application of basic engineering circuit analysis and principle is demonstrated. Transformation from classical spark gap method to modern solid state design was presented. The analysis shows how the optimum design can be implemented to maximize performance of the apparatus. Discussion of the hazardous effects of electrical elements to human physiological conditions was covered. This serves to define guidelines in implementing safety limits and precautions on the performance of the system. The project is strictly adhering towards non-lethal technologies and systems.
End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linshiz, Gregory; Jensen, Erik; Stawski, Nina
Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis
Linshiz, Gregory; Jensen, Erik; Stawski, Nina; ...
2016-02-02
Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less
Wei, Z.; Zhu, Y.; Zhang, W.; ...
2015-03-27
Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li 2MnO 3 phase. But at the same time, MnO 2 phase formed after Li 2MnO 3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process canmore » be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.« less
Transformation of metal-organic frameworks for molecular sieving membranes
Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang
2016-01-01
The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597
System of end-to-end symmetric database encryption
NASA Astrophysics Data System (ADS)
Galushka, V. V.; Aydinyan, A. R.; Tsvetkova, O. L.; Fathi, V. A.; Fathi, D. V.
2018-05-01
The article is devoted to the actual problem of protecting databases from information leakage, which is performed while bypassing access control mechanisms. To solve this problem, it is proposed to use end-to-end data encryption, implemented at the end nodes of an interaction of the information system components using one of the symmetric cryptographic algorithms. For this purpose, a key management method designed for use in a multi-user system based on the distributed key representation model, part of which is stored in the database, and the other part is obtained by converting the user's password, has been developed and described. In this case, the key is calculated immediately before the cryptographic transformations and is not stored in the memory after the completion of these transformations. Algorithms for registering and authorizing a user, as well as changing his password, have been described, and the methods for calculating parts of a key when performing these operations have been provided.
Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun
2009-04-01
Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.
NASA Astrophysics Data System (ADS)
Young, Andrew; Marshall, Stephen; Gray, Alison
2016-05-01
The use of aerial hyperspectral imagery for the purpose of remote sensing is a rapidly growing research area. Currently, targets are generally detected by looking for distinct spectral features of the objects under surveillance. For example, a camouflaged vehicle, deliberately designed to blend into background trees and grass in the visible spectrum, can be revealed using spectral features in the near-infrared spectrum. This work aims to develop improved target detection methods, using a two-stage approach, firstly by development of a physics-based atmospheric correction algorithm to convert radiance into re ectance hyperspectral image data and secondly by use of improved outlier detection techniques. In this paper the use of the Percentage Occupancy Hit or Miss Transform is explored to provide an automated method for target detection in aerial hyperspectral imagery.
Advances in Molecular Rotational Spectroscopy for Applied Science
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.
2017-06-01
Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.
Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM
NASA Astrophysics Data System (ADS)
Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang
2016-03-01
A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.
A method of power analysis based on piecewise discrete Fourier transform
NASA Astrophysics Data System (ADS)
Xin, Miaomiao; Zhang, Yanchi; Xie, Da
2018-04-01
The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.
Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M
2014-01-01
Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.
Control theory based airfoil design for potential flow and a finite volume discretization
NASA Technical Reports Server (NTRS)
Reuther, J.; Jameson, A.
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.
An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function
NASA Technical Reports Server (NTRS)
Wrenn, Gregory A.
1989-01-01
A technique is described for converting a constrained optimization problem into an unconstrained problem. The technique transforms one of more objective functions into reduced objective functions, which are analogous to goal constraints used in the goal programming method. These reduced objective functions are appended to the set of constraints and an envelope of the entire function set is computed using the Kreisselmeir-Steinhauser function. This envelope function is then searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods to find a constrained minimum without the draw down factor typical of penalty function methods, and that the technique may be started from the feasible or infeasible design space. In multiobjective applications, the approach has the advantage of locating a compromise minimum design without the need to optimize for each individual objective function separately.
Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.
Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan
2016-11-01
A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A Transfer Voltage Simulation Method for Generator Step Up Transformers
NASA Astrophysics Data System (ADS)
Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro
It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.
Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation
NASA Astrophysics Data System (ADS)
Abyadeh, Morteza; Sadroddiny, Esmaeil; Ebrahimi, Ammar; Esmaeili, Fariba; Landi, Farzaneh Saeedi; Amani, Amir
2017-12-01
A rapid and efficient procedure for DNA transformation is a key prerequisite for successful cloning and genomic studies. While there are efforts to develop a facile method, so far obtained efficiencies for alternative methods have been unsatisfactory (i.e. 105-106 CFU/μg plasmid) compared with conventional method (up to 108 CFU/μg plasmid). In this work, for the first time, we prepared chitosan/pDNA nanoparticles by electrospraying methods to improve transformation process. Electrospray method was used for chitosan/pDNA nanoparticles production to investigate the non-competent bacterial transformation efficiency; besides, the effect of chitosan molecular weight, N/P ratio and nanoparticle size on non-competent bacterial transformation efficiency was evaluated too. The results showed that transformation efficiency increased with decreasing the molecular weight, N/P ratio and nanoparticles size. In addition, transformation efficiency of 1.7 × 108 CFU/μg plasmid was obtained with chitosan molecular weight, N/P ratio and nanoparticles size values of 30 kDa, 1 and 125 nm. Chitosan/pDNA electrosprayed nanoparticles were produced and the effect of molecular weight, N/P and size of nanoparticles on transformation efficiency was evaluated. In total, we present a facile and rapid method for bacterial transformation, which has comparable efficiency with the common method.
Unanticipated Effects of Epoxy Impregnating Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANCHEZ,ROBERT O.; ARCHER,WENDEL E.
2000-08-23
Many Sandia components for military applications are designed for a 20-year life. In order to determine if magnetic components meet that requirement, the parts are subjected to selected destructive tests. This paper reviews the re-design of a power transformer and the tests required to prove-in the re-design. The re-design included replacing the Epon 828/Mica/methylenedianiline (curing agent Z) epoxy encapsulant with a recent Sandia National Laboratory (SNL) developed epoxy encapsulant. The new encapsulant reduces the Environmental Safety and Health (ES and H) hazards. Life testing of this re-designed transformer generated failures; an open secondary winding. An experimental program to determine themore » cause of the broken wires and an improved design to eliminate the problem was executed. This design weakness was corrected by reverting to the hazardous epoxy system.« less
Sumanacara, Ashin
2017-08-12
This article explicates the fundamental moral principles and mental training of Buddhism that have implications for behavioural transformation and mental health promotion. These techniques are considered to be effective for transforming the unwholesome thoughts and overcoming the afflictions (āsavas). It investigates some methods of mental training that can be designed to fit the behaviour of a practitioner. It also investigates the three key interdependent elements of mindfulness techniques and, in particular, how a simple practice of mindfulness (sati), full awareness (sampajañña), and proper attention (yoniso-manasikāra) can help us modify our behaviour and achieve mental health.
Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1991-01-01
The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.
2011-01-01
Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated transformation of embryogenic cultures a viable and useful tool both for coffee breeding and for the functional analysis of agronomically important genes. PMID:21595964
Design, fabrication and control of origami robots
NASA Astrophysics Data System (ADS)
Rus, Daniela; Tolley, Michael T.
2018-06-01
Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Huang, Norden E.
1999-01-01
A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum, Example of application of this method to earthquake and building response will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.
No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.
Li, Xuelong; Guo, Qun; Lu, Xiaoqiang
2016-05-13
It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.
Transformative, Mixed Methods Checklist for Psychological Research with Mexican Americans
ERIC Educational Resources Information Center
Canales, Genevieve
2013-01-01
This is a description of the creation of a research methods tool, the "Transformative, Mixed Methods Checklist for Psychological Research With Mexican Americans." For conducting literature reviews of and planning mixed methods studies with Mexican Americans, it contains evaluative criteria calling for transformative mixed methods, perspectives…
NASA Astrophysics Data System (ADS)
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
Universal Design for the Digital Environment: Transforming the Institution
ERIC Educational Resources Information Center
Rowland, Cyndi; Mariger, Heather; Siegel, Peter M.; Whiting, Jonathan
2010-01-01
A revolution is about to transform higher education. To participate in this revolution, those in higher education need to explore a critical concept: "universal design." Universal design was originally aimed at innovations in architecture, community spaces, and products, but today it is about creating services and products, from the beginning, in…
Designing for Global Data Sharing, Designing for Educational Transformation
ERIC Educational Resources Information Center
Adams, Robin S.; Radcliffe, David; Fosmire, Michael
2016-01-01
This paper provides an example of a global data sharing project with an educational transformation agenda. This agenda shaped both the design of the shared dataset and the experience of sharing the common dataset to support multiple perspective inquiry and enable integrative and critically reflexive research-to-practice dialogue. The shared…
The Filtered Abel Transform and Its Application in Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang
2003-01-01
Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.
BT's adoption of customer centric design.
Chamberlain, Mark; Esquivel, Jacqueline; Miller, Fiona; Patmore, Jeff
2015-01-01
Between 2005 and 2010 BT underwent a major transformation from a company with a special section devoted to 'older and disabled consumers' to a company with an inclusive design strategy. The mainstreaming of these issues responded to a demand for better, more user-friendly communications products and growing awareness of the importance of previously marginalised consumer groups. It also took place alongside the development and publication of BS7000-6, a guide to inclusive design management. Based on several product design case studies, this paper reflects on how and why this transformation was seen as necessary for future success, and how the transformation was achieved. The evolution of BT's approach has continued since, but this paper looks back in time, and documents the transformation up to 2010 and reflects the state of the company in 2010 rather than at the time of publication. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The KS Method in Light of Generalized Euler Parameters.
1980-01-01
motion for the restricted two-body problem is trans- formed via the Kustaanheimo - Stiefel transformation method (KS) into a dynamical equation in the... Kustaanheimo - Stiefel2 transformation method (KS) in the two-body problem. Many papers have appeared in which specific problems or applications have... TRANSFORMATION MATRIX P. Kustaanheimo and E. Stiefel2 proposed a regularization method by intro- ducing a 4 x 4 transformation matrix and four-component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, L.H.
After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less
Evaluation of a multi-Kw, high frequency transformer for space applications
NASA Astrophysics Data System (ADS)
Roth, Mary Ellen
1994-08-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
Evaluation of a Multi-kw, High Frequency Transformer for Space Applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1994-01-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
2011-03-18
problematization‟s place in the entrepreneurial situation. In contrast to FM5-0 Chapter 3 Design‟s confusing graphic on design, this one conveys meaning and...system transformation graphic that, although designed for entrepreneurial application, shares many overlapping contextual features that military design...doctrine attempts. Most significantly, they bound their entrepreneurial situation around the entire system in a manner that correlates to an
NASA Astrophysics Data System (ADS)
Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing
2015-04-01
An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.
Compact pulse transformer for 85 kV, 3.5 μs electron gun anode of compact X-ray cargo scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Sharma, D.K.; Dixit, K.
Design of compact and reliable 85kV HV pulse transformer for electron gun anode pulsing is a major concern, when size and space are constraints. This paper describes design procedures and optimization of various parameters like HV insulation, step up ratio, rise time and flat top of Pulse transformer, operating with input from a 10 stage PFN of 50 ohm impedance and charged at 14kV. The transformer should deliver rated output voltage of negative polarity 85kV, 3 to 4μs pulse width, less than 2μs rise time and flat top within 10% across an electron gun load, equivalent to a parallel combinationmore » of 10kΩ and 200pF load at a PRF of 250 Hz. Since the Cargo Scanner has to operate on movable carrier, this transformer is designed to operate even in the inclined positions. This transformer has given voltage step up, rise time and flat top of 13.75, 1.5 μs and 4.5% respectively for a 10kΩ and 200pF load at 250Hz PRF and also demonstrated operation in 90{sup °} tilted transformer positions. An effort has been put to achieve maintenance free Pulse transformer by providing effective sealing in the transformer tank to stop breathing action. Also, special flexing walls of transformer tank accommodate for small changes in volume of oil due to temperature variations. (author)« less
Market-implied spread for earthquake CAT bonds: financial implications of engineering decisions.
Damnjanovic, Ivan; Aslan, Zafer; Mander, John
2010-12-01
In the event of natural and man-made disasters, owners of large-scale infrastructure facilities (assets) need contingency plans to effectively restore the operations within the acceptable timescales. Traditionally, the insurance sector provides the coverage against potential losses. However, there are many problems associated with this traditional approach to risk transfer including counterparty risk and litigation. Recently, a number of innovative risk mitigation methods, termed alternative risk transfer (ART) methods, have been introduced to address these problems. One of the most important ART methods is catastrophe (CAT) bonds. The objective of this article is to develop an integrative model that links engineering design parameters with financial indicators including spread and bond rating. The developed framework is based on a four-step structural loss model and transformed survival model to determine expected excess returns. We illustrate the framework for a seismically designed bridge using two unique CAT bond contracts. The results show a nonlinear relationship between engineering design parameters and market-implied spread. © 2010 Society for Risk Analysis.
An LFMCW detector with new structure and FRFT based differential distance estimation method.
Yue, Kai; Hao, Xinhong; Li, Ping
2016-01-01
This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper.
Discretization analysis of bifurcation based nonlinear amplifiers
NASA Astrophysics Data System (ADS)
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Roy, Vandana; Shukla, Shailja; Shukla, Piyush Kumar; Rawat, Paresh
2017-01-01
The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda ( λ ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.
NASA Astrophysics Data System (ADS)
Koval, Viacheslav
The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.
ERIC Educational Resources Information Center
Healy, Lulu; de Carvalho, Cláudia Cristina Soares
2014-01-01
This article focusses on a programme of research into the teaching and learning of proof inspired by Celia Hoyles. By revisiting the first of a series of projects into justifying and proving in school mathematics developed by Celia in the 1990s and by considering how the innovative research methods adopted as well as the results obtained impacted…
Measurement of lengths and angles by means of a photoelectric direct reading-off microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priver, L.S.
1995-11-01
We consider the measurement of lengths and angles over a broad range with error amounting to fractions of a micrometer or angular second using a newly designed mockup of a photoelectric direct reading-off microscope. The microscope implements a pulse-position method of transforming information through application of a scanner in the form of a rotating polyhedral mirror.
20 kHz, 25 kVA node power transformer
NASA Technical Reports Server (NTRS)
Hussey, S.
1989-01-01
The electrical and mechanical design information and the electrical and thermal testing performed on the 440-208-V rms, 20-kHz, 25-kVa prototype node transformer are summarized. The calculated efficiency of the node transformer is 99.3 percent based on core loss and copper loss test data, and its maximum calculated load regulation is 0.7 percent. The node transformer has a weight of 19.7 lb and has a power density of 0.8 lb/kW. The hot-spot temperature rise is estimated to be 33 C above the cold plate mounting base. This proof-of-concept transformer design is a viable candidate for the space station Freedom application.
Development of a rotary power transformer and inverter drive for spacecraft
NASA Technical Reports Server (NTRS)
Mclyman, W. T.; Bridgeforth, A. O.
1983-01-01
Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.
Testing military grade magnetics (transformers, inductors and coils).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Engineers and designers are constantly searching for test methods to qualify or 'prove-in' new designs. In the High Reliability world of military parts, design test, qualification tests, in process tests and product characteristic tests, become even more important. The use of in process and function tests has been adopted as a way of demonstrating that parts will operate correctly and survive its 'use' environments. This paper discusses various types of tests to qualify the magnetic components - the current carrying capability of coils, a next assembly 'as used' test, a corona test and inductance at temperature test. Each of thesemore » tests addresses a different potential failure on a component. The entire process from design to implementation is described.« less
Designing for expansive science learning and identification across settings
NASA Astrophysics Data System (ADS)
Stromholt, Shelley; Bell, Philip
2017-10-01
In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon
2017-01-01
Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials. PMID:28106156
NASA Astrophysics Data System (ADS)
Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon
2017-01-01
Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials.
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
NASA Technical Reports Server (NTRS)
Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.
1982-01-01
The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.
Discrete Fourier transforms of nonuniformly spaced data
NASA Technical Reports Server (NTRS)
Swan, P. R.
1982-01-01
Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.
Constructing a Geology Ontology Using a Relational Database
NASA Astrophysics Data System (ADS)
Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.
2013-12-01
In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).
Improvement of the System of Training of Specialists by University for Coal Mining Enterprises
NASA Astrophysics Data System (ADS)
Mikhalchenko, Vadim; Seredkina, Irina
2017-11-01
In the article the ingenious technique of the Quality Function Deployment with reference to the process of training of specialists with higher education by university is considered. The method is based on the step-by-step conversion of customer requirements into specific organizational, meaningful and functional transformations of the technological process of the university. A fully deployed quality function includes four stages of tracking customer requirements while creating a product: product planning and design, process design, production design. The Quality Function Deployment can be considered as one of the methods for optimizing the technological processes of training of specialists with higher education in the current economic conditions. Implemented at the initial stages of the life cycle of the technological process, it ensures not only the high quality of the "product" of graduate school, but also the fullest possible satisfaction of consumer's requests and expectations.
Toroidal transformer design program with application to inverter circuitry
NASA Technical Reports Server (NTRS)
Dayton, J. A., Jr.
1972-01-01
Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
Schlitz, Marilyn
2017-01-01
Objectives: Understanding and managing the process of aging is a central issue in modern society. This is a critical factor given the demographic shift toward an aging population and the negative stereotypes around aging that can limit people’s worldview on aging with gratitude and well-being. Methods: Building on three decades of qualitative and quantitative studies on positive worldview transformation at the California-based Institute of Noetic Sciences, this article applies an empirically derived naturalistic model of transformation to aging. The Grateful Aging Program is introduced as a set of transformative steps to promote well-being and to shift fear of aging into inspiration for living well. Results: Nine steps to Grateful Aging are identified: 1) answer the call to transformation, 2) cultivate curiosity, 3) formalize a Grateful Aging practice, 4) set intention for Grateful Aging, 5) pay attention to the gifts of aging, 6) build Grateful Aging habits, 7) find guidance, 8) move to acceptance, and 9) transform self and society. Educational programs are described for elderly patients and for the health care professionals who serve them. Conclusion: The Grateful Aging Program is designed to expand awareness of healthy, mindful, and meaningful aging; to promote individual and social well-being; and to facilitate a supportive atmosphere for personal enrichment and shared learning. PMID:28241911
Ramin, Pedram; Libonati Brock, Andreas; Polesel, Fabio; Causanilles, Ana; Emke, Erik; de Voogt, Pim; Plósz, Benedek Gy
2016-12-20
Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM (ZS) . Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.
Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray
2016-01-01
The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852
Artificial Metamorphosis: Evolutionary Design of Transforming, Soft-Bodied Robots.
Joachimczak, Michał; Suzuki, Reiji; Arita, Takaya
2016-01-01
We show how the concept of metamorphosis, together with a biologically inspired model of multicellular development, can be used to evolve soft-bodied robots that are adapted to two very different tasks, such as being able to move in an aquatic and in a terrestrial environment. Each evolved solution defines two pairs of morphologies and controllers, together with a process of transforming one pair into the other. Animats develop from a single cell and grow through cellular divisions and deaths until they reach an initial larval form adapted to a first environment. To obtain the adult form adapted to a second environment, the larva undergoes metamorphosis, during which new cells are added or removed and its controller is modified. Importantly, our approach assumes nothing about what morphologies or methods of locomotion are preferred. Instead, it successfully searches the vast space of possible designs and comes up with complex, surprising, lifelike solutions that are reminiscent of amphibian metamorphosis. We analyze obtained solutions and investigate whether the morphological changes during metamorphosis are indeed adaptive. We then compare the effectiveness of three different types of selective pressures used to evolve metamorphic individuals. Finally, we investigate potential advantages of using metamorphosis to automatically produce soft-bodied designs by comparing the performance of metamorphic individuals with their specialized counterparts and designs that are robust to both environments.
Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne
2018-01-01
The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.
Robust approximation-free prescribed performance control for nonlinear systems and its application
NASA Astrophysics Data System (ADS)
Sun, Ruisheng; Na, Jing; Zhu, Bin
2018-02-01
This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.
Equations For Rotary Transformers
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.
1988-01-01
Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.
2011-01-01
Background Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Methods Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI®) for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Results Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. Conclusions The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects. PMID:21854614
Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634
Sharifi, Zohreh; Atlasbaf, Zahra
2016-10-01
A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.
A software methodology for compiling quantum programs
NASA Astrophysics Data System (ADS)
Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias
2018-04-01
Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.