NASA Astrophysics Data System (ADS)
Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.
2018-01-01
Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite-Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.
Phase Transformations and Microstructural Evolution: Part I
Clarke, Amy Jean
2015-08-29
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less
Phase Transformations and Microstructural Evolution: Part II
Clarke, Amy Jean
2015-10-30
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less
Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.
2017-02-01
We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Wang, Zhiguo; Qing Fu, Yong
2017-10-01
This paper reports a new design methodology to improve catalytic activities of catalysts based on 2D transition metal dichalcogenides through elemental doping which induces structural transformations. Effects of rhenium (Re) doping on structural stability/phase transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were investigated using density functional theory as one example. Results show that 2H-Mo1-x Re x S2 transforms into 1T‧-Mo1-x Re x S2MoS2 as the value of x is larger than 0.4, and the transfer of the electron from Re to Mo is identified as the main reason for this structural transformation. The 1T‧-Mo1-x Re x S2 shows a good catalytic activity for the hydrogen evolution reaction when 0.75 ⩽ x ⩽ 0.94.
Wei, Juntao; Gong, Yan; Guo, Qinghua; Ding, Lu; Wang, Fuchen; Yu, Guangsuo
2017-03-01
Physicochemical evolution (i.e. pore structure variation, carbon structure change and active AAEM transformation) during rice straw (RS) and Shenfu bituminous coal (SF) co-pyrolysis was quantitatively determined in this work. Moreover, the corresponding char gasification was conducted using a thermogravimetric analyzer (TGA) and relative reactivity was proposed to quantify the co-pyrolysis impact on co-gasification reactivity. The results showed that the development of pore structure in co-pyrolyzed chars was first inhibited and then enhanced with the decrease of SF proportion. The promotion effect of co-pyrolysis on order degree of co-pyrolyzed chars gradually weakened with increasing RS proportion. Co-pyrolysis mainly enhanced active K transformation in co-pyrolyzed chars and the promotion effect was alleviated with increasing RS proportion. The inhibition effect of co-pyrolysis on co-gasification reactivity weakened with increasing RS proportion and gasification temperature, which was mainly attributed to the combination of carbon structure evolution and active AAEM transformation in co-pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continental transform margins : state of art and future milestones
NASA Astrophysics Data System (ADS)
Basile, Christophe
2010-05-01
Transform faults were defined 45 years ago as ‘a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Côte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.
Berry phase in Heisenberg representation
NASA Technical Reports Server (NTRS)
Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.
1994-01-01
We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.
Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.
2017-12-01
Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective provides an analog for the evolution of migrating transforms along mid-ocean ridge spreading centers or other places where plate boundary rearrangements result in the formation of a new transform fault in highly anisotropic oceanic crust.
[Key morphofunctional transformations in the evolution of chiropterans (Bats, Chiroptera)].
Kovaleva, I M
2014-01-01
Study on the morphology and morphogenesis of wing membranes in Bats has revealed some peculiarities in their structure and development. Understanding the embryogenesis of these animals, as well as attraction of data obtained on their molecular genetics and paleontology, allows one to single out some factors that could have initiated evolutionary modifications in development programs. A scenario of the key morphofunctional transformations in the forelimbs during the evolution of chiropterans is given.
Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method
NASA Astrophysics Data System (ADS)
Mottaghizadeh, Marzieh; Eslami, Parvin; Taghavi-Shahri, Fatemeh
2017-05-01
We analytically solved the QED⊗QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED (1.2952 < Q2 < 1010) (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) (2 < Q2 < 108) (Ref. 4). We also compared the proton structure function, F2p(x,Q2), with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high x and Q2.
Prolongation structures of nonlinear evolution equations. II
NASA Technical Reports Server (NTRS)
Estabrook, F. B.; Wahlquist, H. D.
1976-01-01
The prolongation structure of a closed ideal of exterior differential forms is further discussed, and its use illustrated by application to an ideal (in six dimensions) representing the cubically nonlinear Schroedinger equation. The prolongation structure in this case is explicitly given, and recurrence relations derived which support the conjecture that the structure is open - i.e., does not terminate as a set of structure relations of a finite-dimensional Lie group. We introduce the use of multiple pseudopotentials to generate multiple Baecklund transformation, and derive the double Baecklund transformation. This symmetric transformation concisely expresses the (usually conjectured) theorem of permutability, which must consequently apply to all solutions irrespective of asymptotic constraints.
Collar, David C; Quintero, Michelle; Buttler, Bernardo; Ward, Andrea B; Mehta, Rita S
2016-03-01
Major morphological transformations, such as the evolution of elongate body shape in vertebrates, punctuate evolutionary history. A fundamental step in understanding the processes that give rise to such transformations is identification of the underlying anatomical changes. But as we demonstrate in this study, important insights can also be gained by comparing these changes to those that occur in ancestral and closely related lineages. In labyrinth fishes (Anabantoidei), rapid evolution of a highly derived torpedo-shaped body in the common ancestor of the pikehead (Luciocephalus aura and L. pulcher) occurred primarily through exceptional elongation of the head, with secondary contributions involving reduction in body depth and lengthening of the precaudal vertebral region. This combination of changes aligns closely with the primary axis of anatomical diversification in other anabantoids, revealing that pikehead evolution involved extraordinarily rapid change in structures that were ancestrally labile. Finer-scale examination of the anatomical components that determine head elongation also shows alignment between the pikehead evolutionary trajectory and the primary axis of cranial diversification in anabantoids, with much higher evolutionary rates leading to the pikehead. Altogether, our results show major morphological transformation stemming from extreme change along a shared morphological axis in labyrinth fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions.
Yoo, Byung-Kuk; Kwon, Oh-Hoon; Liu, Haihua; Tang, Jau; Zewail, Ahmed H
2015-10-19
The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.
NASA Astrophysics Data System (ADS)
Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.
2017-10-01
The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.
Zhang, Linji; Ren, Yang; Liu, Xiuru; Han, Fei; Evans-Lutterodt, Kenneth; Wang, Hongyan; He, Yali; Wang, Junlong; Zhao, Yong; Yang, Wenge
2018-03-14
Amorphous sulfur was prepared by rapid compression of liquid sulfur at temperatures above the λ-transition for to preserve the high-temperature liquid structure. We conducted synchrotron high-energy X-ray diffraction and Raman spectroscopy to diagnose the structural evolution of amorphous sulfur from room temperature to post-λ-transition temperature. Discontinuous changes of the first and second peaks in atomic pair-distribution-function, g(r), were observed during the transition from amorphous to liquid sulfur. The average first-neighbor coordination numbers showed an abrupt drop from 1.92 to 1.81. The evolution of the chain length clearly shows that the transition was accompanied by polymeric chains breaking. Furthermore, a re-entry of the λ-transition structure was involved in the heating process. The amorphous sulfur, which inherits the post-λ-transition structure from its parent melts, transformed to the pre-λ-transition liquid structure at around 391 K. Upon further heating, the pre-λ-transition liquid transformed to a post-λ-transition structure through the well-known λ-transition process. This discovery offers a new perspective on amorphous sulfur's structural inheritance from its parent liquid and has implications for understanding the structure, evolution and properties of amorphous sulfur and its liquids.
Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)
NASA Astrophysics Data System (ADS)
Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.
2018-03-01
Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.
NASA Astrophysics Data System (ADS)
Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov
Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.
Hogeweg, Paulien
2012-01-01
Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.
Synchronization in dynamical networks with unconstrained structure switching
NASA Astrophysics Data System (ADS)
del Genio, Charo I.; Romance, Miguel; Criado, Regino; Boccaletti, Stefano
2015-12-01
We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows one to extend the master stability function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the dynamics of the units.
NASA Astrophysics Data System (ADS)
Neklyudov, I. M.; Voyevodin, V. N.
1994-09-01
The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.
Transformations of dislocation martensite in tempering secondary-hardening steel
NASA Astrophysics Data System (ADS)
Gorynin, I. V.; Rybin, V. V.; Malyshevskii, V. A.; Semicheva, T. G.; Sherokhina, L. G.
1999-09-01
Analysis of the evolution of the fine structure of secondary-hardening steel in tempering makes it possible to understand the nature of processes that cause changes in the strength and ductility. They are connected with the changes that occur in the solid solution, the ensemble of disperse segregations of the carbide phase, and the dislocation structure of martensite. These transformations are interrelated, and their specific features are determined by the chemical composition of the steel.
NASA Astrophysics Data System (ADS)
He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong
2011-12-01
The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-07-01
The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma-focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.
NASA Astrophysics Data System (ADS)
Feng, S. D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S. P.; Li, G.; Ma, M. Z.; Wang, W. H.; Liu, R. P.
2016-11-01
Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously.
Lang, Shuang-Yan; Xiao, Rui-Juan; Gu, Lin; Guo, Yu-Guo; Wen, Rui; Wan, Li-Jun
2018-06-08
Lithium-sulfur batteries possess favorable potential for energy-storage applications due to their high specific capacity and the low cost of sulfur. Intensive understanding of the interfacial mechanism, especially the polysulfide formation and transformation under complex electrochemical environment, is crucial for the build-up of advanced batteries. Here we report the direct visualization of interfacial evolution and dynamic transformation of the sulfides mediated by the lithium salts via real-time atomic force microscopy monitoring inside a working battery. The observations indicate that the lithium salts influence the structures and processes of sulfide deposition/decomposition during discharge/charge. Moreover, the distinct ion interaction and diffusion in electrolytes manipulate the interfacial reactions determining the kinetics of the sulfide transformation. Our findings provide deep insights into surface dynamics of lithium-sulfur reactions revealing the salt-mediated mechanisms at nanoscale, which contribute to the profound understanding of the interfacial processes for the optimized design of lithium-sulfur batteries.
Sun, Pengzhan; Wang, Yanlei; Liu, He; Wang, Kunlin; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei
2014-01-01
A mild annealing procedure was recently proposed for the scalable enhancement of graphene oxide (GO) properties with the oxygen content preserved, which was demonstrated to be attributed to the thermally driven phase separation. In this work, the structure evolution of GO with mild annealing is closely investigated. It reveals that in addition to phase separation, the transformation of oxygen functionalities also occurs, which leads to the slight reduction of GO membranes and furthers the enhancement of GO properties. These results are further supported by the density functional theory based calculations. The results also show that the amount of chemically bonded oxygen atoms on graphene decreases gradually and we propose that the strongly physisorbed oxygen species constrained in the holes and vacancies on GO lattice might be responsible for the preserved oxygen content during the mild annealing procedure. The present experimental results and calculations indicate that both the diffusion and transformation of oxygen functional groups might play important roles in the scalable enhancement of GO properties. PMID:25372142
Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming
2015-08-05
In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.
Frugivore-Mediated Selection in A Habitat Transformation Scenario
Fontúrbel, Francisco E.; Medel, Rodrigo
2017-01-01
Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942
Effect of Variable Amplitude Blocks' Ordering on the Functional Fatigue of Superelastic NiTi Wires
NASA Astrophysics Data System (ADS)
Soul, Hugo; Yawny, Alejandro
2017-12-01
Accumulation of superelastic cycles in NiTi uniaxial element generates changes on the stress-strain response. Basically, there is an uneven drop of martensitic transformation stress plateaus and an increase of residual strain. This evolution associated with deterioration of superelastic characteristics is referred to as "functional fatigue" and occurs due to irreversible microstructural changes taking place each time a material domain transforms. Unlike complete cycles, for which straining is continued up to elastic loading of martensite, partial cycles result in a differentiated evolution of those material portions affected by the transformation. It is then expected that the global stress-strain response would reflect the previous cycling history of the specimen. In the present work, the consequences of cycling of NiTi wires using blocks of different strain amplitudes interspersed in different sequences are analyzed. The effect of successive increasing, successive decreasing, and interleaved strain amplitudes on the evolution of the superelastic response is characterized. The feasibility of postulating a functional fatigue criterion similar to the Miner's cumulative damage law used in structural fatigue analysis is discussed. The relation of the observed stress-strain response with the transformational history of the specimen can be rationalized by considering that the stress-induced transformation proceeds via localized propagating fronts.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes
NASA Astrophysics Data System (ADS)
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.
2016-10-01
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
Synergy and Self-organization in Tribosystem’s evolution. Energy Model of Friction
NASA Astrophysics Data System (ADS)
Fedorov, S. V.; Assenova, E.
2018-01-01
Different approaches are known to treat self-organization in tribosystems, related to the structural adaptation in the formation of dissipative surface structures and of frictional or tribo-films, using of synergistic modifying of layers and coatings, e.g. of the selective material transfer during friction, etc. Regarding tribological processes in contact systems, self-organization is observed as spontaneous creation of higher ordered structures during the contact interaction. The proposed paper considers friction as process of transformation and dissipation of energy and process of elasto-plastic deformation localized in thin surface layers of the interacting bodies. Еnergetic interpretation of friction is proposed. Based on the energy balance equations of friction, the evolution of tribosystems is followed in its adaptive-dissipative character. It reflects the variable friction surfaces compatibility and the nonlinear dynamics of friction evolution. Structural-energy relationships in the contacting surfaces evolution are obtained. Maximum of tribosystem’s efficiency during the evolution is the stage of self-organzation of the friction surface layers, which is a state of abnormal low friction and wear.
Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers
Merritt, Elizabeth Catherine; Doss, Forrest William
2016-07-06
The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. Lastly, the evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less
Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, E. C., E-mail: emerritt@lanl.gov; Doss, F. W.
2016-07-15
The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. The evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less
NASA Astrophysics Data System (ADS)
Wang, Pei-Xi; MacLachlan, Mark J.
2017-12-01
Tactoids are liquid crystalline microdroplets that spontaneously nucleate from isotropic dispersions, and transform into macroscopic anisotropic phases. These intermediate structures have been found in a range of molecular, polymeric and colloidal liquid crystals. Typically only studied by polarized optical microscopy, these ordered but easily deformable microdroplets are now emerging as interesting components for structural investigations and developing new materials. In this review, we highlight the structure, property and transformation of tactoids in different compositions, but especially cellulose nanocrystals. We have selected references that illustrate the diversity and most exciting developments in tactoid research, while capturing the historical development of this field. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L
2016-10-21
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
Elucidating the alkaline oxygen evolution reaction mechanism on platinum
Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...
2017-03-07
Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less
Complex Adaptive Systems and the Origins of Adaptive Structure: What Experiments Can Tell Us
ERIC Educational Resources Information Center
Cornish, Hannah; Tamariz, Monica; Kirby, Simon
2009-01-01
Language is a product of both biological and cultural evolution. Clues to the origins of key structural properties of language can be found in the process of cultural transmission between learners. Recent experiments have shown that iterated learning by human participants in the laboratory transforms an initially unstructured artificial language…
Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.
Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C
2013-02-04
There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.
Analysis of reverse martensitic transformation of prehardened 16XCH steel
NASA Astrophysics Data System (ADS)
Muravyev, Vasily; Frolov, Alexey; Lonchakov, Sergey; Bakhmatov, Pavel
2015-10-01
In the paper the structural evolution of previously tempered 16XCH steel is investigated. The influence of temperature and time conditions of heating on temperature of austenization is revealed and the influence of structural changes on steel properties is defined. The analysis of the obtained results showed an increase of plasticity at the initial stage of reverse martensitic transformation and an increase of plasticity at increased durability. It is experimentally found that reverse transformation of packet and lath martensite into the initial phase (holding for a fraction of a second, temperature 400-450°C) leads to a sharp, more than 2-fold, reduction of strength and increase of plasticity. The effect of increased plasticity under reverse martensitic transformation conditions is observed. The structure of packet and lath martensite is more fine-grained in comparison with initial quenching; the durability and plasticity are much higher. Despite the derived results, the revealed effects of increased plasticity and strength require further exploration to increase the reliability of constructions made of low-alloyed steels.
Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Gur, Sourav
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.
2008-07-01
Tailoring the Properties of Aluminum and Titanium Alloys", Deformation, Processing, and Structure , G. Krauss, ed., ASM International, Materials Park, OH...1984, pp. 279-354. 51. G.W. Kuhlman, "A Critical Appraisal of Thermomechanical Processing of Structural Titanium Alloys", Microstructure/ Property ... titanium alloys is heavily dependent on the allotropic transformation from a hexagonal-close-packed crystal structure (denoted as alpha phase) found at
Transformation between divacancy defects induced by an energy pulse in graphene.
Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn
2016-07-08
The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.
Reverse-transformation austenite structure control with micro/nanometer size
NASA Astrophysics Data System (ADS)
Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di
2017-05-01
To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel
NASA Astrophysics Data System (ADS)
Briki, Jalel; Ben Slima, Souad
2008-12-01
The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.
Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A
2016-10-26
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
NASA Astrophysics Data System (ADS)
Frantziskonis, George N.; Gur, Sourav
2017-06-01
Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.
NASA Astrophysics Data System (ADS)
Wu, C.; Han, S.
2018-05-01
In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.
Yago, Tomoaki; Wakasa, Masanobu
2015-04-21
A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.
DNA Microarrays for Aptamer Identification and Structural Characterization
2012-09-01
appropriate vector (which has a unique set of factors affecting cloning efficiency) and transformed into competent bacterial cells to spatially...818-822. 2) Tuerk, C. and Gold, L., “Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase
The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects
2010-01-01
Background In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination. PMID:20465812
Sarno, Francesca; Ruiz, María F; Eirín-López, José M; Perondini, André L P; Selivon, Denise; Sánchez, Lucas
2010-05-13
In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubes, P.; Cikhardtova, B.; Cikhardt, J.
In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) andmore » associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.« less
Liu, Airong; Liu, Jing; Han, Jinhao; Zhang, Wei-Xian
2017-01-15
Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core-shell structure of nZVI is well maintained even after 72h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core-shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy
NASA Astrophysics Data System (ADS)
Sheng, Liyuan; Yang, Yang; Xi, Tingfei
2018-03-01
The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.
NASA Astrophysics Data System (ADS)
Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao
2016-04-01
The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Microstructural evolution associated with martensitic transformation in Ni-Mn-Ga alloy
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L.
2015-04-01
Based on the spatially resolved electron backscatter diffraction technique, the microstructural evolution accompanying the martensitic transformation (austenite to 7M martensite) and the intermartensitic transformation (7M martensite to NM martensite) was studied on a polycrystalline Ni53Mn22Ga25 alloy. Results show that the 7M martensite plate groups transformed from initial austenite have a diamond-shape with four twin-related variants. The 7M to NM intermartensitic transformation was accompanied by the thickening of martensite plates. With the experimental results, the characteristics of microstructural evolution during the phase transformations were further analyzed.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boroun, G. R., E-mail: grboroun@gmail.com, E-mail: boroun@razi.ac.ir; Zarrin, S.
We derive a general scheme for the evolution of the nonsinglet structure function at the leadingorder (LO) and next-to-leading-order (NLO) by using the Laplace-transform technique. Results for the nonsinglet structure function are compared with MSTW2008, GRV, and CKMT parameterizations and also EMC experimental data in the LO and NLO analysis. The results are in good agreement with the experimental data and other parameterizations in the low- and large-x regions.
Mess, Andrea
2003-09-01
The aim of this paper is to reconstruct the evolution of chorioallantoic placental characters in Rodentia. The analysis is based on pre-existing hypotheses of rodent relationships and the tracing of character evolution. Data on 64 rodent species of 49 genera are derived from the literature. New results refer to the hystricognath species Petromus typicus A. Smith, 1831 and Octodon degus (Molina, 1782). This comprehensive analysis confirms that the stem species pattern of Rodentia is characterised by a haemochorial placenta which is divided horizontally. Inside the placental labyrinth, fetal vessels and their trophoblastic external border build up a network through which the maternal blood flows. The trophoblastic tissue is one-layered, syncytial and possess a considerable surface extension. Within Rodentia, evolutionary transformations occurred on the macroscopic as well as the fine structural level. The results suggest that the stem species of Hystricognathi underwent transformations only on the macroscopic level, i.e., forming a ring-shaped arrangement of placental regions with centrally situated maternal arteries and the acquisition of a subplacenta. By contrast, in Muridae the chorioallantoic placenta shows derived features only in regard to the fine structure of the labyrinth, i.e. the interhaemal membrane is modified in composition, and the fetal capillary endothelium is fenestrated. Geomyoidea underwent transformations on both levels. Macroscopically, their placenta is modified into a hillock shape. Microscopically, the interhaemal membrane is formed by the cytotrophoblast. In addition to the mentioned transformations, some aspects of other fetal membrane differentiation in Rodentia are briefly discussed. Copyright 2003 Wiley-Liss, Inc.
Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter
2015-01-01
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525
Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter
2015-10-12
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.
Classical integrable defects as quasi Bäcklund transformations
NASA Astrophysics Data System (ADS)
Doikou, Anastasia
2016-10-01
We consider the algebraic setting of classical defects in discrete and continuous integrable theories. We derive the ;equations of motion; on the defect point via the space-like and time-like description. We then exploit the structural similarity of these equations with the discrete and continuous Bäcklund transformations. And although these equations are similar they are not exactly the same to the Bäcklund transformations. We also consider specific examples of integrable models to demonstrate our construction, i.e. the Toda chain and the sine-Gordon model. The equations of the time (space) evolution of the defect (discontinuity) degrees of freedom for these models are explicitly derived.
Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning
2016-01-01
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375
Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions
NASA Astrophysics Data System (ADS)
Azadbakht, F. Teimoury; Boroun, G. R.
2018-02-01
We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi, E-mail: tomofuji@stanford.edu, E-mail: gao@th.phys.titech.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp
We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which themore » spectrum of the gravitational waves takes the standard form in the Einstein frame.« less
NASA Astrophysics Data System (ADS)
Xu, An-Ping; Yang, Pei-Pei; Yang, Chao; Gao, Yu-Juan; Zhao, Xiao-Xiao; Luo, Qiang; Li, Xiang-Dan; Li, Li-Zhong; Wang, Lei; Wang, Hao
2016-07-01
We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions.We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions. Electronic supplementary information (ESI) available: Experimental details; Fig. S1-S9. See DOI: 10.1039/c6nr03580a
Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel
NASA Astrophysics Data System (ADS)
Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie
2017-10-01
The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli
Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphousmore » LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
NASA Astrophysics Data System (ADS)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu
2016-08-01
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu
2016-01-01
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; ...
2016-08-30
Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
ERIC Educational Resources Information Center
Heddy, Benjamin C.; Sinatra, Gale M.
2013-01-01
Teaching and learning about complex scientific content, such as biological evolution, is challenging in part because students have a difficult time seeing the relevance of evolution in their everyday lives. The purpose of this study was to explore the effectiveness of the Teaching for Transformative Experiences in Science (TTES) model (Pugh, 2002)…
Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys
NASA Astrophysics Data System (ADS)
Zhang, Wei
The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)
Physical and Constructive (Limiting) Criterions of Gear Wheels Wear
NASA Astrophysics Data System (ADS)
Fedorov, S. V.
2018-01-01
We suggest using a generalized model of friction - the model of elastic-plastic deformation of the body element, which is located on the surface of the friction pairs. This model is based on our new engineering approach to the problem of friction-triboergodynamics. Friction is examined as transformative and dissipative process. Structural-energetic interpretation of friction as a process of elasto-plastic deformation and fracture contact volumes is proposed. The model of Hertzian (heavy-loaded) friction contact evolution is considered. The least wear particle principle is formulated. It is mechanical (nano) quantum. Mechanical quantum represents the least structural form of solid material body in conditions of friction. It is dynamic oscillator of dissipative friction structure and it can be examined as the elementary nanostructure of metal’s solid body. At friction in state of most complete evolution of elementary tribosystem (tribocontact) all mechanical quanta (subtribosystems) with the exception of one, elasticity and reversibly transform energy of outer impact (mechanic movement). In these terms only one mechanical quantum is the lost - standard of wear. From this position we can consider the physical criterion of wear and the constructive (limiting) criterion of gear teeth and other practical examples of tribosystems efficiency with new tribology notion - mechanical (nano) quantum.
NASA Astrophysics Data System (ADS)
Wu, Riming; Jin, Xuejun; Wang, Chenglin; Wang, Li
2016-04-01
Transformation of metastable austenite into martensite in novel quenched & partitioned (Q&P) steels improves sheet formability, allowing this class of high-strength steels to be used for automotive structural components. The current work studies the microstructural evolution by varying intercritical annealing time ( t a), as well as its influence on the martensite-austenite constituent and mechanical properties of Q&P steels. As the t a was prolonged, the morphology of retained austenite progressively transformed from block to a mixture of block and film, and finally changed to totally film. Based on electron back-scatter diffraction (EBSD) measurements and uniaxial tensile response, the holding time of 600 s at 760 °C was determined to produce the best results in terms of highest volume fraction of retained austenite ( f γ = 15.8%) and largest strain (26.8%) at the ultimate tensile strength (892 MPa). This difference in work-hardening behavior corresponds directly to the transformation rate of retained austenite with different morphology. The slower rate of transformation of filmy austenite allowed for work hardening to persist at high strains where the transformation effect had already been exhausted in the blocky one. There is great potential for properties improvement through adjustment of metastability of retained austenite.
Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring
NASA Astrophysics Data System (ADS)
Fel'dman, E. B.; Zenchuk, A. I.
2017-12-01
The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
Stability of cavitation structures in a thin liquid layer.
Wu, Pengfei; Bai, Lixin; Lin, Weijun; Yan, Jiuchun
2017-09-01
The inception and evolution of acoustic cavitation structures in thin liquid layers under different conditions and perturbations are investigated experimentally with high speed photography. The stability and characterization of cavitation structures are quantified by image analysis methods. It is found that cavitation structures (shape of bubble cloud and number of bubbles) are stable under unaltered experimental conditions, and the cavitation bubble cloud will return to the original structure and remain stable even in the face of large perturbations. When the experimental conditions are altered (for example, acoustic intensity, cavitation nuclei, boundary), the cavitation structures will vary correspondingly. Further analysis implies that the stability of cavitation structures is closely related to the number of bubbles in the cavitation bubble cloud. There are two mechanisms acting simultaneously in the cavitation bubble cloud evolution, one "bubble production" and the other "bubble disappearance". We propose that the two mechanisms acting together constitute the most likely explanation for the stability of cavitation structures and their transformation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping
2018-03-01
To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr
2016-06-15
The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Ren, Junqiang; Ding, Xiangdong
2018-05-01
In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Yao, Yin; Bai, Jianhui; Wang, Rui
2017-04-01
This paper investigated the intermediate states and the structure evolution of the dislocation in graphene when it falls freely from the saddle point of the energy landscape. The O-type dislocation, an unstable equilibrium structure located at the saddle point, is obtained from the lattice theory of the dislocation structure and improved by the ab initio calculation to take the buckling into account. Intermediate states along the kinetics path in the falling process are obtained from the ab initio simulation. Once the dislocation falls from the saddle point to the energy valley, this O-type dislocation transforms into the stable structure that is referred to as the B-type dislocation, and in the meantime, it moves a distance that equals half a Burgers vector. The structure evolution and the energy variation in the free-falling process are revealed explicitly. It is observed that rather than smooth change, a platform manifests itself in the energy curve. The unusual behaviour in the energy curve is mainly originated from symmetry breaking and bond formation in the dislocation core. The results can provide deep insight in the mechanism of the brittle feature of covalent materials.
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
Nanostructural Evolution of Hard Turning Layers in Carburized Steel
NASA Astrophysics Data System (ADS)
Bedekar, Vikram
The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting speed indicated thermal transformation. Nanoindentation tests showed that the substructures produced by plastic deformation follow the Hall-Petch relationship while the structures produced by thermal transformation did not. This indicated a change in the hardness driver from dislocation hardening to phase transformation, both of which have a significant impact on fatigue life. Using hardness based flow stress numerical model, these relationships between the processing conditions and structural parameters were further explored. Results indicated that the hard turning process design space can be partitioned into three regions based on thermal phase transformations, plastic grain refinement, and a third regime where both mechanisms are active. It was found that the Zener-Holloman parameter can not only be used to predict post-turning grain size but also to partition the process space into regions of dominant microstructural mechanisms.
Structural evolution of epitaxial SrCoO x films near topotactic phase transition
Jeen, Hyoung Jeen; Lee, Ho Nyung
2015-12-18
Control of oxygen stoichiometry in complex oxides via topotactic phase transition is an interesting avenue to not only modifying the physical properties, but utilizing in many energy technologies, such as energy storage and catalysts. However, detailed structural evolution in the close proximity of the topotactic phase transition in multivalent oxides has not been much studied. In this work, we used strontium cobaltites (SrCoO x) epitaxially grown by pulsed laser epitaxy (PLE) as a model system to study the oxidation-driven evolution of the structure, electronic, and magnetic properties. We grew coherently strained SrCoO 2.5thin films and performed post-annealing at various temperaturesmore » for topotactic conversion into the perovskite phase (SrCoO 3-δ). We clearly observed significant changes in electronic transport, magnetism, and microstructure near the critical temperature for the topotactic transformation from the brownmillerite to the perovskite phase. Furthermore, the overall crystallinity was well maintained without much structural degradation, indicating that topotactic phase control can be a useful tool to control the physical properties repeatedly via redox reactions.« less
Institutional Diversity in Russian Higher Education: Revolutions and Evolution
ERIC Educational Resources Information Center
Froumin, Isak; Kouzminov, Yaroslav; Semyonov, Dmitry
2014-01-01
This paper is devoted to changes in the structure of the higher education system in Russia, analysing both historical context and current institutional diversity. The review starts from the Soviet quasi-corporate system when the state combined demand-side and supply-side roles in higher education. The post-Soviet transformation brings new forces…
Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide.
Chou, Stanley Shihyao; Sai, Na; Lu, Ping; ...
2015-10-07
Establishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T' (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔG H), and, with respect to catalysis, the 1T'more » transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Furthermore, we show basal plane activation of 1T' molybdenum disulfide and a lowering of ΔG H from +1.6 eV for 2H to +0.18 eV for 1T', comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.« less
NASA Astrophysics Data System (ADS)
Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus
2017-04-01
Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its Northern and Eastern border (2) DRADEM (2016) (see poster session) that better mapped the continental slope domain of the transform margin north of the Demerara plateau and was dedicated to the dredging of rocks outcropping on the continental slope, suspected to be Cretaceous in age and older, (3) MARGATS (2016) (see poster session) that was dedicated to the better understanding of the internal structure of the plateau and its different margins using multi-channels seismic and refraction methods. The combination of all those experiments allow us to paint an integrated portrait of the Demerara marginal plateau - that may be very useful in understanding the processes involved (1) in the individualization of such plateaus (volcanism, heritages, kinematics, …) (2) in their evolution (subsidence, mass-wasting processes, domains of deep-sea current acceleration). In the future, those scientific advances may allow to better define the natural resources associated with such marginal domains.
Transformer overload and bubble evolution: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, G.; Lindgren, S.
1988-06-01
The EPRI workshop on Transformer Overload Characteristics and Bubble Evolution was held to review the findings of investigations over the past 7-8 years to determine whether enough information is now available for utilities to establish safe loading practices. Sixteen papers were presented, including a utility review, physical and dielectric effects of gas and bubble formation from cellulose insulated transformers, transformer life characteristics, gas bubble studies and impulse test on distribution transformers, mathematical modeling of bubble evolution, transformer overload characteristics, variation of PD-strength for oil-paper insulation, survey on maximum safe operating hot spot temperature, and overload management. The meeting concluded withmore » a general discussion covering the existing state of knowledge and the need for additional research. Sixteen papers have been cataloged separately.« less
The transformation of housing and household structures in France and Great Britain.
Bonvalet, C; Lelievre, E
1997-09-01
"In France and Great Britain, the last 30 years have seen considerable evolution in the housing stock...and in household structure....This article describes the dynamic interaction of processes influencing the evolution of both households and dwellings. In the two countries, the life course of individuals has become more and more complex. This translates into an ever greater variety of housing needs, not only at different stages in family life, but also in relation to growing job insecurity regardless of family situation. At the same time, policies encouraging home-ownership seem to have reached their limits, because of the new demand for rented accommodation. The answer to sociological and economic evolution cannot be found in a ¿single' type of housing and tenure status, but rather in a wide range of dwellings and in the development of a more flexible housing market." excerpt
Institutional change to support regime transformation: Lessons from Australia's water sector
NASA Astrophysics Data System (ADS)
Werbeloff, Lara; Brown, Rebekah; Cocklin, Chris
2017-07-01
Institutional change is fundamental to regime transformation, and a necessary part of moving toward integrated water management. However, insight into the role of institutional change processes in such transitions is currently limited. A more nuanced understanding of institutional frameworks is necessary, both to advance understanding of institutional change in the context of transitions toward improved water management and to inform strategies for guiding such processes. To this end, we examine two contemporary cases of transformative change in Australia's urban water sector, exploring the evolution of institutional change in each city. This paper offers insights into regime transformation, providing guidance on types of institutional structures and the ways structure-change initiatives can be sequenced to support a transition. The results reveal the importance of regulation in embedding regime change and suggest that engagement with structural frameworks should begin early in transition processes to ensure the timely introduction of supporting regulation. Our findings also highlight the inextricable link between culture-based and structure-based change initiatives, and the importance of using a diverse range of institutional change mechanisms in a mutually reinforcing way to provide a strong foundation for change. These findings provide a foundation for further scholarly examination of institutional change mechanisms, while also serving to inform the strategic activities of transition-oriented organizations and actors.
Structural evolution of maize stalk/char particles during pyrolysis.
Fu, Peng; Hu, Song; Sun, Lushi; Xiang, Jun; Yang, Tao; Zhang, Anchao; Zhang, Junying
2009-10-01
The structural evolution characteristics of maize stalk/char particles during pyrolysis were investigated. The char was prepared by pyrolyzing at temperatures ranging from 200 to 900 degrees C. Maize stalk and chars were characterized by thermogravimetric analysis, ultimate analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), helium density measurement and N(2) adsorption/desorption method. The char yield decreased rapidly with increasing temperature until 400 degrees C. As temperature increased, the char became progressively more aromatic and carbonaceous. The hydroxyl, aliphatic C-H, carbonyl and olefinic C=C groups were lost at high temperatures. Below 500 degrees C, the removal of volatile matter made pore opening. High temperatures led to the occurrence of softening, melting, fusing and carbon structural ordering. The aromatization process started at approximately 350 degrees C and continued to higher temperatures. The shrinkage of carbon structure occurred above 500 degrees C, which was concurrent with the aromatization process.
Structure and transformation of tactoids in cellulose nanocrystal suspensions
NASA Astrophysics Data System (ADS)
Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.
2016-05-01
Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.
4D visualization of embryonic, structural crystallization by single-pulse microscopy
Kwon, Oh-Hoon; Barwick, Brett; Park, Hyun Soon; Baskin, J. Spencer; Zewail, Ahmed H.
2008-01-01
In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding. PMID:18562291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun
2015-02-11
The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.
2017-06-01
Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Zhang, Mingyi; Lai, Qingbo; Lu, Yanli; Wang, Yongxin
2009-08-01
Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25- x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.
Fault evolution in the Potiguar rift termination, equatorial margin of Brazil
NASA Astrophysics Data System (ADS)
de Castro, D. L.; Bezerra, F. H. R.
2015-02-01
The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.
Zhang, Wei; Topsakal, Mehmet; Cama, Christina; ...
2017-10-13
Zero-strain electrodes, such as spinel lithium titanate (Li 4/3Ti 5/3O 4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. In this paper, we report in situ studies of lithiation-driven structural transformations in Li 4/3Ti 5/3O 4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment ofmore » structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li 4/3Ti 5/3O 4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. Finally, this work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Topsakal, Mehmet; Cama, Christina
Zero-strain electrodes, such as spinel lithium titanate (Li 4/3Ti 5/3O 4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. In this paper, we report in situ studies of lithiation-driven structural transformations in Li 4/3Ti 5/3O 4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment ofmore » structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li 4/3Ti 5/3O 4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. Finally, this work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.« less
Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; ...
2017-02-24
Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO 2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO 2 during the voltage range of below 3.0 V and over 4.0 V are responsible for themore » irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. Lastly, these findings reveal the origin of the irreversibility of NaNiO 2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi
Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO 2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO 2 during the voltage range of below 3.0 V and over 4.0 V are responsible for themore » irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. Lastly, these findings reveal the origin of the irreversibility of NaNiO 2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi
Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacitymore » loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.« less
Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana
2014-01-01
Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Xiaojing; Chen, Bin; Wang, Jianwei
During the formation of the Earth's core, the segregation of metallic liquids from silicate mantle should have left behind evident geochemical imprints on both the mantle and the core. Some distinctive geochemical signatures of the mantle-derived rocks likely own their origin to the metal-silicate differentiation of the primitive Earth, setting our planet apart from undifferentiated meteorites as well as terrestrial planets or moons isotopically and compositionally. Understanding the chemical evolution of terrestrial planetary bodies requires knowledge on properties of both liquid iron alloys and silicates equilibrating under physicochemical conditions pertinent to the deep magma ocean. Here we report experimental andmore » computational results on the pressure-induced structural evolution of iron-nickel liquids alloyed with carbon. Our X-ray diffraction experiments up to 7.3 gigapascals (GPa) demonstrate that Fe-Ni (Fe90Ni10) liquids alloyed with 3 and 5 wt % carbon undergo a polyamorphic liquid structure transition at approximately 5 GPa. Corroborating the experimental observations, our first-principles molecular dynamic calculations reveal that the structural transitions result from the marked prevalence of three-atom face-sharing polyhedral connections in the liquids at >5 GPa. The structure and polyamorphic transitions of liquid iron-nickel-carbon alloys govern their physical and chemical properties and may thus cast fresh light on the chemical evolution of terrestrial planets and moons.« less
Shaban-Nejad, Arash; Haarslev, Volker
2015-01-01
The issue of ontology evolution and change management is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies and interactions with other existing ontologies have been widely neglected. In our research, after revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, Represent, Legitimate and Reproduce (RLR), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general and aids in tracking and representing the changes, particularly through the use of category theory and hierarchical graph transformation.
Evolution and stabilization of subnanometric metal species in confined space by in situ TEM
Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul; ...
2018-02-08
Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less
Evolution and stabilization of subnanometric metal species in confined space by in situ TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lichen; Zakharov, Dmitri N.; Arenal, Raul
Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters.In this work,the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor,it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. Here, the dynamicmore » reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated.Ithas also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H 2.« less
Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Xu, Pinghong; Gu, Meng
2015-02-24
Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defectmore » spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.« less
[The biological aspects of chromatin diminution].
Akif'ev, A P; Grishanin, A K
1993-01-01
The chromatine diminution (CD), first discovered by Boveri (1887) in ascarids, represents programmed elimination of a part of genetic material in the nuclei of the somatic cells in cyclops and ascarids, and in the protist macronuclei. The CD can be considered as a macromutation sharply changing chromosomal structure, though minimally effecting the phenotype. The analysis of CD is of significance for discussing mechanisms of origin of chromosomal organization, transformation of genome molecular structure in eucaryote evolution, role of the extra DNA.
Higher spin Chern-Simons theory and the super Boussinesq hierarchy
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Li, Yi
2018-05-01
In this paper, we construct a map between a solution of supersymmetric Chern-Simons higher spin gravity based on the superalgebra sl(3|2) with Lifshitz scaling and the N = 2 super Boussinesq hierarchy. We show that under this map the time evolution equations of both theories coincide. In addition, we identify the Poisson structure of the Chern-Simons theory induced by gauge transformation with the second Hamiltonian structure of the super Boussinesq hierarchy.
BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors
ERIC Educational Resources Information Center
Brownell, Sara E.; Freeman, Scott; Wenderoth, Mary Pat; Crowe, Alison J.
2014-01-01
"Vision and Change in Undergraduate Biology Education" outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and…
Time rescaling and pattern formation in biological evolution.
Igamberdiev, Abir U
2014-09-01
Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallesham, B.; Ranjith, R., E-mail: ranjith@iith.ac.in; Manivelraja, M.
2014-07-21
The current study explores non-magnetic Sc{sup 3+} induced structural transformation, evolution of local B-site cation ordering and associated effect on ferroelectric phase transition temperature T{sub max} (temperature corresponding to dielectric maxima) on increasing the atom percent of Sc substitution in [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN)] ceramics. In this regard, the phase pure Pb[(Fe{sub 0.5−x}Sc{sub x})Nb{sub 0.5}]O{sub 3} ceramics with x varying from 0 to 0.5 were synthesized through solid state reaction route. The detailed structural analysis through Rietveld refinement confirms the room temperature transformation from a monoclinic Cm to rhombohedral R3m structure at x = 0.3 mol. % of Sc. Absorption spectra studies showmore » that there is a considerable increment in the bandgap at higher scandium content. Most interestingly, the T{sub max} exhibited an increment for lower scandium contents (x = 0.1 to 0.25) followed by a drop in T{sub max} (x = 0.3 to 0.5). Such anomalous behavior in T{sub max} is expected to arise due to the onset of B′, B″ local cation ordering beyond Sc content x = 0.25. The B-site cation ordering at and beyond x = 0.3 was also confirmed by the evolution of cation order induced Pb-O coupled vibrational mode in Raman scattering studies. In addition, the Mössbauer spectra of PFN (x = 0) and Pb(Fe{sub 0.4}Sc{sub 0.1}Nb{sub 0.5})O{sub 3} (x = 0.1) are reported to verify the spin state and oxidation state of iron. The lattice distortion due to the radius ratio difference between a Sc{sup 3+} cation and Fe{sup 3+} cation in low spin state is responsible for the structural transformation, which in turn facilitates a B′:B″ cation ordering.« less
NASA Astrophysics Data System (ADS)
Kim, Jandee; Lee, Jaesung; Rhee, Choong Kyun
2016-02-01
Presented is a scanning tunneling microscopy (STM) study of structural evolution of TMA/Zn2 + ion network on Au(111) to the final structure of (10√3 × 10√3) during solution phase post-modification of pristine trimesic acid (TMA) network of a (5√3 × 5√3) structure with Zn2 + ions. Coordination of Zn2 + ions into adsorbed TMA molecules transforms crown-like TMA hexamers in pristine TMA network to chevron pairs in TMA/Zn2 + ion network. Two ordered transient structures of TMA/Zn2 + ion network were observed. One is a (5√7 × 5√7) structure consisting of Zn2 + ion-containing chevron pairs and Zn2 + ion-free TMA dimers. The other is a (5√39 × 5√21) structure made of chevron pairs and chevron-pair-missing sites. An STM image showing domains of different stages of crystallization of chevron pairs demonstrates that the TMA/Zn2 + network before reaching to the final one is quite dynamic. The observed structural evolution of the TMA/Zn2 + ion network is discussed in terms of modification of configurations of adsorbed TMA as accommodating Zn2 + ions and re-ordering of Zn2 + ion-containing chevron pairs.
NASA Astrophysics Data System (ADS)
Hahm, J.; Sibener, S. J.
2001-03-01
Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
Phase transformations in xerogels of mullite composition
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Bansal, Narottam P.
1990-01-01
Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al203-2Si02). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al203, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.
Wang, Jie; Han, Lili; Lin, Ruoqian; ...
2016-01-05
Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo 2O 4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo 2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo 2O 4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo 2O 4/C nanoparticles exhibit superior long-term stability for both themore » ORR and OER compared to commercial Pt/C. The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less
Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng
2018-03-21
In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon; ...
2017-08-11
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...
2015-02-11
Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
Kinetic Behavior and Microstructure of Pearlite Isothermal Transformation Under High Undercooling
NASA Astrophysics Data System (ADS)
Liang, Yu; Xu, Pingwei; Xiang, Song; Liang, Yilong; Xiong, Hu; Li, Jing
2018-06-01
The kinetic behavior of highly undercooled austenite and its effects on the microstructural evolution and mechanical properties of high-carbon steel are studied. The undercooling degree is increased through a temporary undercooling treatment at the bainite transformation temperature of 380 °C to 450 °C before the pearlite isothermal transformation at 500 °C to 620 °C. The transformation kinetics reveals an increased nose temperature and a rightward shift of the transformation curve under high undercooling conditions. In addition, the undercooling treatment leads to an increased driving force during pearlite transformation, which is responsible for the refined hierarchical structures of pearlite. As a result, a 20 to 40 pct size reduction is achieved for pearlite colonies and lamellae. Such refinement is in turn attributed to an 26 pct increase in reduction in area. This work provides both a new understanding of high-performance fully pearlitic steels for practical applications and new perspectives for potential technological applications in drawing processes for hypoeutectoid steels.
Thermally induced evolution of hydrogenated amorphous carbon
NASA Astrophysics Data System (ADS)
Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.
2013-10-01
The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.
[Judicial institutions of medical experts].
Godoy, Roberto Lm
2016-05-01
This article considers the evolutive process that judicial organisms of medical experts have experienced in Argentina since their creation and formulates a proposal for its adequacy and modernization. Due to multiple and various evolutive factors, judicial organisms managing medicolegal expert activities show, nowadays, signals that a structural and dynamic reform is needed. They remain as organizational units of Public Administration and their effectiveness and efficiency depends not only of a scientific criteria but a managing one. The present and future challenge will be their conceptual transformation, from "corporate scientific entities" to "public-service-providing units" within the justice administration system.
Tornado-like Evolution of a Kink-unstable Solar Prominence
NASA Astrophysics Data System (ADS)
Wang, Wensi; Liu, Rui; Wang, Yuming
2017-01-01
We report on the tornado-like evolution of a quiescent prominence on 2014 November 1. The eastern section of the prominence first rose slowly, transforming into an arch-shaped structure as high as ˜150 Mm above the limb; the arch then writhed moderately in a left-handed sense, while the original dark prominence material emitted in the Fe ix 171 Å passband, and a braided structure appeared at the eastern edge of the warped arch. The unraveling of the braided structure was associated with a transient brightening in the EUV and apparently contributed to the formation of a curtain-like structure (CLS). The CLS consisted of myriad thread-like loops rotating counterclockwise about the vertical if viewed from above. Heated prominence material was observed to slide along these loops and land outside the filament channel. The tornado eventually disintegrated and the remaining material flew along a left-handed helical path constituting approximately a full turn, as corroborated through stereoscopic reconstruction, into the cavity of the stable, western section of the prominence. We suggest that the tornado-like evolution of the prominence was governed by the helical kink instability, and that the CLS formed through magnetic reconnections between the prominence field and the overlying coronal field.
NASA Astrophysics Data System (ADS)
Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.
2018-06-01
X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.
Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.
2018-01-01
The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Beyond directed evolution - semi-rational protein engineering and design
Lutz, Stefan
2010-01-01
Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the focus has shifted to small, functionally-rich libraries and rational design. A critical component to the success of these emerging engineering strategies are computational tools for the evaluation of protein sequence datasets and the analysis of conformational variations of amino acids in proteins. Highlighting the opportunities and limitations of such approaches, this review focuses on recent engineering and design examples that require screening or selection of small libraries. PMID:20869867
Rothwell, Gar W; Wyatt, Sarah E; Tomescu, Alexandru M F
2014-06-01
Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants. © 2014 Botanical Society of America, Inc.
Exploring the Early Structure of a Rapidly Decompressed Particle Bed
NASA Astrophysics Data System (ADS)
Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration
2017-11-01
Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa
2018-02-01
The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.
NASA Astrophysics Data System (ADS)
Lai, Xiaojing; Chen, Bin; Wang, Jianwei; Kono, Yoshio; Zhu, Feng
2017-12-01
During the formation of the Earth's core, the segregation of metallic liquids from silicate mantle should have left behind evident geochemical imprints on both the mantle and the core. Some distinctive geochemical signatures of the mantle-derived rocks likely own their origin to the metal-silicate differentiation of the primitive Earth, setting our planet apart from undifferentiated meteorites as well as terrestrial planets or moons isotopically and compositionally. Understanding the chemical evolution of terrestrial planetary bodies requires knowledge on properties of both liquid iron alloys and silicates equilibrating under physicochemical conditions pertinent to the deep magma ocean. Here we report experimental and computational results on the pressure-induced structural evolution of iron-nickel liquids alloyed with carbon. Our X-ray diffraction experiments up to 7.3 gigapascals (GPa) demonstrate that Fe-Ni (Fe90Ni10) liquids alloyed with 3 and 5 wt % carbon undergo a polyamorphic liquid structure transition at approximately 5 GPa. Corroborating the experimental observations, our first-principles molecular dynamic calculations reveal that the structural transitions result from the marked prevalence of three-atom face-sharing polyhedral connections in the liquids at >5 GPa. The structure and polyamorphic transitions of liquid iron-nickel-carbon alloys govern their physical and chemical properties and may thus cast fresh light on the chemical evolution of terrestrial planets and moons.
Magnetic properties of solid oxygen under pressure (Review Article)
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.
2015-11-01
Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
Element speciation during nuclear glass alteration
NASA Astrophysics Data System (ADS)
Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.
2011-12-01
Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.
Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires
Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...
2015-09-22
Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less
NASA Astrophysics Data System (ADS)
Fornari, D. J.; Soule, S.; Harpp, K. S.; Mittelstaedt, E. L.; Geist, D.; Kurz, M. D.; R/v Melville Mv1007 Cruise Scientific Party
2010-12-01
High-resolution EM122 multibeam and MR-1 sidescan sonar data collected over a wide area of seafloor west and east of the 90deg 50’N transform along the Galapagos Spreading Center (GSC) reveal seafloor morpho-structural fabric created along this intermediate spreading plate boundary. In concert with geochemical and geophysical data collected during the cruise, these data will be used to help unravel the kinematics of hotspot-ridge interactions in the northern Galapagos. West of the transform, the seafloor is dominated by three prominent NW-SE trending seamount lineaments, each ~20-30 km wide, including the prominent Wolf-Darwin Lineament (WDL) as well as two other smaller volcanic chains east of the WDL, which are oriented along intermediate trends that become more subparallel to the N-S trend of the transform from west to east. This suggests a possible strong controlling influence of the transform on the orientation of lithospheric fractures involved in supplying magmas to the volcanic centers. Interestingly, each seamount lineament west of the transform appears to have nascent volcanoes nucleating immediately south of the GSC axis at locations that mark along-axis discontinuities of the spreading center, suggesting ridge-related magmatic focusing is also influencing crustal generation on the Nazca plate in this region. The tectonized terrain associated with the transform is 60 km wide, whereas the transform valley is only 20 km wide. The northern 40 km of the transform has a well-defined linear shear zone and bounding faults. The southern 50 km of the transform are characterized by a wide zone of extensive oblique shear structures that trend NW-SE. Within this zone are numerous small volcanic cones and ridges that decorate the margins and axis of the transform domain. The structural evolution of the transform appears to be undergoing a transition along its length with intra-transform volcanism in the south and more normal shear in the north, however the tectonic imprint of the oblique structures is observed along nearly all of the length of the transform out to 15-20 km from the margins of the transform valley. Terrain east of the transform is markedly different in morphological character and structural elements. A series of five, generally E-W ridges, some of which display clear volcanic constructional terrain, extend from the eastern margin of the oblique fabric associated with the transform domain. Some of these E-W features are linked by N-S structures, creating a general patchwork pattern of seafloor that is unlike any we have observed at well-mapped ridge-transform intersections at fast and intermediate spreading mid-ocean ridges. The terrain bears some similarities to structures developed at microplates. We also note that this region lies at the southwestern extremity of the Cocos Ridge, an aseismic ridge that has undergone a complex history of volcanic and tectonic construction associated with hotspot magmatism and ridge jumps.
Ye, Lidan; Yang, Chengcheng; Yu, Hongwei
2018-01-01
With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.
PROFESS: a PROtein Function, Evolution, Structure and Sequence database
Triplet, Thomas; Shortridge, Matthew D.; Griep, Mark A.; Stark, Jaime L.; Powers, Robert; Revesz, Peter
2010-01-01
The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are ∼1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein–protein interaction networks. Database URL: http://cse.unl.edu/∼profess/ PMID:20624718
Simulation research on the process of large scale ship plane segmentation intelligent workshop
NASA Astrophysics Data System (ADS)
Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei
2017-04-01
Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.
NASA Astrophysics Data System (ADS)
Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.
2003-01-01
Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.
Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.
Zhu, Xiushan; Jain, Ravinder K
2006-10-30
We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
NASA Astrophysics Data System (ADS)
Khan, Imran; Huang, Shengli; Wu, Chenxu
2017-12-01
The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.
The Evolution of Structural Order as a Measure of Thermal History of Coke in the Blast Furnace
NASA Astrophysics Data System (ADS)
Lundgren, Maria; Khanna, Rita; Ökvist, Lena Sundqvist; Sahajwalla, Veena; Björkman, Bo
2014-04-01
Investigations were carried out on cokes heat treated in the laboratory and on cokes extracted from the experimental blast furnace (EBF) raceway and hearth. X-ray diffraction (XRD) measurements were performed to investigate changes in structural order ( L c), chemical transformations in coke ash along with comparative thermodynamic equilibrium studies and the influence of melt. Three data processing approaches were used to compute L c values as a function of temperature and time and linear correlations were established between L c and heat treatment temperatures during laboratory investigations. These were used to estimate temperatures experienced by coke in various regions of EBF and estimated raceway temperatures were seen to follow the profile of combustion peak. The MgAl2O4 spinel was observed in coke submerged in slag during laboratory studies and in cokes found further into the raceway. Coke in contact with hot metal showed XRD peaks corresponding to presence of Fe3Si. The intensity of SiO2 peak in coke ash was seen to decrease with increasing temperature and disappeared at around 1770 K (1500 °C) due to the formation of SiC. This study has shown that the evolution of structural order and chemical transformations in coke could be used to estimate its thermal history in blast furnaces.
The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)
NASA Astrophysics Data System (ADS)
Weiß, B. J.; Hübscher, C.; Lüdmann, T.
2015-07-01
The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.
Phase transformations in xerogels of mullite composition
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Bansal, Narottam P.
1988-01-01
Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al2O3-2SiO2). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al2O3, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.
KvN mechanics approach to the time-dependent frequency harmonic oscillator.
Ramos-Prieto, Irán; Urzúa-Pineda, Alejandro R; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M
2018-05-30
Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.
Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process
NASA Astrophysics Data System (ADS)
Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.
2017-10-01
Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Li; Y Mao; H Ma
An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at highmore » temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.« less
Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature
NASA Astrophysics Data System (ADS)
McWilliams, R. Stewart; Spaulding, Dylan K.; Eggert, Jon H.; Celliers, Peter M.; Hicks, Damien G.; Smith, Raymond F.; Collins, Gilbert W.; Jeanloz, Raymond
2012-12-01
Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores.
Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.
2018-02-01
The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.
Chen, Yingquan; Zhang, Xiong; Chen, Wei; Yang, Haiping; Chen, Hanping
2017-12-01
Biochar is carbon-rich, porous and with a great potential in gas pollutant controlling. The physical-chemical structure of biochar is important for the application. This paper firstly reviewed the evolution behavior of physical-chemical structure for biochar during pyrolysis. At lower temperature (<500°C), biomass firstly transformed to "3D network of benzene rings" with abundant functional groups. With temperature increasing (500-700°C), it converted to "2D structure of fused rings" with abundant porosity. As temperature increasing further (>700°C), it may transit into a "graphite microcrystalline structure", the porosity and functional groups were diminished correspondingly. The modification of biochar and its application as sorbent for gas pollutant were also reviewed. Activation and doping can significantly increase the porosity and special functional groups in biochar, which is favorable for gas pollutant adsorption. With a higher porosity, the adsorption capacity of gas pollutant is bigger, however, the functional groups determined the sorption stability of gas pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.
The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
[EVOLUTION OF REVISTA ROL DE ENFERMERÍA (1978-2008): A BIBLIOGRAPHIC ANALYSIS].
Duerto Alvarez, Clara; Miqueo, Consuelo
2015-10-01
Revista ROL de Enfermería was the first journal of nurses and adressed to nursing published with the birth of Spanish democracy, indexed soon Medline/PubMed. This paper analyzes the changes in the structure and function of the magazine. Highlights two facts. The journal ROL expresses the transformation of the new universitary nursing, and how was adapting to scientific standards: although not increased the number of original articles, was normalizing their structure, bibliography or citations pattern, and also the scientific writing style.
Evolution of opto-electronic properties during film formation of complex semiconductors
NASA Astrophysics Data System (ADS)
Heinemann, M. D.; Mainz, R.; Österle, F.; Rodriguez-Alvarez, H.; Greiner, D.; Kaufmann, C. A.; Unold, T.
2017-04-01
Optical and electrical properties of complex semiconducting alloys like Cu(In,Ga)Se2 (CIGS) are strongly influenced by the reaction pathways occurring during their deposition process. This makes it desirable to observe and control these properties in real-time during the deposition. Here we show for the first time the evolution of the band gap and the sub-band-gap defect absorption of CIGS thin film as well as surface roughness during a three-stage co-evaporation process by means of an optical analysis technique, based on white light reflectometry (WLR). By simultaneously recording structural information with in-situ energy dispersive X-ray diffraction and X-ray fluorescence we can directly correlate the evolution of opto-electronic material parameters with the structural properties of the film during growth. We find that the surface roughness and the sub-gap light absorption can be correlated with the phase evolution during the transformation from (In,Ga)2Se3 to Cu(In,Ga)Se2 by the incorporation of Cu into the film. Sub-bandgap light absorption is found to be influenced by the Cu-saturated growth phase and is lowered close to the points of stoichiometry, allowing for an advanced process design.
TORNADO-LIKE EVOLUTION OF A KINK-UNSTABLE SOLAR PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wensi; Liu, Rui; Wang, Yuming, E-mail: rliu@ustc.edu.cn
We report on the tornado-like evolution of a quiescent prominence on 2014 November 1. The eastern section of the prominence first rose slowly, transforming into an arch-shaped structure as high as ∼150 Mm above the limb; the arch then writhed moderately in a left-handed sense, while the original dark prominence material emitted in the Fe ix 171 Å passband, and a braided structure appeared at the eastern edge of the warped arch. The unraveling of the braided structure was associated with a transient brightening in the EUV and apparently contributed to the formation of a curtain-like structure (CLS). The CLSmore » consisted of myriad thread-like loops rotating counterclockwise about the vertical if viewed from above. Heated prominence material was observed to slide along these loops and land outside the filament channel. The tornado eventually disintegrated and the remaining material flew along a left-handed helical path constituting approximately a full turn, as corroborated through stereoscopic reconstruction, into the cavity of the stable, western section of the prominence. We suggest that the tornado-like evolution of the prominence was governed by the helical kink instability, and that the CLS formed through magnetic reconnections between the prominence field and the overlying coronal field.« less
Lobato, I; Rojas, J; Landauro, C V; Torres, J
2009-02-04
The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study
NASA Astrophysics Data System (ADS)
Mansuri, Amantulla; Mishra, Ashutosh
2016-10-01
In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...
2016-01-20
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; He, Yang; Gu, Meng
2016-09-21
Reversible insertion/extraction of ions into a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. It is far more commonly observed that insertion of ions into a host lattice can lead to structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has never been clear as what kind of factors to control such a lattice structural evolution. Based on tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) and first principles calculation to explore the nature of Li ions intercalation induced crystalmore » symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic→tetragonal→cubic phase transition. The first principle calculation reveals that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifying system band structure, resulting in an insulator to metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice.« less
Thermal evolution of the metastable r8 and bc8 polymorphs of silicon
Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.; ...
2015-01-28
The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambientmore » pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.« less
Thermal evolution of the metastable r8 and bc8 polymorphs of silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.
The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambientmore » pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.« less
Kawashima, Tomokazu; Thorington, Richard W; Bohaska, Paula W; Sato, Fumi
2017-02-01
A long-standing issue in squirrel evolution and development is the origin of the styliform cartilage of flying squirrels, which extends laterally from the carpus to support the gliding membrane (patagium). Because the styliform cartilage is one of the uniquely specialized structures permitting gliding locomotion, the knowledge of its origin and surrounding transformation is key for understanding their aerodynamic evolution. The developmental study that would definitely answer this question would be difficult due to the rarity of embryological material. Instead, anatomical examinations have suggested two major hypotheses on the homology of the styliform cartilage: the pisiform bone of other mammals, or an additional carpal structure, such as the ulnar sesamoid of some of the other mammals or the hypothenar cartilage of the non-gliding squirrels. To test these hypotheses, a detailed examination of the anatomy of the carpus of gliding and non-gliding squirrels, and the colugo were undertaken. Based on physical and virtual dissections of the carpus, this study showed that both the pisiform bone and styliform cartilage were present in flying squirrels. This finding is further supported by demonstration that a "true Palmaris longus," with innervation typical for this muscle, inserts on the styliform cartilage. Taken together, our osteological, muscular, and neurological results suggest that the styliform cartilage was transformed in flying squirrels from an initially superficial and ulnar-derived anlagen into its current form. Anat Rec, 300:340-352, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Evolution of porous structure and texture in nanoporous SiO2/Al2O3 materials during calcination
NASA Astrophysics Data System (ADS)
Glazkova, Elena A.; Bakina, Olga V.
2016-11-01
The study focuses on the evolution of porous structure and texture of silica/alumina xerogels during calcination in the temperature range from 500 to 1200°C. The xerogel was prepared via sol-gel method using subcritical drying. The silica/alumina xerogels were examined using transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), Brunauer Emmett Teller-Barrett Joyner Halenda (BET-BJH), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. SiO2 primary particles of size about 10 nm are connected with each other to form a porous xerogel structure. Alumina is uniformly distributed over the xerogel volume. The changes of textural characteristics under heat treatment of samples are radical; the specific surface area and pore size attain their maximum at 500-700°C. The heat treatment of samples causes dehydroxylation of the xerogel surface, and at 1200°C the sample is sintered, loses mesoporosity, and its specific surface area reduces considerably down to 78 m2/g.
NASA Astrophysics Data System (ADS)
Kariyado, Toshikaze; Ogata, Masao
2017-11-01
We theoretically demonstrate how competition between band inversion and spin-orbit coupling (SOC) results in nontrivial evolution of band topology, taking antiperovskite Ba3SnO as a prototype material. A key observation is that when the band inversion dominates over SOC, there appear "twin" Dirac cones in the band structure. Due to the twin Dirac cones, the band shows highly peculiar structure in which the upper cone of one of the twin continuously transforms to the lower cone of the other. Interestingly, the relative size of the band inversion and SOC is controlled in this series of antiperovskite A3E O by substitution of A (Ca, Sr, Ba) and/or E (Sn, Pb) atoms. Analysis of an effective model shows that the emergence of twin Dirac cones is general, which makes our argument a promising starting point for finding a singular band structure induced by the competing band inversion and SOC.
Evolution of rapidly solidified NiAlCu(B) alloy microstructure.
Czeppe, Tomasz; Ochin, Patrick
2006-10-01
This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.
NASA Astrophysics Data System (ADS)
BouJaoude, Saouma; Asghar, Anila; Wiles, Jason R.; Jaber, Lama; Sarieddine, Diana; Alters, Brian
2011-05-01
This study investigated three questions: (1) What are Lebanese secondary school (Grade 9-12) biology teachers' and university biology professors' positions regarding biological evolution?, (2) How do participants' religious affiliations relate to their positions about evolutionary science?, and (3) What are participants' positions regarding evolution education? Participants were 20 secondary school biology teachers and seven university biology professors. Seventy percent of the teachers and 60% of the professors were Muslim. Data came from semi-structured interviews with participants. Results showed that nine (Christian or Muslim Druze) teachers accepted the theory, five (four Muslim) rejected it because it contradicted religious beliefs, and three (Muslim) reinterpreted it because evolution did not include humans. Teachers who rejected or reinterpreted the evolutionary theory said that it should not be taught (three), evolution and creationism should be given equal time (two), or students should be allowed to take their own stand. Two professors indicated that they taught evolution explicitly and five said that they integrated it in other biology content. One Muslim professor said that she stressed 'the role of God in creation during instruction on evolution'. It seems that years of studying and teaching biology have not had a transformative effect on how a number of teachers and professors think about evolution.
Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele
2013-12-23
Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.
Beemelmanns, Christine; Reissig, Hans-Ulrich
2015-06-01
This comprehensive report accounts the development of a highly diastereoselective samarium diiodide-induced cascade reaction of substituted indolyl ketones. The complexity-generating transformation with SmI2 allows the diastereoselective generation of three stereogenic centers including one quaternary center in one step. The obtained tetra- or pentacyclic dihydroindole derivatives are structural motifs of many monoterpene indole alkaloids, and their subsequent transformations gave way to one of the shortest approaches towards strychnine (14 % overall yield in ten steps, or 10 % overall yield in eight steps). During the course of this report we discuss the influence of substituents on the cyclization step, plausible mechanistic scenarios for the SmI2 -induced cascade reaction, diastereoselective reductive amination, and regioselective dehydratization protocols towards the pentacyclic core structure of strychnos alkaloids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.
2010-02-01
Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.
NASA Astrophysics Data System (ADS)
Wang, Yongfu; Wang, Yan; Zhang, Xingkai; Shi, Jing; Gao, Kaixiong; Zhang, Bin; Zhang, Junyan
2017-10-01
In this study, we prepared hydrogenated amorphous carbon films on steel balls and Si substrates (steel ball- and Si substrate-films) with different deposition time, and discussed their carbon nanostructural evolutions and tribological behaviors. The steel ball-film structure started to be graphite-like structure and then gradually transformed into fullerene-like (FL) structure. The Si substrate-film structure began in FL structure and kept it through the thickness. The difference may be result from the competition between high starting substrate temperature after additional nitriding applied on the steel balls (its supply power is higher than that in the film deposition), and relaxation of compressive stress from energized ion bombardment in film deposition process. The FL structural film friction couples could achieve ultra-low friction in open air. In particular, the Si substrate-film with 3 h, against the steel ball-film with 2 h and 3 h, exhibited super-low friction (∼0.009) and superlong wear life (∼5.5 × 105 cycles). Our result could widen the superlubricity scope from previously high load and velocity, to middle load and velocity.
Nonequilibrium thermodynamics of the shear-transformation-zone model
NASA Astrophysics Data System (ADS)
Luo, Alan M.; Ã-ttinger, Hans Christian
2014-02-01
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
NASA Astrophysics Data System (ADS)
Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu
2008-09-01
Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Tsai, Hsing-Wei
2018-06-01
The effect of temperature on the structural evolution of nanocrystalline (NC) and single-crystalline (SC) Au nanowires (NWs) under torsional deformation is studied using molecular dynamics simulations based on the many-body embedded-atom potential. The effect is investigated using common neighbor analysis and discussed in terms of shear strain distribution and atomic flow field. The simulation results show that deformation for NC NWs is mainly driven by the nucleation and propagation of dislocations and the gliding of grain boundaries (GBs) and that for SC NWs is mainly driven by dislocations and the formation of disordered structures. Dislocations for NC and SC NWs easily nucleate at GBs and free surfaces, respectively. For NC NWs, torsional buckling occurs easily at GBs with large gliding. SC NWs have a more uniform and larger elastic deformation under torsion compared to that for NC NWs due to the former's lack of grains. SC NWs have a long period of elastic deformation transforming into plastic deformation. Increasing temperature facilitates stress transmission throughout NWs.
Evolution of molecular crystal optical phonons near structural phase transitions
NASA Astrophysics Data System (ADS)
Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea
Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.
[Origin of the plague microbe Yersinia pestis: structure of the process of speciation].
Suntsov, V V
2012-01-01
The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.
Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K
2012-06-01
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.
Kaltag fault, northern Yukon, Canada: Constraints on evolution of Arctic Alaska
NASA Astrophysics Data System (ADS)
Lane, Larry S.
1992-07-01
The Kaltag fault has been linked to several strike-slip models of evolution of the western Arctic Ocean. Hundreds of kilometres of Cretaceous-Tertiary displacement have been hypothesized in models that emplace Arctic Alaska into its present position by either left- or right-lateral strike slip. However, regional-scale displacement is precluded by new potential-field data. Postulated transform emplacement of Arctic Alaska cannot be accommodated by motion on the Kaltag fault or adjacent structures. The Kaltag fault of the northern Yukon is an eastward extrapolation of its namesake in west-central Alaska; however, a connection cannot be demonstrated. Cretaceous-Tertiary displacement on the Alaskan Kaltag fault is probably accommodated elsewhere.
Towards the construction of high-quality mutagenesis libraries.
Li, Heng; Li, Jing; Jin, Ruinan; Chen, Wei; Liang, Chaoning; Wu, Jieyuan; Jin, Jian-Ming; Tang, Shuang-Yan
2018-07-01
To improve the quality of mutagenesis libraries in directed evolution strategy. In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying
2016-07-27
Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.
From Darwinian to technological evolution: forgetting the human lottery.
Tintino, Giorgio
2014-01-01
The GRIN technologies (-geno, -robo, -info, -nano) promise to change the inner constitution of human body and its own existence. This transformation involves the structure of our lives and represent a brave new world that we have to explore and to manage. In this sense, the traditional tools of humanism seems very inadequate to think the biotech century and there is a strong demand of a new thought for the evolution and the concrete history of life. The posthuman philosophy tries to take this new path of human existence in all of its novelty since GRIN technologies seem to promise new and unexpected paths of evolution to living beings and, above all, man. For this, the post-human thought, as we see, is a new anthropological overview on the concrete evolution of human being, an overview that involves an epistemological revolution of the categories that humanism uses to conceptualize the journey that divides the Homo sapiens from the man. But, is this right?
Apetrei, Roxana-Mihaela; Carac, Geta; Bahrim, Gabriela; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-06-01
The enhancement of bioelectrochemical properties of microorganism by in situ formation of conducting polymer within the cell structures (e.g. cell wall) was performed. The synthesis of polypyrrole (Ppy) within fungi (Aspergillus niger) cells was achieved. Two different Aspergillus niger strains were selected due to their ability to produce glucose oxidase, which initiated the Ppy formation through products of enzymatic reaction. The evolution of Ppy structural features was investigated by absorption spectroscopy, cyclic voltammetry and Fourier transform infrared spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
Structure evolution and electrical transport property of Si nanowire
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, Q. Q.; Dong, J. C.; He, Y. Z.; Li, H.
2015-02-01
Various optimized Si and its alloy nanowires, from a monoatomic chain to helical and multishell coaxial cylinder, have been obtained. Results reveal that the structure of the Si nanowires transforms as the radii of the carbon nanotubes increase, despite of the chirality of the CNTs. We also calculate the physical properties, such as density of states, transmission functions, current-voltage (I-V) characteristics, and conductance spectra (G-V) of optimized nanowires and alloy nanowires sandwiched between two gold contacts. Interestingly, compared with the pure Si nanowires, the conductance of the alloy nanowires is even lower.
Directed evolution of enzymes using microfluidic chips
NASA Astrophysics Data System (ADS)
Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel
2016-12-01
Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.
Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.
Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo
2018-06-01
We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.
Merli, Marcello; Pavese, Alessandro
2018-03-01
The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(x c ) = 0 and λ 1 , λ 2 , λ 3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at x c ], towards degenerate critical points, i.e. ∇ρ(x c ) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of x c and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO 2 (rutile structure), MgO (periclase structure) and Al 2 O 3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.
Particular Oceanic Core Complex evolution in an extremely low melt supply environment
NASA Astrophysics Data System (ADS)
Maia, M.; Vincent, C.; Briais, A.; Brunelli, D.; Ligi, M.; Adrião, Á.; Sichel, S. E.
2017-12-01
Saint Paul is a major transform system in the Equatorial Mid-Atlantic Ridge. It consists of four transform faults and three short intra-transform ridge segments. This study focuses on peridotitic and gabbroic ridges and unusual Oceanic Core Complex (OCC)-related tectonics found at the St. Paul southern intra-transform segment. These structures display the same characters as the OCCs worldwide (termination, rafted blocks, corrugations, breakaway); however unusual features suggest that they have evolved in a particular way with respect to other OCCs along the Mid-Atlantic Ridge. Small ridge segments display an asymmetrical accretion through successive nucleations of detachment faults over more than 10 m.y. marked by crustal mylonitisation (Adrião et al., this session). Structural mapping and gravity models covering about 100 km on each ridge flank confirm the existence of four consecutive detachments, the more recent being still active, and provide an interpretative model of their spatiotemporal evolution. The unusual aspect is that each detachment appears to have been split on the two sides of the ridge axis. As a consequence, the breakaways are located on the American plate, while the conjugate terminations are drafted away on the African plate. We suggest that this unusual feature results from the rupture of the detachment surfaces by relocation of the ridge axis through westward small ridge jumps. This mode of expansion is somehow intermediate between the "normal" OCCs spreading and the Smooth Seafloor-type model described off-axis along the Southwest Indian Ridge (Sauter et al., 2013). It partly compensates the long-term asymmetric expansion of this ridge segment and is likely related to the extremely low melt supply and thick lithosphere inferred from other studies. Adrião et al., 2017. Mechanical mixing and metamorphism of mafic and ultramafic lithologies .... This Session Sauter et al., 2013. Continuous exhumation of mantle-derived rocks… Nat Geo, 2013
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.
2016-12-01
Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise for better understanding the nature of the initial ACC that forms and factors that influence its structural evolution to final products.
Evolution of complex fruiting-body morphologies in homobasidiomycetes.
Hibbett, David S; Binder, Manfred
2002-01-01
The fruiting bodies of homobasidiomycetes include some of the most complex forms that have evolved in the fungi, such as gilled mushrooms, bracket fungi and puffballs ('pileate-erect') forms. Homobasidiomycetes also include relatively simple crust-like 'resupinate' forms, however, which account for ca. 13-15% of the described species in the group. Resupinate homobasidiomycetes have been interpreted either as a paraphyletic grade of plesiomorphic forms or a polyphyletic assemblage of reduced forms. The former view suggests that morphological evolution in homobasidiomycetes has been marked by independent elaboration in many clades, whereas the latter view suggests that parallel simplification has been a common mode of evolution. To infer patterns of morphological evolution in homobasidiomycetes, we constructed phylogenetic trees from a dataset of 481 species and performed ancestral state reconstruction (ASR) using parsimony and maximum likelihood (ML) methods. ASR with both parsimony and ML implies that the ancestor of the homobasidiomycetes was resupinate, and that there have been multiple gains and losses of complex forms in the homobasidiomycetes. We also used ML to address whether there is an asymmetry in the rate of transformations between simple and complex forms. Models of morphological evolution inferred with ML indicate that the rate of transformations from simple to complex forms is about three to six times greater than the rate of transformations in the reverse direction. A null model of morphological evolution, in which there is no asymmetry in transformation rates, was rejected. These results suggest that there is a 'driven' trend towards the evolution of complex forms in homobasidiomycetes. PMID:12396494
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS
NASA Astrophysics Data System (ADS)
Landsman, N. P.
Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.
NASA Astrophysics Data System (ADS)
Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.
2016-03-01
The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.
Transformation of follicular lymphoma to plasmablastic lymphoma with c-myc gene rearrangement.
Ouansafi, Ihsane; He, Bing; Fraser, Cory; Nie, Kui; Mathew, Susan; Bhanji, Rumina; Hoda, Rana; Arabadjief, Melissa; Knowles, Daniel; Cerutti, Andrea; Orazi, Attilio; Tam, Wayne
2010-12-01
Follicular lymphoma (FL) is an indolent lymphoma that transforms to high-grade lymphoma, mostly diffuse large B-cell lymphoma, in about a third of patients. We present the first report of a case of FL that transformed to plasmablastic lymphoma (PBL). Clonal transformation of the FL to PBL was evidenced by identical IGH/BCL2 gene rearrangements and VDJ gene usage in rearranged IGH genes. IGH/ BCL2 translocation was retained in the PBL, which also acquired c-myc gene rearrangement. Genealogic analysis based on somatic hypermutation of the rearranged IGH genes of both FL and PBL suggests that transformation of the FL to PBL occurred most likely by divergent evolution from a common progenitor cell rather than direct evolution from the FL clone. Our study of this unusual case expands the histologic spectrum of FL transformation and increases our understanding of the pathogenetic mechanisms of transformation of indolent lymphomas to aggressive lymphomas.
Pursuing optimal electric machines transient diagnosis: The adaptive slope transform
NASA Astrophysics Data System (ADS)
Pons-Llinares, Joan; Riera-Guasp, Martín; Antonino-Daviu, Jose A.; Habetler, Thomas G.
2016-12-01
The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution.
Suzuki, Yuichi; Nagaoka, Masataka
2017-05-28
Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2 ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Cruz Schneider, Maria Paula; Ward, Richard John
2011-01-01
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui
The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.
NASA Astrophysics Data System (ADS)
Deng, P.; Mei, L.; Liu, J.; Liu, M.
2016-12-01
During the post-rift period, the northern continental margin of the South China Sea experienced syn-spreading stage related to the seafloor spreading from 32-15.5 Ma and post-spreading stage from 15.5-0 Ma. To recognize the structural difference and transformation between the syn- and post-spreading stags, we based on the interpretation of the high quality of 3D seismic data and comprehensively analyze the geometry and kinematics of faults, volcanism, magmatic diapirs and fluid actions of post-rift in Baiyun sag. The analysis reveals the syn-spreading stage can be divided into three episodes, namely Nanhai Episode One (32-29Ma), Nanhai Episode Two (24.4-21Ma) and Nanhai Episode Three (18.5-16.5Ma). Each of the three episodes has different geodynamic background: the first one is response to weak extensional structural environment at the beginning of the seafloor spreading, the second one is response to northward migration of the shelf slope-break in Baiyun sag, and the third one is response to strong subsidence of the Main Baiyun sag. During the syn-spreading stage, amount of effusive magma and polygonal faults developed, and the dynamics of the seafloor spreading shows migratory direction from south to north. The Post-spreading stage, which is response to the subduction compression from the Philippine plate in the east, can be divided into two episodes: Dongsha Episode One (12.5-10.5Ma) and Dongsha Episode Two (5.33-3.6Ma). During the post-spreading stage, each of episode has similar structural property and shows dynamic migration direction from east to west, besides there are much strong tectonism which are different from that of the syn-spreading stage's, such as magmatic diapirs and gas chimney. The structure has obvious transformation from syn- to post-spreading stage in Baiyun sag: faults plane pattern's transformation from dispersive and weak belt-like to X-shaped conjugated shear zone; tectonic evolution migration's transformation from northward migration to westward migration; structural type's transformation from effusive magma and polygonal faults to magmatic diapirs and gas chimney. This study has an enlightening significance of the recognition of structural characteristics in the northern continental margin of the South China Sea during the post-rift period.
Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...
2015-12-07
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less
NASA Astrophysics Data System (ADS)
Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.
2017-04-01
The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern end, and is an active rift. The second structural domain is a large, NE-SW-trending anticlinorium 60 km wide to the southeast of the rift zone, towards the Tiburon basin. One possibility is that it represents a positive flower structure and thus indicates a transpressional domain. However, individual structures within the broader zone are normal faults and negative flower structures, suggesting transtensional deformation, and the overall structure may be a roll-over antiform formed on a deep detachment structure. Finally, a strike-slip-dominated zone occurs along the northward continuation of the Ballenas Transform Fault. This is accompanied by the formation of submarine volcanic knolls. These patterns can be compared with seismic stratigraphy facies and structural patterns in mature transform margins and potentially give insight into their early history.
Evolution of the macromolecular structure of sporopollenin during thermal degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.; Benzerara, K.; Beyssac, O.
Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less
Evolution of the macromolecular structure of sporopollenin during thermal degradation
Bernard, S.; Benzerara, K.; Beyssac, O.; ...
2015-10-01
Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less
Abbas, A.; Meysing, D. M.; Reese, M. O.; ...
2017-12-01
Oxygenated cadmium sulfide (CdS:O) is often used as the n-type window layer in high-performance CdTe heterojunction solar cells. The as-deposited layer prepared by reactive sputtering is XRD amorphous, with a bulk composition of CdS0.8O1.2. Recently it was shown that this layer undergoes significant transformation during device fabrication, but the roles of the individual high temperature processing steps was unclear. In this work high resolution transmission electron microscopy coupled to elemental analysis was used to understand the evolution of the heterojunction region through the individual high temperature fabrication steps of CdTe deposition, CdCl2 activation, and back contact activation. It is foundmore » that during CdTe deposition by close spaced sublimation at 600 degrees C the CdS:O film undergoes recrystallization, accompanied by a significant (~30%) reduction in thickness. It is observed that oxygen segregates during this step, forming a bi-layer morphology consisting of nanocrystalline CdS adjacent to the tin oxide contact and an oxygen-rich layer adjacent to the CdTe absorber. This bilayer structure is then lost during the 400 degrees C CdCl2 treatment where the film transforms into a heterogeneous structure with cadmium sulfate clusters distributed randomly throughout the window layer. The thickness of window layer remains essentially unchanged after CdCl2 treatment, but a ~25 nm graded interfacial layer between CdTe and the window region is formed. Finally, the rapid thermal processing step used to activate the back contact was found to have a negligible impact on the structure or composition of the heterojunction region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, A.; Meysing, D. M.; Reese, M. O.
Oxygenated cadmium sulfide (CdS:O) is often used as the n-type window layer in high-performance CdTe heterojunction solar cells. The as-deposited layer prepared by reactive sputtering is XRD amorphous, with a bulk composition of CdS0.8O1.2. Recently it was shown that this layer undergoes significant transformation during device fabrication, but the roles of the individual high temperature processing steps was unclear. In this work high resolution transmission electron microscopy coupled to elemental analysis was used to understand the evolution of the heterojunction region through the individual high temperature fabrication steps of CdTe deposition, CdCl2 activation, and back contact activation. It is foundmore » that during CdTe deposition by close spaced sublimation at 600 degrees C the CdS:O film undergoes recrystallization, accompanied by a significant (~30%) reduction in thickness. It is observed that oxygen segregates during this step, forming a bi-layer morphology consisting of nanocrystalline CdS adjacent to the tin oxide contact and an oxygen-rich layer adjacent to the CdTe absorber. This bilayer structure is then lost during the 400 degrees C CdCl2 treatment where the film transforms into a heterogeneous structure with cadmium sulfate clusters distributed randomly throughout the window layer. The thickness of window layer remains essentially unchanged after CdCl2 treatment, but a ~25 nm graded interfacial layer between CdTe and the window region is formed. Finally, the rapid thermal processing step used to activate the back contact was found to have a negligible impact on the structure or composition of the heterojunction region.« less
Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting
2018-05-01
In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.
Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy
NASA Astrophysics Data System (ADS)
Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.
2015-01-01
In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.
The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.
White, Harold B
2007-05-01
Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.
The Behavioral and Social Sciences: Contributions and Opportunities in Academic Medicine.
Smith, Patrick O; Grigsby, R Kevin
2017-06-01
The Association of American Medical Colleges plays a leading role in supporting the expansion and evolution of academic medicine and medical science in North America, which are undergoing high-velocity change. Behavioral and social science concepts have great practical value when applied to the leadership practices and administrative structures that guide and support the rapid evolution of academic medicine and medical sciences. The authors are two behavioral and social science professionals who serve as academic administrators in academic medical centers. They outline their career development and describe the many ways activities have been shaped by their work with the Association of American Medical Colleges. Behavioral and social science professionals are encouraged to become change agents in the ongoing transformation of academic medicine.
Development of efficient time-evolution method based on three-term recurrence relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akama, Tomoko, E-mail: a.tomo---s-b-l-r@suou.waseda.jp; Kobayashi, Osamu; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function.more » Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost.« less
SORTEZ: a relational translator for NCBI's ASN.1 database.
Hart, K W; Searls, D B; Overton, G C
1994-07-01
The National Center for Biotechnology Information (NCBI) has created a database collection that includes several protein and nucleic acid sequence databases, a biosequence-specific subset of MEDLINE, as well as value-added information such as links between similar sequences. Information in the NCBI database is modeled in Abstract Syntax Notation 1 (ASN.1) an Open Systems Interconnection protocol designed for the purpose of exchanging structured data between software applications rather than as a data model for database systems. While the NCBI database is distributed with an easy-to-use information retrieval system, ENTREZ, the ASN.1 data model currently lacks an ad hoc query language for general-purpose data access. For that reason, we have developed a software package, SORTEZ, that transforms the ASN.1 database (or other databases with nested data structures) to a relational data model and subsequently to a relational database management system (Sybase) where information can be accessed through the relational query language, SQL. Because the need to transform data from one data model and schema to another arises naturally in several important contexts, including efficient execution of specific applications, access to multiple databases and adaptation to database evolution this work also serves as a practical study of the issues involved in the various stages of database transformation. We show that transformation from the ASN.1 data model to a relational data model can be largely automated, but that schema transformation and data conversion require considerable domain expertise and would greatly benefit from additional support tools.
Quantitative assessment of carbon allocation anomalies in low temperature bainite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rementeria, Rosalia
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Quantitative assessment of carbon allocation anomalies in low temperature bainite
Rementeria, Rosalia
2017-05-24
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications
NASA Astrophysics Data System (ADS)
Shi, Tao; Demler, Eugene; Ignacio Cirac, J.
2018-03-01
We present a new variational method for investigating the ground state and out of equilibrium dynamics of quantum many-body bosonic and fermionic systems. Our approach is based on constructing variational wavefunctions which extend Gaussian states by including generalized canonical transformations between the fields. The key advantage of such states compared to simple Gaussian states is presence of non-factorizable correlations and the possibility of describing states with strong entanglement between particles. In contrast to the commonly used canonical transformations, such as the polaron or Lang-Firsov transformations, we allow parameters of the transformations to be time dependent, which extends their regions of applicability. We derive equations of motion for the parameters characterizing the states both in real and imaginary time using the differential structure of the variational manifold. The ground state can be found by following the imaginary time evolution until it converges to a steady state. Collective excitations in the system can be obtained by linearizing the real-time equations of motion in the vicinity of the imaginary time steady-state solution. Our formalism allows us not only to determine the energy spectrum of quasiparticles and their lifetime, but to obtain the complete spectral functions and to explore far out of equilibrium dynamics such as coherent evolution following a quantum quench. We illustrate and benchmark this framework with several examples: a single polaron in the Holstein and Su-Schrieffer-Heeger models, non-equilibrium dynamics in the spin-boson and Kondo models, the superconducting to charge density wave phase transitions in the Holstein model.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolu; Yang, Hao
2017-12-01
The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.
Advanced Characterization Techniques for Sodium-Ion Battery Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.
2017-01-01
In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248
Advanced Characterization Techniques for Sodium-Ion Battery Studies
Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning; ...
2018-02-19
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight intomore » the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. Here in this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Lastly, special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.« less
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these groups and identified the formation mechanism and dynamics of humic substances during composting.
NASA Astrophysics Data System (ADS)
Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo
2016-05-01
The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.
Evolution of the axial system in craniates: morphology and function of the perivertebral musculature
2011-01-01
The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system. PMID:21306656
A 1-D evolutionary model for icy satellites, applied to Enceladus
NASA Astrophysics Data System (ADS)
Prialnik, Dina; Malamud, Uri
2015-11-01
A 1-D long-term evolution code for icy satellites is presented, which couples multiple processes: water migration, geochemical reactions, water and silicate phase transitions, crystallization, compaction by self-gravity, and ablation. The code takes into account various energy sources: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy, and insolation. It includes heat transport by conduction, convection, and advection.The code is applied to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, and adopting a homogeneous initial structure. Assuming that the satellite has been losing water continually along its evolution, it follows that it was formed as a more massive, more ice-rich and more porous object, and gradually transformed into its present day state, due to sustained tidal heating. Several initial compositions and evolution scenarios are considered, and the evolution is simulated for the age of the Solar System. The results corresponding to the present configuration are confronted with the available observational constraints. The present configuration is shown to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock in the central part and hydrated rock in the outer part. Such a differentiated structure is obtained not only for Enceladus, but for other medium size ice-rich bodies as well.Predictions for Enceladus are a higher rock/ice mass ratio than previously assumed, and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the 1-D model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
Computer studies of multiple-quantum spin dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, J.B.
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Internal and environmental secular evolution of disk galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2015-03-01
This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions σ with respect to the Faber-Jackson correlation between σ and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. None of the above classification criteria are 100% reliable. Published disagreements on (pseudo)bulge classifications usually result from the use of diffferent criteria. It is very important to use as many classification criteria as possible. When two or more criteria are used, the probability of misclassification becomes very small. I also review environmental secular evolution - the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC 205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters with the disks of S0 galaxies. They are bulgeless S0s. S+Im -> S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Improved evidence for galaxy transformation is presented in several papers at this meeting.
Kumari, Nisha; Jagadevan, Sheeja
2016-11-01
Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho
2017-03-01
Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qinghua; He, Xu; Shi, Jinan
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
NASA Astrophysics Data System (ADS)
Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu
2018-03-01
A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.
Investigation of partitionless growth of ɛ-Al60Sm11 phase in Al-10 at% Sm liquid
NASA Astrophysics Data System (ADS)
Sun, Yang; Ye, Zhuo; Zhang, Feng; Ding, Ze Jun; Wang, Cai-Zhuang; Kramer, Matthew J.; Ho, Kai-Ming
2018-01-01
Recent experiments on devitrification of Al90Sm10 amorphous alloys revealed an unusual polymorphic transformation to a complex cubic crystal structure called the ɛ-Al60Sm11 phase. Molecular dynamics simulations of the growth of the stoichiometric ɛ-phase seed in contact with an undercooled Al-10 at% Sm liquid are performed to elucidate the microscopic process of transformation. The as-grown crystal and undercooled liquid possess similar local order around Al atoms whereas a rigid network defined by the Sm sub-lattice develops during the growth. Using a template-cluster alignment method, we define an order parameter to characterize the structural evolution in the system. Estimates of the attachment rate is {R}{{a}}=8.70× {10}-4 Å-2 ns-1 and detachment rate is {R}{{d}}=3.83× {10}-4 Å-2 ns-1 at the interface between ɛ-Al60Sm11 and Al-10 at% Sm liquid at 800 K.
Zhang, Qinghua; He, Xu; Shi, Jinan; ...
2017-07-24
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
Neuropsychology and the neurochemical lesion: evolution, applications and extensions.
Hartman, D E
1988-01-01
The evolution of neuropsychology into a method for neurotoxic damage detection is reviewed. When neuropsychology is transformed into "neuropsychological toxicology", fundamental philosophical assumptions of the field are altered; the search for brain-behavior relationships must extend from structural damage into the analysis of neurochemical systems. The complementary relationship of human neuropsychology to basic toxicological and animal research is discussed. The great numbers of human "natural experiments" whose employment, medical history or substance abuse subjects them to contact with neurotoxic substances, suggest that there is a great need for expanded human investigations involving neuropsychological testing procedures in the service of research and clinical identification of neurotoxic syndromes. Further, it is argued that neurobehavioral procedures originally developed to detect industrial neurotoxic exposure will prove additionally useful assessing other brain-behavior disruptions mediated by neurochemistry or neurotoxicity rather than structural lesion. These frontiers include physical or emotional illness, substance abuse, effects of abused or prescription drugs as well as little-researched areas deserving of closer study, e.g., allergens or biotoxic exposure.
Structural Evolution of Q-Carbon and Nanodiamonds
NASA Astrophysics Data System (ADS)
Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish
2018-04-01
This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.
Microstructural evolution of ion-irradiated sol–gel-derived thin films
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-07-17
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui
2018-05-01
In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.
Exploring the evolution of protein function in Archaea.
Goncearenco, Alexander; Berezovsky, Igor N
2012-05-30
Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.
Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...
2016-02-18
The functionalization of graphene oxide (GO) and graphene by TiO 2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO 2 and TiO 2 under H 2 reduction. Sequential Rietveld refinement was employed to gain insight intomore » the evolution of crystal growth of TiO 2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less
Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang
2017-12-01
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Structural Biology and Evolution of the TGF-β Family
Hinck, Andrew P.; Mueller, Thomas D.; Springer, Timothy A.
2017-01-01
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo. PMID:27638177
Wavelet transform analysis of dynamic speckle patterns texture
NASA Astrophysics Data System (ADS)
Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo
2002-11-01
We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.
NASA Astrophysics Data System (ADS)
Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine
2015-02-01
The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.
A 1-D evolutionary model for icy satellites, applied to Enceladus
NASA Astrophysics Data System (ADS)
Malamud, Uri; Prialnik, Dina
2016-04-01
We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
High pressure study of Pu(0.92)Am(0.08) binary alloy.
Klosek, V; Griveau, J C; Faure, P; Genestier, C; Baclet, N; Wastin, F
2008-07-09
The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu(0.92)Am(0.08) binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the δ phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.
New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.
Yang, Xiaofei; Yang, Minglei; Deng, Hongjing; Ding, Yiliang
2018-01-01
The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.
NASA Astrophysics Data System (ADS)
Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit
2018-05-01
In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.
NASA Astrophysics Data System (ADS)
Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit
2018-04-01
In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.
Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals
NASA Astrophysics Data System (ADS)
Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang
2015-11-01
A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.
NASA Astrophysics Data System (ADS)
Zuo, S. L.; Zhang, B.; Qiao, K. M.; Peng, L. C.; Li, R.; Xiong, J. F.; Zhang, Y.; Zhao, X.; Liu, D.; Zhao, T. Y.; Sun, J. R.; Hu, F. X.; Zhang, Y.; Shen, B. G.
2018-05-01
The magnetic domain evolution behavior under external field stimuli of temperature and magnetic field in PrMn2Ge0.4Si1.6 compound is investigated using Lorentz transmission electron microscopy. A spontaneous 180° magnetic domain is observed at room temperature and it changes with temperature. Dynamic magnetization process is related to the rotation of magnetic moments, resulting in the transforming of magnetic domains from 180° type to a uniform ferromagnetic state with almost no pinning effects under the in-plane magnetic field at room temperature. X-ray powder diffraction is performed on PrMn2Ge0.4Si1.6 at different temperatures to study the temperature dependence of crystal structure and lattice parameter.
Novel catalysts and photoelectrochemical system for solar fuel production
NASA Astrophysics Data System (ADS)
Zhang, Yan
Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.
Van Dyken, J. David; Wade, Michael J.
2012-01-01
Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, co-evolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the co-existence of these two altruism types transforms the negative eco-evolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion “reciprocal niche construction”. In the absence of constraints, this process leads to runaway co-evolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process. PMID:22834748
Formation and evolution of anodic TiO2 nanotube embryos
NASA Astrophysics Data System (ADS)
Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei
2017-06-01
Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.
Evolution and genetic diversity of Theileria.
Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki
2014-10-01
Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.
Centres for Leadership: a strategy for academic integration.
King, Gillian; Parker, Kathryn; Peacocke, Sean; Curran, C J; McPherson, Amy C; Chau, Tom; Widgett, Elaine; Fehlings, Darcy; Milo-Manson, Golda
2017-05-15
Purpose The purpose of this paper is to describe how an Academic Health Science Centre, providing pediatric rehabilitation services, research, and education, developed a Centres for Leadership (CfL) initiative to integrate its academic functions and embrace the goal of being a learning organization. Design/methodology/approach Historical documents, tracked output information, and staff members' insights were used to describe the ten-year evolution of the initiative, its benefits, and transformational learnings for the organization. Findings The evolutions concerned development of a series of CfLs, and changes over time in leadership and management structure, as well as in operations and targeted activities. Benefits included enhanced clinician engagement in research, practice-based research, and impacts on clinical practice. Transformational learnings concerned the importance of supporting stakeholder engagement, fostering a spirit of inquiry, and fostering leaderful practice. These learnings contributed to three related emergent outcomes reflecting "way stations" on the journey to enhanced evidence-informed decision making and clinical excellence: enhancements in authentic partnerships, greater innovation capacity, and greater understanding and actualization of leadership values. Practical implications Practical information is provided for other organizations interested in understanding how this initiative evolved, its tangible value, and its wider benefits for organizational collaboration, innovation, and leadership values. Challenges encountered and main messages for other organizations are also considered. Originality/value A strategy map is used to present the structures, processes, and outcomes arising from the initiative, with the goal of informing the operations of other organizations desiring to be learning organizations.
Linking Individual and Collective Behavior in Adaptive Social Networks
NASA Astrophysics Data System (ADS)
Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.
2016-03-01
Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.
2018-03-01
The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.
The overview effect: the impact of space exploration on the evolution of nursing science.
Butcher, H K; Forchuk, C
1992-01-01
The purpose of this article is to explore the overview effect, an experience evoked by space travel that has the capacity to transform all patterns of human existence and evolution toward greater potentials in human diversity and creativity. As nurses migrate with humanity into the solar system and beyond, they will experience the overview effect. The core components of the effect include changed perceptions of space, time, sound, and weight which have the potential to transform the evolution of nursing science. Nursing paradigms will encompass a view of humanity as integral with an infinite evolutionary universe. After generations of living in space in a diversity of new environments, the physical body will undergo radical changes, and the meaning of health will be transformed. The article concludes with a discussion on the parallels between Rogers' science of unitary human beings and the overview effect.
The main principles of formation of structure of cultural-historical landscapes of Central Russia.
NASA Astrophysics Data System (ADS)
Nizovtsev, Vyacheslav; Natalia, Erman
2014-05-01
The forming and development of cultural-historical landscapes (CH) are obligate result of evolution of society and nature, as well as, man and landscapes during their coherent growth. CH landscapes are holistic historic-cultural and nature creations. They reflect the history of land use and spiritual development of ethnic community of concrete territory with determine homogeneous landscape characteristics. The majority of them appertain to the category of relict landscapes, which completed their evolution growth. That means that these are anthropogenic (AL) and cultural (CL) landscapes. They lost anthropogenic management and continue their growth obeying natural logic. These landscapes include elements of morphological structure and natural components, which have been transformed by men, and also artefacts, sociofacts and mental facts. These facts can be considered as peculiar "biographical chronicle" of activity of population in determinate landscape conditions in determinate historical period. These facts are evidences of material and spiritual cultural of society. The first AL begin to arise simultaneously with conversation of appropriating economy into generating economy. There was such conversation in Central Russia (Neolithic revolution) only in Bronze Age. Anthropogenic transformed landscape complexes and even man-made landscape complexes have been formed in Bronze Age. Some of these complexes exist now. Actual anthropogenic and cultural landscapes began to form only in Iron Age while permanent, long existed settlement and agriculture structure has organized. First, These are small settlement anthropogenic landscape complexes (selischa and gorodischa) with applied permanent miniature arable areas. These complexes located on the capes and on the areas between river banks and banks of streams. Second, these are pasture anthropogenic landscape complexes (on the level of podurochische and urochische), located in flood plain and valley-cavin position (pasture plod plain meadow-forest).
Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.
1997-04-01
The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect themore » structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.« less
Qualitative Differences between Naive and Scientific Theories of Evolution
ERIC Educational Resources Information Center
Shtulman, Andrew
2006-01-01
Philosophers of biology have long argued that Darwin's theory of evolution was qualitatively different from all earlier theories of evolution. Whereas Darwin's predecessors and contemporaries explained adaptation as the transformation of a species' ''essence,'' Darwin explained adaptation as the selective propagation of randomly occurring…
Intra-individual variation and evolution of modular structure in Draba plants.
Grigorieva, Olga V; Cherdantsev, Vladimir G
2014-09-01
We studied the evolution of quantitative traits related to shoot system architecture in a large genus Draba (Brassicaceae) making emphasis on the dynamics of relationship between individual and intra-individual variation. The results suggest that selection leading to origin of different life forms arises mainly from a necessity of moderation of the non-adaptive contest between the egoistic plant modules, taking care of self-reproduction of their own. We separated two evolutionary trends, one leading to the formation of short-lived monocarpic, and the other to long-lived polycarpic forms from the short-lived polycarpic plants. The first trend concerns with transformation of the innovation shoots into the axillary inflorescences by shortening of their vegetative developmental phase, while the second one - with individuation of the plant modules owing to acquisition of the capacity of rooting and separating from the mother plant. In both trends, the turning points of the evolution are those of originating of the negative for individual plants interactions between the plant modules being indirect non-adaptive consequences of the previous adaptive evolution and initiating selection for rebuilding of the plant modular structure. The difference between selection operating on intra-individual and individual variations is that, in the first case, combining of the characters of different individuals is infeasible. This leaves no choice for the evolution but to change the developmental mechanisms. In the case considered in this work, this is a change in shoot architecture using the material afforded by the natural variability of developmental pathways of the plant modules. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Exotic phases of frustrated antiferromagnet LiCu2O2
NASA Astrophysics Data System (ADS)
Bush, A. A.; Büttgen, N.; Gippius, A. A.; Horvatić, M.; Jeong, M.; Kraetschmer, W.; Marchenko, V. I.; Sakhratov, Yu. A.; Svistov, L. E.
2018-02-01
7Li NMR spectra were measured in a magnetic field up to 17 T at temperatures 5-30 K on single crystalline LiCu2O2 . Earlier reported anomalies on magnetization curves correspond to magnetic field values where we observe changes of the NMR spectral shape. For the interpretation of the field and temperature evolutions of our NMR spectra, the magnetic structures were analyzed in the frame of the phenomenological theoretical approach of the Dzyaloshinskii-Landau theory. A set of possible planar and collinear structures was obtained. Most of these structures have an unusual configuration; they are characterized by a two-component order parameter and their magnetic moments vary harmonically not only in direction, but also in size. From the modeling of the observed spectra, a possible scenario of magnetic structure transformations is obtained.
Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback
NASA Astrophysics Data System (ADS)
Gurevich, Svetlana V.
2013-05-01
We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.
NASA Astrophysics Data System (ADS)
Edwards, Brian J.
2002-05-01
Given the premise that a set of dynamical equations must possess a definite, underlying mathematical structure to ensure local and global thermodynamic stability, as has been well documented, several different models for describing liquid crystalline dynamics are examined with respect to said structure. These models, each derived during the past several years using a specific closure approximation for the fourth moment of the distribution function in Doi's rigid rod theory, are all shown to be inconsistent with this basic mathematical structure. The source of this inconsistency lies in Doi's expressions for the extra stress tensor and temporal evolution of the order parameter, which are rederived herein using a transformation that allows for internal compatibility with the underlying mathematical structure that is present on the distribution function level of description.
The evolution of organellar metabolism in unicellular eukaryotes.
Ginger, Michael L; McFadden, Geoffrey I; Michels, Paul A M
2010-03-12
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.
The evolution of organellar metabolism in unicellular eukaryotes
Ginger, Michael L.; McFadden, Geoffrey I.; Michels, Paul A. M.
2010-01-01
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution. PMID:20124338
Transformer overload characteristics---Bubble evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, E.E.; Wendel, R.C.; Dresser, R.D.
1988-08-01
Project RP1289-3 explores significant parameters affecting bubble evolution from transformer oil under high temperature operating conditions to address the question: Does ''real life'' operation of a transformer cause harmful bubbling conditions. Studies outlined in the project are designed to determine when bubbling occurs in transformers and if bubbling can be harmful during the normal operation of these transformers. Data obtained from these studies should provide a basis for utilities to perform risk assessments in relation to their loading practices. The program is designed to demonstrate those conditions under which bubbling occurs in transformers by using controlled models and actual signalmore » phase transformers that were designed to give access to both high and low voltage windings for the purpose of viewing bubble generation. Results and observations from tests on the full-size transformers, thermal models, and electrical models have led to the conclusion that bubbles can occur under operating conditions. The electrical models show that dielectric strength can be reduced by as much as 40 percent due to the presence of bubbles. Because of factory safety considerations, the transformers could not be tested at hot spot temperatures greater than 140/degree/C. Therefore, there is no information on the dielectric strength of the full-size transformers under bubbling conditions. 4 refs., 28 figs., 45 tabs.« less
NASA Astrophysics Data System (ADS)
Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang
2016-01-01
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).
Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique
2016-03-24
It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.
Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique
2016-01-01
It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520
America's Anti-Evolution Movement
ERIC Educational Resources Information Center
Moore, Randy
2002-01-01
Evolution is the cornerstone of biology and one of the most powerful, exciting, and well-supported laws in modern science. Evolution transforms biology from a collection of unrelated observations and definitions into a coherent discipline that, among other things, helps people understand life's history and predict answers to important research…
Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V
2018-03-28
The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.
The morphogenesis of feathers.
Yu, Mingke; Wu, Ping; Widelitz, Randall B; Chuong, Cheng-Ming
2002-11-21
Feathers are highly ordered, hierarchical branched structures that confer birds with the ability of flight. Discoveries of fossilized dinosaurs in China bearing 'feather-like' structures have prompted interest in the origin and evolution of feathers. However, there is uncertainty about whether the irregularly branched integumentary fibres on dinosaurs such as Sinornithosaurus are truly feathers, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather. Here, we use a developmental approach to analyse molecular mechanisms in feather-branching morphogenesis. We have used the replication-competent avian sarcoma retrovirus to deliver exogenous genes to regenerating flight feather follicles of chickens. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) has a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore, we show that sonic hedgehog (Shh) is essential for inducing apoptosis of the marginal plate epithelia, which results in spaces between barbs. Our analyses identify the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide insights on the possible developmental mechanisms in the evolution of feather forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar
2016-06-07
In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less
Lian, Fei; Xing, Baoshan
2017-12-05
Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.
Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong
2016-01-01
In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425
NASA Astrophysics Data System (ADS)
Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong
2018-03-01
Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.
Sustaining Transformation: "Resiliency in Hard Times"
ERIC Educational Resources Information Center
Guarasci, Richard; Lieberman, Devorah
2009-01-01
The strategic, systemic, and encompassing evolution of a college or university spans a number of years, and the vagaries of economic cycles inevitably catch transforming institutions in mid-voyage. "Sustaining Transformation: Resiliency in Hard Times" presents a study of Wagner College as it moves into its second decade of purposeful…
Local Structure Evolution and Modes of Charge Storage in Secondary Li–FeS 2 Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, Megan M.; Mayo, Martin; Doan-Nguyen, Vicky V. T.
2017-03-27
In the pursuit of high-capacity electrochemical energy storage, a promising domain of research involves conversion reaction schemes, wherein electrode materials are fully transformed during charge and discharge. There are, however, numerous difficulties in realizing theoretical capacity and high rate capability in many conversion schemes. Here we employ operando studies to understand the conversion material FeS2, focusing on the local structure evolution of this relatively reversible material. X-ray absorption spectroscopy, pair distribution function analysis, and first-principles calculations of intermediate structures shed light on the mechanism of charge storage in the Li-FeS2 system, with some general principles emerging for charge storage inmore » chalcogenide materials. Focusing on second and later charge/discharge cycles, we find small, disordered domains that locally resemble Fe and Li2S at the end of the first discharge. Upon charge, this is converted to a Li-Fe-S composition whose local structure reveals tetrahedrally coordinated Fe. With continued charge, this ternary composition displays insertion extraction behavior at higher potentials and lower Li content. The finding of hybrid modes of charge storage, rather than simple conversion, points to the important role of intermediates that appear to store charge by mechanisms that more closely resemble intercalation.« less
NASA Astrophysics Data System (ADS)
Hoelzel, M.; Gan, W. M.; Hofmann, M.; Randau, C.; Seidl, G.; Jüttner, Ph.; Schmahl, W. W.
2013-05-01
Novel tensile rigs have been designed and manufactured at the research reactor Heinz Maier-Leibnitz (FRM II, Garching near Munich). Besides tensile and compressive stress, also torsion can be applied. The unique Eulerian cradle type design (ω, χ, and φ axis) allows orienting the stress axis with respect to the scattering vector. Applications of these tensile rigs at our neutron diffractometers enable various investigations of structural changes under mechanical load, e.g. crystallographic texture evolution, stress-induced phase transformations or lattice expansion, and the anisotropy of mechanical response.
Electrochemical Cobalt-Catalyzed C-H Activation.
Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz
2018-06-19
Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Public health preparedness: evolution or revolution?
Lurie, Nicole; Wasserman, Jeffrey; Nelson, Christopher D
2006-01-01
The recent emphasis on preparedness has created heightened expectations and has raised questions about the extent to which U.S. public health systems have evolved in recent years. This paper describes how public health preparedness is transforming public health agencies. Key signs of change include new partnerships, changes in the workforce, new technologies, and evolving organizational structures. Each of these elements has had some positive impact on public health; however, integration of preparedness with other public health functions remains challenging. The preparedness mission has also raised challenges in the areas of leadership, governance, quality, and accountability.
Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi
Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Emergence of a learning community: a transforming experience at the boundaries
NASA Astrophysics Data System (ADS)
Raia, Federica
2013-03-01
I narrate a process of transformation, a professional and personal journey framed by an experience that captured my attention shaping my interpretation and reflections. From a critical complexity framework I discuss the emergence of a learning community from the cooperation among individuals of diverse social and cultural worlds sharing the need to change a traditional professional development program structure and develop a new science education Masters Degree/Certification program. I zoom into the continual redefinition of the community, its evolution and complex interrelations among its participants and the emergence of a learning community as a boundary space having an emancipatory role and allowing growth and learning. I analyze the dialectical relationship between agents' behavior either impeding growth or having an emancipatory function of a mindful RelationalAct in a complex adaptive system framework.
Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.
Zeira, Ron; Shamir, Ron
2018-05-03
Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.
Pechurkin, N S; Shuvaev, A N
2015-01-01
The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for homoeothermic (warm-blooded) animals has increased 20 times, based on the process energy used by the "average" inhabitant of the world. Thus, the victory of our species in planetary evolution is easy to fit into the mainstream of evolution through energy-matter interactions: multiple growth of star energy was used to transform the matter on the surface of the irradiated planet.
The nature of chemical innovation: new enzymes by evolution.
Arnold, Frances H
2015-11-01
I describe how we direct the evolution of non-natural enzyme activities, using chemical intuition and information on structure and mechanism to guide us to the most promising reaction/enzyme systems. With synthetic reagents to generate new reactive intermediates and just a few amino acid substitutions to tune the active site, a cytochrome P450 can catalyze a variety of carbene and nitrene transfer reactions. The cyclopropanation, N-H insertion, C-H amination, sulfimidation, and aziridination reactions now demonstrated are all well known in chemical catalysis but have no counterparts in nature. The new enzymes are fully genetically encoded, assemble and function inside of cells, and can be optimized for different substrates, activities, and selectivities. We are learning how to use nature's innovation mechanisms to marry some of the synthetic chemists' favorite transformations with the exquisite selectivity and tunability of enzymes.
On the theory of group generation of stars
NASA Technical Reports Server (NTRS)
Zhilyayev, B. Y.; Porfiryev, V. V.; Shulman, L. M.
1973-01-01
The hypothesis proposed is that topology of a rotating gaseous cloud can be variable in the contraction process. Due to rotation an originally spherical cloud is transformed into a toroidal body. The contraction of a thin torus is considered with different suppositions on cooling the gas. In the determined time the torus will become gravitationally unstable. The excitation of Jeans' waves is shown to result in the disintegration of the torus into fragments. The number of the fragments and their mass distributions are calculated. The proposed hypothesis on toroidal stages in stellar evolution can remove some difficulties in the theory of structure and evolution of stars, such as absence of limitary stars, distribution of rotation velocities of early-type stars, origin of poloidal magnetic fields and decline rotators with the magnetic axis orthogonal to the axis of rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lin, E-mail: zhanglincsu@163.com; Liu Hengsan, E-mail: lhsj63@sohu.com; He Xinbo, E-mail: xb_he@163.com
The characteristics of rapidly solidified FGH96 superalloy powder and the thermal evolution behavior of carbides and {gamma} Prime precipitates within powder particles were investigated. It was observed that the reduction of powder size and the increase of cooling rate had transformed the solidification morphologies of atomized powder from dendrite in major to cellular structure. The secondary dendritic spacing was measured to be 1.02-2.55 {mu}m and the corresponding cooling rates were estimated to be in the range of 1.4 Multiplication-Sign 10{sup 4}-4.7 Multiplication-Sign 10{sup 5} K{center_dot}s{sup -1}. An increase in the annealing temperature had rendered the phase transformation of carbides evolvingmore » from non-equilibrium MC Prime carbides to intermediate transition stage of M{sub 23}C{sub 6} carbides, and finally to thermodynamically stable MC carbides. The superfine {gamma} Prime precipitates were formed at the dendritic boundaries of rapidly solidified superalloy powder. The coalescence, growth, and homogenization of {gamma}' precipitates occurred with increasing annealing temperature. With decreasing cooling rate from 650 Degree-Sign C{center_dot}K{sup -1} to 5 Degree-Sign C{center_dot}K{sup -1}, the morphological development of {gamma} Prime precipitates had been shown to proceed from spheroidal to cuboidal and finally to solid state dendrites. Meanwhile, a shift had been observed from dendritic morphology to recrystallized structure between 900 Degree-Sign C and 1050 Degree-Sign C. Moreover, accelerated evolution of carbides and {gamma}' precipitates had been facilitated by the formation of new grain boundaries which provide fast diffusion path for atomic elements. - Highlights: Black-Right-Pointing-Pointer Microstructural characteristic of FGH96 superalloy powder was investigated. Black-Right-Pointing-Pointer The relation between microstructure, particle size, and cooling rate was studied. Black-Right-Pointing-Pointer Thermal evolution behavior of {gamma} Prime and carbides in loose FGH96 powder was studied.« less
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
NASA Astrophysics Data System (ADS)
Chang, Sung-Jin; Park, Jong Bae; Lee, Gaehang; Kim, Hae Jin; Lee, Jin-Bae; Bae, Tae-Sung; Han, Young-Kyu; Park, Tae Jung; Huh, Yun Suk; Hong, Woong-Ki
2014-06-01
We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress.We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress. Electronic supplementary information (ESI) available: Illustration, photograph, Raman data, and EDX spectra. See DOI: 10.1039/c4nr01118j
Structural transition and amorphization in compressed α - Sb 2 O 3
Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...
2015-05-27
Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
NASA Astrophysics Data System (ADS)
Pakharukova, V. P.; Shalygin, A. S.; Gerasimov, E. Yu.; Tsybulya, S. V.; Martyanov, O. N.
2016-01-01
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.
Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging
NASA Astrophysics Data System (ADS)
Sarraj, R.; Hassine, T.; Gamaoun, F.
2018-01-01
NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
Additive Manufacturing: Unlocking the Evolution of Energy Materials
Zhakeyev, Adilet; Wang, Panfeng; Shu, Wenmiao; Wang, Huizhi
2017-01-01
Abstract The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near‐complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage. PMID:29051861
Additive Manufacturing: Unlocking the Evolution of Energy Materials.
Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin
2017-10-01
The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.
Qi, Baoxin; Kong, Qingzhao; Qian, Hui; Patil, Devendra; Lim, Ing; Li, Mo; Liu, Dong; Song, Gangbing
2018-02-24
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests.
Qian, Hui; Li, Mo; Liu, Dong; Song, Gangbing
2018-01-01
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests. PMID:29495277
Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M
2009-12-01
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).
Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing
Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei
2017-01-01
This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244
Follicular lymphomas and their transformation: Past and current research.
Mendez, Miriam; Torrente, Maria; Provencio, Mariano
2017-06-01
Follicular lymphoma (FL) is the second most common type of non-Hodgkin lymphoma (NHL). Histological transformation (HT) refers to the evolution of a clinically indolent NHL to a clinically aggressive one, defined as those lymphomas in which survival is limited to a few months when untreated. Areas covered: HT is associated with rapid progression of lymphadenopathy, infiltration of extranodal sites, development of systemic symptoms, and elevated serum level of lactate dehydrogenase (LDH). It is frequently related to a poor prognosis, and the median survival after transformation is less than 2 years. Transformation to diffuse large B cell lymphoma (DLBCL) in patients with FL occurs at an annual rate of approximately 3% for the first 15 years, after which the risk of HT falls for reasons that remain unclear. Expert commentary: Although it has long been assumed that transformation reflects the emergence of an aggressive subclone of cells from the primary FL, recent studies suggest that FL transformation might also arise by divergent evolution from a more immature common progenitor cell. Studies on genomic changes and DNA sequencing have shed some light onto the process of transformation. Nowadays, we know that HT is a complex process where several molecular pathways are involved.
Costs and benefits of natural transformation in Acinetobacter baylyi.
Hülter, Nils; Sørum, Vidar; Borch-Pedersen, Kristina; Liljegren, Mikkel M; Utnes, Ane L G; Primicerio, Raul; Harms, Klaus; Johnsen, Pål J
2017-02-15
Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells. We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation. Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation.
NASA Astrophysics Data System (ADS)
Alessi, Roberto; Pham, Kim
2016-02-01
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.
Secular Evolution in Disk Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2013-10-01
Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to divide bulges into two types that correlate differently with their BHs. I review environmental secular evolution -- the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters~with~the disks of S0 galaxies. They are bulgeless S0s. S+Im -->S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Finally, I summarise how hierarchical clustering and secular processes can be combined into a consistent and comprehensive picture of galaxy evolution.
Structural evolution in Ar+ implanted Si-rich silicon oxide
NASA Astrophysics Data System (ADS)
Brusa, R. S.; Karwasz, G. P.; Mariotto, G.; Zecca, A.; Ferragut, R.; Folegati, P.; Dupasquier, A.; Ottaviani, G.; Tonini, R.
2003-12-01
Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.
Leloup, Maud; Pallier, Virginie; Nicolau, Rudy; Feuillade-Cathalifaud, Geneviève
2015-01-01
Algae and cyanobacteria are important contributors to the natural organic matter (NOM) of eutrophic water resources. The objective of this work is to increase knowledge on the modifications of algal organic matter (AOM) properties in the long term to anticipate blooms footprint in such aquatic environments. The production of AOM from an alga (Euglena gracilis) and a cyanobacteria (Microcystis aeruginosa) was followed up and characterized during the stationary phase and after one year and four months of cultivation, in batch experiments. Specific UV absorbance (SUVA) index, organic matter fractionation according to hydrophobicity and apparent molecular weight were combined to assess the evolution of AOM. A comparison between humic substances (HS) mainly derived from allochthonous origins and AOM characteristics was performed to hypothesize impacts of AOM transformation processes on the water quality of eutrophic water resources. Each AOM fraction underwent a specific evolution pattern, depending on its composition. Impacts of humification-like processes were predominant over release of biopolymers due to cells decay and led to an increase in the hydrophobic compounds part and molecular weights over time. However, the hydrophilic fraction remained the major fraction whatever the growth stage. Organic compounds generated by maturation of these precursors corresponded to large and aliphatic structures. PMID:26251898
The Evolution of Japan’s Constitution and Implications for U.S. Forces on Okinawa
2004-12-01
9 3. The Pentagon’s Transformation and its Relationship to Japan....14 4. Tailoring Transformation for U.S...primarily on Okinawa. The problem is that both nations cannot gamble the analogous scenario at a national level. This argument should not be looked...Pentagon’s Transformation and its Relationship to Japan Transformation in DoD is not new. However, Secretary of Defense Donald Rumsfield institutionalized
NASA Astrophysics Data System (ADS)
Lu, Fengyuan
Material design at the nanometer scale is an effective strategy for developing advanced materails with enhanced radiation tolerance for advanced nuclear energy systems as high densities of surfaces and interfaces of the nanostructured materials may behave as effective sinks for defect recovery. However, nanostructured materials may not be intrinsically radiation tolerant, and the interplay among the factors of crystal size, temperature, chemical composition, surface energy and radiation conditions may eventually determine material radiation behaviors. Therefore, it is necessary to understand the radiation effects of nanostructured materials and the underlying physics for the design of advanced nanostructured nuclear materials. The main objective of this doctoral thesis is to study the behavior of nanostructured oxides and nitrides used as fuel matrix and waste forms under extreme radiation conditions with the focus of phase transformation, microstructural evolution and damage mechanisms. Radiation experiments were performed using energetic ion beam techniques to simulate radiation damage resulting from energetic neutrons, alpha-decay events and fission fragments, and various experimental approaches were employed to characterize materials’ microstructural evolution and phase stability upon intense radiation environments including transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Thermal annealing experiments indicated that nanostructured ZrO2 phase stability is strongly affected by the grain size. Radiation results on nanostructured ZrO2 indicated that thermodynamically unstable or metastable high temperature phases can be induced by energetic beam irradiation at room temperature. Various phase transformation among different polymorphs of monoclinic, tetragonal and amorphous states can be induced, and different mechanisms are responsible for structural transformations including oxygen vacancies accumulation upon displacive damage, radiation-assistant recrystallization and thermal spike by ionization radiation. The radiation response of nanosized pyrochlores indicated that the radiation tolerance of nanoceramics is highly dependent on the composition and size. Nanosized tantalate pyrochlores KxLnyTa2O 7-v (Ln = Gd, Y, Lu) with the average grain size around 10 - 15 nm are highly sensitive to radiation-induced amorphization. The pyrochlore A to B site ionic radius ratio rA/rB is crucial in determining the radiation tolerance of pyrochlores, and a minimum rA/rB of 1.605 exists for the occurring of radiation induced amorphization. The interplay among chemical compositions, structural deviation and grain size eventually determines the phase stability and structural transformation processes of tantalate pyrochlores under intense radiation environments. ZrN shows extremely high phase stability under both displacive ion irradiation and ionizing swift heavy ion irradiation. However, a contraction in lattice constant up to ~ 1.42 % can be induced in nanocrystalline ZrN irradiated with displacive ion beams. In contrast, the strongly ionizing swift heavy ions cannot induce any lattice contraction. Such lattice contractions may be due to a negative strain field in the ZrN nanograins related to N vacancies built up upon displacive radiation. Ion irradiations also lead to the formation of orthorhombic ZrSi phase at the interface between ZrN and Si substrate, resulting from atom mixing and precipitation upon ion irradiations. The fundamental knowledge provides critical data for assessing and quantifying nanostructured ceramics as fuel matrix and waste forms utilized in the extreme environments of advanced nuclear energy systems. Further possibilities are being pursued in manipulating microstructure at the nano-scale, controlling phase stability and tailoring the physical properties of materials for various important engineering applications.
Enhancement of magnetostrictive properties of Galfenol thin films
NASA Astrophysics Data System (ADS)
Nivedita, Lalitha Raveendran; Manivel, Palanisamy; Pandian, Ramanathaswamy; Murugesan, S.; Morley, Nicola Ann; Asokan, K.; Rajendra Kumar, Ramasamy Thangavelu
2018-04-01
The present study investigates the role of substrate temperatures on the structural, morphological, magnetic and magnetostrictive properties of DC sputtered FeGa thin films grown on Si substrates. These films were deposited at various substrate temperatures between 50 and 350 °C. The structural characterization of the films revealed columnar growth and the transformation of surface morphology from prismatic to spherical at high substrate temperatures. Both L12 and B2 phases of FeGa existed in the films, with the L12 phase dominating. The in-plane and out-of-plane vibration sample magnetometry measurements showed the evolution of magnetic anisotropy in these films. It was revealed from the magnetostriction measurements that the films deposited at 250 °C exhibited the maximum value of 59 ppm.
Single-particle mapping of nonequilibrium nanocrystal transformations
Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; ...
2016-11-18
Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. For this study, we monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates themore » importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.« less
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction.
Soltanipour, Asieh; Sadri, Saeed; Rabbani, Hossein; Akhlaghi, Mohammad Reza
2015-01-01
This paper presents a new procedure for automatic extraction of the blood vessels and optic disk (OD) in fundus fluorescein angiogram (FFA). In order to extract blood vessel centerlines, the algorithm of vessel extraction starts with the analysis of directional images resulting from sub-bands of fast discrete curvelet transform (FDCT) in the similar directions and different scales. For this purpose, each directional image is processed by using information of the first order derivative and eigenvalues obtained from the Hessian matrix. The final vessel segmentation is obtained using a simple region growing algorithm iteratively, which merges centerline images with the contents of images resulting from modified top-hat transform followed by bit plane slicing. After extracting blood vessels from FFA image, candidates regions for OD are enhanced by removing blood vessels from the FFA image, using multi-structure elements morphology, and modification of FDCT coefficients. Then, canny edge detector and Hough transform are applied to the reconstructed image to extract the boundary of candidate regions. At the next step, the information of the main arc of the retinal vessels surrounding the OD region is used to extract the actual location of the OD. Finally, the OD boundary is detected by applying distance regularized level set evolution. The proposed method was tested on the FFA images from angiography unit of Isfahan Feiz Hospital, containing 70 FFA images from different diabetic retinopathy stages. The experimental results show the accuracy more than 93% for vessel segmentation and more than 87% for OD boundary extraction. PMID:26284170
NASA Astrophysics Data System (ADS)
Sagasta, Francisco; Zitto, Miguel E.; Piotrkowski, Rosa; Benavent-Climent, Amadeo; Suarez, Elisabet; Gallego, Antolino
2018-03-01
A modification of the original b-value (Gutenberg-Richter parameter) is proposed to evaluate local damage of reinforced concrete structures subjected to dynamical loads via the acoustic emission (AE) method. The modification, shortly called energy b-value, is based on the use of the true energy of the AE signals instead of its peak amplitude, traditionally used for the calculation of b-value. The proposal is physically supported by the strong correlation between the plastic strain energy dissipated by the specimen and the true energy of the AE signals released during its deformation and cracking process, previously demonstrated by the authors in several publications. AE data analysis consisted in the use of guard sensors and the Continuous Wavelet Transform in order to separate primary and secondary emissions as much as possible according to particular frequency bands. The approach has been experimentally applied to the AE signals coming from a scaled reinforced concrete frame structure, which was subjected to sequential seismic loads of incremental acceleration peak by means of a 3 × 3 m2 shaking table. For this specimen two beam-column connections-one exterior and one interior-were instrumented with wide band low frequency sensors properly attached on the structure. Evolution of the energy b-value along the loading process accompanies the evolution of the severe damage at the critical regions of the structure (beam-column connections), thus making promising its use for structural health monitoring purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascle, J.; Blarez, E.
The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Effect of Fe{sub 3}O{sub 4} nanoparticles on positive streamer propagation in transformer oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Yuzhen, E-mail: yzlv@ncepu.edu.cn; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206; Wang, Qi
Fe{sub 3}O{sub 4} nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe{sub 3}O{sub 4} nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe{sub 3}O{sub 4} nanoparticle can greatly increasemore » the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.« less
Low temperature synthesis of monolithic transparent Ta2O5 gels from hydrolysis of metal alkoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1993-01-01
Tantalum oxide gels in the form of transparent monoliths and powder were prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5:C2H50H:H20:HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide:water:HCl ratio, time of gel formation increased with the alcohol to alkoxide mole ratio. Thermal evolution of the physical and structural changes in the gel was monitored by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. On heating to approximately 400 C, the amorphous gel crystallized into the low temperature orthorhombic phase Beta-Ta2O5, which transformed into the high temperature tetragonal phase Alpha-Ta2O5 when further heated to approximately 1450 C. The volume fraction of the crystalline phase increased with the firing temperature. The Alpha-Ta205 converted back into the low temperature phase, Beta-Ta2O5, on slow cooling through the transformation temperature of 1360 C indicating a slow but reversible transformation.
Effects of manganese doping on the structure evolution of small-sized boron clusters
NASA Astrophysics Data System (ADS)
Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming
2017-07-01
Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n = 10-20 and Q = 0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n ⩽ 13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n ⩾ 19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.
Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...
2015-12-01
Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less
NASA Astrophysics Data System (ADS)
Fonda, R. W.; Spanos, G.
2000-09-01
The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.
NASA Astrophysics Data System (ADS)
Saracco, Ginette; Labazuy, Philippe; Moreau, Frédérique
2004-06-01
This study concerns the fluid flow circulation associated with magmatic intrusion during volcanic eruptions from electrical tomography studies. The objective is to localize and characterize the sources responsible for electrical disturbances during a time evolution survey between 1993 and 1999 of an active volcano, the Piton de la Fournaise. We have applied a dipolar probability tomography and a multi-scale analysis on synthetic and experimental SP data. We show the advantage of the complex continuous wavelet transform which allows to obtain directional information from the phase without a priori information on sources. In both cases, we point out a translation of potential sources through the upper depths during periods preceding a volcanic eruption around specific faults or structural features. The set of parameters obtained (vertical and horizontal localization, multipolar degree and inclination) could be taken into account as criteria to define volcanic precursors.
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Structural characterization of multimetallic nanoparticles
NASA Astrophysics Data System (ADS)
Mukundan, Vineetha
Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300°C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600°C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealed in helium due to reduction of the surface oxides that promotes coalescence and sintering. The nanoscale composition and structure of alloy catalysts affect heterogeneous catalysis. We also studied Pd:Cu nanoparticle mixtures of different compositions. In Pd:Cu of composition ratio 1:1, ordered B2 phase is formed during annealing at 450C. During the ramped annealing from 450°C to 750°C, the B2 phase transforms into two different alloys, one alloy rich in copper and the other rich in Pd. This structural evolution is different from that of Pd-Cu system in bulk. In the 3:1 composition, the B2 phase dominates in the isothermal anneal at 450C but a disordered alloy fcc phase is also formed. On annealing to 750°C, the disordered fcc phase grows at the expense of the B2 phase. These findings have important applications for the thermal activation of Pd-Cu nanocatalysts for EOR reactions.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
Further experimentation on bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22
Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E.
2002-01-01
In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936
NASA Astrophysics Data System (ADS)
Wang, Wentao; Li, Hui; Qu, Zhi
2012-04-01
Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.
Xia, Weiwei; Xu, Feng; Zhu, Chongyang; ...
2016-07-15
The fundamental electrochemical reaction mechanisms and the phase transformation pathways of layer-structured α-MoO 3 nanobelt during the sodiation/desodiation process to date remain largely unknown. In this study, to observe the real-time sodiation/desodiaton behaviors of α-MoO 3 during electrochemical cycling, we construct a MoO 3 anode sodium-ion battery inside a transmission electron microscope (TEM). Utilizing in situ TEM and electron diffraction pattern (EDP) observation, α-MoO 3 nanobelts are found to undergo a unique multi-step phase transformation. Upon the first sodiation, α-MoO 3 nanobelts initially form amorphous Na xMoO3 phase and are subsequently sodiated into intermediate phase of crystalline NaMoO 2, finallymore » resulting in the crystallized Mo nanograins embedded within the Na 2O matrix. During the first desodiation process, Mo nanograins are firstly re-oxidized into intermediate phase NaMoO 2 that is further transformed into amorphous Na 2MoO 3, resulting in an irreversible phase transformation. Upon subsequent sodiation/desodiation cycles, however, a stable and reversible phase transformation between crystalline Mo and amorphous Na2MoO 3 phases has been revealed. In conclusion, our work provides an in-deepth understanding of the phase transformation pathways of α-MoO 3 nanobelts upon electrochemical sodiation/desodiation processes, with the hope of assistance in designing sodium-ion batteries with enhanced performance.« less
Final Report, Fundamental Mechanisms of Transient States in Materials Quantified by DTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, G. H.; McKeown, J. T.
At the project’s inception, there was growing evidence that the time domain for in situ observations of material evolution held great promise for allowing measurements to be made in never previously contemplated regimes. Also, central to the development of the project was the knowledge that phase transformations are of central importance to the development of materials microstructure and hence properties. We addressed this opportunity by developing a transmission electron microscope that could be operated in the pulsed mode (DTEM), with exposure times down to 20 ns and interframe times down to 20 ns in the nine-frame movie mode, designed withmore » the intent of performing in situ experiments. This unprecedented capability allowed us to investigate structural phase transformations, intermetallic formation reactions, crystallization from the amorphous phase, rapid solidification of liquid metals, transformations in phase change materials, and catalyst nanoparticles. The ability of the electron microscope to create images with high spatial resolution allows for the accurate measurement of position. Common to all of the transformations mentioned above is the presence of a distinct interface between the old phase and the growing new phase. Measuring the position of the interface as a function of time, combined with the ability to count nucleation sites as a function of time, allowed for the exceptionally accurate measure of transformation kinetics. These measurements were used to guide and constrain the development of models and simulation methods for the classes of transformations studied.« less
Seismo-thermo-mechanical modeling of mature and immature transform faults
NASA Astrophysics Data System (ADS)
Preuss, Simon; Gerya, Taras; van Dinther, Ylona
2016-04-01
Transform faults (TF) are subdivided into continental and oceanic ones due to their markedly different tectonic position, structure, surface expression, dynamics and seismicity. Both continental and oceanic TFs are zones of rheological weakness, which is a pre-requisite for their existence and long-term stability. Compared to subduction zones, TFs are typically characterized by smaller earthquake magnitudes as both their potential seismogenic width and length are reduced. However, a few very large magnitude (Mw>8) strike-slip events were documented, which are presumably related to the generation of new transform boundaries and/or sudden reactivation of pre-existing fossil structures. In particular, the 11 April 2012 Sumatra Mw 8.6 earthquake is challenging the general concept that such high magnitude events only occur at megathrusts. Hence, the processes of TF nucleation, propagation and their direct relation to the seismic cycle and long-term deformation at both oceanic and continental transforms needs to be investigated jointly to overcome the restricted direct observations in time and space. To gain fundamental understanding of involved physical processes the numerical seismo-thermo-mechanical (STM) modeling approach, validated in a subduction zone setting (Van Dinther et al. 2013), will be adapted for TFs. A simple 2D plane view model geometry using visco-elasto-plastic material behavior will be adopted. We will study and compare seismicity patterns and evolution in two end member TF setups, each with strain-dependent and rate-dependent brittle-plastic weakening processes: (1) A single weak and mature transform fault separating two strong plates (e.g., in between oceanic ridges) and (2) A nucleating or evolving (continental) TF system with disconnected predefined faults within a plate subjected to simple shear deformation (e.g., San Andreas Fault system). The modeling of TFs provides a first tool to establish the STM model approach for transform faults in a more general case.
NASA Astrophysics Data System (ADS)
Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana
2018-01-01
In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallesham, B.; Ranjith, R., E-mail: ranjith@iith.ac.in; Viswanath, B.
Pb(Fe{sub 0.5-x}Sc{sub x}Nb{sub 0.5})O{sub 3} [(PFSN) (0 ≤ x ≤ 0.5)] multiferroic relaxors were synthesized and the temperature dependence of phonon modes across ferroelectric to paraelectric transition was studied. With varying Sc content from x = 0 to 0.25 the structure remains monoclinic and with further addition (x = 0.3 - 0.5) the structure transforms into rhombohedral symmetry. Structural refinement studies showed that the change in crystal structure from monoclinic to rhombohedral symmetry involves a volume increment of 34-36%. Associated changes in the tolerance factor (1.024 ≤ t ≤ 0.976) and bond angles were observed. Structure assisted B′-B″ cation orderingmore » was confirmed through the superlattice reflections in selected area electron diffraction (SAED) pattern of Pb(Sc{sub 0.5}Nb{sub 0.5})O{sub 3} (x = 0.5). Cation ordering is also evident from the evolution of Pb-O phonon mode in Raman spectra of compositions with rhombohedral symmetry (x ≥ 0.3). The high temperature Raman scattering studies show that the B-localized mode [F{sub 1u}, ∼250 cm{sup −1}] and BO{sub 6} octahedral rotational mode [F{sub 1g}, ∼200 cm{sup −1}], both originating from polar nano regions (PNRs) behave like coupled phonon modes in rhombohedral symmetry. However, in monoclinic symmetry they behave independently across the transition. Softening of B localized mode across the transition followed by the hardening for all compositions confirms the diffusive nature of the ferroelectric transformation. The presence of correlation between the B localized and BO{sub 6} rotational modes introduces a weak relaxor feature for systems with rhombohedral symmetry in PFSN ceramics, which was confirmed from the macroscopic dielectric studies.« less
On spatial mutation-selection models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
2013-11-15
We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.
Geobiotropy: The Evolution of Rocks in Symbiosis with Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Bassez, M. P.
2017-07-01
In their interaction with water, minerals inside rocks transform with production of elements and small molecules which intervene in prebiotic syntheses. This chemical evolution between the world of rocks and the world of life is called geobiotropy.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
NASA Astrophysics Data System (ADS)
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan
2016-02-01
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
NASA Astrophysics Data System (ADS)
Roobavannan, Mahendran; Kandasamy, Jaya; Pande, Saket; Vigneswaran, Saravanamuthu; Sivapalan, Murugesu
2017-04-01
Sustainable development in society depends on an understanding of how communities interact with the natural system and how they co-evolve in time. Increasingly the livelihood and future viability of agricultural communities are being threatened by competition for water between food production and the environment. This study focused on this water-agriculture-environment nexus as it played out in the Murrumbidgee River Basin, Australia, and how co-evolution of society and water management occurred. Over 100 years of agricultural development the Murrumbidgee Basin has experienced a "pendulum swing" in terms of water allocation entirely to agriculture production at the expense of the environment, and eventually to the reallocation of water back to the environment. This pendulum swing has been attributed to a combination of increased national wealth, reduced share of agriculture in the national GDP, and to increased environment awareness of environmental degradation. Environment awareness depends on the structure of the economy, education, and socio-politic structure. As the basin economy develops accompanied by sectoral transformation, basin production becomes increasingly dependent on the industry sector. A loss of economic dependence on agriculture leads to a lower emphasis on the need to allocate water to agriculture. Society's value and preference turns around and is motivated towards the protection of the ecosystem. We hypothesize that in the competition of water use between economic livelihood and environment well being of society, economic diversification pushed the balance in towards the environment. In order to test this hypothesis, we developed a coupled socio-hydrologic model, which explicitly considers bi-directional feedbacks between human and water systems to explore how the competition for water played out in the Murrumbidgee. We demonstrate this by linking the dynamics of the economy of the whole (agriculture and industry) to community sentiment for the environment and to water allocation. The model captured the changing value and preference, threshold dynamics, changing water management and showed the importance of sectoral transformation in water management. The modeling showed that as agriculture became constrained by water reallocation to restore ecosystem health, the community coped with the transition through the sectoral transformation to the industry sector and out-migration of basin residents. The dynamics observed in the Murrumbidgee River basin highlights how the transformation of the basin economy influenced sustainable development, mitigated adverse economic outcomes and enabled society to transition with the implementation of water management decisions that increasingly favored the environment.
Phylogenetic trees and Euclidean embeddings.
Layer, Mark; Rhodes, John A
2017-01-01
It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
Evolution of the surface species of the V 2O 5-WO 3 catalysts
NASA Astrophysics Data System (ADS)
Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.
2000-07-01
Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.; ...
2017-08-12
This study is to complement an early report (the manuscript is attached for review purpose) on the role of interlayer on activity and performance stability in praseodymium nickelates. The aforementioned report showed a remarkable 48% increase in power density while switching from common GDC interlayer to a new interlayer chemistry (PGCO). Furthermore, a stable long-term performance was linked with suppressed reaction between the cathode and PGCO interlayer. In this article, we report in situ studies of the phase evolution. The high energy XRD studies at a synchrotron source showed fully suppressed phase transition in praseodymium nickelates with PGCO interlayer, whilemore » the electrodes on the GDC interlayer undergo substantial phase transformation. Furthermore, in operando and post-test XRD analyses shown fully suppressed structural changes in electrodes operated in full cells at 750°C and 0.80 V for 500 hours. SEM-EDS analysis showed that the formation of PrO x at the cathode-interlayer interface may play a role in a decrease of mechanical integrity of the interfaces, due to thermal expansion mismatch, leading to a local stress between the two phases. Furthermore, phase evolution at a narrow interface may propagate toward the electrode bulk, leading to structural changes Q1 and performance degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.
This study is to complement an early report (the manuscript is attached for review purpose) on the role of interlayer on activity and performance stability in praseodymium nickelates. The aforementioned report showed a remarkable 48% increase in power density while switching from common GDC interlayer to a new interlayer chemistry (PGCO). Furthermore, a stable long-term performance was linked with suppressed reaction between the cathode and PGCO interlayer. In this article, we report in situ studies of the phase evolution. The high energy XRD studies at a synchrotron source showed fully suppressed phase transition in praseodymium nickelates with PGCO interlayer, whilemore » the electrodes on the GDC interlayer undergo substantial phase transformation. Furthermore, in operando and post-test XRD analyses shown fully suppressed structural changes in electrodes operated in full cells at 750°C and 0.80 V for 500 hours. SEM-EDS analysis showed that the formation of PrO x at the cathode-interlayer interface may play a role in a decrease of mechanical integrity of the interfaces, due to thermal expansion mismatch, leading to a local stress between the two phases. Furthermore, phase evolution at a narrow interface may propagate toward the electrode bulk, leading to structural changes Q1 and performance degradation.« less
Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarzadeh, A., E-mail: ak.hz62@gmail.com
Microstructural evolution during friction stir welding of single-phase brass and corresponding mechanical properties were investigated. For this purpose, 2 mm thick brass plate was friction stir welded at a rotational speed of 450 rpm and traverse speed of 100 mm/min. The microstructure of the joint was studied using optical microscopy, scanning electron microscopy equipped with electron back scattered diffraction system, and scanning transmission electron microscopy. The mechanical properties were measured using hardness and tensile tests. The formation of subgrains and their transformation into new grains in conjunction with existence of A{sub 1}{sup ⁎}, A{sub 2}{sup ⁎} and C texture componentsmore » revealed that the continuous dynamic recrystallization plays a dominant role in the microstructural evolution. However, grain boundary bulging, along with the formation of twin boundaries, and presence of the G texture component showed that the discontinues dynamic recrystallization may participate in the new grain formation. Furthermore, the different strengthening mechanisms, which caused the higher strength of the joint, were discussed. - Highlights: •Microstructural evolution during FSW of a single phase brass was investigated. •CDRX and DDRX were the main mechanisms of the grain structure formation during FSW. •GDRX and SRX were not contributed in grain structure formation. •The lamellas TBs were formed in the SZ of the joints. •Grain boundary, dislocation, and texture effects resulted in higher strength.« less
In situ observation of stishovite formation in shock-compressed fused silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas
2017-06-01
Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Cai, Zhonghou; Chen, Pice
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.
2017-12-01
Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the short-range order of each type of ACC that are dependent upon Mg content. Insights from this study hold promise for quantifying the chemical and structural properties of ACC and reconcile discrepancies in the literature.
NASA Astrophysics Data System (ADS)
Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue
2018-05-01
As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.
NASA Astrophysics Data System (ADS)
Ibáñez, Flor; Baltazar, Arturo; Mijarez, Rito; Aranda, Jorge
2015-03-01
Multiwire cables are widely used in important civil structures. Since they are exposed to several dynamic and static loads, their structural health can be compromised. The cables can also be submitted to mechanical contact, tension and energy propagation in addition to changes in size and material within their wires. Due to the critical role played by multiwire cables, it is necessary to develop a non-destructive health monitoring method to maintain their structure and proper performance. Ultrasonic inspection using guided waves is a promising non-destructive damage monitoring technique for rods, single wires and multiwire cables. The propagated guided waves are composed by an infinite number of vibrational modes making their analysis difficult. In this work, an entropy-based method to identify small changes in non-stationary signals is proposed. A system to capture and post-process acoustic signals is implemented. The Discrete Wavelet Transform (DWT) is computed in order to obtain the reconstructed wavelet coefficients of the signals and to analyze the energy at different scales. The feasibility of using the concept of entropy evolution of non-stationary signals to detect damage in multiwire cables is evaluated. The results show that there is a high correlation between the entropy value and damage level of the cable. The proposed method has low sensitivity to noise and reduces the computational complexity found in a typical time-frequency analysis.
Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy
NASA Astrophysics Data System (ADS)
An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin
2016-08-01
Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes.
Matter-neutrino resonance in a multiangle neutrino bulb model
NASA Astrophysics Data System (ADS)
Vlasenko, Alexey; McLaughlin, G. C.
2018-04-01
Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.
Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T
2015-04-01
Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.
Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeddu, Hemantha Kumar; Lookman, Turab
A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy aremore » acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.« less
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion
NASA Astrophysics Data System (ADS)
Matthes, Christopher Stanley Rutter
A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.
Subcortical structure segmentation using probabilistic atlas priors
NASA Astrophysics Data System (ADS)
Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido
2007-03-01
The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.
Phanerozoic geological evolution of the Equatorial Atlantic domain
NASA Astrophysics Data System (ADS)
Basile, Christophe; Mascle, Jean; Guiraud, René
2005-10-01
The Phanerozoic geological evolution of the Equatorial Atlantic domain has been controlled since the end of Early Cretaceous by the Romanche and Saint Paul transform faults. These faults did not follow the PanAfrican shear zones, but were surimposed on Palæozoic basins. From Neocomian to Barremian, the Central Atlantic rift propagated southward in Cassiporé and Marajó basins, and the South Atlantic rift propagated northward in Potiguar and Benue basins. During Aptian times, the Equatorial Atlantic transform domain appeared as a transfer zone between the northward propagating tip of South Atlantic and the Central Atlantic. Between the transform faults, oceanic accretion started during Late Aptian in small divergent segments, from south to north: Benin-Mundaú, deep Ivorian basin-Barreirinhas, Liberia-Cassiporé. From Late Aptian to Late Albian, the Togo-Ghana-Ceará basins appeared along the Romanche transform fault, and Côte d'Ivoire-Parà-Maranhão basins along Saint Paul transform fault. They were rapidly subsiding in intra-continental settings. During Late Cretaceous, these basins became active transform continental margins, and passive margins since Santonian times. In the same time, the continental edge uplifted leading either to important erosion on the shelf or to marginal ridges parallel to the transform faults in deeper settings.
FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S
2005-04-21
Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
Imprints of the large-scale structure on AGN formation and evolution
NASA Astrophysics Data System (ADS)
Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem
2018-04-01
Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.
Using asteroseismology to probe the structure and evolution of the Galaxy
NASA Astrophysics Data System (ADS)
Stello, Dennis
2015-08-01
Recent space missions have transformed our ability to use asteroseismology on vast numbers of stars. This advance has opened up for exploration of the structure and evolution of the Galaxy using oscillating red giant stars as distant tracers of stellar populations including the halo, the bulge and the thin and thick disks. Asteroseismology provides a powerful way to obtain precise estimates of stellar bulk properties such as radius, mass, and age. The radius, and hence distance, places a star accurately in the Galaxy, the mass reveals the mass function and, in combination with composition, provide ages for red giants. Initial results from the CoRoT and Kepler missions have demonstrated the enormous potential there is in the marriage between asteroseismology and contemporary Galactic Archaeology based on single-epoch spectroscopy, photometry, and parallax measurements. The scope for this research received a significant boost last year on several fronts. The re-purposed Kepler telescope, K2, started observing tens of thousands of red giants along the ecliptic covering all main constituents of the Galaxy, and in a few years time NASA's TESS mission will stars observing up to 1 mio red giants full sky. Finally, ESA's decision to fund PLATO guaranties that high quality seismic measurements will continue to flow beyond the nextdecade. In this talk I will give an overview of how seismology can aid the study of the structure and evolution of the Galaxy. I will include the most recent results that we have obtained with our K2 Galactic Archaeology Program.
Strain gradient drives shear banding in metallic glasses
NASA Astrophysics Data System (ADS)
Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong
2017-09-01
Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less
NASA Astrophysics Data System (ADS)
dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [
Optimized satellite image compression and reconstruction via evolution strategies
NASA Astrophysics Data System (ADS)
Babb, Brendan; Moore, Frank; Peterson, Michael
2009-05-01
This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.
Force Density Function Relationships in 2-D Granular Media
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.
2004-01-01
An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms
Concentration Measurements in Self-Excited, Momentum-Dominated Helium Jets
NASA Technical Reports Server (NTRS)
Yildirim, Bekir Sedat
2004-01-01
Flow structure of momentum-dominated pure helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry (RSD) technique. Effects of the operating parameters, i.e., Reynolds number (Re) and Richardson number (Ri), on the oscillatory behavior of the flow were examined over a range of experimental conditions. To seek the individual effect of these parameters, one of them was fixed and the other was varied with certain constraints. Measurements revealed highly periodic oscillations in the laminar region as well as high regularity in transition and turbulent regions. Maximum spectral power profiles at different axial locations indicated the oscillation amplitude increasing until the breakdown of the jet in the turbulent regime. The transition from the laminar to turbulent flow was also investigated. Fast Fourier transform analysis performed in the transition regime showed that the flow oscillates at a unique frequency, which was the same in the upstream laminar flow region. Measured deflection angle data were used in Abel inversion algorithm to construct the helium concentration fields. Instantaneous helium concentration contours revealed changes in the flow structure and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial location showed repeatable oscillations at all axial and radial locations up to the turbulent regime. A cross-correlation technique, applied to find the spatial displacements of the vortical structures, provided correlation coefficient peaks between consecutive schlieren images. Results show that the vortical structure convected and accelerated only in the axial direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.
2015-03-30
The effect of intensity and duration of the electrical resistance sintering process on the phase stability, porosity distribution and microstructural evolution of Al{sub 50}Ti{sub 50} amorphous powders is studied. The phase transformations during the consolidation process were determined by X-ray diffraction. The porosity distribution was observed by optical and scanning electron microscopy. The amorphous phase is partially transformed to the crystalline phase during the sintering process, and formation of AlTi and AlTi{sub 3} intermetallic compounds occurs for temperatures higher than 300 °C. Finally, it is observed that the compacts core have lower porosity and a higher tendency to the amorphous-crystallinemore » phase transformation than the periphery.« less
NASA Astrophysics Data System (ADS)
Lemaux, Brian Clark
This dissertation describes research performed in the field of observational astrophysics as part of the Observations of Redshift Evolution in Large Scale Environment (ORELSE) survey. The general motivation of the research presented in this dissertation is to investigate the processes responsible for the evolution of galaxies in a wide range of physical conditions over cosmic time. Throughout this dissertation, galaxy populations will be considered in the very nearby universe (i.e., within one billion light years from Earth), the middle-aged universe (i.e., eight billion years ago), and in the very early universe (i.e., just one billion years after the beginning of the universe). In each chapter I present unique data from observations taken and analyzed specifically for the ORELSE survey. In the first part of this dissertation I describe the context, aims, and current state of the ORELSE survey. The studies presented in this dissertation span a large range of galaxy samples and investigate a variety of different astrophysical phenomena. As all of these studies fall under the context of galaxy evolution, these initial sections will set the framework for the variety of studies presented in this thesis. In the second part of this dissertation I present four studies undertaken to investigate various aspects of galaxy evolution. The first of these studies is an investigation of a large population of very distant galaxies detected in one of the ORELSE fields. The survey in this field represents the deepest survey of a particular kind of very distant galaxy population known as Lymanalpha Emitter (LAEs). The number of LAEs found in this survey far exceeded expectations for such galaxies and are shown to be in excess of every other survey of similar galaxies at similar distances. This result has important consequences for galaxy evolution studies, as it suggests that faint LAEs may be much more numerous than previously thought. This work also has important consequences for a process in the early universe known as reionization, which is the subject of much debate amongst astronomers. The second and third of these studies are investigations using near-infrared spectroscopy of X-ray bright and red galaxies that exhibit optical spectra with prominent emission features. These studies are the first systematic investigations of both galaxy populations in the middle-aged universe using near-infrared spectroscopy. In both studies I conclude the dominant mechanism giving rise to optical emission line features are processes associated with the presence of an Active Galactic Nuclei (AGN) rather than normal star formation. This result has important consequences for galaxy evolutionary scenarios, as the two processes are typically difficult to separate observationally and are thought to be related. The final study in this presentation is a full investigation of the processes driving galaxy evolution in one of the ORELSE fields, the Cl1604 supercluster. In this study I present the wealth of astronomical observations available to the ORELSE survey on the member galaxies of this supercluster. Several transitional populations of galaxies are detected in the supercluster environment, and their properties are analyzed in the context of galaxy evolution. Processing of the galaxy population is found to be significant in both the densest environments in the supercluster and the lower-density regions. One of the major conclusions of this work relates to the efficiency of these transformative processes and the global environment in which a galaxy resides. I present evidence for a process termed "dynamical downsizing", in which efficient transforming of galaxies occurs earliest in structures of galaxies that are observed to be relaxed (i.e., virialized) in their dynamics.
Tan, Xipeng; Kok, Yihong; Toh, Wei Quan; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai
2016-01-01
As an important metal three-dimensional printing technology, electron beam melting (EBM) is gaining increasing attention due to its huge potential applications in aerospace and biomedical fields. EBM processing of Ti-6Al-4V as well as its microstructure and mechanical properties were extensively investigated. However, it is still lack of quantitative studies regarding its microstructural evolution, indicative of EBM thermal process. Here, we report α′ martensitic transformation and α/β interface evolution in varied printing thicknesses of EBM-printed Ti-6Al-4V block samples by means of atom probe tomography. Quantitative chemical composition analysis suggests a general phase transformation sequence. By increasing in-fill hatched thickness, elemental partitioning ratios arise and β volume fraction is increased. Furthermore, we observe kinetic vanadium segregation and aluminum depletion at interface front and the resultant α/β interface widening phenomenon. It may give rise to an increased α/β lattice mismatch and weakened α/β interfaces, which could account for the degraded strength as printing thickness increases. PMID:27185285
NASA Astrophysics Data System (ADS)
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-05-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.
NASA Astrophysics Data System (ADS)
Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao
2017-07-01
A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.
Computation material science of structural-phase transformation in casting aluminium alloys
NASA Astrophysics Data System (ADS)
Golod, V. M.; Dobosh, L. Yu
2017-04-01
Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.
NASA Astrophysics Data System (ADS)
Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud
2005-05-01
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
NASA Astrophysics Data System (ADS)
Lubberts, Ronald K.; Ben-Avraham, Zvi
2002-02-01
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.
Development of satellite telecommunications during the period 1990 - 2005
NASA Astrophysics Data System (ADS)
Kumar, D.
1993-01-01
The evolution of the global telecommunications market is reviewed. The changes that take place are a result of advances in technology as well as three powerful and interconnected forces: privatization, globalization, and liberalization. The introduction of new technologies in the form of Integrated Services Digital Networks (ISDN's) and integrated terminal equipment resulted in the transformation of the telecommunications services market from a single service industry limited by technology constraints into a multiservice industry limited by applications. As a result of privatization and globalization, the former national telecommunications carriers are beginning to expand overseas in order to grow. The changes indicate a shift in traffic structure as well as in the global satellite market structure. The analysis shows that satellite telecommunications will grow over the next fifteen years.
Cell Division and Evolution of Biological Tissues
NASA Astrophysics Data System (ADS)
Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun
A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter
NASA Astrophysics Data System (ADS)
Heczko, O.; Drahokoupil, J.; Straka, L.
2015-05-01
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.
Further experimentation on bubble generation during transformer overload. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
Transformational leadership: is this still relevant to clinical leaders?
Lo, David; McKimm, Judy; Till, Alex
2018-06-02
Transformational leadership theory has been at the centre of health-care leadership research for the past three decades, has had a tangible influence on the evolution of NHS leadership development strategies, and is still evident in current frameworks. This article provides an overview of the key concepts and weaknesses of transformational leadership theory and discusses its relevance within the context of the NHS working environment.
Monodisperse mesoporous silica nanoparticles of distinct topology.
Luo, Leilei; Liang, Yucang; Erichsen, Egil Sev; Anwander, Reiner
2017-06-01
Monodisperse and uniform high-quality MCM(Mobil Composition of Matter)-48-type CMSNs (Cubic Mesoporous Silica Nanoparticles) are readily prepared by simply optimizing the molar ratio of ethanol and surfactant in the system TEOS-CTAB-NaOH-H 2 O-EtOH (TEOS=tetraethyl orthosilicate, CTAB=cetyltrimethylammonium bromide, EtOH=ethanol). In the absence of ethanol only hexagonal mesoporous silica with ellipsoidal and spherical morphology are obtained. The presence of ethanol drives a mesophase transformation from hexagonal to mixed hexagonal/cubic, further to purely cubic, and finally to a mixed cubic/lamellar. This is accompanied by a morphology evolution involving a mixture of ellipses/spheres, regular rods, uniform spheres, and finally a mixture of spheres/flakes. Preserving the three-dimensional (3D) cubic MCM-48 structure, use of a small amount of ethanol is beneficial to the improvement of the monodispersity of the CMSNs. Moreover, the quality of the CMSNs can also be controlled by changing the surfactant concentration or adjusting the stirring rate. All MSNs were characterized using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and N 2 physisorption, indicating highly long-range ordered pore arrays, high specific surface areas (max. 1173 m 2 g -1 ) as well as high pore volumes (max. 1.14 cm 3 g -1 ). The monodispersity of the CMSNs was verified by statistical particle size distribution from SEM (scanning electron microscopy)/TEM (transmission electron microscopy) images and DLS (dynamic light scattering). The mesophase transformation can be rationalized on the basis of an ethanol-driven change of the surfactant packing structure and charge matching at the surfactant/silicate interface. The corresponding morphology evolution can be elucidated by an ethanol-controlled hydrolysis rate of TEOS and degree of condensation of oligomeric silicate species via a nucleation and growth process. Copyright © 2017 Elsevier Inc. All rights reserved.
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
Winnicott's Transformational Metaphors: A Cognitive-Linguistic Analysis
ERIC Educational Resources Information Center
Casali, Michael A.
2010-01-01
This study examined D.W. Winnicott's construct object usage and related transformational metaphors from a cognitive-linguistic perspective. The paper "The Use of an Object" was positioned historically among extant theoretical models and employed to investigate the semantic evolution of key Winnicottian concepts. Biographical accounts revealed…
Texture evolution during nitinol martensite detwinning and phase transformation
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.
2013-12-01
Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.
Influence of phase transformation on stress evolution during growth of metal thin films on silicon.
Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P
2010-03-05
In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness.
NASA Astrophysics Data System (ADS)
Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar
2018-05-01
In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .
NASA Astrophysics Data System (ADS)
Lu, Y.; Li, C. F.
2017-12-01
Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.
NASA Astrophysics Data System (ADS)
Opie, Saul
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings.
Rachbauer, Richard; Gengler, Jamie J; Voevodin, Andrey A; Resch, Katharina; Mayrhofer, Paul H
2012-03-01
Monolithic single phase cubic (c) Ti 1- x Al x N thin films are used in various industrial applications due to their high thermal stability, which beneficially effects lifetime and performance of cutting and milling tools, but also find increasing utilization in electronic and optical devices. The present study elucidates the temperature-driven evolution of heat conductivity, electrical resistivity and optical reflectance from room temperature up to 1400 °C and links them to structural and chemical changes in Ti 1- x Al x N coatings. It is shown that various decomposition phenomena, involving recovery and spinodal decomposition (known to account for the age hardening phenomenon in c-Ti 1- x Al x N), as well as the cubic to wurtzite phase transformation of spinodally formed AlN-enriched domains, effectively increase the thermal conductivity of the coatings from ∼3.8 W m -1 K -1 by a factor of three, while the electrical resistivity is reduced by one order of magnitude. A change in the coating color from metallic grey after deposition to reddish-golden after annealing to 1400 °C is related to the film structure and discussed in terms of film reflectivity.
Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Scannapieco, Evan; Brüggen, Marcus
2008-10-01
Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.
De novo selection of oncogenes.
Chacón, Kelly M; Petti, Lisa M; Scheideman, Elizabeth H; Pirazzoli, Valentina; Politi, Katerina; DiMaio, Daniel
2014-01-07
All cellular proteins are derived from preexisting ones by natural selection. Because of the random nature of this process, many potentially useful protein structures never arose or were discarded during evolution. Here, we used a single round of genetic selection in mouse cells to isolate chemically simple, biologically active transmembrane proteins that do not contain any amino acid sequences from preexisting proteins. We screened a retroviral library expressing hundreds of thousands of proteins consisting of hydrophobic amino acids in random order to isolate four 29-aa proteins that induced focus formation in mouse and human fibroblasts and tumors in mice. These proteins share no amino acid sequences with known cellular or viral proteins, and the simplest of them contains only seven different amino acids. They transformed cells by forming a stable complex with the platelet-derived growth factor β receptor transmembrane domain and causing ligand-independent receptor activation. We term this approach de novo selection and suggest that it can be used to generate structures and activities not observed in nature, create prototypes for novel research reagents and therapeutics, and provide insight into cell biology, transmembrane protein-protein interactions, and possibly virus evolution and the origin of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Yang, Jinhui; Nappini, Silvia
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.
1996-01-01
Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.
1996-12-31
Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less
Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...
2017-06-09
Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less
Zhang, Lijun; Zunger, Alex
2015-02-11
Layered group-VIB transition metal dichalcogenides (with the formula of MX2) are known to show a transition from an indirect band gap in the thick n-monolayer stack (MX2)n to a direct band gap at the n = 1 monolayer limit, thus converting the system into an optically active material suitable for a variety of optoelectronic applications. The origin of this transition has been attributed predominantly to quantum confinement effect at reduced n. Our analysis of the evolution of band-edge energies and wave functions as a function of n using ab initio density functional calculations including the long-range dispersion interaction reveals (i) the indirect-to-direct band gap transformation is triggered not only by (kinetic-energy controlled) quantum confinement but also by (potential-energy controlled) band repulsion and localization. On its own, neither of the two effects can explain by itself the energy evolution of the band-edge states relevant to the transformation; (ii) when n decreased, there emerge distinct regimes with characteristic localization prototypes of band-edge states deciding the optical response of the system. They are distinguished by the real-space direct/indirect in combination with momentum-space direct/indirect nature of electron and hole states and give rise to distinct types of charge distribution of the photoexcited carriers that control excitonic behaviors; (iii) the various regimes associated with different localization prototypes are predicted to change with modification of cations and anions in the complete MX2 (M = Cr, Mo, W and X = S, Se, Te) series. These results offer new insight into understanding the excitonic properties (e.g., binding energy, lifetime etc.) of multiple layered MX2 and their heterostructures.
Oceanic transform faults: how and why do they form? (Invited)
NASA Astrophysics Data System (ADS)
Gerya, T.
2013-12-01
Oceanic transform faults at mid-ocean ridges are often considered to be the direct product of plate breakup process (cf. review by Gerya, 2012). In contrast, recent 3D thermomechanical numerical models suggest that transform faults are plate growth structures, which develop gradually on a timescale of few millions years (Gerya, 2010, 2013a,b). Four subsequent stages are predicted for the transition from rifting to spreading (Gerya, 2013b): (1) crustal rifting, (2) multiple spreading centers nucleation and propagation, (3) proto-transform faults initiation and rotation and (4) mature ridge-transform spreading. Geometry of the mature ridge-transform system is governed by geometrical requirements for simultaneous accretion and displacement of new plate material within two offset spreading centers connected by a sustaining rheologically weak transform fault. According to these requirements, the characteristic spreading-parallel orientation of oceanic transform faults is the only thermomechanically consistent steady state orientation. Comparison of modeling results with the Woodlark Basin suggests that the development of this incipient spreading region (Taylor et al., 2009) closely matches numerical predictions (Gerya, 2013b). Model reproduces well characteristic 'rounded' contours of the spreading centers as well as the presence of a remnant of the broken continental crustal bridge observed in the Woodlark basin. Similarly to the model, the Moresby (proto)transform terminates in the oceanic rather than in the continental crust. Transform margins and truncated tip of one spreading center present in the model are documented in nature. In addition, numerical experiments suggest that transform faults can develop gradually at mature linear mid-ocean ridges as the result of dynamical instability (Gerya, 2010). Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. The ridge instability is governed by rheological weakening of active fault structures. The instability is most efficient for slow to intermediate spreading rates, whereas ultraslow and (ultra)fast spreading rates tend to destabilize transform faults (Gerya, 2010; Püthe and Gerya, 2013) References Gerya, T. (2010) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047-1050. Gerya, T. (2012) Origin and models of oceanic transform faults. Tectonophys., 522-523, 34-56 Gerya, T.V. (2013a) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Interiors, 214, 35-52. Gerya, T.V. (2013b) Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin. Petrology, 21, 1-10. Püthe, C., Gerya, T.V. (2013) Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res., DOI: http://dx.doi.org/10.1016/j.gr.2013.04.005 Taylor, B., Goodliffe, A., Martinez, F. (2009) Initiation of transform faults at rifted continental margins. Comptes Rendus Geosci., 341, 428-438.
NASA Astrophysics Data System (ADS)
Wang, D.; Lee, J. R.; Talley, C. E.; Murphy, K. E.; Han, T. Y.; Deyoreo, J. J.; Dove, P. M.
2006-12-01
Calcium carbonate biominerals are particularly significant because of their direct role in regulating the global carbon cycle, as well as their ubiquitous occurrence across earth environments. Biogenic carbonates are further distinguished by their broad phlyogenetic distribution; hence it has been suggested that unrelated eukaryotes must have used similar biochemical strategies to control mineralization. Recent studies have shown that an amorphous calcium carbonate (ACC) phase potentially plays a key role in the initial formation of carbonate minerals and in "shaping" them into complex morphologies widely seen in biominerals. Echinoderms, mollusks, and possibly many other organisms use ACC as a precursor phase that is first nucleated in cellularly controlled environments such as vesicles and subsequently transforms into a fully crystalline material. Recent studies on sea urchin embryos have shown that during transformation ACC develops short range that resembles calcite before fully crystallizing and serve as inspiration for our studies in synthetic systems. Self-assembled monolayers (SAM) on gold and silver have been used as simple model systems that approximate biological surfaces. Many studies have shown that thiol monolayers with hydroxyl termination stabilize a transitory ACC film that with prolonged exposure to aqueous solution transforms into calcite nucleated on {104} faces. Using Near Edge X-ray Absorption Fine Structure (NEXAFS) we studied SAM/mineral interactions with well ordered mercaptophenol monolayers showed that when these films are first exposed to calcium carbonate solutions, they become disordered and remain so after subsequent deposition of an ACC over-layer. Yet calcite nucleates and grows from the surface bound ACC with predominantly {104} orientation, which suggests a dynamic structural relationship between the SAMs and the mineral phase. While the monolayer/mineral phase interaction has been characterized, the mechanism for nucleating calcite from ACC on these SAMs remains unknown and is the objective of this research. Our preliminary observations of the transforming ACC film with in situ Raman spectroscopy have shown a strengthening of the symmetric mode of the carbonate ion suggesting ordering of the ACC. To fully determine the structural evolution of the mineral phase we will use both Raman and Extended X-Ray Absorption Fine Structure (EXAFS) measurements, coupled with morphological analysis using SEM.
On the evolution of morphology of zirconium sponge during reduction and distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, K.; Padmaprabu, C.; Nandi, D.
2008-03-15
High purity zirconium metal is produced by magnesio-thermic reduction of zirconium tetrachloride followed by vacuum distillation. The reduction process is carried out in a batch giving metal sponge and magnesium chloride in the reduced mass. The sponge is purified to using by vacuum distillation. The morphology of the sponge formed during the reduction and its influence on further processing has significant importance. In the present study, a detailed investigation involving evolution of the morphology of sponge particles and its implication during the vacuum distillation was carried out. The study of the microstructure was done using scanning electron microscopy and X-raymore » diffraction. It is observed that the nascent sponge formed is highly unstable which transforms to a needle-like morphology almost immediately, which further transforms to rounded and finally to a bulk shape. Faceting of the surface and needle-shape formation were observed in these particles, this is probably due to anisotropy in the surface energy. The morphology of the sponge formed during the reduction influences the distillation process. The fine needle-like shape sponge morphology leads to particle ejection, which is explained to be due to curvature effect. This is responsible for the formation of unwanted mass during distillation. XRD line broadening analysis indicates that the individual sponge particles are free from structural defects (dislocation) and are nearly single crystalline in nature.« less
Mitochondria-targeted molecules determine the redness of the zebra finch bill.
Cantarero, Alejandro; Alonso-Alvarez, Carlos
2017-10-01
The evolution and production mechanisms of red carotenoid-based ornaments in animals are poorly understood. Recently, it has been suggested that enzymes transforming yellow carotenoids to red pigments (ketolases) in animal cells may be positioned in the inner mitochondrial membrane (IMM) intimately linked to the electron transport chain. These enzymes may mostly synthesize coenzyme Q 10 (coQ 10 ), a key redox-cycler antioxidant molecularly similar to yellow carotenoids. It has been hypothesized that this shared pathway favours the evolution of red traits as sexually selected individual quality indices by revealing a well-adjusted oxidative metabolism. We administered mitochondria-targeted molecules to male zebra finches ( Taeniopygia guttata ) measuring their bill redness, a trait produced by transforming yellow carotenoids. One molecule included coQ 10 (mitoquinone mesylate, MitoQ) and the other one (decyl-triphenylphosphonium; dTPP) has the same structure without the coQ 10 aromatic ring. At the highest dose, the bill colour of MitoQ and dTPP birds strongly differed: MitoQ birds' bills were redder and dTPP birds showed paler bills even compared to birds injected with saline only. These results suggest that ketolases are indeed placed at the IMM and that coQ 10 antioxidant properties may improve their efficiency. The implications for evolutionary theories of sexual signalling are discussed. © 2017 The Author(s).
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Satellite-Based Investigations of the Transition from an Oceanic to Continental Transform Margin
NASA Technical Reports Server (NTRS)
Miller, M. Meghan
1998-01-01
Detailed characterization of neotectonics evolution of the Valle de San Felipe and Arroyo Grande regions in northern Baja California. Reoccupied GEOMEX GPS sites, and occupied a regional GPS (Global Positioning System) network. The Baja California peninsula in Mexico offers a unique setting for studying the kinematic evolution of a complex, active strike-slip/rift plate boundary. We are currently conducting remote sensing, geologic, and geodetic studies of this boundary. The combined data sets will yield instantaneous and time integrated views of its evolution. This proposal solicits renewed funding from NASA to support remote sensing and geologic studies. During the late Cenozoic, Baja California has been the locus of changing fault geometry that has accommodated components of the relative motion between the North America and Pacific plates. Contemporary slip between the two plates occurs in a broad zone that encompasses much of southern California and the Baja California Peninsula. The transfer of slip across this zone in southern California is relatively well understood. South of the border, the geometry and role of specific faults and structural provinces in transferring plate margin deformation across the peninsula is enigmatic. Results We use Landsat Thematic Mapper imagery of the Baja California Peninsula to identify recent and active faults, and then conduct field studies that characterize the temporal and spatial structural evolution of the plate margin. These data address questions concerning the neotectonic development of the Gulf of California, the Baja California Peninsula, and their role in evolution of the post-Miocene Pacific - North American plate boundary. Moreover, these studies provide constraints on the geometry of active faults, allowing more exact understanding of the results of ongoing NASA-supported geodetic experiments. In addition, anticipated publication of the TM scenes will provide a widely available geological data base for relatively little-known peninsula California. Achievements include development of an ArcInfo data base of Landsat and SPOT imagery, detailed field studies of Neogene structures in northeastern Baja California, and new constraint on Pacific - North America plate motion at Baja California latitudes. These results are reported in maps, manuscripts and data products which are published or near completion.
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...
2016-09-30
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Tracy, C. L.; Shamblin, J.
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bijumon, Pazhoor Varghese; Sebastian, Mailadil Thomas; Dias, Anderson
2005-05-15
Complex perovskite-type Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] (0{<=}x{<=}5) ceramics were prepared by conventional solid-state ceramic route. The crystal structure, microwave dielectric properties, and vibrational spectroscopic characteristics of these materials are reported. The structure and microstructure were investigated by x-ray diffraction and scanning electron microscopy techniques. The microwave dielectric properties were measured in the 3-5-GHz frequency range by the resonance method. Structural evolutions from orthorhombic to an averaged pseudocubic phase, with associated changes in dielectric properties, were observed as a function of composition. The structure-property relationships in these ceramics were established using Raman and Fourier transform infrared spectroscopic techniques. Ramanmore » analysis showed characteristic bands of ordered perovskite materials, with variation in both intensity and frequency as a function of composition.« less
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid; Gadella, M., E-mail: manuelgadella1@gmail.com
Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them ismore » obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.« less
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
Chen, Chen; Kang, Yijin; Huo, Ziyang; ...
2014-02-27
Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less
2013-01-01
Background The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus). Results In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature. Conclusions Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It is hypothesized that the iliac process or ridge present in most tetrapodomorph fish is the precursor to the tetrapod ilium and that its evolution mimicked its development in modern salamanders. PMID:23342976
Boisvert, Catherine Anne; Joss, Jean Mp; Ahlberg, Per E
2013-01-23
The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus). In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature. Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It is hypothesized that the iliac process or ridge present in most tetrapodomorph fish is the precursor to the tetrapod ilium and that its evolution mimicked its development in modern salamanders.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei
2017-07-01
Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yong; Ni, Yongnian
2014-02-01
Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.
Titanate-based adsorbents for radioactive ions entrapment from water.
Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong
2013-03-21
This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.
Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets
NASA Astrophysics Data System (ADS)
Leonov, Andrey O.; Bogdanov, Alexei N.
2018-04-01
The coupling between angular (twisting) and longitudinal modulations arising near the ordering temperature of noncentrosymmetric ferromagnets strongly influences the structure of skyrmion states and their evolution in an applied magnetic field. In the precursor states of cubic helimagnets, a continuous transformation of skyrmion lattices into the saturated state is replaced by the first-order processes accompanied by the formation of multidomain states. Recently the effects imposed by dominant longitudinal modulations have been reported in bulk MnSi and FeGe. Similar phenomena can be observed in the precursor regions of cubic helimagnet epilayers and in easy-plane chiral ferromagnets (e.g. in the hexagonal helimagnet CrNb3S6).
Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism
NASA Astrophysics Data System (ADS)
Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.
2016-01-01
Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).
Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics
NASA Astrophysics Data System (ADS)
Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar
2016-08-01
Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.
Wartime Test and Evaluation; Initiatives Lead to Cultural Change
2007-05-14
28 Business Transformation... business practices [4]. He emphasized the necessity of speeding our evolution 2 toward greater interoperability and interdependency for systems deployed to...associated T&E process has changed during wartime and is unlikely to return to the traditional process when the war is over, (2) Business transformation
UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.
Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran
2017-06-01
Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao
2018-02-01
A series of Ni55-x Fe x Mn20Ga25 (0 ⩽ x ⩽ 5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x = 0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M → L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M → 5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5 × 105 J m-3) for the alloys with x > 3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x = 4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.
Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution
2017-01-01
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929
Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.
Mesoudi, Alex
2017-07-24
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.
Hierarchical Model for the Evolution of Cloud Complexes
NASA Astrophysics Data System (ADS)
Sánchez D., Néstor M.; Parravano, Antonio
1999-01-01
The structure of cloud complexes appears to be well described by a tree structure (i.e., a simplified ``stick man'') representation when the image is partitioned into ``clouds.'' In this representation, the parent-child relationships are assigned according to containment. Based on this picture, a hierarchical model for the evolution of cloud complexes, including star formation, is constructed. The model follows the mass evolution of each substructure by computing its mass exchange with its parent and children. The parent-child mass exchange (evaporation or condensation) depends on the radiation density at the interphase. At the end of the ``lineage,'' stars may be born or die, so that there is a nonstationary mass flow in the hierarchical structure. For a variety of parameter sets the system follows the same series of steps to transform diffuse gas into stars, and the regulation of the mass flux in the tree by previously formed stars dominates the evolution of the star formation. For the set of parameters used here as a reference model, the system tends to produce initial mass functions (IMFs) that have a maximum at a mass that is too high (~2 Msolar) and the characteristic times for evolution seem too long. We show that these undesired properties can be improved by adjusting the model parameters. The model requires further physics (e.g., allowing for multiple stellar systems and clump collisions) before a definitive comparison with observations can be made. Instead, the emphasis here is to illustrate some general properties of this kind of complex nonlinear model for the star formation process. Notwithstanding the simplifications involved, the model reveals an essential feature that will likely remain if additional physical processes are included, that is, the detailed behavior of the system is very sensitive to the variations on the initial and external conditions, suggesting that a ``universal'' IMF is very unlikely. When an ensemble of IMFs corresponding to a variety of initial or external conditions is examined, the slope of the IMF at high masses shows variations comparable to the range derived from observational data. These facts suggest that the considered physical processes (phase transitions regulated by the radiation field) may play a role in the global evolution of molecular complexes.
Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems
NASA Astrophysics Data System (ADS)
Zhao, Lei
Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that the attachment behavior takes place collectively and heterogeneously, similarly to Al diffusion in MGs. Finally, we applied the MD technique to study the origin of five-fold twinning nucleation during the solidification of Al base alloys. We studied several model alloys and reported the observed nucleation pathway. We found that the key factors controlling the five-fold twinning are the twin boundary energy and the formation of pentagon structures, and the twin boundary energy plays the dominant role in the five-fold twinning in the model alloys studied.
Geochemistry of Intra-Transform Lavas from the Galápagos Transform Fault
NASA Astrophysics Data System (ADS)
Morrow, T. A.; Mittelstaedt, E. L.; Harpp, K. S.
2013-12-01
The Galápagos plume has profoundly affected the development and evolution of the nearby (<250 km) Galápagos Transform Fault (GTF), a ~100km right-stepping offset in the Galápagos Spreading Center (GSC). The GTF can be divided into two sections that represent different stages of transform evolution: the northern section exhibits fully developed transform fault morphology, whereas the southern section is young, and deformation is more diffuse. Both segments are faulted extensively and include numerous small (<0.5km3) monogenetic volcanic cones, though volcanic activity is more common in the south. To examine the composition of the mantle source and melting conditions responsible for the intra-transform lavas, as well as the influence of the plume on GTF evolution, we present major element, trace element, and radiogenic isotope analysis of samples collected during SON0158, EWI0004, and MV1007 cruises. Radiogenic isotope ratio variations in the Galápagos Archipelago require four distinct mantle reservoirs across the region: PLUME, DM, FLO, and WD. We find that Galápagos Transform lavas are chemically distinct from nearby GSC lavas and neighboring seamounts. They have radiogenic isotopic compositions that lie on a mixing line between DM and PLUME, with little to no contribution from any other mantle reservoirs despite their geographic proximity to WD-influenced lavas erupted along the GSC and at nearby (<50km away) seamounts. Within the transform, lavas from the northern section are more enriched in radiogenic isotopes than lavas sampled in the southern section. Transform lavas are anomalously depleted in incompatible trace elements (ITEs) relative to GSC lavas, suggesting unique melting conditions within the transform. Isotopic variability along the transform axis indicates that mantle sources and/or melting mechanisms vary between the northern and southern sections, which may relate to their distances from the plume or the two-stage development and evolution of the Galápagos Transform Fault. We present a melting model that reproduces GTF lava chemistry from a mixture of two partial melts of PLUME and DM. We assume that the DM source has an ITE composition similar to the depleted upper mantle, melting is purely fractional, and lavas do not fractionate during ascent. Solutions were achieved using a Metropolis algorithm and constrained by observed GTF lava chemistry. Model results predict that GTF lavas are produced by a mixture of a ~3%×1% partial melt of the PLUME source and a ~5%×4% partial melt of the DM source. Our model predicts that a larger proportion of PLUME melts contribute to GTF lavas than DM melts. Absence of the WD component and relatively low concentrations of ITEs may indicate that lavas in the GTF are produced from a source that has already undergone partial melting and is being re-melted beneath the TF. Re-melting may be caused by extension across the GTF, or development of the southern section of the GTF via the ~1Ma ridge jump.
The Evolution of the Georgia Tech Library Circulation Department
ERIC Educational Resources Information Center
Glover, Karen
2006-01-01
The author reviews the evolution of the Circulation Department at the Georgia Institute of Technology (Georgia Tech) Library and Information Center from 2001 to the present. It is shown how a traditional circulation department with poor customer relations transformed itself by adopting innovative policies and services leading to improved customer…
Gondermann, Thomas
2008-01-01
This paper discusses the role that a group of evolutionists, the X-Club, played in the epistemic and institutional transformation of Victorian anthropology in the 1860s. It analyses how anthropology has been brought into line with the theory of evolution, which gained currency at the same time. The X-Club was a highly influential pressure group in the Victorian scientific community. It campaigned for the theory of evolution in several fields of the natural sciences and had a considerable influence on the modernization of the sciences. Yet, this club also intervened in the anthropological discourse of these years. The X-Club's meddling with anthropology led to the latter's evolutionary turn. The introduction of an evolutionary agenda into Victorian anthropology depended not only on the X-Club's theoretical contributions but also on the structural reformation of the discipline. Its campaigns also aimed at marginalizing the proponents of pre-evolutionary anthropology in its institutions and led to the foundation of a new organization in anthropology: The Anthropological Institute of Great Britain and Ireland. Thus, evolutionary anthropology emerged in the 1860s also as the result of science-politicking rather than just from the transmission of evolutionary concepts through discourse.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2015-06-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2014-08-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
Zeng, Qinghong; Langereis, Martijn A.; van Vliet, Arno L. W.; Huizinga, Eric G.; de Groot, Raoul J.
2008-01-01
The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer–monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. PMID:18550812
NASA Astrophysics Data System (ADS)
Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.
2018-02-01
The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.
Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae
Zomer, Aldert; Bootsma, Hester J.; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W. M.; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2013-01-01
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally. PMID:24086154
Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae.
Johnston, Calum; Caymaris, Stéphanie; Zomer, Aldert; Bootsma, Hester J; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W M; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2013-01-01
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ~3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ~100 to ~900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally.
Disorder trapping by rapidly moving phase interface in an undercooled liquid
NASA Astrophysics Data System (ADS)
Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus
2017-08-01
Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.
A level set approach for shock-induced α-γ phase transition of RDX
NASA Astrophysics Data System (ADS)
Josyula, Kartik; Rahul; De, Suvranu
2018-02-01
We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-01-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm−2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec−1. Moreover, we achieve 10 mA cm−2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2. PMID:28485395
Time Dependent Structural Evolution of Porous Organic Cage CC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, Jolie; Elsaidi, Sameh; Anderson, Ryther
Porous organic cage compounds are emerged with remarkable structural diversity and functionality that have applications in gas separation, catalysis and energy storage. Fundamental understanding of nucleation and growth of such materials have significant implications for understanding molecularly directed self-assembly phenomena. Herein we followed the structural evolution of a prototypical type of porous organic cage, CC3 as a function of synthesis time. Three distinctive crystal formation stages were identified: at short synthesis times, a rapid crystal growth stage in which amorphous agglomerates transformed into larger irregular particles was observed. At intermediate synthesis times, a decrease in crystal size over time wasmore » observed presumably due to crystal fragmentation, redissolution and/or homogeneous nucleation led. Finally, at longer synthesis times, a regrowth process was observed in which particles coalesced through Ostwald ripening leading to a continuous increase in crystal size. Molecular simulation studies, based on the construction of in silico CC3 models and simulation of XRD patterns and nitrogen isotherms, confirm the samples at different synthesis times to be a mixture of CC3α and CC3 amorphous phases. The CC3α phase is found to contract at different synthesis times, and the amorphous phase is found to essentially disappear at the longest synthesis time. Nitrogen and carbon dioxide adsorption properties of these CC3 phases were evaluated, and were highly dependent on synthesis time.« less
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.
2017-01-01
We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.
Direct 4D printing via active composite materials.
Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H Jerry; Dunn, Martin L
2017-04-01
We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service.
Recent studies on the developing human hepatocellular carcinoma.
Gerber, M A
1986-01-01
From our knowledge of characteristic phenotypic changes of the preneoplastic lesions during the stepwise evolution of hepatocellular carcinoma (HCC) in experimental models, we are now beginning to define the structural, histochemical, biochemical, antigenic and molecular properties of early HCC and of the putative preneoplastic changes in human liver. Histological, ultrastructural, morphometric and immunohistochemical studies suggest that adenomatous nodules of regenerating and hyperplastic hepatocytes are more likely to represent direct precursors of HCC than dysplastic hepatocytes. Histochemical and immunomorphological investigations show appreciable functional and phenotypic heterogeneity of human HCC as previously recognized in experimental hepatocarcinogenesis. Studies of altered expression of oncogenes in the regenerating liver and HCC are beginning to define the molecular mechanisms in cell growth and malignant transformation. Although integration of Hepadna viral DNA sequences frequently occurs during persistent infection in man and animals, the exact mechanism of viral oncogenesis remains to be elucidated. It is likely that the development of monoclonal antibodies to surface antigens on transformed hepatocytes will be useful for exploring lineage relationships between the cell populations involved in hepatocarcinogenesis.
Direct 4D printing via active composite materials
Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H. Jerry; Dunn, Martin L.
2017-01-01
We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service. PMID:28439560
NASA Astrophysics Data System (ADS)
Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin
2016-10-01
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.
NASA Astrophysics Data System (ADS)
Ai, Lunhong; Jiang, Jing
CoLaxFe2-xO4 (x = 0.00, 0.05 and 0.1) nanoparticles were prepared simply by a modified citrate precursor route. Effects of La-substituting level on the their magnetic properties were investigated on the basis of the structural analysis. The thermal evolution of the precursor, as well as the microstructure of as-prepared products were studied by means of a thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectrometer. The magnetic properties of the as-prepared samples were measured using a vibrating sample magnetometer (VSM). It was found that the magnetic properties were dependent on many factors such as La-substituting level, particle size and microstructure. The observed saturation magnetization decreased with increasing La content, whereas coercivity exhibited reverse behavior.
Filamentous Phage: Structure and Biology.
Rakonjac, Jasna; Russel, Marjorie; Khanum, Sofia; Brooke, Sam J; Rajič, Marina
2017-01-01
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, A.; Rossi, M.; Buccolieri, A.
2014-06-19
The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{submore » 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.« less
Natural and Chemotherapy-Induced Clonal Evolution of Tumors.
Ibragimova, M K; Tsyganov, M M; Litviakov, N V
2017-04-01
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
Atomistic Simulation of Interstitial Dislocation Loop Evolution under Applied Stresses in BCC Iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Xue Hao; Wang, Dong; Setyawan, Wahyu
Evolution of an interstitial 1/2⟨111⟩ dislocation loop under tensile, shear, and torsion stresses is studied with molecular statics method. Under a tensile stress, the dependence of ultimate tensile strength on size of loop is calculated. The formation of small shear loops around the initial prismatic loop is confirmed as an intermediate state to form the final dislocation network. Under a shear stress, the rotation of a loop is observed not only by a change of the habit plane but also through a transformation between a shear and a prismatic loop. Under torsion, a perfect BCC crystal may undergo a BCCmore » to FCC or BCC to HCP transformation. The present work indicates that a 1/2⟨111⟩ loop can delay these transformations, resulting in the formation of micro-crack on the surface.« less
Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process
NASA Astrophysics Data System (ADS)
Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun
2009-03-01
During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.
Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana).
Evans, Ben J
2008-05-01
Speciation of clawed frogs occurred through bifurcation and reticulation of evolutionary lineages, and resulted in extant species with different ploidy levels. Duplicate gene evolution and expression in these animals provides a unique perspective into the earliest genomic transformations after vertebrate whole genome duplication (WGD) and suggests that functional constraints are relaxed compared to before duplication but still consistently strong for millions of years following WGD. Additionally, extensive quantitative expression divergence between duplicate genes occurred after WGD. Diversification of clawed frogs was potentially catalyzed by transposition and divergent resolution--processes that occur through different genetic mechanisms but that have analogous implications for genome structure. How sex determination is maintained after genome duplication is fundamental to our understanding of why allopolyploidization is so prevalent in this group, and why clawed frogs violate Haldane's Rule for hybrid sterility. Future studies of expression subfunctionalization in polyploids will shed light on the role and purviews of cis- and trans-regulatory elements in gene regulation.
NASA Astrophysics Data System (ADS)
Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P.; Fong, Dillon D.; Highland, Matthew J.; Baldo, Peter M.; Stamenkovic, Vojislav R.; Freeland, John W.; Eastman, Jeffrey A.; Markovic, Nenad M.
2014-06-01
In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru4+ to unstable Run>4+. This ordered(Ru4+)-to-disordered(Run>4+) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.
Laser-Induced Graphene Formation on Wood.
Ye, Ruquan; Chyan, Yieu; Zhang, Jibo; Li, Yilun; Han, Xiao; Kittrell, Carter; Tour, James M
2017-10-01
Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO 2 laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical modeling of surface wave development under the action of wind
NASA Astrophysics Data System (ADS)
Chalikov, Dmitry
2018-06-01
The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
White Matter Correlates of Musical Anhedonia: Implications for Evolution of Music.
Loui, Psyche; Patterson, Sean; Sachs, Matthew E; Leung, Yvonne; Zeng, Tima; Przysinda, Emily
2017-01-01
Recent theoretical advances in the evolution of music posit that affective communication is an evolutionary function of music through which the mind and brain are transformed. A rigorous test of this view should entail examining the neuroanatomical mechanisms for affective communication of music, specifically by comparing individual differences in the general population with a special population who lacks specific affective responses to music. Here we compare white matter connectivity in BW, a case with severe musical anhedonia, with a large sample of control subjects who exhibit normal variability in reward sensitivity to music. We show for the first time that structural connectivity within the reward system can predict individual differences in musical reward in a large population, but specific patterns in connectivity between auditory and reward systems are special in an extreme case of specific musical anhedonia. Results support and extend the Mixed Origins of Music theory by identifying multiple neural pathways through which music might operate as an affective signaling system.
NASA Astrophysics Data System (ADS)
Hertz, P.
2003-03-01
The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.
White Matter Correlates of Musical Anhedonia: Implications for Evolution of Music
Loui, Psyche; Patterson, Sean; Sachs, Matthew E.; Leung, Yvonne; Zeng, Tima; Przysinda, Emily
2017-01-01
Recent theoretical advances in the evolution of music posit that affective communication is an evolutionary function of music through which the mind and brain are transformed. A rigorous test of this view should entail examining the neuroanatomical mechanisms for affective communication of music, specifically by comparing individual differences in the general population with a special population who lacks specific affective responses to music. Here we compare white matter connectivity in BW, a case with severe musical anhedonia, with a large sample of control subjects who exhibit normal variability in reward sensitivity to music. We show for the first time that structural connectivity within the reward system can predict individual differences in musical reward in a large population, but specific patterns in connectivity between auditory and reward systems are special in an extreme case of specific musical anhedonia. Results support and extend the Mixed Origins of Music theory by identifying multiple neural pathways through which music might operate as an affective signaling system. PMID:28993748
Kotakis, Christos
2015-01-01
Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.
Prier, Christopher K; Arnold, Frances H
2015-11-11
Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.
NASA Astrophysics Data System (ADS)
Fuchssteiner, Benno; Carillo, Sandra
1989-01-01
Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform. Simple methods are exhibited which allow to compute out of N-soliton solutions of the KdV (Bargman potentials) explicit solutions of equations like the Harry Dym equation. Certain solutions are plotted.
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
Bouchard, M.; Zurdo, J.; Nettleton, E. J.; Dobson, C. M.; Robinson, C. V.
2000-01-01
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species. PMID:11106169
Jack Mezirow's Conceptualisation of Adult Transformative Learning: A Review
ERIC Educational Resources Information Center
Calleja, Colin
2014-01-01
This paper traces the evolution of Jack Mezirow's transformative learning theory and its conceptualisation. It discusses the three major influences, namely Thomas Khun's philosophical conception of paradigm, Freire's conception of conscientisation and consciousness growth, and Habermas' domains of learning and the discussion of…
The Difference Engine: Computing, Knowledge, and the Transformation of Learning
ERIC Educational Resources Information Center
Provenzo, Eugene F.
2011-01-01
Since the 1960s, the rapid evolution of technology has created a new cultural geography--a virtual geography. "The Difference Engine: Computing, Knowledge and the Transformation of Learning" offers a conscious critique of this change and its effects on contemporary culture and education. This engaging text assumes that we are at a critical…
ERIC Educational Resources Information Center
Renault, Thiago; Carvalho de Mello, Jose Manoel
2013-01-01
The Brazilian government has been fostering innovation through policies aimed at transferring technology from publicly funded science and technology organizations to the market. One response to this initiative has been an attempt by some universities to transform themselves into entrepreneurial institutions. In this paper the authors use a…
NASA Astrophysics Data System (ADS)
Khanpour, Hamzeh; Mirjalili, Abolfazl; Tehrani, S. Atashbar
2017-03-01
An analytical solution based on the Laplace transformation technique for the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations is presented at next-to-leading order accuracy in perturbative QCD. This technique is also applied to extract the analytical solution for the proton structure function, F2p(x ,Q2) , in the Laplace s space. We present the results for the separate parton distributions of all parton species, including valence quark densities, the antiquark and strange sea parton distribution functions (PDFs), and the gluon distribution. We successfully compare the obtained parton distribution functions and the proton structure function with the results from GJR08 [Gluck, Jimenez-Delgado, and Reya, Eur. Phys. J. C 53, 355 (2008)], 10.1140/epjc/s10052-007-0462-9 and KKT12 [Khanpour, Khorramian, and Tehrani, J. Phys. G 40, 045002 (2013)], 10.1088/0954-3899/40/4/045002 parametrization models as well as the x -space results using
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang
Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less
The Four Phases of Russian Engineering Education in the Era of Social Experiments
ERIC Educational Resources Information Center
Churlyaeva, Natalya
2013-01-01
We consider some peculiarities in the evolution of Russian engineering education as it underwent two radical paradigmal transformations during the past century, especially from the viewpoint of restrictions that inhibited access to higher education (HE). The driving forces of this evolution are revealed and some negative results are shown. While…
SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in
We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sandeep; Rao, Basuthkar J.; Baker, Nathan A.
2013-04-01
Phylogenetic analysis of proteins using multiple sequence alignment (MSA) assumes an underlying evolutionary relationship in these proteins which occasionally remains undetected due to considerable sequence divergence. Structural alignment programs have been developed to unravel such fuzzy relationships. However, none of these structure based methods have used electrostatic properties to discriminate between spatially equivalent residues. We present a methodology for MSA of a set of related proteins with known structures using electrostatic properties as an additional discriminator (STEEP). STEEP first extracts a profile, then generates a multiple structural superimposition providing a consolidated spatial framework for comparing residues and finally emits themore » MSA. Residues that are aligned differently by including or excluding electrostatic properties can be targeted by directed evolution experiments to transform the enzymatic properties of one protein into another. We have compared STEEP results to those obtained from a MSA program (ClustalW) and a structural alignment method (MUSTANG) for chymotrypsin serine proteases. Subsequently, we used PhyML to generate phylogenetic trees for the serine and metallo-β-lactamase superfamilies from the STEEP generated MSA, and corroborated the accepted relationships in these superfamilies. We have observed that STEEP acts as a functional classifier when electrostatic congruence is used as a discriminator, and thus identifies potential targets for directed evolution experiments. In summary, STEEP is unique among phylogenetic methods for its ability to use electrostatic congruence to specify mutations that might be the source of the functional divergence in a protein family. Based on our results, we also hypothesize that the active site and its close vicinity contains enough information to infer the correct phylogeny for related proteins.« less
Cimpoiasu, Vily M; Popa, Radu
2012-12-01
Biotic Abstract Dual Automata (BiADA), a novel simulation concept for studying the evolution of prebiotic order, has four main attributes. (1) The energy of each form of organization is the sum of two stocks: entropy-associated energy (E(s)) and free energy (E(g)), with dissimilar meaning, energy conductive, and energy exchange properties; (2) E(s) and E(g) have user-defined absolute values and are not derived from the relative thermodynamic parameters standard entropy and standard Gibbs free energy; (3) BiADA analyzes changes in both units of transformation and units of organization; and (4) BiADA-based models analyze forward and reverse transformations separately and the brut production of forms of organization. We discuss quantitative relationships between energy, information, and order parameters proposed in BiADA-based simulations. The example we show is that of a simple system with two forms of organization. The model monitors the energy flow and budget, the evolution of order and information capacity, and the energy cost of producing and maintaining the system's state. We show the effect of six prebiotic factors on the evolution of order and energy dissipative potential of the system. These are the initial state of the system, energy availability, the intrinsic energy conductivity, catalysis of "A to B" transformations, B autocatalysis, and the terminal heat sink. We discuss benefits of employing BiADA principles in the study of the origin of order in more complex networks.
NASA Astrophysics Data System (ADS)
Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping
2018-05-01
Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral-water interface.
Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; ...
2017-08-01
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less
Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M
2017-08-01
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja; Wang, Yifeng
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less
Hidden Structural Codes in Protein Intrinsic Disorder.
Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo
2017-10-17
Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.
Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy
NASA Astrophysics Data System (ADS)
Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki
2017-03-01
Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.
Sarma, Manabendra; Adhikari, S; Mishra, Manoj K
2007-01-28
Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function
Krause, Bärbel; Abadias, Gregory; Michel, Anny; Wochner, Peter; Ibrahimkutty, Shyjumon; Baumbach, Tilo
2016-12-21
The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo 1-x Si x films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.
On the solutions of fractional order of evolution equations
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-01-01
In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.
Thermography detection on the fatigue damage
NASA Astrophysics Data System (ADS)
Yang, Bing
It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.
Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
NASA Astrophysics Data System (ADS)
Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.
2018-05-01
Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.
Multi-Lagrangians for integrable systems
NASA Astrophysics Data System (ADS)
Nutku, Y.; Pavlov, M. V.
2002-03-01
We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.
Structure evolution of gelatin particles induced by pH and ionic strength.
Xu, Jing; Li, Tianduo; Tao, Furong; Cui, Yuezhi; Xia, Yongmei
2013-03-01
Microstructure of gelatin particles played a key role in determining the physicochemical properties of gelatin. Ionic strength and pH as systematic manners were considered to affect gelatin particles structure on the micrometer scale. Scanning electron microscopy was used for depicting the morphologies of gelatin particles. Increasing pH to 10.0 or decreasing pH to 4.0, spherical, spindle, and irregular aggregates of gelatin particles at 2, 6, 10, and 14% solution (w/w) were all transformed to spindle aggregates. When NaCl was added to the system, the molecular chains of gelatin possibly rearranged themselves in a stretched state, and the ribbon aggregates was observed. The structural transitions of gelatin aggregates were strongly depended on the electrostatic repulsion. In the gelatin-sodium dodecyl sulfate (SDS) case, the micrometer scale of aggregates was larger and the different degrees of cross-links were induced through hydrophobic interaction and electrostatic repulsion. Copyright © 2012 Wiley Periodicals, Inc.
Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb) 2 (Se,Te) 3
Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; ...
2015-03-18
The group V-VI compounds|like Bi 2Se 3, Sb 2Te 3, or Bi 2Te 3|have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb) 2(Te,Se) 3 compound. Similar to some ofmore » its sister compounds, the (Bi,Sb) 2(Te,Se) 3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.« less
ERIC Educational Resources Information Center
Dietz, James S.; Rogers, Juan D.
2012-01-01
In recent times there has been a surge in interest on policy instruments to stimulate scientific and engineering research that is of greater consequence, advancing our knowledge in leaps rather than steps and is therefore more "creative" or, in the language of recent reports, "transformative." Associated with the language of "transformative…
Transformative Learning as a Metatheory: Definition, Criteria, and Typology
ERIC Educational Resources Information Center
Hoggan, Chad D.
2016-01-01
This article addresses a significant problem with transformative learning theory; namely, that it is increasingly being used to refer to almost any instance of learning. This article offers several points of clarity to resolve this problem. First, it portrays a subtle but important evolution in the way the theory has been used in the literature…