Sample records for transient current mapping

  1. Transient current induced in thin film diamonds by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  2. Transient current induced in thin film diamonds by swift heavy ions

    DOE PAGES

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; ...

    2017-04-05

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  3. Differences in the symptom profile of methamphetamine-related psychosis and primary psychotic disorders.

    PubMed

    McKetin, Rebecca; Baker, Amanda L; Dawe, Sharon; Voce, Alexandra; Lubman, Dan I

    2017-05-01

    We examined the lifetime experience of hallucinations and delusions associated with transient methamphetamine-related psychosis (MAP), persistent MAP and primary psychosis among a cohort of dependent methamphetamine users. Participants were classified as having (a) no current psychotic symptoms, (n=110); (b) psychotic symptoms only when using methamphetamine (transient MAP, n=85); (c) psychotic symptoms both when using methamphetamine and when abstaining from methamphetamine (persistent MAP, n=37), or (d) meeting DSM-IV criteria for lifetime schizophrenia or mania (primary psychosis, n=52). Current psychotic symptoms were classified as a score of 4 or more on any of the Brief Psychiatric Rating Scale items of suspiciousness, hallucinations or unusual thought content in the past month. Lifetime psychotic diagnoses and symptoms were assessed using the Composite International Diagnostic Interview. Transient MAP was associated with persecutory delusions and tactile hallucinations (compared to the no symptom group). Persistent MAP was additionally associated with delusions of reference, thought interference and complex auditory, visual, olfactory and tactile hallucinations, while primary psychosis was also associated with delusions of thought projection, erotomania and passivity. The presence of non-persecutory delusions and hallucinations across various modalities is a marker for persistent MAP or primary psychosis in people who use methamphetamine. Copyright © 2017. Published by Elsevier B.V.

  4. Real-time detection of transients in OGLE-IV with application of machine learning

    NASA Astrophysics Data System (ADS)

    Klencki, Jakub; Wyrzykowski, Łukasz

    2016-06-01

    The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.

  5. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men.

    PubMed

    Brassard, Patrice; Ferland-Dutil, Hélène; Smirl, Jonathan D; Paquette, Myriam; Le Blanc, Olivier; Malenfant, Simon; Ainslie, Philip N

    2017-04-01

    The cerebrovasculature is more efficient at compensating for pharmacologically induced transient hypertension versus transient hypotension. Whether this phenomenon exists during nonpharmacologically induced hypertension and hypotension is currently unknown. We compared the percent change in mean velocity in the middle cerebral artery (MCAvmean) per percent change in mean arterial pressure (MAP) (%ΔMCAVmean/%ΔMAP) during transient hypertension and hypotension induced during squat-stand maneuvers performed at 0.05 Hz (20-s cycles) and 0.10 Hz (10-s cycles) in 58 male volunteers. %ΔMCAvmean/%ΔMAP was attenuated by 25% ( P = 0.03, 0.05 Hz) and 47% ( P < 0.0001, 0.10 Hz) during transient hypertension versus hypotension. Thus, these findings indicate that the brain in healthy men is better adapted to compensate for physiologically relevant transient hypertension than hypotension. NEW & NOTEWORTHY The novel finding of this study is that the change in middle cerebral artery mean flow velocity is attenuated during hypertension compared with hypotension physiologically induced by oscillations in blood pressure in men. These results support that the human brain is more effective at compensating for transient hypertension than hypotension. Copyright © 2017 the American Physiological Society.

  6. HIRAX: a probe of dark energy and radio transients

    NASA Astrophysics Data System (ADS)

    Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.

    2016-08-01

    The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.

  7. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.

    This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. Here, we compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  8. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE PAGES

    Abbott, B. P.

    2016-07-20

    This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. Here, we compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  9. SUPPLEMENT: “LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914” (2016, ApJL, 826, L13)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Abernathy, M. R.

    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  10. Supplement: “Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13)

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y.-D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W.-F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B.-B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H.-F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J.-L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T.-W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory, Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; Postigo, A. de U.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration

    2016-07-01

    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  11. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  12. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  13. Automated transient detection in the STEREO Heliospheric Imagers.

    NASA Astrophysics Data System (ADS)

    Barnard, Luke; Scott, Chris; Owens, Mat; Lockwood, Mike; Tucker-Hood, Kim; Davies, Jackie

    2014-05-01

    Since the launch of the twin STEREO satellites, the heliospheric imagers (HI) have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out far into the heliosphere. A frequently used approach is to build a "J-map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. Therefore, it is desirable to develop an automated algorithm for the detection and tracking of the transient features observed in HI data. This is to some extent previously covered ground, as similar problems have been encountered in the analysis of coronagraph data and have led to the development of products such as CACtus etc. We present the results of our investigation into the automated detection of solar transients observed in J-maps formed from HI data. We use edge and line detection methods to identify transients in the J-maps, and then use kinematic models of the solar transient propagation (such as the fixed-phi and harmonic mean geometric models) to estimate the solar transients properties, such as transient speed and propagation direction, from the time-elongation profile. The effectiveness of this process is assessed by comparison of our results with a set of manually identified CMEs, extracted and analysed by the Solar Storm Watch Project. Solar Storm Watch is a citizen science project in which solar transients are identified in J-maps formed from HI data and tracked multiple times by different users. This allows the calculation of a consensus time-elongation profile for each event, and therefore does not suffer from the potential subjectivity of an individual researcher tracking an event. Furthermore, we present preliminary results regarding the estimation of the ambient solar wind speed from the automated analysis of the HI J-maps, by the tracking of numerous small scale features entrained into the ambient solar wind, which can only be tracked out to small elongations.

  14. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  15. Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure

    NASA Astrophysics Data System (ADS)

    Brown, W. S.; Marques, G. M.

    2013-07-01

    High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.

  16. A test of source-surface model predictions of heliospheric current sheet inclination

    NASA Technical Reports Server (NTRS)

    Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.

    1994-01-01

    The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.

  17. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  18. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  19. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  20. Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden.

    PubMed

    Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide

    2018-02-01

    Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    NASA Astrophysics Data System (ADS)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  2. Electromagnetic mapping of buried paleochannels in eastern Abu Dhabi Emirate, U.A.E.

    USGS Publications Warehouse

    Fitterman, D.V.; Menges, C.M.; Al Kamali, A.M.; Essa, Jama F.

    1991-01-01

    Transient electromagnetic soundings and terrain conductivity meter measurements were used to map paleochannel geometry in the Al Jaww Plain of eastern Abu Dhabi Emirate, U.A.E. as part of an integrated hydrogeologic study of the Quaternary alluvial aquifer system. Initial interpretation of the data without benefit of well log information was able to map the depth to a conductive clay layer of Tertiary age that forms the base of the aquifer. Comparison of the results with induction logs reveals that a resistive zone exists that was incorporated into the interpretation and its lateral extent mapped with the transient electromagnetic sounding data. ?? 1991.

  3. Transient Optical Sky survey

    NASA Astrophysics Data System (ADS)

    Hadjiyska, Elena Ivanova

    2009-06-01

    Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.

  4. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  5. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    DTIC Science & Technology

    2008-01-01

    faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter , taking an inventory of the Solar...Energy and Dark Matter (2) Taking an Inventory of the Solar System (3) Exploring the Transient Optical Sky (4) Mapping the Milky Way Each of these four...Constraining Dark Energy and Dark Matter Current models of cosmology require the exis- tence of both dark matter and dark energy to match observational

  6. Absence of rotational activity detected using 2-dimensional phase mapping in the corresponding 3-dimensional phase maps in human persistent atrial fibrillation.

    PubMed

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey

    2018-02-01

    Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Single Event Transients in Linear Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale

    2005-01-01

    On November 5, 2001, a processor reset occurred on board the Microwave Anisotropy Probe (MAP), a NASA mission to measure the anisotropy of the microwave radiation left over from the Big Bang. The reset caused the spacecraft to enter a safehold mode from which it took several days to recover. Were that to happen regularly, the entire mission would be compromised, so it was important to find the cause of the reset and, if possible, to mitigate it. NASA assembled a team of engineers that included experts in radiation effects to tackle the problem. The first clue was the observation that the processor reset occurred during a solar event characterized by large increases in the proton and heavy ion fluxes emitted by the sun. To the radiation effects engineers on the team, this strongly suggested that particle radiation might be the culprit, particularly when it was discovered that the reset circuit contained three voltage comparators (LM139). Previous testing revealed that large voltage transients, or glitches appeared at the output of the LM139 when it was exposed to a beam of heavy ions [NI96]. The function of the reset circuit was to monitor the supply voltage and to issue a reset command to the processor should the voltage fall below a reference of 2.5 V [PO02]. Eventually, the team of engineers concluded that ionizing particle radiation from the solar event produced a negative voltage transient on the output of one of the LM139s sufficiently large to reset the processor on MAP. Fortunately, as of the end of 2004, only two such resets have occurred. The reset on MAP was not the first malfunction on a spacecraft attributed to a transient. That occurred shortly after the launch of NASA s TOPEX/Poseidon satellite in 1992. It was suspected, and later confirmed, that an anomaly in the Earth Sensor was caused by a transient in an operational amplifier (OP-15) [KO93]. Over the next few years, problems on TDRS, CASSINI, [PR02] SOHO [HA99,HA01] and TERRA were also attributed to transients. In some cases, such events produced resets by falsely triggering circuits designed to protect against over- voltage or over-current. On at least three occasions, transients caused satellites to switch into "safe mode" in which most of the systems on board the satellites were powered down for an extended period. By the time the satellites were reconfigured and returned to full operational state, much scientific data had been lost. Fortunately, no permanent damage occurred in any of the systems and they were all successfully re-activated.

  8. Transient sodium current at subthreshold voltages: activation by EPSP waveforms

    PubMed Central

    Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.

    2012-01-01

    Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875

  9. Development and performance evaluation of an MR squeeze-mode damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan; Gołdasz, Janusz

    2015-11-01

    In this paper the authors present results of a magnetorheological (MR) damper prototype development and performance evaluation study. The damper is a device functioning in the so-called squeeze-mode of MR fluid flow regime of operation. By principle, in a squeeze-mode damper the control (working) gap height varies according to the prescribed displacement or force input profile. Such hardware has been claimed to be well suited to small-amplitude vibration damping applications. However, it is still in its infancy. Its potential seems appealing yet unclear. Accordingly, the authors reveal performance figures of the damper complemented by numerical finite-element simulations of the electro-magnetic circuit of the device. The numerical results are presented in the form of maps of averaged magnetic flux density versus coil current and gap height as well as magnetic flux, inductance, and cogging force calculations, respectively. The simulated data are followed by experimental evaluation of the damper performance incorporating plots of force versus piston displacement (velocity) across a prescribed range of excitation inputs. Moreover, some insight into transient (unsteady) characteristics of the device is provided through testing results involving transient currents.

  10. Regional business cycle synchronization through expectations

    NASA Astrophysics Data System (ADS)

    Onozaki, Tamotsu; Yanagita, Tatsuo; Kaizoji, Taisei; Toyabe, Kazutaka

    2007-09-01

    This paper provides an example in which regional business cycles may synchronize via producers’ expectations, even though there is no interregional trade, by means of a system of globally coupled, noninvertible maps. We concentrate on the dependence of the dynamics on a parameter η which denotes the inverse of price elasticity of demand. Simulation results show that several phases (the short transient, the complete asynchronous, the long transient and the intermediate transient) appear one after another as η increases. In the long transient phase, the intermittent clustering process with a long chaotic transient appears repeatedly.

  11. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.

  12. And yet it moves! Involving transient flow conditions is the logical next step for WHPA analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    As the first line of defense among different safety measures, Wellhead Protection Areas (WHPAs) have been broadly used to protect drinking water wells against sources of pollution. In most cases, their implementation relies on simplifications, such as assuming homogeneous or zonated aquifer conditions or considering steady-state flow scenarios. Obviously, both assumptions inevitably invoke errors. However, while uncertainty due to aquifer heterogeneity has been extensively studied in the literature, the impact of transient flow conditions have received yet very little attention. For instance, WHPA maps in the offices of water supply companies are fixed maps derived from steady-state models although the actual catchment out there are transient. To mitigate high computational costs, we approximate transiency by means of a dynamic superposition of steady-state flow solutions. Then, we analyze four transient drivers that often appear on the seasonal scale: (I) regional groundwater flow direction, (II) strength of the regional hydraulic gradient, (III) natural recharge to the groundwater and (IV) pumping rate. The integration of transiency in WHPA analysis leads to time-frequency maps. They express for each location the temporal frequency of catchment membership. Furthermore, we account for the uncertainty due to incomplete knowledge on geological and transiency conditions, solved through Monte Carlo simulations. The main contribution of this study, is to show the need of enhancing groundwater well protection by considering transient flow considerations during WHPA analysis. To support and complement our statement, we demonstrate that 1) each transient driver imprints an individual spatial pattern in the required WHPA, ranking their influence through a global sensitivity analysis. 2) We compare the influence of transient conditions compared to geological uncertainty in terms of areal WHPA demand. 3) We show that considering geological uncertainty alone is insufficient in the presence of transient conditions. 4) We propose a practical decision rule for selecting a proper reliability level protection in the presence of both transiency and geological uncertainty.

  13. Defect and field-enhancement characterization through electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne

    2017-05-01

    To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.

  14. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  15. Transient Rotor Activity During Prolonged 3-Dimensional Phase Mapping in Human Persistent Atrial Fibrillation.

    PubMed

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Prabhu, Sandeep; Nalliah, Chrishan; Kistler, Peter; Lee, Geoffrey

    2018-01-01

    This study sought to validate a 3-dimensional (3D) phase mapping system and determine the distribution of dominant propagation patterns in persistent atrial fibrillation (AF). Currently available systems display phase as simplified 2-dimensional maps. We developed a novel 3D phase mapping system that uses the 3D location of basket catheter electrodes and the patient's 3D left atrial surface geometry to interpolate phase and create a 3D representation of phase progression. Six-min AF recordings from the left atrium were obtained in 14 patients using the Constellation basket catheter and analyzed offline. Exported signals underwent both phase and traditional activation analysis and were then visualized using a novel 3D mapping system. Analysis involved: 1) validation of phase analysis by comparing beat-to-beat AF cycle length calculated using phase inversion with that determined from activation timing in the same 20-s segment; 2) validation of 3D phase by comparing propagation patterns observed using 3D phase with 3D activation in the same 1-min segment; and 3) determining the distribution of dominant propagation patterns in 6-min recordings using 3D phase. There was strong agreement of beat-to-beat AF cycle length between activation analysis and phase inversion (R 2  = 0.91). There was no significant difference between 3D activation and 3D phase in mean percentage of propagation patterns classified as single wavefronts (p = 0.99), focal activations (p = 0.26), disorganized activity (p = 0.76), or multiple wavefronts (p = 0.70). During prolonged 3D phase, single wavefronts were the most common propagation pattern (50.2%). A total of 34 rotors were seen in 9 of 14 patients. All rotors were transient with mean duration of 1.0 ± 0.6 s. Rotors were only observed in areas of high electrode density where the interelectrode distance was significantly shorter than nonrotor sites (7.4 [interquartile range: 6.3 to 14.6] vs. 15.3 mm [interquartile range: 10.1 to 22.2]; p < 0.001). During prolonged 3D phase mapping, transient rotors were observed in 64% of patients and reformed at the same anatomic location in 44% of patients. The electrode density of the basket catheter may limit the detection of rotors. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  17. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  18. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  19. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning.

    PubMed

    Shepard, Kathryn N; Chong, Kelly K; Liu, Robert C

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups' postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.

  20. Map of Io Volcanic Heat Flow

    NASA Image and Video Library

    2015-09-15

    This frame from an animation shows Jupiter volcanic moon Io as seen by NASA Voyager and Galileo spacecraft (at left) and the pattern of heat flow from 242 active volcanoes (at right). The red and yellow areas are places where local heat flow is greatest -- the result of magma erupting from Io's molten interior onto the surface. The map is the result of analyzing decades of observations from spacecraft and ground-based telescopes. It shows Io's usual volcanic thermal emission, excluding the occasional massive but transient "outburst" eruption; in other words, this is what Io looks like most of the time. This heat flow map will be used to test models of interior heating. The map shows that areas of enhanced volcanic heat flow are not necessarily correlated with the number of volcanoes in a particular region and are poorly correlated with expected patterns of heat flow from current models of tidal heating -- something that is yet to be explained. This research is published in association with a 2015 paper in the journal Icarus by A. Davies et al., titled "Map of Io's Volcanic Heat Flow," (http://dx.doi.org/10.1016/j.icarus.2015.08.003.) http://photojournal.jpl.nasa.gov/catalog/PIA19655

  1. Pyroclastic density current hazard maps at Campi Flegrei caldera (Italy): the effects of event scale, vent location and time forecasts.

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina

    2016-04-01

    Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.

  2. Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.

  3. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  5. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning

    PubMed Central

    Shepard, Kathryn N.; Chong, Kelly K.

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning. PMID:27957529

  6. Detailed transient heme structures of Mb-CO in solution after CO dissociation: an X-ray transient absorption spectroscopic study.

    PubMed

    Stickrath, Andrew B; Mara, Michael W; Lockard, Jenny V; Harpham, Michael R; Huang, Jier; Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X

    2013-04-25

    Although understanding the structural dynamics associated with ligand photodissociation is necessary in order to correlate structure and function in biological systems, few techniques are capable of measuring the ultrafast dynamics of these systems in solution-phase at room temperature. We present here a detailed X-ray transient absorption (XTA) study of the photodissociation of CO-bound myoglobin (Fe(II)CO-Mb) in room-temperature aqueous buffer solution with a time resolution of 80 ps, along with a general procedure for handling biological samples under the harsh experimental conditions that transient X-ray experiments entail. The XTA spectra of (Fe(II)CO-Mb) exhibit significant XANES and XAFS alterations following 527 nm excitation, which remain unchanged for >47 μs. These spectral changes indicate loss of the CO ligand, resulting in a five-coordinate, domed heme, and significant energetic reorganization of the 3d orbitals of the Fe center. With the current experimental setup, each X-ray pulse in the pulse train, separated by ~153 ns, can be separately discriminated, yielding snapshots of the myoglobin evolution over time. These methods can be easily applied to other biological systems, allowing for simultaneous structural and electronic measurements of any biological system with both ultrafast and slow time resolutions, effectively mapping out all of the samples' relevant physiological processes.

  7. The Caltech-NRAO Stripe 82 Survey (CNSS) Paper. I. The Pilot Radio Transient Survey in 50 Deg.(exp. 2)

    NASA Technical Reports Server (NTRS)

    Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.; hide

    2016-01-01

    We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire approx. 270 deg.(exp. 2) of Stripe 82, an eventual deep combined map with an rms noise of approx. 40 proper motion epoch y and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 inches. This first paper presents the results from an initial pilot survey of a 50 deg.(exp. 2) region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 proper motion epoch y. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg.(exp. 2) survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(+0.5%/-0.9%) of the few thousand detected point sources werefound to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every approx. 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments.

  8. THE EFFECTS OF TRANSIENTS ON PHOTOSPHERIC AND CHROMOSPHERIC POWER DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, T.; Banerjee, D.; Pant, V.

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H α line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fieldsmore » is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.« less

  9. Cognitive Load Theory and the Effects of Transient Information on the Modality Effect

    ERIC Educational Resources Information Center

    Leahy, Wayne; Sweller, John

    2016-01-01

    Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…

  10. Efficient Blood-Brain Barrier Opening in Primates with Neuronavigation-Guided Ultrasound and Real-Time Acoustic Mapping.

    PubMed

    Wu, Shih-Ying; Aurup, Christian; Sanchez, Carlos Sierra; Grondin, Julien; Zheng, Wenlan; Kamimura, Hermes; Ferrera, Vincent P; Konofagou, Elisa E

    2018-05-22

    Brain diseases including neurological disorders and tumors remain under treated due to the challenge to access the brain, and blood-brain barrier (BBB) restricting drug delivery which, also profoundly limits the development of pharmacological treatment. Focused ultrasound (FUS) with microbubbles is the sole method to open the BBB noninvasively, locally, and transiently and facilitate drug delivery, while translation to the clinic is challenging due to long procedure, targeting limitations, or invasiveness of current systems. In order to provide rapid, flexible yet precise applications, we have designed a noninvasive FUS and monitoring system with the protocol tested in monkeys (from in silico preplanning and simulation, real-time targeting and acoustic mapping, to post-treatment assessment). With a short procedure (30 min) similar to current clinical imaging duration or radiation therapy, the achieved targeting (both cerebral cortex and subcortical structures) and monitoring accuracy was close to the predicted 2-mm lower limit. This system would enable rapid clinical transcranial FUS applications outside of the MRI system without a stereotactic frame, thereby benefiting patients especially in the elderly population.

  11. Passive mapping and intermittent exploration for mobile robots

    NASA Technical Reports Server (NTRS)

    Engleson, Sean P.

    1994-01-01

    An adaptive state space architecture is combined with diktiometric representation to provide the framework for designing a robot mapping system with flexible navigation planning tasks. This involves indexing waypoints described as expectations, geometric indexing, and perceptual indexing. Matching and updating the robot's projected position and sensory inputs with indexing waypoints involves matchers, dynamic priorities, transients, and waypoint restructuring. The robot's map learning can be opganized around the principles of passive mapping.

  12. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  13. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using High-Speed Pulsed-Laser Transient Testing With Tunable Wavelength

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús

    2017-08-01

    A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.

  14. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less

  15. Transient Go: A Mobile App for Transient Astronomy Outreach

    NASA Astrophysics Data System (ADS)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  16. Simplification of femtosecond transient absorption microscopy data from CH 3NH 3PbI 3 perovskite thin films into decay associated amplitude maps

    DOE PAGES

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; ...

    2016-02-16

    Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less

  17. Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia.

    PubMed

    Huang, Bing; Zhou, Xiaoya; Wang, Menglong; Li, Xuefei; Zhou, Liping; Meng, Guannan; Wang, Yuhong; Wang, Zhuo; Wang, Songyun; Yu, Lilei; Jiang, Hong

    2018-06-01

    Blood pressure elevation in response to transient renal nerve stimulation (RNS) has been used to determine the ablation target and endpoint of renal denervation. This study aimed to evaluate the safety of transient RNS in canines with normal or ischaemic hearts. In ten normal (Group 1) and six healed myocardial infarction (HMI) (Group 2) canines, a large-tip catheter was inserted into the left or right renal artery to perform transient RNS. The left stellate ganglion neural activity (LSGNA) and ventricular electrophysiological parameters were measured at baseline and during transient RNS. In another 20 acute myocardial infarction (AMI) canines, RNS (Group 3, n = 10) or sham RNS (Group 4, n = 10) was intermittently (1 min ON and 4 min OFF) performed for 1 h following AMI induction. The LSGNA and AMI-induced ventricular arrhythmias were analysed. In normal and HMI canines, although transient RNS significantly increased the LSGNA and facilitated the action potential duration (APD) alternans, it did not induce any ventricular arrhythmias and did not change the ventricular effective refractory period, APD or maximum slope of the APD restitution curve. In AMI canines, transient RNS significantly exacerbated LSG activation and promoted the incidence of ventricular arrhythmias. Transient RNS did not increase the risk of ventricular arrhythmias in normal or HMI hearts, but it significantly promoted the occurrence of ventricular arrhythmias in AMI hearts. Therefore, electrical stimulation-based renal nerve mapping may be unsafe in AMI patients and in patients with a high risk for malignant ventricular arrhythmias.

  18. Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method

    NASA Astrophysics Data System (ADS)

    Matić, Frano; Kovač, Žarko; Vilibić, Ivica; Mihanović, Hrvoje; Morović, Mira; Grbec, Branka; Leder, Nenad; Džoić, Tomislav

    2017-01-01

    This paper aims to document salinity and temperature regimes in the middle and south Adriatic Sea by applying the Self-Organizing Maps (SOM) method to the available long-term temperature and salinity series. The data were collected on a seasonal basis between 1963 and 2011 in two dense water collecting depressions, Jabuka Pit and Southern Adriatic Pit, and over the Palagruža Sill. Seasonality was removed prior to the analyses. Salinity regimes have been found to oscillate rapidly between low-salinity and high-salinity SOM solutions, ascribed to the advection of Western and Eastern Mediterranean waters, respectively. Transient salinity regimes normally lasted less than a season, while temperature transient regimes lasted longer. Salinity regimes prolonged their duration after the major basin-wide event, the Eastern Mediterranean Transient, in the early 1990s. A qualitative relationship between high-salinity regimes and dense water formation and dynamics has been documented. The SOM-based analyses have a large capacity for classifying the oscillating ocean regimes in a basin, which, in the case of the Adriatic Sea, beside climate forcing, is an important driver of biogeochemical changes that impacts trophic relations, appearance and abundance of alien organisms, and fisheries, etc.

  19. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    PubMed

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  20. 40 CFR 86.1332-90 - Engine mapping procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... maximum mapping speed per the following methodologies. (Note paragraph (d)(1) below.) (1) Otto-cycle engines. (i) For ungoverned engines using the transient operating cycle set forth in paragraph (f)(1) of...

  1. Simplification of femtosecond transient absorption microscopy data from CH3NH3PbI3 perovskite thin films into decay associated amplitude maps

    NASA Astrophysics Data System (ADS)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong

    2016-03-01

    This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.

  2. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  3. The SEM description of interaction of a transient electromagnetic wave with an object

    NASA Technical Reports Server (NTRS)

    Pearson, L. W.; Wilton, D. R.

    1980-01-01

    The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.

  4. A Few Examples of Spacecraft Anomalies Attributed to Transient Voltages and Currents Issues

    NASA Technical Reports Server (NTRS)

    Perez, Ray

    2006-01-01

    It is easy to address voltage and current transient related issues when the hardware in question or similar type of hardware is always available to you and when such issues are deterministic in nature. Unexpected or unforeseen transient related problems are not always a challenge but become a severe concern when a unique piece of the hardware, which developed the problem, is in space; as it is with all satellites. This paper addresses in a qualitative manner, a few examples of voltage and current events of transient origin which disabled space hardware.

  5. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  6. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  7. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  8. Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases.

    PubMed

    Quigg, Mark; Geldmacher, David S; Elias, W Jeff

    2006-05-01

    Assessment of eloquent functions during brain mapping usually relies on testing reading, speech, and comprehension to uncover transient deficits during electrical stimulation. These tests stem from findings predicted by the Geschwind-Wernicke hypothesis of receptive and expressive cortices connected by white matter tracts. Later work, however, has emphasized cortical mechanisms of language function. The authors report two cases that demonstrate that conduction aphasia is cortically mediated and can be inadequately assessed if not specifically evaluated during brain mapping. To determine the distribution of language on the dominant cortex, electrical cortical stimulation was performed in two cases by using implanted subdural electrodes during brain mapping before epilepsy surgery. A transient isolated deficit in repetition of language was reported during stimulation of the posterior portion of the dominant superior temporal gyrus in one patient and during stimulation of the supramarginal gyrus in the other patient. These cases demonstrate a localization of language repetition to the posterior perisylvian cortex. Brain mapping of this region should include assessment of verbal repetition to avoid potential deficits resembling conduction aphasia.

  9. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is designed to improve the performance of an LDO regulator during output current transients. A TPIC for a LDO regulator is proposed to reduce the over voltage spike settling time. During a load current step down transient, the only current discharging path is a light load current. However, it takes a long time to discharge the current charged in the output capacitors with the light load current. The proposed TPIC will make an additional current discharging path to reduce the long settling time. By reducing the settling time, the load current transient frequency of the LDO regulator can be increased. A Ripple Cancellation Circuit (RCC) is proposed to reduce the output voltage ripple. The RCC has a very similar concept with the TPIC which is sinking or injecting additional current to the power stage to compensate the inductor ripple current. The proposed TPICs and RCC have been implemented with a 0.6m CMOS process. A single-phase VR, a 4SBB converter, and a LDO regulator have been utilized with the proposed TPIC to evaluate its performance. The theoretical analysis will be confirmed by Cadence simulation results and experimental results.

  10. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  11. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    PubMed Central

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+. PMID:26958887

  12. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Systems Analysis of Early Host Gene Expression Provides Clues for Transient Mycobacterium avium ssp avium vs. Persistent Mycobacterium avium ssp paratuberculosis Intestinal Infections

    PubMed Central

    Khare, Sangeeta; Drake, Kenneth L.; Lawhon, Sara D.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris. A.; Adams, Leslie Garry

    2016-01-01

    It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer’s patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection. PMID:27653506

  14. Systems Analysis of Early Host Gene Expression Provides Clues for Transient Mycobacterium avium ssp avium vs. Persistent Mycobacterium avium ssp paratuberculosis Intestinal Infections.

    PubMed

    Khare, Sangeeta; Drake, Kenneth L; Lawhon, Sara D; Nunes, Jairo E S; Figueiredo, Josely F; Rossetti, Carlos A; Gull, Tamara; Everts, Robin E; Lewin, Harris A; Adams, Leslie Garry

    It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.

  15. Geospace Response to a Slow Moving Unipolar Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Matsuo, T.; Kilcommons, L. M.; Anderson, B. J.; Korth, H.; Richmond, A. D.

    2013-12-01

    The passage at Earth of a unipolar, southward-directed magnetic cloud on 28-29 May 2010 provided a unique opportunity to investigate magnetosphere-ionosphere coupling in response to a slow-moving transient in the solar wind and the subsequent higher speed flow. Despite more than 8 hours of IMF Bz < -10 nT, the Dst Index did not intensify below -100 nT. However, there was an extraordinary 16-hour stretch with the AE index exceeding 500 nT throughout. We use magnetic perturbation data from the constellation of more than 70 Iridium satellites forming the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and from four satellites of the Defense Meteorological Satellite Program to map the large-scale field-aligned currents during this interval. Of particular interest are: 1) the prolonged interval of AE index greater than 500 nT and 2) the dayside response to a full rotation of the interplanetary east-west (IMF By) component while the IMF is southward. During the magnetic cloud passage we are able to isolate the IMF By response without the intervening effects of solar wind pressure pulses or other IMF discontinuities. In addition to the unusual storm features, we discuss the "observational error" characteristics of the space-based magnetic field measurements incorporated into the data assimilation algorithm used in the field-aligned current mapping The independent satellite measurements allow us to quantify the uncertainty in the mapping procedure. We report on the spatial and temporal uncertainties.

  16. Amelioration of cognitive impairment and changes in microtubule-associated protein 2 after transient global cerebral ischemia are influenced by complex environment experience.

    PubMed

    Briones, Teresita L; Woods, Julie; Wadowska, Magdalena; Rogozinska, Magdalena

    2006-04-03

    In this study we examined whether expression of microtubule-associated protein 2 (MAP2) after transient global cerebral ischemia can be influenced by behavioral experience and if the changes are associated with functional improvement. Rats received either ischemia or sham surgery then assigned to: complex environment housing (EC) or social housing (SC) as controls for 14 days followed by water maze testing. Upregulation of MAP2 was seen in all ischemic animals with a significant overall increase evident in the EC housed rats. Behaviorally, all animals learned to perform the water maze task over time but the ischemia SC rats had the worst performance overall while all the EC housed animals demonstrated the best performance in general. Regression analysis showed that increase MAP2 expression was able to explain some of the variance in the behavioral parameters in the water maze suggesting that this cytoskeletal protein probably played a role in mediating enhanced functional outcomes.

  17. Lightning induced currents in aircraft wiring using low level injection techniques

    NASA Technical Reports Server (NTRS)

    Stevens, E. G.; Jordan, D. T.

    1991-01-01

    Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.

  18. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    PubMed

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  19. Mapping the local protein interactome of the NuA3 histone acetyltransferase

    PubMed Central

    Smart, Sherri K; Mackintosh, Samuel G; Edmondson, Ricky D; Taverna, Sean D; Tackett, Alan J

    2009-01-01

    Protein–protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein–protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein ‘bait’ as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation. PMID:19621382

  20. Calving laws and strain rates: a comparison between modelled relationships and observations from InSAR velocity maps from across Greenland.

    NASA Astrophysics Data System (ADS)

    Lea, James; Nick, Faezeh; Benn, Douglas; Kirchner, Nina

    2017-04-01

    Calving is a major mechanism of cryospheric ice mass loss and a significant contributor to global sea level change, though it is currently poorly understood as a process. Longitudinal strain rate is often cited as a first order control on calving, however multiple different calving laws (not always including the strain rate) have been used to represent this in numerical models of ice sheets. This study seeks to investigate how (1) different calving laws within a 1D flowline model predict strain rate will evolve within increasing terminus thickness for steady state and transient simulations, and (2) how these relationships compare with observed strains (derived from MEaSUREs Greenland InSAR velocity maps; Joughin et al., 2010 [updated 2016]) and depths (from BedMachine v.2 subglacial topography data; Morlighem et al., 2014). We identify that systematic relationships with terminus thickness exist for height above buoyancy, waterline and full-depth crevasse calving laws amongst others for both steady state and transient simulations. However, analysis of observed near-terminus strain rates for multiple Greenlandic glaciers using a variety of metrics (with a range of bed depths predicted by BedMachine) does not reproduce the shape or magnitude of any of these modelled relationships. Relationships between strain rate and depth derived from simple 1D model simulations therefore cannot be realistically compared to current real-world observations. This suggests that the magnitude of observed strain rates at an individual point, or area-averaged conditions near a real-world terminus are not meaningful in determining the potential for calving when taken in isolation. To improve understanding of first/second order calving processes, future modelling work should therefore look to analyse how/if the distribution of strain across the terminus region impacts calving as part of 2D-planform/3D models.

  1. A Clinical Feasibility Study of Atrial and Ventricular Electromechanical Wave Imaging

    PubMed Central

    Provost, Jean; Gambhir, Alok; Vest, John; Garan, Hasan; Konofagou, Elisa E.

    2014-01-01

    Background Cardiac Resynchronization Therapy (CRT) and atrial ablation currently lack a noninvasive imaging modality for reliable treatment planning and monitoring. Electromechanical Wave Imaging (EWI) is an ultrasound-based method that has previously been shown to be capable of noninvasively and transmurally mapping the activation sequence of the heart in animal studies by estimating and imaging the electromechanical wave, i.e., the transient strains occurring in response to the electrical activation, at both very high temporal and spatial resolution. Objective Demonstrate the feasibility of noninvasive transthoracic EWI for mapping the activation sequence during different cardiac rhythms in humans. Methods EWI was performed in CRT patients with a left bundle-branch block (LBBB), during sinus rhythm, left-ventricular pacing, and right-ventricular pacing and in atrial flutter (AFL) patients before intervention and correlated with results from invasive intracardiac electrical mapping studies during intervention. Additionally, the feasibility of single-heartbeat EWI at 2000 frames/s, is demonstrated in humans for the first time in a subject with both AFL and right bundle-branch-block. Results The electromechanical activation maps demonstrated the capability of EWI to localize the pacing sites and characterize the LBBB activation sequence transmurally in CRT patients. In AFL patients, the propagation patterns obtained with EWI were in agreement with results obtained from invasive intracardiac mapping studies. Conclusion Our findings demonstrate the potential capability of EWI to aid in monitoring and follow-up of patients undergoing CRT pacing therapy and atrial ablation with preliminary validation in vivo. PMID:23454060

  2. Investigations of an Environmentally Induced Long Duration Hall Thruster Start Transient (PREPRINT)

    DTIC Science & Technology

    2006-02-06

    Hall thruster start transient is produced by exposure of the thruster to ambient laboratory atmosphere. This behavior was first observed during operation of a cluster of four 200 W BHT-200 Hall effect thrusters where large anode discharge fluctuations, visible as increased anode current and a diffuse plume structure, occurred in an apparently random manner. During operation of a single thruster, the start transient appears as a quickly rising and later smoothly decaying elevated anode current with a diffuse plume that persists for less than 500 seconds. The start transient

  3. Origin of switching current transients in TIPS-pentacene based organic thin-film transistor with polymer dielectric

    NASA Astrophysics Data System (ADS)

    Singh, Subhash; Mohapatra, Y. N.

    2017-06-01

    We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.

  4. Mental and Physical (MAP) Training: a neurogenesis-inspired intervention that enhances health in humans.

    PubMed

    Shors, Tracey J; Olson, Ryan L; Bates, Marsha E; Selby, Edward A; Alderman, Brandon L

    2014-11-01

    New neurons are generated in the hippocampus each day and their survival is greatly enhanced through effortful learning (Shors, 2014). The numbers of cells produced can be increased by physical exercise (van Praag, Kempermann, & Gage, 1999). These findings inspired us to develop a clinical intervention for humans known as Mental and Physical Training, or MAP Training. Each session consists of 30min of mental training with focused attention meditation (20min sitting and 10min walking). Meditation is an effortful training practice that involves learning about the transient nature of thoughts and thought patterns, and acquiring skills to recognize them without necessarily attaching meaning and/or emotions to them. The mental training component is followed by physical training with 30min of aerobic exercise performed at moderate intensity. During this component, participants learn choreographed dance routines while engaging in aerobic exercise. In a pilot "proof-of-concept" study, we provided supervised MAP Training (2 sessions per week for 8weeks) to a group of young mothers in the local community who were recently homeless, most of them having previously suffered from physical and sexual abuse, addiction, and depression. Preliminary data suggest that MAP Training improves dependent measures of aerobic fitness (as assessed by maximal rate of oxygen consumed) while decreasing symptoms of depression and anxiety. Similar changes were not observed in a group of recently homeless women who did not participate in MAP Training. It is not currently possible to determine whether new neurons in the human brain increase in number as a result of MAP Training. Rather these preliminary results of MAP Training illustrate how neuroscientific research can be translated into novel clinical interventions that benefit human health and wellness. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Transient chaos in the Lorenz-type map with periodic forcing.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  6. Transient chaos in the Lorenz-type map with periodic forcing

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  7. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  8. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    NASA Astrophysics Data System (ADS)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  9. Magnetic thin-film split-domain current sensor-recorder

    DOEpatents

    Hsieh, Edmund J.

    1979-01-01

    A sensor-recorder for recording a representation of the direction and peak amplitude of a transient current. A magnetic thin film is coated on a glass substrate under the influence of a magnetic field so that the finished film is magnetically uniaxial and anisotropic. The film is split into two oppositely magnetized contiguous domains with a central boundary by subjecting adjacent portions of the film simultaneously to magnetic fields that are opposed 180.degree.. With the split-domain sensor-recorder placed with the film plane and domain boundary either perpendicular or parallel to the expected conductive path of a transient current, the occurrence of the transient causes switching of a portion of one domain to the direction of the other domain. The amount of the switched domain portion is indicative of the amplitude of the peak current of the transient, while the particular domain that is switched is indicative of the direction of the current. The resulting domain patterns may be read with a passive magnetic tape viewer.

  10. A universal procedure for evaluation and application of surge-protective devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The source, nature, and frequency of occurrence of transients must be identified and a representative standard test wave chosen for proof testing. The performance of candidate suppressor devices then can be evaluated against the withstand goals set for the equipment. The various suppressors divide into two classes of generic behavior. The key to a universal procedure for evaluating both classes lies in representing transients as quasi-current sources of defined current impulse duration. The available surge current is established by the Thevenin equivalent transient voltage and source impedance. A load line drawn on the V-I characteristic graph of the suppressor quickly determines the clamping voltage and peak current. These values then can be compared to the requirement. The deposited energy and average power dissipation for multiple transients also can be calculated. The method is illustrated with a design example for motor vehicle alternator load dump suppression.

  11. The haemodynamic effects of intravenous paracetamol (acetaminophen) in healthy volunteers: a double‐blind, randomized, triple crossover trial

    PubMed Central

    Chiam, Elizabeth; Bailey, Michael; McNicol, Larry; Bellomo, Rinaldo

    2016-01-01

    Aim The haemodynamic effects of intravenous paracetamol have not been systematically investigated. We compared the physiological effects of intravenous mannitol‐containing paracetamol, and an equivalent dosage of mannitol, and normal saline 0.9% in healthy volunteers. Methods We performed a blinded, triple crossover, randomized trial of 24 adult healthy volunteers. Participants received i.v. paracetamol (1 g paracetamol +3.91 g mannitol 100 ml–1), i.v. mannitol (3.91 g mannitol 100 ml–1) and i.v. normal saline (100 ml). Composite primary end points were changes in mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured pre‐infusion, during a 15 min infusion period and over a 45 min observation period. Systemic vascular resistance index (SVRI) and cardiac index were measured at the same time points. Results Infusion of paracetamol induced a transient yet significant decrease in blood pressures from pre‐infusion values (MAP –1.85 mmHg, 95% CI –2.6, –1.1, SBP –0.54 mmHg, 95% CI –1.7, 0.6 and DBP −1.92 mmHg, 95% CI –2.6, –1.2, P < 0.0001), associated with a transient reduction in SVRI and an increase in cardiac index. Changes were observed, but to a lesser extent with normal saline (MAP –0.15 mmHg, SBP +1.44 mmHg, DBP −–0.73 mmHg, P < 0.0001), but not with mannitol (MAP +1.47 mmHg, SBP +4.03 mmHg, DBP +0.48 mmHg, P < 0.0001). Conclusions I.v. paracetamol caused a transient decrease in blood pressure immediately after infusion. These effects were not seen with mannitol or normal saline. The physiological mechanism was consistent with vasodilatation. This study provides plausible physiological data in a healthy volunteer setting, supporting transient changes in haemodynamic variables with i.v. paracetamol and justifies controlled studies in the peri‐operative and critical care setting. PMID:26606263

  12. The haemodynamic effects of intravenous paracetamol (acetaminophen) in healthy volunteers: a double-blind, randomized, triple crossover trial.

    PubMed

    Chiam, Elizabeth; Weinberg, Laurence; Bailey, Michael; McNicol, Larry; Bellomo, Rinaldo

    2016-04-01

    The haemodynamic effects of intravenous paracetamol have not been systematically investigated. We compared the physiological effects of intravenous mannitol-containing paracetamol, and an equivalent dosage of mannitol, and normal saline 0.9% in healthy volunteers. We performed a blinded, triple crossover, randomized trial of 24 adult healthy volunteers. Participants received i.v. paracetamol (1 g paracetamol +3.91 g mannitol 100 ml(-1) ), i.v. mannitol (3.91 g mannitol 100 ml(-1) ) and i.v. normal saline (100 ml). Composite primary end points were changes in mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured pre-infusion, during a 15 min infusion period and over a 45 min observation period. Systemic vascular resistance index (SVRI) and cardiac index were measured at the same time points. Infusion of paracetamol induced a transient yet significant decrease in blood pressures from pre-infusion values (MAP -1.85 mmHg, 95% CI -2.6, -1.1, SBP -0.54 mmHg, 95% CI -1.7, 0.6 and DBP -1.92 mmHg, 95% CI -2.6, -1.2, P < 0.0001), associated with a transient reduction in SVRI and an increase in cardiac index. Changes were observed, but to a lesser extent with normal saline (MAP -0.15 mmHg, SBP +1.44 mmHg, DBP --0.73 mmHg, P < 0.0001), but not with mannitol (MAP +1.47 mmHg, SBP +4.03 mmHg, DBP +0.48 mmHg, P < 0.0001). I.v. paracetamol caused a transient decrease in blood pressure immediately after infusion. These effects were not seen with mannitol or normal saline. The physiological mechanism was consistent with vasodilatation. This study provides plausible physiological data in a healthy volunteer setting, supporting transient changes in haemodynamic variables with i.v. paracetamol and justifies controlled studies in the peri-operative and critical care setting. © 2015 The British Pharmacological Society.

  13. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  14. Emergence of currents as a transient quantum effect in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Granot, Er'El; Marchewka, Avi

    2011-09-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  15. Decreased Metabolism in the Posterior Medial Network with Concomitantly Increased Metabolism in the Anterior Temporal Network During Transient Global Amnesia.

    PubMed

    Yi, SangHak; Park, Young Ho; Jang, Jae-Won; Lim, Jae-Sung; Chun, In Kook; Kim, SangYun

    2018-05-01

    Perturbation of corticohippocampal circuits is a key step in the pathogenesis of transient global amnesia. We evaluated the spatial distribution of altered cerebral metabolism to determine the location of the corticohippocampal circuits perturbed during the acute stage of transient global amnesia. A consecutive series of 12 patients with transient global amnesia who underwent 18 F-fluorodeoxyglucose positron emission tomography within 3 days after symptom onset was identified. We used statistical parametric mapping with two contrasts to identify regions of decreased and increased brain metabolism in transient global amnesia patients compared with 25 age-matched controls. Transient global amnesia patients showed hypometabolic clusters in the left temporal and bilateral parieto-occipital regions that belong to the posterior medial network as well as, hypermetabolic clusters in the bilateral inferior frontal regions that belong to the anterior temporal network. The posterior medial and anterior temporal networks are the two main corticohippocampal circuits involved in memory-guided behavior. Decreased metabolism in the posterior medial network might explain the impairment of episodic memory observed during the acute stage of transient global amnesia. Concomitant increased metabolism within the anterior temporal network might occur as a compensatory mechanism.

  16. Field induced transient current in one-dimensional nanostructure

    NASA Astrophysics Data System (ADS)

    Sako, Tokuei; Ishida, Hiroshi

    2018-07-01

    Field-induced transient current in one-dimensional nanostructures has been studied by a model of an electron confined in a 1D attractive Gaussian potential subjected both to electrodes at the terminals and to an ultrashort pulsed oscillatory electric field with the central frequency ω and the FWHM pulse width Γ. The time-propagation of the electron wave packet has been simulated by integrating the time-dependent Schrödinger equation directly relying on the second-order symplectic integrator method. The transient current has been calculated as the flux of the probability density of the escaping wave packet emitted from the downstream side of the confining potential. When a static bias-field E0 is suddenly applied, the resultant transient current shows an oscillatory decay behavior with time followed by a minimum structure before converging to a nearly constant value. The ω-dependence of the integrated transient current induced by the pulsed electric field has shown an asymmetric resonance line-shape for large Γ while it shows a fringe pattern on the spectral line profile for small Γ. These observations have been rationalized on the basis of the energy-level structure and lifetime of the quasibound states in the bias-field modified confining potential obtained by the complex-scaling Fourier grid Hamiltonian method.

  17. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  18. An updated stress map of the continental United States reveals heterogeneous intraplate stress

    NASA Astrophysics Data System (ADS)

    Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan

    2018-06-01

    Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

  19. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  20. Robust spatial memory maps in flickering neuronal networks: a topological model

    NASA Astrophysics Data System (ADS)

    Dabaghian, Yuri; Babichev, Andrey; Memoli, Facundo; Chowdhury, Samir; Rice University Collaboration; Ohio State University Collaboration

    It is widely accepted that the hippocampal place cells provide a substrate of the neuronal representation of the environment--the ``cognitive map''. However, hippocampal network, as any other network in the brain is transient: thousands of hippocampal neurons die every day and the connections formed by these cells constantly change due to various forms of synaptic plasticity. What then explains the remarkable reliability of our spatial memories? We propose a computational approach to answering this question based on a couple of insights. First, we propose that the hippocampal cognitive map is fundamentally topological, and hence it is amenable to analysis by topological methods. We then apply several novel methods from homology theory, to understand how dynamic connections between cells influences the speed and reliability of spatial learning. We simulate the rat's exploratory movements through different environments and study how topological invariants of these environments arise in a network of simulated neurons with ``flickering'' connectivity. We find that despite transient connectivity the network of place cells produces a stable representation of the topology of the environment.

  1. The MWA Transients Survey (MWATS).

    NASA Astrophysics Data System (ADS)

    Bell, M.; Murphy, T.; Kaplan, D. L.; Croft, S. D.; Hancock, P.; Rowlinson, A.; Wayth, R.; Gaensler, B.; Hurley-Walker, N.; Offringa, A.; Loi, C.; Bannister, K.; Trott, C.; Marquart, J.

    2017-01-01

    We propose the continuation of the MWA transients survey to search for and monitor low frequency transient and variable radio sources in the southern sky. This proposal is aimed at commensally utilising data from the GLEAM-X (G0008) project in semester 2017-A. The aim of this commensal data acquisition is to commission long baseline observations for transient science. In particular this will involve studying the impact of the ionosphere on calibration and imaging, and developing the techniques needed to produce science quality data products. The proposed drift scans with LST locking (see G0008 proposal) are particularly exciting as we can test image subtraction for transient and variable identification. This survey is targeted at studying objects such as AGN (intrinsic and extrinsic variability), long duration synchrotron emitters, pulsars and transients of unknown origin. The maps generated from this survey will be analysed with the Variables and Slow Transients (VAST) detection pipeline. The motivation for this survey is as follows: (i) To obtain temporal data on an extremely large and robust sample of low frequency sources to explore and quantify both intrinsic and extrinsic variability; (ii) To search and find new classes of low frequency radio transients that previously remained undetected and obscured from multi-wavelength discovery; (iii) To place rigorous statistics on the occurrence of both transients and variables prior to the Australian SKA era.

  2. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will further the development of a broad range of microbubble-enhanced therapies.

  3. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    PubMed Central

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-01-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics. PMID:26881966

  4. Envisioning: Mental Rotation-based Semi-reactive Robot Control

    DTIC Science & Technology

    2012-01-01

    particular, the role of mental rotations acting on transient spatial representations de- rived from optic flow serves as our primary approach . Bio...mental mapping approach in which a model is mentally rotated to match one of several potential target configurations. The second approach is a...to mental mapping and rotation [Lourenco and Huttenlocher 07]. While this second approach is less likely to be subject to the time delays that are

  5. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6.

    PubMed

    Ichimura, K; Mizoguchi, T; Yoshida, R; Yuasa, T; Shinozaki, K

    2000-12-01

    Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that environmental stresses such as low temperature, low humidity, hyper-osmolarity, touch and wounding induce rapid and transient activation of the Arabidopsis MAP kinases ATMPK4 and ATMPK6. Activation of ATMPK4 and ATMPK6 was associated with tyrosine phosphorylation but not with the amounts of mRNA or protein. Kinetics during activation differ between these two MAP kinases. These results suggest that ATMPK4 and ATMPK6 are involved in distinct signal transduction pathways responding to these environmental stresses.

  6. Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.; hide

    2009-01-01

    IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.

  7. Cerebral Hyperperfusion Syndrome After Revascularization Surgery in Moyamoya Disease: Region-Symptom Mapping and Estimating a Critical Threshold.

    PubMed

    Kazumata, Ken; Uchino, Haruto; Tokairin, Kikutaro; Ito, Masaki; Shiga, Tohru; Osanai, Toshiya; Kawabori, Masahito

    2018-06-01

    Cerebral hyperperfusion complicates the postoperative course of patients with moyamoya disease after direct revascularization surgery. There is no clear distinction between cerebral hyperperfusion syndrome and benign postoperative increase in regional cerebral blood flow (rCBF). The present study aimed to determine clinically relevant changes in rCBF, anatomical correlations, and factors associated with transient neurologic symptoms after revascularization surgery in moyamoya disease. Whole-brain voxel-based perfusion mapping was used to identify regions involved in cerebral hyperperfusion and quantify the changes in 105 hemispheric surgeries with the use of single-photon computed tomography acquired on postoperative day 7. The changes in rCBF were quantitatively analyzed, and associations with cerebral hyperperfusion syndrome were determined. Transient neurologic symptoms appeared with rCBF increase in 37.9% of adults. Speech impairments were associated with an increase in rCBF in the operculo-insula region. Cheiro-oral syndrome was associated with the posterior insula as well as the prefrontal region. A receiver operating curve analysis yielded transient neurologic symptoms with maximum accuracy at >15.5% increase from baseline. Age and preoperative rCBF were independently associated with transient neurologic symptoms (P < 0.001). Areas showing rCBF increase during the experience of transient neurologic symptoms were spatially compatible with the known functional anatomy of the brain. An increase of approximately 15% from baseline was found to be critical, which is a far lower threshold than what has been reported previously. Increasing age was significantly associated with the occurrence of symptomatic hyperperfusion. Furthermore, patients with preserved rCBF also showed symptomatic hyperperfusion. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  9. Sustained and transient calcium currents in horizontal cells of the white bass retina.

    PubMed

    Sullivan, J M; Lasater, E M

    1992-01-01

    Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.

  10. Sustained and transient calcium currents in horizontal cells of the white bass retina

    PubMed Central

    1992-01-01

    Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309

  11. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  12. InGaN/GaN light-emitting diode having direct hole injection plugs and its high-current operation.

    PubMed

    Kim, Sungjoon; Cho, Seongjae; Jeong, Jaedeok; Kim, Sungjun; Hwang, Sungmin; Kim, Garam; Yoon, Sukho; Park, Byung-Gook

    2017-03-20

    The light-emitting diode (LED) with an improved hole injection and straightforward process integration is proposed. p-type GaN direct hole injection plugs (DHIPs) are formed on locally etched multiple-quantum wells (MQWs) by epitaxial lateral overgrowth (ELO) method. We confirm that the optical output power is increased up to 23.2% at an operating current density of 100 A/cm2. Furthermore, in order to identify the origin of improvement in optical performance, the transient light decay time and light intensity distribution characteristics were analyzed on the DHIP LED devices. Through the calculation of the electroluminescence (EL) decay time, internal quantum efficiency (IQE) is extracted along with the recombination parameters, which reveals that the DHIPs have a significant effect on enhancement of radiative recombination and reduction of efficiency droop. Furthermore, the mapping PL reveals that the DHIP LED also has a potential to improve the light extraction efficiency by hexagonal pyramid shaped DHIPs.

  13. Modeling the heliospheric current sheet: Solar cycle variations

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Linker, J. A.; Mikić, Z.

    2002-07-01

    In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.

  14. Behaviour of Lyapunov exponents near crisis points in the dissipative standard map

    NASA Astrophysics Data System (ADS)

    Pompe, B.; Leven, R. W.

    1988-11-01

    We numerically study the behaviour of the largest Lyapunov characteristic exponent λ1 in dependence on a control parameter in the 2D standard map with dissipation. In order to investigate the system's motion in parameter intervals slightly above crisis points we introduce "partial" Lyapunov exponents which characterize the average exponential divergence of nearby orbits on a semi-attractor at a boundary crisis and on distinct parts of a "large" chaotic attractor near an interior crisis. In the former case we find no significant difference between λ1 in the pre-crisis regime and the partial Lyapunov exponent describing transient chaotic motions slightly above the crisis. For the latter case we give a quantitative description of the drastic increase of λ1. Moreover, a formula which connects the critical exponent of a chaotic transient above a boundary crisis with a pointwise dimension is derived.

  15. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  17. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limitingmore » resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.« less

  19. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  20. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite

    NASA Astrophysics Data System (ADS)

    Garipov, G. K.; Khrenov, B. A.; Klimov, P. A.; Klimenko, V. V.; Mareev, E. A.; Martines, O.; Mendoza, E.; Morozenko, V. S.; Panasyuk, M. I.; Park, I. H.; Ponce, E.; Rivera, L.; Salazar, H.; Tulupov, V. I.; Vedenkin, N. N.; Yashin, I. V.

    2013-01-01

    Light detectors sensitive to wavelength ranges 240-400 nm and beyond 610 nm (which we refer to, for simplicity, as the UV and Red bands) on board Universitetsky-Tatiana-2 satellite have detected transient flashes in the atmosphere of duration 1-128 ms. Measured ratio of the number of Red photons to the number of UV photons indicates that source of transient radiation is at high atmosphere altitude (>50 km). Distribution of events with various photon numbers Qa in the atmosphere found to be different for "luminous" events Qa = 1023 - 1026 (with exponent of differential distribution -2.2) and for "faint" events Qa = 1021 - 1023 (with exponent - 0.97). Luminous event parameters (atmosphere altitude, energy released to radiation, and temporal profiles) are similar to observed elsewhere parameters of transient luminous events (TLE) of elves, sprites, halo, and gigantic blue jets types. Global map of luminous events demonstrates concentration to equatorial zones (latitudes 30°N to 30°S) above continents. Faint events (with number of photons Qa = 1020 - 5ṡ 1021) are distributed more uniformly over latitudes and longitudes. Phenomenon of series of transients registered every minute along satellite orbit (from 3 to 16 transients in one series) was observed. Most TLE-type events belonged to series. Single transients are in average fainter than serial ones. Some transients belonging to series occurs far away of thunderstorm regions. Origin of faint single transients is not clear; several hypothetical models of their production are discussed.

  1. Simulation study and experimental results for detection and classification of the transient capacitor inrush current using discrete wavelet transform and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan

    2018-04-01

    This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.

  2. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    NASA Astrophysics Data System (ADS)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.

  3. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model.

    PubMed

    Nishida, Kunihiro; Qi, Xiao Yan; Wakili, Reza; Comtois, Philippe; Chartier, Denis; Harada, Masahide; Iwasaki, Yu-ki; Romeo, Philippe; Maguy, Ange; Dobrev, Dobromir; Michael, Georghia; Talajic, Mario; Nattel, Stanley

    2011-01-18

    Coronary artery disease predisposes to atrial fibrillation (AF), but the effects of chronic atrial ischemia/infarction on AF-related substrates are unknown. Regional right atrial myocardial infarction (MI) was created in 40 dogs by ligating an artery that supplies the right atrial free wall and not the ventricles; 35 sham dogs with the same artery isolated but not ligated were controls. Dogs were observed 8 days after MI and subjected to open-chest study, in vitro optical mapping, and/or cell isolation for patch-clamp and Ca(2+) imaging on day 8. Holter ECGs showed more spontaneous atrial ectopy in MI dogs (eg, 662±281 on day 7 versus 34±25 ectopic complexes per day at baseline; 52±21 versus 1±1 atrial tachycardia episodes per day). Triggered activity was increased in MI border zone cells, which had faster decay of caffeine-evoked Ca(2+) transients and enhanced (by ≈73%) Na(+)-Ca(2+) exchange current. Spontaneous Ca(2+) sparks (confocal microscopy) occurred under β-adrenergic stimulation in more MI dog cells (66±9%) than in control cells (29±4%; P<0.01). Burst pacing induced long-lasting AF in MI dogs (1146±259 versus 30±14 seconds in shams). Increased border zone conduction heterogeneity was confirmed by both bipolar electrode mapping in vivo and optical mapping. Optical mapping demonstrated stable border zone reentry in all 9 MI preparations but in none of 6 shams. Border zone tissue showed increased fibrous tissue content. Chronic atrial ischemia/infarction creates substrates for both spontaneous ectopy (Ca(2+)-release events, increased Na(+)-Ca(2+) exchange current) and sustained reentry (conduction abnormalities that anchor reentry). Thus, chronic atrial infarction in dogs promotes both AF triggers and the substrate for AF maintenance. These results provide novel insights into potential AF mechanisms in patients with coronary artery disease.

  4. Substance P modulates localized calcium transients and membrane current responses in murine colonic myocytes

    PubMed Central

    Bayguinov, Orline; Hagen, Brian; Sanders, Kenton M

    2003-01-01

    Neurokinins contribute to the neural regulation of gastrointestinal (GI) smooth muscles. We studied responses of murine colonic smooth muscle cells to substance P (SP) and NK1 and NK2 agonists using confocal microscopy and the patch clamp technique. Colonic myocytes generated localized Ca2+ transients that were coupled to spontaneous transient outward currents (STOCs). SP (10−10 M) increased Ca2+ transients and STOCs. Higher concentrations of SP (10−6 M) increased basal Ca2+ and inhibited Ca2+ transients and STOCs. Effects of SP were due to increased Ca2+ entry via L-type Ca2+ channels, and were mediated by protein kinase C (PKC). Nifedipine (10−6 M) and the PKC inhibitor, GF 109203X (10−6 M) reduced L-type Ca2+ current and blocked the effects of SP. SP responses depended upon parallel stimulation of NK1 and NK2 receptors. NK1 agonist ([Sar9,Met(O2)11]-substance P; SSP) and NK2 agonists (neurokinin A (NKA) or GR-64349) did not mimic the effects of SP alone, but NK1 and NK2 agonists were effective when added in combination (10−10–10−6 M). Consistent with this, either an NK1-specific antagonist (GR-82334; 10−7 M) or an NK2-specific antagonist (MEN 10,627; 10−7 M) blocked responses to SP (10−6 M). Ryanodine (10−5 M) blocked the increase in Ca2+ transients and STOCs in response to SP (10−10 M). Our findings show that low concentrations of SP, via PKC-dependent enhancement of L-type Ca2+ current and recruitment of ryanodine receptors, stimulate Ca2+ transients. At higher concentrations of SP (10−6 M), basal Ca2+ increases and spontaneous Ca2+ transients and STOCs are inhibited. PMID:12711623

  5. Neural control and transient analysis of the LCL-type resonant converter

    NASA Astrophysics Data System (ADS)

    Zouggar, S.; Nait Charif, H.; Azizi, M.

    2000-07-01

    This paper proposes a generalised inverse learning structure to control the LCL converter. A feedforward neural network is trained to act as an inverse model of the LCL converter then both are cascaded such that the composed system results in an identity mapping between desired response and the LCL output voltage. Using the large signal model, we analyse the transient output response of the controlled LCL converter in the case of large variation of the load. The simulation results show the efficiency of using neural networks to regulate the LCL converter.

  6. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-02-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.

  7. Non-equilibrium transport and spin dynamics in single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Moldoveanu, V.; Dinu, I. V.; Tanatar, B.

    2015-11-01

    The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.

  8. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  9. Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools

    NASA Astrophysics Data System (ADS)

    Climente-Alarcon, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Pons-Llinares, J.; Roger-Folch, J.; Jover-Rodriguez, P.; Arkkio, A.

    2011-02-01

    The present work is focused on the diagnosis of mixed eccentricity faults in induction motors via the study of currents demanded by the machine. Unlike traditional methods, based on the analysis of stationary currents (Motor Current Signature Analysis (MCSA)), this work provides new findings regarding the diagnosis approach proposed by the authors in recent years, which is mainly focused on the fault diagnosis based on the analysis of transient quantities, such as startup or plug stopping currents (Transient Motor Current Signature Analysis (TMCSA)), using suitable time-frequency decomposition (TFD) tools. The main novelty of this work is to prove the usefulness of tracking the transient evolution of high-order eccentricity-related harmonics in order to diagnose the condition of the machine, complementing the information obtained with the low-order components, whose transient evolution was well characterised in previous works. Tracking of high-order eccentricity-related harmonics during the transient, through their associated patterns in the time-frequency plane, may significantly increase the reliability of the diagnosis, since the set of fault-related patterns arising after application of the corresponding TFD tool is very unlikely to be caused by other faults or phenomena. Although there are different TFD tools which could be suitable for the transient extraction of these harmonics, this paper makes use of a Wigner-Ville distribution (WVD)-based algorithm in order to carry out the time-frequency decomposition of the startup current signal, since this is a tool showing an excellent trade-off between frequency resolution at both high and low frequencies. Several simulation results obtained with a finite element-based model and experimental results show the validity of this fault diagnosis approach under several faulty and operating conditions. Also, additional signals corresponding to the coexistence of the eccentricity and other non-fault related phenomena making difficult the diagnosis (fluctuating load torque) are included in the paper. Finally, a comparison with an alternative TFD tool - the discrete wavelet transform (DWT) - applied in previous papers, is also carried out in the contribution. The results are promising regarding the usefulness of the methodology for the reliable diagnosis of eccentricities and for their discrimination against other phenomena.

  10. Transient Response in a Dendritic Neuron Model for Current Injected at One Branch

    PubMed Central

    Rinzel, John; Rall, Wilfrid

    1974-01-01

    Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185

  11. Analysis of switching surges generated by current interruption in an energy-storge coil

    NASA Astrophysics Data System (ADS)

    Chowdhuri, P.

    1981-10-01

    The transient voltages which are generated when the current in a large magnetic energy storage coil is interruped by a dc vacuum circuit breaker is analyzed. The effect of the various parameters in the circuit on the transient voltage is dicussed. The self inductance of the dump resistor must be minimized to control the generated transient. Contrary to general belief, a capacitor across the coil is not an effective surge suppressor. In fact, the capacitor may excite oscillations of higher magnitude. However, a capacitor, in addition to a surge suppressor, may be used to modify the frequency components of the transient voltage so that these frequency components are not coincident with the natural frequencies of the coil. Otherwise, resonant oscillations inside the coil may attain damaging magnitudes. The capacitor would also reduce the steepness of the wavefront of the transient across the coil, thus reducing the nonlinear voltage distribution inside the coil.

  12. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  13. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion

    PubMed Central

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Urban, Alan

    2015-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject. PMID:26721392

  15. Modelling the Geographical Range of a Species with Variable Life-History

    PubMed Central

    Macfadyen, Sarina; Kriticos, Darren J.

    2012-01-01

    We show how a climatic niche model can be used to describe the potential geographic distribution of a pest species with variable life-history, and illustrate how to estimate biogeographic pest threats that vary across space. The models were used to explore factors that affect pest risk (irrigation and presences of host plant). A combination of current distribution records and published experimental data were used to construct separate models for the asexual and sexual lineages of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae). The two models were combined with knowledge of host plant presence to classify the global pest risk posed by R. padi. Whilst R. padi has a relatively limited area in which sexual lineages can persist year round, a much larger area is suitable for transient sexual and asexual lineages to exist. The greatest risk of establishment of persistent sexual and asexual populations is in areas with warm temperate climates. At the global scale the models show very little difference in risk patterns between natural rainfall and irrigation scenarios, but in Australia, the amount of land suitable for persistent asexual and transient sexual populations decreases (by 20%) if drought stress is no longer alleviated by irrigation. This approach proved useful for modelling the potential distribution of a species that has a variable life-history. We were able to use the model outputs to examine factors such as irrigation practices and host plant presence that altered the nature (transient or permanent) and extent of pest risk. The composite niche maps indicate pest risk in terms that are useful to both biosecurity agencies and pest managers. PMID:22808133

  16. Transient electromagnetic sounding for groundwater

    USGS Publications Warehouse

    Fitterman, David V.; Stewart, Mark T.

    1986-01-01

    The feasibility of using the transient electromagnetic sounding (TS or TDEM) method for groundwater exploration can be studied by means of numerical models. As examples of its applicability to groundwater exploration, we study four groundwater exploration problems: (1) mapping of alluvial fill and gravel zones over bedrock; (2) mapping of sand and gravel lenses in till; (3) detection of salt or brackish water interfaces in freshwater aquifers; and (4) determination of hydrostratigraphy. These groundwater problems require determination of the depth to bedrock; location of resistive, high‐porosity zones associated with fresh water; determination of formation resistivity to assess water quality; and determination of lithology and geometry, respectively. The TS method is best suited for locating conductive targets, and has very good vertical resolution. Unlike other sounding techniques where the receiver‐transmitter array must be expanded to sound more deeply, the depth of investigation for the TS method is a function of the length of time the transient is recorded. Present equipment limitations require that exploration targets with resistivities of 50 Ω ⋅ m or more be at least 50 m deep to determine their resistivity. The maximum depth of exploration is controlled by the geoelectrical section and background electromagnetic (EM) noise. For a particular exploration problem, numerical studies are recommended to determine if the target is detectable.

  17. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    PubMed

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  18. Dynamical Networks Characterization of Space Weather Events

    NASA Astrophysics Data System (ADS)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  19. Selective block of late Na+ current by local anaesthetics in rat large sensory neurones

    PubMed Central

    Baker, Mark D

    2000-01-01

    The actions of lignocaine and benzocaine on transient and late Na+ current generated by large diameter (⩾50 μm) adult rat dorsal root ganglion neurones, were studied using patch-clamp techniques.Both drugs blocked whole-cell late Na+ current in a concentration-dependent manner. At 200 ms following the onset of a clamp step from −110 to −40 mV, the apparent K for block of late Na+ current by lignocaine was 57.8±15 μM (mean±s.e.mean, n=4). The value for benzocaine was 24.9±3.3 μM, (mean±s.e.mean, n=3).The effect of lignocaine on transient current, in randomly selected neurones, appeared variable (n=8, half-block from ∼50 to 400 μM). Half-block by benzocaine was not attained, but both whole-cell (n=11) and patch data suggested a high apparent K,>250 μM. Transient current always remained after late current was blocked.The voltage-dependence of residual late current steady-state inactivation was not shifted by 20 μM benzocaine (n=3), whereas 200 μM benzocaine shifted the voltage-dependence of transient current steady-state inactivation by −18.7±5.9 mV (mean±s.e.mean, n=4).In current-clamp, benzocaine (250 μM) could block subthreshold, voltage-dependent inward current, increasing the threshold for eliciting action potentials, without preventing their generation (n=2).Block of late Na+ current by systemic local anaesthetic may play a part in preventing ectopic impulse generation in sensory neurones. PMID:10780966

  20. Physical experiments and analysis on the generation and evolution of tsunami-induced turbulent coherent structures

    NASA Astrophysics Data System (ADS)

    Kalligeris, Nikos; Lynett, Patrick

    2017-11-01

    Numerous historical accounts describe the formation of ``whirpools'' inside ports and harbors during tsunami events, causing port operation disruptions. Videos from the Japan 2011 tsunami revealed complex nearshore flow patters, resulting from the interaction of tsunami-induced currents with the man-made coastline, and the generation of large eddies (or turbulent coherent structures) in numerous ports and harbors near the earthquake epicenter. The aim of this work is to study the generation and evolution of tsunami-induced turbulent coherent structures (TCS) in a well-controlled environment using realistic scaling. A physical configuration is created in the image of a port entrance at a scale of 1:27 and a small-amplitude, long period wave creates a transient flow through the asymmetric harbor channel. A separated region forms, which coupled with the transient flow, leads to the formation of a stable monopolar TCS. The surface flow is examined through mono- and stereo-PTV techniques to extract surface velocity vectors. Surface velocity maps and vortex flow profiles are used to study the experimental TCS generation and evolution, and characterize the TCS structure. Analytical tools are used to describe the TCS growth rate and kinetic energy decay. This work was funded by the National Science Foundation NEES Research program, with Award Number 1135026.

  1. Transient analysis of a solid oxide fuel cell stack with crossflow configuration

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Liu, S. F.

    2018-05-01

    This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.

  2. Intraoperative Functional Ultrasound Imaging of Human Brain Activity.

    PubMed

    Imbault, Marion; Chauvet, Dorian; Gennisson, Jean-Luc; Capelle, Laurent; Tanter, Mickael

    2017-08-04

    The functional mapping of brain activity is essential to perform optimal glioma surgery and to minimize the risk of postoperative deficits. We introduce a new, portable neuroimaging modality of the human brain based on functional ultrasound (fUS) for deep functional cortical mapping. Using plane-wave transmissions at an ultrafast frame rate (1 kHz), fUS is performed during surgery to measure transient changes in cerebral blood volume with a high spatiotemporal resolution (250 µm, 1 ms). fUS identifies, maps and differentiates regions of brain activation during task-evoked cortical responses within the depth of a sulcus in both awake and anaesthetized patients.

  3. Local nanoscale strain mapping of a metallic glass during in situ testing

    NASA Astrophysics Data System (ADS)

    Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.; Eckert, Jürgen; Minor, Andrew M.

    2018-04-01

    The local elastic strains during tensile deformation in a CuZrAlAg metallic glass are obtained by fitting an elliptic shape function to the characteristic amorphous ring in electron diffraction patterns. Scanning nanobeam electron diffraction enables strain mapping with a resolution of a few nanometers. Here, a fast direct electron detector is used to acquire the diffraction patterns at a sufficient speed to map the local transient strain during continuous tensile loading in situ in the transmission electron microscope. The elastic strain in tensile direction was found to increase during loading. After catastrophic fracture, a residual elastic strain that relaxes over time was observed.

  4. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    NASA Technical Reports Server (NTRS)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  5. Effects of funnel web spider toxin on Ca2+ currents in neurohypophysial terminals.

    PubMed

    Wang, G; Lemos, J R

    1994-11-14

    Funnel web spider toxin (FTX) is reportedly a specific blocker of P-type Ca2+ channels. The effects of FTX on the Ca2+ currents of isolated neurohypophysial nerve terminals of the rat were investigated using the 'whole-cell' patch-clamp technique. Both the transient and long-lasting Ca2+ current components were maximally elicited by depolarization from a holding potential equal to the normal terminal resting potential (-90 mV). Externally applied FTX inhibited the high-voltage-threshold, transient component of the Ca2+ current in a concentration-dependent manner, with a half-maximal inhibition at a dilution of approximately 1:10000. FTX also shifted the peak current of the I-V relationship by +10 mV. The long-lasting Ca2+ current component, which is sensitive to L-type Ca2+ channel blockers, was insensitive to FTX. The transient current, which is sensitive to omega-conotoxin GVIA, was completely blocked by FTX. These results suggest that there could be a novel, inactivating Ca2+ channel in the rat neurohypophysial terminals which is affected by both N-type and P-type Ca2+ channel blockers.

  6. Longitudinal gradient coil optimization in the presence of transient eddy currents.

    PubMed

    Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S

    2007-06-01

    The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.

  7. Properties of whole cell currents in isolated olfactory neurons from the chilean toad Caudiverbera caudiverbera.

    PubMed

    Delgado, R; Labarca, P

    1993-06-01

    Isolated olfactory neurons from the chilean toad Caudiverbera caudiverbera were found to possess a same set of currents. Outward currents, made of a delayed rectifier and a Ca(2+)-dependent component, were blocked by replacing K+ by Cs+ in the patch pipette, in the presence of millimolar concentrations of tetraethylammonium and 4-aminopyridine in the external solution. Inward currents were made of a transient and a maintained component. The transient was abolished in the absence of external Na+ and was blocked by tetrodotoxin, with an apparent dissociation constant (KDapp) of 25.4 +/- 0.3 nM. The maintained inward currents were suppressed on removing external Ca2+, could be carried also by Ba2+, and were selectively blocked by Cd2+ (KDapp = 3.2 +/- 1.3 microM). A variety of agents found to block the maintained Ca2+ inward currents, including Co2+ and Ni2+, at millimolar concentrations, and nifedipine, verapamil, amiloride, and the amiloride analogue benzamil, at micromolar concentrations, were also effective in either modifying the gating of, or in blocking, the transient inward currents.

  8. Analysis of transient state in HTS tapes under ripple DC load current

    NASA Astrophysics Data System (ADS)

    Stepien, M.; Grzesik, B.

    2014-05-01

    The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.

  9. Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells

    PubMed Central

    Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe

    2010-01-01

    Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114

  10. Simulation of transient effects in the heavy ion fusion injectors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  11. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  12. Reversible pyroelectric and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.

    1994-01-01

    The pyroelectric and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.

  13. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  14. Temporal Stability of Rotors and Atrial Activation Patterns in Persistent Human Atrial Fibrillation: A High-Density Epicardial Mapping Study of Prolonged Recordings.

    PubMed

    Walters, Tomos E; Lee, Geoffrey; Morris, Gwilym; Spence, Steven; Larobina, Marco; Atkinson, Victoria; Antippa, Phillip; Goldblatt, John; Royse, Alistair; O'Keefe, Michael; Sanders, Prashanthan; Morton, Joseph B; Kistler, Peter M; Kalman, Jonathan M

    This study aimed to determine the spatiotemporal stability of rotors and other atrial activation patterns over 10 min in longstanding, persistent AF, along with the relationship of rotors to short cycle-length (CL) activity. The prevalence, stability, and mechanistic importance of rotors in human atrial fibrillation (AF) remain unclear. Epicardial mapping was performed in 10 patients undergoing cardiac surgery, with bipolar electrograms recorded over 10 min using a triangular plaque (area: 6.75 cm 2 ; 117 bipoles; spacing: 2.5 mm) applied to the left atrial posterior wall (n = 9) and the right atrial free wall (n = 4). Activations were identified throughout 6 discrete 10-s segments of AF spanning 10 min, and dynamic activation mapping was performed. The distributions of 4,557 generated activation patterns within each mapped region were compared between the 6 segments. The dominant activation pattern was the simultaneous presence of multiple narrow wave fronts (26%). Twelve percent of activations represented transient rotors, seen in 85% of mapped regions with a median duration of 3 rotations. A total of 87% were centered on an area of short CL activity (<100 ms), although such activity had a positive predictive value for rotors of only 0.12. The distribution of activation patterns and wave-front directionality were highly stable over time, with a single dominant pattern within a 10-s AF segment recurring across all 6 segments in 62% of mapped regions. In patients with longstanding, persistent AF, activation patterns are spatiotemporally stable over 10 min. Transient rotors can be demonstrated in the majority of mapped regions, are spatiotemporally associated with short CL activity, and, when recurrent, demonstrate anatomical determinism. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain heterogeneities. The dependence of the anelastic behaviour on the initial stress, combined with the lack of subgrain boundaries, suggest that the anelastic behaviour is controlled by local interactions between dislocations, rather than resistance imposed by the lattice or subgrain boundaries.

  16. Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes

    NASA Astrophysics Data System (ADS)

    Kuzmík, J.; Pogany, D.; Gornik, E.; Javorka, P.; Kordoš, P.

    2004-02-01

    We study degradation mechanisms in 50 μm gate width/0.45 μm length AlGaN/GaN HEMTs after electrical overstresses. One hundred nanosecond long rectangular current pulses are applied on the drain contact keeping either both of the source and gate grounded or the source grounded and gate floating. Source-drain pulsed I- V characteristics show similar shape for both connections. After the HEMT undergoes the source-drain breakdown, a negative differential resistance region transits into a low voltage/high current region. Changes in the Schottky contact dc I- V characteristics and in the source and drain ohmic contacts are investigated as a function of the current stress level and are related to the HEMT dc performance. Catastrophic HEMT degradation was observed after Istress=1.65 A in case of the 'gate floating' connection due to ohmic contacts burnout. In case of the 'gate grounded' connection, Istress=0.45 A was sufficient for the gate failure showing a high gate susceptibility to overstress. Backside transient interferometric mapping technique experiment reveals a current filament formation under both HEMT stress connections. Infrared camera observations lead to conclusion that the filament formation together with a consequent high-density electron flow is responsible for a dark spot formation and gradual ohmic contact degradation.

  17. Temperature dependent GaAs MMIC radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.T.; Roussos, J.A.; Gerdes, J.

    1993-12-01

    The temperature dependence of pulsed neutron and flash x-ray radiation effects was studied in GaAs MMICs. Above room temperature the long term current transients are dominated by electron trapping in previously existing defects. At low temperature in the range 126 to 259 K neutron induced lattice damage appears to play an increasingly important role in producing long term current transients.

  18. Do Magnetic Fields Drive High-Energy Explosive Transients?

    NASA Astrophysics Data System (ADS)

    Mundell, Carole

    2017-10-01

    I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.

  19. Technical Note: MR-visualization of interventional devices using transient field alterations and balanced steady-state free precession imaging.

    PubMed

    Eibofner, Frank; Martirosian, Petros; Würslin, Christian; Graf, Hansjörg; Syha, Roland; Clasen, Stephan

    2015-11-01

    In interventional magnetic resonance imaging, instruments can be equipped with conducting wires for visualization by current application. The potential of sequence triggered application of transient direct currents in balanced steady-state free precession (bSSFP) imaging is demonstrated. A conductor and a modified catheter were examined in water phantoms and in an ex vivo porcine liver. The current was switched by a trigger pulse in the bSSFP sequence in an interval between radiofrequency pulse and signal acquisition. Magnitude and phase images were recorded. Regions with transient field alterations were evaluated by a postprocessing algorithm. A phase mask was computed and overlaid with the magnitude image. Transient field alterations caused continuous phase shifts, which were separated by the postprocessing algorithm from phase jumps due to persistent field alterations. The overlaid images revealed the position of the conductor. The modified catheter generated visible phase offset in all orientations toward the static magnetic field and could be unambiguously localized in the ex vivo porcine liver. The application of a sequence triggered, direct current in combination with phase imaging allows conspicuous localization of interventional devices with a bSSFP sequence.

  20. Local linear approximation of the Jacobian matrix better captures phase resetting of neural limit cycle oscillators.

    PubMed

    Oprisan, Sorinel Adrian

    2014-01-01

    One effect of any external perturbations, such as presynaptic inputs, received by limit cycle oscillators when they are part of larger neural networks is a transient change in their firing rate, or phase resetting. A brief external perturbation moves the figurative point outside the limit cycle, a geometric perturbation that we mapped into a transient change in the firing rate, or a temporal phase resetting. In order to gain a better qualitative understanding of the link between the geometry of the limit cycle and the phase resetting curve (PRC), we used a moving reference frame with one axis tangent and the others normal to the limit cycle. We found that the stability coefficients associated with the unperturbed limit cycle provided good quantitative predictions of both the tangent and the normal geometric displacements induced by external perturbations. A geometric-to-temporal mapping allowed us to correctly predict the PRC while preserving the intuitive nature of this geometric approach.

  1. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less

  2. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  3. Detection of postseismic fault-zone collapse following the Landers earthquake

    USGS Publications Warehouse

    Massonnet, D.; Thatcher, W.; Vadon, H.

    1996-01-01

    Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.

  4. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    NASA Technical Reports Server (NTRS)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  5. Investigation of the internal electric field in cadmium zinc telluride detectors using the Pockels effect and the analysis of charge transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groza, Michael; Cui Yunlong; Buliga, Vladimir

    2010-01-15

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is ofmore » critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.« less

  6. Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory

    PubMed Central

    West, Robert; Braver, Todd

    2009-01-01

    Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581

  7. Proton-Mediated Block of Ca2+ Channels during Multivesicular Release Regulates Short-Term Plasticity at an Auditory Hair Cell Synapse

    PubMed Central

    Cho, Soyoun

    2014-01-01

    Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130

  8. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  9. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, Terry V.; Hippensteele, Steven A.

    1988-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  10. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  11. Recent Results on SNRs and PWNe from the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2010-01-01

    Topics include: Fermi LAT Collaboration groups; galactic results from LAT; a GeV, wide-field instrument; the 1FGL catalog, the Fermi LAT 1FGL source catalog, unidentified gamma-ray sources; variability in 1FGL sources; curvature in 1FGL sources; spectral-variability classification; pulsars and their wind nebulae; gamma-ray pulsars and MSPs; GeV PWN search; Crab pulsar and nebula; Vela X nebular of Vela pulsar; MSH 15-52; supernova remnants, resolved GeV sources, galactic transients, LAT unassociated transient detections; gamma rays from a nova; V407 Cyngi - a symbiotic nova; V407 Cygni: a variable star; and March 11 - a nova. Summary slides include pulsars everywhere, blazars, LAT as an electron detector, cosmic ray spectrum, the Large Area Telescope, the Fermi Observatory, LAT sensitivity with time, candidate gamma-ray events, on-orbit energy calibration and rate, a 1 year sky map, LAT automated science processing, reported GeV flares, early activity and spectacular flare, gamma-ray transients near the galactic plane , two early unassociated transients, counter part search - Fermi J0910-5404; counterpart search 3EG J0903-3531, and a new LAT transient - J1057-6027.

  12. The Effects of Low Dose-Rate Ionizing Radiation on the Shapes of Transients in the LM124 Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.

    2008-01-01

    Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.

  13. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to be an important research tool that will further the development of a broad range of microbubble-enhanced therapies. PMID:23788054

  14. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool. Currently STRING can generate animations of single 2D cuts, either planar or curved surfaces, through 3D simulation domains. To provide a general tool for experts enabling also direct exploration and analysis of large 3D flow fields the software needs to be extended to intuitive as well as interactive visualizations of entire 3D flow domains. The current research concerning this project, which is funded by the Federal Ministry for Economic Affairs and Energy (Germany), is presented.

  15. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes

    PubMed Central

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-01-01

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes. DOI: http://dx.doi.org/10.7554/eLife.19267.001 PMID:27627745

  16. A New Comprehensive Lightning Instrumentation System for Pad 39B at the Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, Vladimir A.; Mata, Angel G.; Bonilla Tatiana; Navedo, Emmanuel; Snyder, Gary P.

    2010-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras, currents through the nine downconductors of the new lightning protection system, four B-dot, 3-axis measurement stations, and five D-dot stations composed of two antennas each. The instrumentation system is composed of centralized transient recorders and digitizers that located close to the sensors in the field. The sensors and transient recorders communicate via optical fiber. The transient recorders are triggered by the B-dot sensors, the E-dot sensors, or the current through the downlead conductors. The high-speed cameras are triggered by the transient recorders when the latter perceives a qualified trigger.

  17. Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.

    2016-09-01

    The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less

  18. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  19. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  20. Compiling a national resistivity atlas of Denmark based on airborne and ground-based transient electromagnetic data

    NASA Astrophysics Data System (ADS)

    Barfod, Adrian A. S.; Møller, Ingelise; Christiansen, Anders V.

    2016-11-01

    We present a large-scale study of the petrophysical relationship of resistivities obtained from densely sampled ground-based and airborne transient electromagnetic surveys and lithological information from boreholes. The overriding aim of this study is to develop a framework for examining the resistivity-lithology relationship in a statistical manner and apply this framework to gain a better description of the large-scale resistivity structures of the subsurface. In Denmark very large and extensive datasets are available through the national geophysical and borehole databases, GERDA and JUPITER respectively. In a 10 by 10 km grid, these data are compiled into histograms of resistivity versus lithology. To do this, the geophysical data are interpolated to the position of the boreholes, which allows for a lithological categorization of the interpolated resistivity values, yielding different histograms for a set of desired lithological categories. By applying the proposed algorithm to all available boreholes and airborne and ground-based transient electromagnetic data we build nation-wide maps of the resistivity-lithology relationships in Denmark. The presented Resistivity Atlas reveals varying patterns in the large-scale resistivity-lithology relations, reflecting geological details such as available source material for tills. The resistivity maps also reveal a clear ambiguity in the resistivity values for different lithologies. The Resistivity Atlas is highly useful when geophysical data are to be used for geological or hydrological modeling.

  1. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).

    PubMed

    McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William

    2007-05-01

    The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

  2. Monitoring Blood-Brain Barrier Integrity Following Amyloid-β Immunotherapy Using Gadolinium-Enhanced MRI in a PDAPP Mouse Model.

    PubMed

    Blockx, Ines; Einstein, Steve; Guns, Pieter-Jan; Van Audekerke, Johan; Guglielmetti, Caroline; Zago, Wagner; Roose, Dimitri; Verhoye, Marleen; Van der Linden, Annemie; Bard, Frederique

    2016-09-06

    Amyloid-related imaging abnormalities (ARIA) have been reported with some anti-amyloid-β (Aβ) immunotherapy trials. They are detected with magnetic resonance imaging (MRI) and thought to represent transient accumulation of fluid/edema (ARIA-E) or microhemorrhages (ARIA-H). Although the clinical significance and pathophysiology are unknown, it has been proposed that anti-Aβimmunotherapy may affect blood-brain barrier (BBB) integrity. To examine vascular integrity in aged (12-16 months) PDAPP and wild type mice (WT), we performed a series of longitudinal in vivo MRI studies. Mice were treated on a weekly basis using anti-Aβimmunotherapy (3D6) and follow up was done longitudinally from 1-12 weeks after treatment. BBB-integrity was assessed using both visual assessment of T1-weighted scans and repeated T1 mapping in combination with gadolinium (Gd-DOTA). A subset of 3D6 treated PDAPP mice displayed numerous BBB disruptions, whereas WT and saline-treated PDAPP mice showed intact BBB integrity under the conditions tested. In addition, the contrast induced decrease in T1 value was observed in the meningeal and midline area. BBB disruption events occurred early during treatment (between 1 and 5 weeks), were transient, and resolved quickly. Finally, BBB-leakages associated with microhemorrhages were confirmed by Perls'Prussian blue histopathological analysis. Our preclinical findings support the hypothesis that 3D6 leads to transient leakage from amyloid-positive vessels. The current study has provided valuable insights on the time course of vascular alterations during immunization treatment and supports further research in relation to the nature of ARIA and the utility of in vivo repeated T1 MRI as a translational tool.

  3. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI?

    PubMed

    Grams, Raymond W; Kidwell, Chelsea S; Doshi, Amish H; Drake, Kendra; Becker, Jennifer; Coull, Bruce M; Nael, Kambiz

    2016-07-01

    Approximately 60% of patients with a clinical transient ischemic attack (TIA) do not have DWI evidence of cerebral ischemia. The purpose of this study was to assess the added diagnostic value of perfusion MRI in the evaluation of patients with TIA who have normal DWI findings. The inclusion criteria for this retrospective study were clinical presentation of TIA at admission with a discharge diagnosis of TIA confirmed by a stroke neurologist, MRI including both DWI and perfusion-weighted imaging within 48 hours of symptom onset, and no DWI lesion. Cerebral blood flow (CBF) and time to maximum of the residue function (Tmax) maps were evaluated independently by two observers. Multivariate analysis was used to assess perfusion findings; clinical variables; age, blood pressure, clinical symptoms, diabetes (ABCD2) score; duration of TIA; and time between MRI and onset and resolution of symptoms. Fifty-two patients (33 women, 19 men; age range, 20-95 years) met the inclusion criteria. A regional perfusion abnormality was identified on either Tmax or CBF maps of 12 of 52 (23%) patients. Seven (58%) of the patients with perfusion abnormalities had hypoperfused lesions best detected on Tmax maps; the other five had hyperperfusion best detected on CBF maps. In 11 of 12 (92%) patients with abnormal perfusion MRI findings, the regional perfusion deficit correlated with the initial neurologic deficits. Multivariable analysis revealed no significant difference in demographics, ABCD2 scores, or presentation characteristics between patients with and those without perfusion abnormalities. Perfusion MRI that includes Tmax and CBF parametric maps adds diagnostic value by depicting regions with delayed perfusion or postischemic hyperperfusion in approximately one-fourth of TIA patients who have normal DWI findings.

  4. Actions of bis(7)-tacrine and tacrine on transient potassium current in rat DRG neurons and potassium current mediated by K(V)4.2 expressed in Xenopus oocyte.

    PubMed

    Li, Xiang-Yuan; Zhang, Jian; Dai, Jia-Pei; Liu, Xiang-Ming; Li, Zhi-Wang

    2010-03-08

    Bis(7)-tacrine [bis(7)-tetrahydroaminacrine] is a dimeric AChE inhibitor derived from tacrine with a potential to treat Alzheimer's disease. Actions of bis(7)-tacrine on ligand-gated ion channels and voltage-gated cation channels have been identified on neurons of both central and peripheral nervous systems. In the present study, the effect of bis(7)-tacrine was investigated on the K(V)4.2 encoded potassium currents expressed in Xenopus oocytes and the transient A-type potassium current (I(K(A))) on rat DRG neurons. Bis(7)-tacrine suppressed recombinant Kv4.2 potassium channels in a concentration-dependent manner, with IC(50) value of 0.53+/-0.13 muM. Tacrine also inhibited Kv4.2 channels, but with a much lower potency (IC(50) 74+/-15 muM).The possible mechanisms underlying the inhibition on potassium currents by bis(7)-tacrine/tacrine could be that inactivation of the transient potassium currents was accelerated and recovery of the native or Kv4.2 expressed potassium currents was suppressed by bis(7)-tacrine/tacrine. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Methamphetamine-associated psychosis: a new health challenge in Iran

    PubMed Central

    2013-01-01

    The rapidly growing popularity of methamphetamine use in Iran has posed a new health challenge to the Iranian health sector. Methamphetamine-associated psychosis (MAP) has been frequently reported in Iran in recent years. Although methamphetamine use and MAP are considerable health problems in Iran but there is still a need to conduct epidemiological studies on the prevalence of MAP and its health-related problems. The present paper emphasizes that health policy makers should consider the immediate needs of drug users, their families and the community to be informed about the detrimental health effects associated with MAP. Although MAP could be managed by prescribing benzodiazepines and psychiatric medications but the most effective regime for stabilizing patients with MAP still needs to be studied in Iran. Constant collaborations among psychiatric services and outpatient psychotherapeutic services should be established to successfully manage MAP in Iran. Iranian clinicians especially emergency medicine specialists should be informed about the differences between the two forms of transient and recurrent MAP in order to implement appropriate pharmacological therapies to manage MAP. It is hoped that special training courses are designed and implemented by health policy makers to inform clinicians, health providers and especially emergency medicine specialists to effectively deal with MAP. PMID:23577655

  6. Transient fault behavior in a microprocessor: A case study

    NASA Technical Reports Server (NTRS)

    Duba, Patrick

    1989-01-01

    An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.

  7. Synoptic maps for the heliospheric Thomson scattering brightness as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1991-01-01

    A method for displaying the electron Thomson scattering intensity in the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps is presented. The method is based on the assumption that the bulk of the scattering electrons along the line of sight is located near the point closest to the sun. Inner-heliospheric structures will generally be represented properly in these synoptic maps only if they are sufficiently long-lived (that is, a significant fraction of a solar rotation period). The examples of Helios synoptic maps discussed (from data in April 1976 and November 1978), indicate that it is possible to identify large-scale, long-lived density enhancements in the inner heliosphere. It is expected that the Helios synoptic maps will be particularly useful in the study of corotating structures (e.g., streamers), and the maps will be most reliable during periods when few transient featurs are present in the corona, i.e., during solar minimum.

  8. Mobile Atmospheric Pollutant Mapping System (MAPMS)

    DTIC Science & Technology

    1989-12-01

    SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER

  9. The first-principle coupled calculations using TMCC and CFX for the pin-wise simulation of LWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Wang, K.

    2012-07-01

    The coupling of neutronics and thermal-hydraulics plays an important role in the reactor safety, core design and operation of nuclear power facilities. This paper introduces the research on the coupling of Monte Carlo method and CFD method, specifically using TMCC and CFX. The methods of the coupling including the coupling approach, data transfer, mesh mapping and transient coupling scheme are studied firstly. The coupling of TMCC and CFX for the steady state calculations is studied and described for the single rod model and the 3 x 3 Rod Bundle model. The calculation results prove that the coupling method is feasiblemore » and the coupled calculation can be used for steady state calculations. However, the oscillation which occurs during the coupled calculation indicates that this method still needs to be improved for the accuracy. Then the coupling for the transient calculations is also studied and tested by two cases of the steady state and the lost of heat sink. The preliminary results of the transient coupled calculations indicates that the transient coupling with TMCC and CFX is able to simulate the transients but instabilities are occurring. It is also concluded that the transient coupling of TMCC and CFX needs to be improved due to the limitation of computational resource and the difference of time scales. (authors)« less

  10. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    NASA Astrophysics Data System (ADS)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.

  11. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.

    PubMed Central

    Andersen, P S; Fuchs, M

    1975-01-01

    Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier. PMID:1148364

  12. Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.; hide

    2009-01-01

    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.

  13. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  14. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    PubMed

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  15. In vivo super-resolution imaging of transient retinal phototropism evoked by oblique light stimulation.

    PubMed

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-05-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  17. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.

    PubMed

    Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A

    2016-07-01

    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.

  18. Coarse Architecture of the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel Determined by Fluorescence Resonance Energy Transfer*

    PubMed Central

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E.; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D.

    2013-01-01

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane. PMID:23965996

  19. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer.

    PubMed

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2013-10-11

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  20. Sub-10 fs Time-Resolved Vibronic Optical Microscopy

    PubMed Central

    2016-01-01

    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055

  1. Mapping transiently formed and sparsely populated conformations on a complex energy landscape.

    PubMed

    Wang, Yong; Papaleo, Elena; Lindorff-Larsen, Kresten

    2016-08-23

    Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to provide atomic-level descriptions of sparsely populated and transiently formed alternative conformations. Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture key properties previously measured by NMR relaxation dispersion methods including the structure of a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to be relevant for ligand escape. Together, our results provide a comprehensive view of the structural landscape of a protein, and point forward to studies of conformational exchange in systems that are less characterized experimentally.

  2. On current transients in MoS2 Field Effect Transistors.

    PubMed

    Macucci, Massimo; Tambellini, Gerry; Ovchinnikov, Dmitry; Kis, Andras; Iannaccone, Giuseppe; Fiori, Gianluca

    2017-09-14

    We present an experimental investigation of slow transients in the gate and drain currents of MoS 2 -based transistors. We focus on the measurement of both the gate and drain currents and, from the comparative analysis of the current transients, we conclude that there are at least two independent trapping mechanisms: trapping of charges in the silicon oxide substrate, occurring with time constants of the order of tens of seconds and involving charge motion orthogonal to the MoS 2 sheet, and trapping at the channel surface, which occurs with much longer time constants, in particular when the device is in a vacuum. We observe that the presence of such slow phenomena makes it very difficult to perform reliable low-frequency noise measurements, requiring a stable and repeatable steady-state bias point condition, and may explain the sometimes contradictory results that can be found in the literature about the dependence of the flicker noise power spectral density on gate bias.

  3. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.

  4. Transient Outward K+ Current (Ito) Underlies the Right Ventricular Initiation of Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long-QT Syndrome Type 1.

    PubMed

    Choi, Bum-Rak; Li, Weiyan; Terentyev, Dmitry; Kabakov, Anatoli Y; Zhong, Mingwang; Rees, Colin M; Terentyeva, Radmila; Kim, Tae Yun; Qu, Zhilin; Peng, Xuwen; Karma, Alain; Koren, Gideon

    2018-06-01

    Sudden death in long-QT syndrome type 1 (LQT1), an inherited disease caused by loss-of-function mutations in KCNQ1, is triggered by early afterdepolarizations (EADs) that initiate polymorphic ventricular tachycardia (pVT). We investigated ionic mechanisms that underlie pVT in LQT1 using a transgenic rabbit model of LQT1. Optical mapping, cellular patch clamping, and computer modeling were used to elucidate the mechanisms of EADs in transgenic LQT1 rabbits. The results showed that shorter action potential duration in the right ventricle (RV) was associated with focal activity during pVT initiation. RV cardiomyocytes demonstrated higher incidence of EADs under 50 nmol/L isoproterenol. Voltage-clamp studies revealed that the transient outward potassium current (I to ) magnitude was 28% greater in RV associated with KChiP2 but with no differences in terms of calcium-cycling kinetics and other sarcolemmal currents. Perfusing with the I to blocker 4-aminopyridine changed the initial focal sites of pVT from the RV to the left ventricle, corroborating the role of I to in pVT initiation. Computer modeling showed that EADs occur preferentially in the RV because of the larger conductance of the slow-inactivating component of I to , which repolarizes the membrane potential sufficiently rapidly to allow reactivation of I Ca,L before I Kr has had sufficient time to activate. I to heterogeneity creates both triggers and an arrhythmogenic substrate in LQT1. In the absence of I Ks , I to interactions with I Ca,L and I Kr promote EADs in the RV while prolonging action potential duration in the left ventricle. This heterogeneity of action potential enhances dispersion of refractoriness and facilitates conduction blocks that initiate pVTs. © 2018 American Heart Association, Inc.

  5. Role of apamin-sensitive small conductance calcium-activated potassium currents in long-term cardiac memory in rabbits.

    PubMed

    Yin, Dechun; Chen, Mu; Yang, Na; Wu, Adonis Z; Xu, Dongzhu; Tsai, Wei-Chung; Yuan, Yuan; Tian, Zhipeng; Chan, Yi-Hsin; Shen, Changyu; Chen, Zhenhui; Lin, Shien-Fong; Weiss, James N; Chen, Peng-Sheng; Everett, Thomas H

    2018-05-01

    Apamin-sensitive small conductance calcium-activated K current (I KAS ) is up-regulated during ventricular pacing and masks short-term cardiac memory (CM). The purpose of this study was to determine the role of I KAS in long-term CM. CM was created with 3-5 weeks of ventricular pacing and defined by a flat or inverted T wave off pacing. Epicardial optical mapping was performed in both paced and normal ventricles. Action potential duration (APD 80 ) was determined during right atrial pacing. Ventricular stability was tested before and after I KAS blockade. Four paced hearts and 4 normal hearts were used for western blotting and histology. There were no significant differences in either echocardiographic parameters or fibrosis levels between groups. Apamin induced more APD 80 prolongation in CM than in normal ventricles (mean [95% confidence interval]: 9.6% [8.8%-10.5%] vs 3.1% [1.9%-4.3%]; P <.001). Apamin significantly lengthened APD 80 in the CM model at late activation sites, indicating significant I KAS up-regulation at those sites. The CM model also had altered Ca 2+ handling, with the 50% Ca 2+ transient duration and amplitude increased at distal sites compared to a proximal site (near the pacing site). After apamin, the CM model had increased ventricular fibrillation (VF) inducibility (paced vs control: 33/40 (82.5%) vs 7/20 (35%); P <.001) and longer VF durations (124 vs 26 seconds; P <.001). Chronic ventricular pacing increases Ca 2+ transients at late activation sites, which activates I KAS to maintain repolarization reserve. I KAS blockade increases VF vulnerability in chronically paced rabbit ventricles. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Calcium transient dynamics and the mechanisms of ventricular vulnerability to single premature electrical stimulation in Langendorff-perfused rabbit ventricles

    PubMed Central

    Hayashi, Hideki; Kamanu, Santosh Dora; Ono, Norihiko; Kawase, Ayaka; Chou, Chung-Chuan; Weiss, James N.; Karagueuzian, Hrayr S.; Lin, Shien-Fong; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Single strong premature electrical stimulation (S2) may induce figure-eight reentry. We hypothesize that Ca current-mediated slow-response action potentials (APs) play a key role in the propagation in the central common pathway (CCP) of the reentry. METHODS We simultaneously mapped optical membrane potential (Vm) and intracellular Ca (Cai) transients in isolated Langendorff-perfused rabbit ventricles. Baseline pacing (S1) and a cathodal S2 (40 – 80 mA) were given at different epicardial sites with a coupling interval of 135 ± 20 ms. RESULTS In all 6 hearts, S2 induced graded responses around the S2 site. These graded responses propagated locally toward the S1 site and initiated fast APs from recovered tissues. The wavefront then circled around the refractory tissue near the site of S2. At the side of S2 opposite to the S1, the graded responses prolonged AP duration while the Cai continued to decline, resulting in a Cai sinkhole (an area of low Cai). The Cai in the sinkhole then spontaneously increased, followed by a slow Vm depolarization with a take-off potential of −40 ± 3.9 mV, which was confirmed with microelectrode recordings in 3 hearts. These slow-response APs then propagated through CCP to complete a figure-eight reentry. CONCLUSION We conclude that a strong premature stimulus can induce a Cai sinkhole at the entrance of the CCP. Spontaneous Cai elevation in the Cai sinkhole precedes the Vm depolarization, leading to Ca current-mediated slow propagation in the CCP. The slow propagation allows more time for tissues at the other side of CCP to recover and be excited to complete figure-eight reentry. PMID:18180025

  7. Calcium transient dynamics and the mechanisms of ventricular vulnerability to single premature electrical stimulation in Langendorff-perfused rabbit ventricles.

    PubMed

    Hayashi, Hideki; Kamanu, Santosh Dora; Ono, Norihiko; Kawase, Ayaka; Chou, Chung-Chuan; Weiss, James N; Karagueuzian, Hrayr S; Lin, Shien-Fong; Chen, Peng-Sheng

    2008-01-01

    Single strong premature electrical stimulation (S(2)) may induce figure-eight reentry. We hypothesize that Ca current-mediated slow-response action potentials (APs) play a key role in the propagation in the central common pathway (CCP) of the reentry. We simultaneously mapped optical membrane potential (V(m)) and intracellular Ca (Ca(i)) transients in isolated Langendorff-perfused rabbit ventricles. Baseline pacing (S(1)) and a cathodal S(2) (40-80 mA) were given at different epicardial sites with a coupling interval of 135 +/- 20 ms. In all 6 hearts, S(2) induced graded responses around the S(2) site. These graded responses propagated locally toward the S(1) site and initiated fast APs from recovered tissues. The wavefront then circled around the refractory tissue near the site of S(2). At the side of S(2) opposite to the S(1), the graded responses prolonged AP duration while the Ca(i) continued to decline, resulting in a Ca(i) sinkhole (an area of low Ca(i)). The Ca(i) in the sinkhole then spontaneously increased, followed by a slow V(m) depolarization with a take-off potential of -40 +/- 3.9 mV, which was confirmed with microelectrode recordings in 3 hearts. These slow-response APs then propagated through CCP to complete a figure-eight reentry. We conclude that a strong premature stimulus can induce a Ca(i) sinkhole at the entrance of the CCP. Spontaneous Ca(i) elevation in the Ca(i) sinkhole precedes the V(m) depolarization, leading to Ca current-mediated slow propagation in the CCP. The slow propagation allows more time for tissues at the other side of CCP to recover and be excited to complete figure-eight reentry.

  8. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    PubMed

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  9. A Software Tool for Quantitative Seismicity Analysis - ZMAP

    NASA Astrophysics Data System (ADS)

    Wiemer, S.; Gerstenberger, M.

    2001-12-01

    Earthquake catalogs are probably the most basic product of seismology, and remain arguably the most useful for tectonic studies. Modern seismograph networks can locate up to 100,000 earthquakes annually, providing a continuous and sometime overwhelming stream of data. ZMAP is a set of tools driven by a graphical user interface (GUI), designed to help seismologists analyze catalog data. ZMAP is primarily a research tool suited to the evaluation of catalog quality and to addressing specific hypotheses; however, it can also be useful in routine network operations. Examples of ZMAP features include catalog quality assessment (artifacts, completeness, explosion contamination), interactive data exploration, mapping transients in seismicity (rate changes, b-values, p-values), fractal dimension analysis and stress tensor inversions. Roughly 100 scientists worldwide have used the software at least occasionally. About 30 peer-reviewed publications have made use of ZMAP. ZMAP code is open source, written in the commercial software language Matlab by the Mathworks, a widely used software in the natural sciences. ZMAP was first published in 1994, and has continued to grow over the past 7 years. Recently, we released ZMAP v.6. The poster will introduce the features of ZMAP. We will specifically focus on ZMAP features related to time-dependent probabilistic hazard assessment. We are currently implementing a ZMAP based system that computes probabilistic hazard maps, which combine the stationary background hazard as well as aftershock and foreshock hazard into a comprehensive time dependent probabilistic hazard map. These maps will be displayed in near real time on the Internet. This poster is also intended as a forum for ZMAP users to provide feedback and discuss the future of ZMAP.

  10. Dopamine alters glutamate receptor desensitization in retinal horizontal cells of the perch (Perca fluviatilis).

    PubMed Central

    Schmidt, K F; Kruse, M; Hatt, H

    1994-01-01

    The patch-clamp technique in combination with a fast liquid filament application system was used to study the effect of dopamine on the glutamate receptor desensitization in horizontal cells of the perch (Perca fluviatilis). Kinetics of ligand-gated ion channels in fish horizontal cells are modulated by dopamine. This modulation is presumably mediated by a cAMP-dependent protein phosphorylation. Before incubation with dopamine, the glutamate receptors of horizontal cells activate and desensitize with fast time constants. In the whole-cell recording mode, fast application of the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid prior to the dopamine incubation gives rise to fast transient currents with peak values of about 200 pA that desensitize within 100 ms. Kainate as agonist produced higher steady-state currents but no transient currents. After incubation of the cells with dopamine for 3 min, the desensitization was significantly reduced and the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid induced steady-state currents with amplitudes that were similar to the previously observed transient currents. Kainate-induced currents were only slightly affected. Fast desensitizing currents upon fast application of L-glutamate were also recorded from outside-out patches that were excised from horizontal cells before incubation with dopamine. The currents from excised patches desensitized to a steady-state level of about 0.2 of the peak amplitude with time constants of less than 2 ms. When the outside-out patches were excised from cells after dopamine incubation, steady-state currents were enhanced and no transient currents were observed. The results may indicate that the dopamine-dependent modulation of glutamate-induced currents, which is presumably mediated by a protein phosphorylation, is due to an alteration of the desensitization of the glutamate receptors. PMID:7520178

  11. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons

    PubMed Central

    Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J

    2004-01-01

    The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR-induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+]i by ∼40%. Thiopental (25 μM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873

  12. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    NASA Astrophysics Data System (ADS)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  13. Preliminary Results from an Integrated Airborne EM and Aeromagnetic Survey in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.

    2017-12-01

    Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.

  14. Modeling of prepregs during automated draping sequences

    NASA Astrophysics Data System (ADS)

    Krogh, Christian; Glud, Jens A.; Jakobsen, Johnny

    2017-10-01

    The behavior of wowen prepreg fabric during automated draping sequences is investigated. A drape tool under development with an arrangement of grippers facilitates the placement of a woven prepreg fabric in a mold. It is essential that the draped configuration is free from wrinkles and other defects. The present study aims at setting up a virtual draping framework capable of modeling the draping process from the initial flat fabric to the final double curved shape and aims at assisting the development of an automated drape tool. The virtual draping framework consists of a kinematic mapping algorithm used to generate target points on the mold which are used as input to a draping sequence planner. The draping sequence planner prescribes the displacement history for each gripper in the drape tool and these displacements are then applied to each gripper in a transient model of the draping sequence. The model is based on a transient finite element analysis with the material's constitutive behavior currently being approximated as linear elastic orthotropic. In-plane tensile and bias-extension tests as well as bending tests are conducted and used as input for the model. The virtual draping framework shows a good potential for obtaining a better understanding of the drape process and guide the development of the drape tool. However, results obtained from using the framework on a simple test case indicate that the generation of draping sequences is non-trivial.

  15. Nightside High Latitude Magnetic Impulse Events

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Connors, M. G.; Braun, D.; Posch, J. L.; Kaur, M.; Guillon, S.; Hartinger, M.; Kim, H.; Behlke, R.; Reiter, K.; Jackel, B. J.; Russell, C. T.

    2017-12-01

    High latitude Magnetic Impulse Events (MIEs), isolated pulses with periods 5-10 min, were first noted in ground-based magnetometer data near local noon, and are now understood to be signatures of transient pressure increases in the solar wind (sudden impulses - SIs) and/or in the ion foreshock (traveling convection vortex events - TCVs). However, solitary pulses with considerably larger amplitude (ΔB up to 1500 nT) have often been observed in the night sector at these same latitudes. These events are not directly associated with transient external pressure increases, and are often large enough to produce significant ground induced currents. Although many night sector MIEs occur in association with substorm signatures, others appear to be very isolated. We present here a survey of intense MIE events identified in magnetometer data from the AUTUMNX and MACCS arrays in eastern Arctic Canada at all local times between July 1, 2014 and June 30, 2017. We also show maps of horizontal and vertical perturbations and maximum dB/dt values, as well as sample magnetograms, for several example events using data from these and other arrays in Arctic Canada, as well as in West Greenland and Antarctica, the latter to show the conjugate nature of these events. A basic relation to GIC data in the Hydro-Québec electrical transmission network in eastern Canada has been determined and will be discussed.

  16. Hyperpolarizing muscarinic responses of freshly dissociated rat hippocampal CA1 neurones.

    PubMed Central

    Wakamori, M; Hidaka, H; Akaike, N

    1993-01-01

    1. Intracellular mechanisms of the muscarinic acetylcholine (ACh) response were investigated in pyramidal neurones freshly dissociated from the rat hippocampal CA1 region. Current recordings were made in the whole-cell mode using the nystatin 'perforated'-patch technique, by which the muscarinic ACh response can be continuously recorded without so-called 'run-down' phenomenon. The amount of intracellular free Ca2+ ([Ca2+]i) was fluorometrically measured using fura-2. 2. In current clamp conditions, ACh induced a transient hyperpolarization accompanied by a decrease in membrane input resistance. 3. Under voltage clamp conditions at a holding potential (Vh) of -40 mV, ACh induced two types of muscarinic currents observed either alone or together: a transient outward current and a slowly activating sustained inward current. 4. The ACh-induced transient outward current reversed the direction at K+ equilibrium potential (EK), and the reversal potential (EACh) shifted 56.7 mV for a tenfold change of extracellular K+ concentration ([K+]o). 5. The ACh-induced transient outward current increased in a sigmoidal fashion with increase in ACh concentration, where the half-maximal concentration (EC50) and the Hill coefficient (n) were 8 x 10(-7) M and 1.9, respectively. Both muscarine and carbamylcholine mimicked the ACh response, but neither McN-A-343 (M1 agonist) nor oxotremorine (cardiac M2 agonist) induced any current. 6. Muscarinic antagonists reversibly blocked the ACh response in a concentration-dependent manner. The inhibitory potency was in the order of atropine > pirenzepine > AF-DX-116. 7. The ACh-induced transient outward current was never recorded when [Ca2+]i was chelated by the acetoxymethyl ester form of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA AM). On the other hand, in Ca(2+)-free external solution containing 2 mM EGTA and 10 mM Mg2+, the ACh response was elicited by the first application and successive ACh applications did not induce any response. Fura-2 imaging showed that [Ca2+]i was increased when ACh was added to the external medium with or without Ca2+, though in Ca(2+)-free medium only the first application of ACh increased the [Ca2+]i. 8. The ACh response was not affected by pretreatment with pertussis toxin (PTX) but the inhibitory effect of ACh on the high-threshold Ca2+ channel was abolished completely. 9. Pretreatment with Li+ enhanced the amplitude of the transient outward current and the increase in [Ca2+]i induced by ACh. 10. The calmodulin antagonists W-7, chlorpromazine and trifluoperazine reversibly inhibited the ACh response in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7504109

  17. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Feddersen, Falk

    2017-03-01

    Offshore transport from the shoreline across the inner shelf of early-stage larvae and pathogens is poorly understood yet is critical for understanding larval fate and dilution of polluted shoreline water. With a novel coupling of a transient rip current (TRC) generating surf zone model and an ocean circulation model, we show that transient rip currents ejected onto a stratified inner shelf induce a new, previously unconsidered offshore transport pathway. For incident waves and stratification typical for Southern California in the fall, this mechanism subducts surf zone-origin tracers and transports them at least 800 m offshore at 1.2 km/d analogous to subduction at ocean fronts. This mechanism requires both TRCs and stratification. As TRCs are ubiquitous and the inner shelf is often stratified, this mechanism may have an important role in exporting early-stage larvae, pathogens, or other tracers onto the shelf.

  18. An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Drath, Miriam; Baier, Kerstin; Forchhammer, Karl

    2009-05-01

    Methionine aminopeptidases (MetAPs or MAPs, encoded by map genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one map gene, many cyanobacterial genomes contain two map paralogues, the genome of Synechocystis sp. PCC 6803 even three. The physiological function of multiple map paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In Synechocystis sp. PCC 6803, the universally conserved mapC gene (sll0555) is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of mapA (slr0918) and mapB (slr0786) genes increases during stress conditions. The mapB paralogue is only transiently expressed, whereas the widely distributed mapA gene appears to be the major MetAP during stress conditions. A mapA-deficient Synechocystis mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q(B) is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the mapA-deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure.

  19. Transient-state kinetic approach to mechanisms of enzymatic catalysis.

    PubMed

    Fisher, Harvey F

    2005-03-01

    Transient-state kinetics by its inherent nature can potentially provide more directly observed detailed resolution of discrete events in the mechanistic time courses of enzyme-catalyzed reactions than its more widely used steady-state counterpart. The use of the transient-state approach, however, has been severely limited by the lack of any theoretically sound and applicable basis of interpreting the virtual cornucopia of time and signal-dependent phenomena that it provides. This Account describes the basic kinetic behavior of the transient state, critically examines some currently used analytic methods, discusses the application of a new and more soundly based "resolved component transient-state time-course method" to the L-glutamate-dehydrogenase reaction, and establishes new approaches for the analysis of both single- and multiple-step substituted transient-state kinetic isotope effects.

  20. Effects of phloretin and phloridzin on Ca2+ handling, the action potential, and ion currents in rat ventricular myocytes.

    PubMed

    Olson, Marnie L; Kargacin, Margaret E; Ward, Christopher A; Kargacin, Gary J

    2007-06-01

    The effects of the phytoestrogens phloretin and phloridzin on Ca(2+) handling, cell shortening, the action potential, and Ca(2+) and K(+) currents in freshly isolated cardiac myocytes from rat ventricle were examined. Phloretin increased the amplitude and area and decreased the rate of decline of electrically evoked Ca(2+) transients in the myocytes. These effects were accompanied by an increase in the Ca(2+) load of the sarcoplasmic reticulum, as determined by the area of caffeine-evoked Ca(2+) transients. An increase in the extent of shortening of the myocytes in response to electrically evoked action potentials was also observed in the presence of phloretin. To further examine possible mechanisms contributing to the observed changes in Ca(2+) handling and contractility, the effects of phloretin on the cardiac action potential and plasma membrane Ca(2+) and K(+) currents were examined. Phloretin markedly increased the action potential duration in the myocytes, and it inhibited the Ca(2+)-independent transient outward K(+) current (I(to)). The inwardly rectifying K(+) current, the sustained outward delayed rectifier K(+) current, and L-type Ca(2+) currents were not significantly different in the presence and absence of phloretin, nor was there any evidence that the Na(+)/Ca(2+) exchanger was affected. The effects of phloretin on Ca(2+) handling in the myocytes are consistent with its effects on I(to). Phloridzin did not significantly alter the amplitude or area of electrically evoked Ca(2+) transients in the myocytes, nor did it have detectable effects on the sarcoplasmic reticulum Ca(2+) load, cell shortening, or the action potential.

  1. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  2. Calculating transient rates from surveys

    NASA Astrophysics Data System (ADS)

    Carbone, D.; van der Horst, A. J.; Wijers, R. A. M. J.; Rowlinson, A.

    2017-03-01

    We have developed a method to determine the transient surface density and transient rate for any given survey, using Monte Carlo simulations. This method allows us to determine the transient rate as a function of both the flux and the duration of the transients in the whole flux-duration plane rather than one or a few points as currently available methods do. It is applicable to every survey strategy that is monitoring the same part of the sky, regardless the instrument or wavelength of the survey, or the target sources. We have simulated both top-hat and Fast Rise Exponential Decay light curves, highlighting how the shape of the light curve might affect the detectability of transients. Another application for this method is to estimate the number of transients of a given kind that are expected to be detected by a survey, provided that their rate is known.

  3. Photocrosslinking approaches to interactome mapping

    PubMed Central

    Pham, Nam D.; Parker, Randy B.; Kohler, Jennifer J.

    2012-01-01

    Photocrosslinking approaches can be used to map interactome networks within the context of living cells. Photocrosslinking methods rely on use of metabolic engineering or genetic code expansion to incorporate photocrosslinking analogs of amino acids or sugars into cellular biomolecules. Immunological and mass spectrometry techniques are used to analyze crosslinked complexes, thereby defining specific interactomes. Because photocrosslinking can be conducted in native, cellular settings, it can be used to define context-dependent interactions. Photocrosslinking methods are also ideally suited for determining interactome dynamics, mapping interaction interfaces, and identifying transient interactions in which intrinsically disordered proteins and glycoproteins engage. Here we discuss the application of cell-based photocrosslinking to the study of specific problems in immune cell signaling, transcription, membrane protein dynamics, nucleocytoplasmic transport, and chaperone-assisted protein folding. PMID:23149092

  4. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  5. Detection of postseismic fault-zone collapse following the Landers earthquake

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Thatcher, Wayne; Vadon, Hélèna

    1996-08-01

    STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1-4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5-7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6-8.

  6. Wear Mechanism Maps for Magnesium Alloy AM60 and Composite AM60-9% (Al2O3)f

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Muhammad Zafar

    The purpose of this work was to study the tribological behaviour of squeeze cast Mg alloy AM60 and its composite AM60-9% (Al2O3) f. Dry sliding wear tests were performed on specimens of these materials using a block-on-ring tribometer which was equipped with a COF and temperature measurement system. Wear, COF and temperature maps were constructed to illustrate the effect of temperature and COF on the wear behaviour of the Mg alloy and it's composite. Four wear regimes namely low, mild, transient and severe wear were identified. The transition from mild to severe wear regime was found to be dependent on the bulk temperature of the specimen. Oxidational wear prevailed in low and mild wear whereas plastic deformation induced wear and melt wear controlled the wear rates in transient and severe wear regimes, respectively. This study shows that the incorporation of Al2O3 fibres in AM60 alloy improved the wear resistance of the resulting composite by delaying the transition from mild to severe wear.

  7. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  8. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  9. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    NASA Astrophysics Data System (ADS)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  10. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE PAGES

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...

    2018-03-14

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  11. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  12. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  13. Neurophysiological Identification of Cranial Nerves During Endoscopic Endonasal Surgery of Skull Base Tumors: Pilot Study Technical Report.

    PubMed

    Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich

    2017-02-01

    Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The Alberta Stroke Prevention in TIAs and mild strokes (ASPIRE) intervention: rationale and design for evaluating the implementation of a province-wide TIA triaging system.

    PubMed

    Jeerakathil, Thomas; Shuaib, Ashfaq; Majumdar, Sumit R; Demchuk, Andrew M; Butcher, Kenneth S; Watson, Tim J; Dean, Naeem; Gordon, Deb; Edmond, Cathy; Coutts, Shelagh B

    2014-10-01

    Stroke risk after transient ischaemic attack is high and, it is a challenge worldwide to provide urgent assessment and preventive services to entire populations. To determine whether a province-wide transient ischaemic attack Triaging algorithm and transient ischaemic attack hotline (the Alberta Stroke Prevention in transient ischaemic attacks and mild strokes intervention) can reduce the rate of stroke recurrence following transient ischaemic attack across the population of Alberta, Canada (population 3·7 million, 90-day rate of post-stroke transient ischaemic attack currently 9·5%). It also seeks to improve upon current transient ischaemic attack triaging rules by incorporating time from symptom onset as a predictive variable. The transient ischaemic attack algorithm and hotline were developed with a broad consensus of clinicians, patients, policy-makers, and researchers and based on local adaptation of the work of others and research and insights developed within the province. Because neither patient-level nor region-level randomization was possible, we conducted a quasi-experimental design examining changes in the post-transient ischaemic attack rate of stroke recurrence before and after the 15-month implementation period using an interrupted time-series regression analysis. The design controls for changes in case-mix, co-interventions, and secular trends. A prospective transient ischaemic attack cohort will also be concurrently created with telephone follow-up at seven-days and 90 days as well as passive follow-up over the longer term using linkages to provincial healthcare administrative databases. The primary outcome measure is the change in recurrence rate of stroke following transient ischaemic attack at seven-days and 90 days, comparing a period of two-years before vs. two-years after the intervention is implemented. All cases of recurrent stroke will be validated. Secondary outcomes include functional status, hospitalizations, morbidity, and mortality. We are undertaking a rigorous evaluation of a population-based approach to improving quality of transient ischaemic attack care. Whether positive or negative, our work should provide important insights for all potential stakeholders. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  15. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  16. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    NASA Astrophysics Data System (ADS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  17. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  18. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.

  19. Interpretation of deep levels in Si-GaAs crystals observed by photo-induced current transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Hlinomaz, P.; Šmíd, V.; Krištofik, J.

    1993-05-01

    Deep levels measured by Photo-Induced Current Transient Spectroscopy (PICTS) are interpreted taking into account different bulk and surface properties of semi-insulating crystals, results of directly measured isothermal transients and types of observed deep levels determined from the measurements with different voltage polarity. The principal interest is focused on the temperature interval 250-450 K where peaks related to the deep levels causing semiinsulating properties are observed in the PICTS spectra. Majority of deep levels observed in various samples may be ascribed to the EL2, EL3, EL4, HL1 and HL9 levels. Maxima exhibiting inverse polarity in PICTS spectra are not related to EL2 or HL1.

  20. On-Die Sensors for Transient Events

    NASA Astrophysics Data System (ADS)

    Suchak, Mihir Vimal

    Failures caused by transient electromagnetic events like Electrostatic Discharge (ESD) are a major concern for embedded systems. The component often failing is an integrated circuit (IC). Determining which IC is affected in a multi-device system is a challenging task. Debugging errors often requires sophisticated lab setups which require intentionally disturbing and probing various parts of the system which might not be easily accessible. Opening the system and adding probes may change its response to the transient event, which further compounds the problem. On-die transient event sensors were developed that require relatively little area on die, making them inexpensive, they consume negligible static current, and do not interfere with normal operation of the IC. These circuits can be used to determine the pin involved and the level of the event in the event of a transient event affecting the IC, thus allowing the user to debug system-level transient events without modifying the system. The circuit and detection scheme design has been completed and verified in simulations with Cadence Virtuoso environment. Simulations accounted for the impact of the ESD protection circuits, parasitics from the I/O pin, package and I/O ring, and included a model of an ESD gun to test the circuit's response to an ESD pulse as specified in IEC 61000-4-2. Multiple detection schemes are proposed. The final detection scheme consists of an event detector and a level sensor. The event detector latches on the presence of an event at a pad, to determine on which pin an event occurred. The level sensor generates current proportional to the level of the event. This current is converted to a voltage and digitized at the A/D converter to be read by the microprocessor. Detection scheme shows good performance in simulations when checked against process variations and different kind of events.

  1. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues.

    PubMed

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  2. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics innervated tissues

    PubMed Central

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-01-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837

  3. Heart rate variability as determinism with jump stochastic parameters.

    PubMed

    Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M

    2013-08-01

    We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.

  4. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    NASA Astrophysics Data System (ADS)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.

  5. Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.

    PubMed

    Xu, Qiang; Dan, Yaping

    2016-09-21

    The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.

  6. Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    PubMed Central

    Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi

    2010-01-01

    In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879

  7. Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott

    2003-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.

  8. Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.

    PubMed

    Evans, M G; Fuchs, P A

    1987-10-01

    We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.

  9. Transient finite element modeling of functional electrical stimulation.

    PubMed

    Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J

    2011-03-01

    Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.

  10. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    PubMed

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  11. A Novel Transient Fault Current Sensor Based on the PCB Rogowski Coil for Overhead Transmission Lines

    PubMed Central

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen

    2016-01-01

    The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices. PMID:27213402

  12. Numerical approach for ECT by using boundary element method with Laplace transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enokizono, M.; Todaka, T.; Shibao, K.

    1997-03-01

    This paper presents an inverse analysis by using BEM with Laplace transform. The method is applied to a simple problem in the eddy current testing (ECT). Some crack shapes in a conductive specimen are estimated from distributions of the transient eddy current on its sensing surface and magnetic flux density in the liftoff space. Because the transient behavior includes information on various frequency components, the method is applicable to the shape estimation of a comparative small crack.

  13. Production of high transient heat and particle fluxes in a linear plasma device

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.

    2010-08-01

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.

  14. Post-traumatic transient cortical blindness in a child with occipital bone fracture.

    PubMed

    Ng, Rachel H C

    2016-12-01

    Cortical blindness as sequelae of trauma has been reported in literature but mostly in the setting of occipital cortex or visual tract damages. We present a case of transient cortical blindness in a child following a closed head injury with a non-displaced occipital bone fracture and underlying occipital lobe contusion. We discuss the pathophysiology behind Post-traumatic transient cortical blindness, relevant investigations, and current management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis

    NASA Technical Reports Server (NTRS)

    Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.

    2015-01-01

    Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.

  16. Occupancy change detection system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-01

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

  17. Fast and efficient STT switching in MTJ using additional transient pulse current

    NASA Astrophysics Data System (ADS)

    Pathak, Sachin; Cha, Jongin; Jo, Kangwook; Yoon, Hongil; Hong, Jongill

    2017-06-01

    We propose a profile of write pulse current-density to switch magnetization in a perpendicular magnetic tunnel junction to reduce switching time and write energy as well. Our simulated results show that an overshoot transient pulse current-density (current spike) imposed to conventional rectangular-shaped pulse current-density (main pulse) significantly improves switching speed that yields the reduction in write energy accordingly. For example, we could dramatically reduce the switching time by 80% and thereby reduce the write energy over 9% in comparison to the switching without current spike. The current spike affects the spin dynamics of the free layer and reduces the switching time mainly due to spin torque induced. On the other hand, the large Oersted field induced causes changes in spin texture. We believe our proposed write scheme can make a breakthrough in magnetic random access memory technology seeking both high speed operation and low energy consumption.

  18. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  19. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  20. Catalytic ignition model in a monolithic reactor with in-depth reaction

    NASA Technical Reports Server (NTRS)

    Tien, Ta-Ching; Tien, James S.

    1990-01-01

    Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.

  1. A transient-enhanced NMOS low dropout voltage regulator with parallel feedback compensation

    NASA Astrophysics Data System (ADS)

    Han, Wang; Lin, Tan

    2016-02-01

    This paper presents a transient-enhanced NMOS low-dropout regulator (LDO) for portable applications with parallel feedback compensation. The parallel feedback structure adds a dynamic zero to get an adequate phase margin with a load current variation from 0 to 1 A. A class-AB error amplifier and a fast charging/discharging unit are adopted to enhance the transient performance. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 150 mV at a maximum 1 A load and IQ of 165 μA. Under the full range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 38 mV and 27 mV respectively.

  2. Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.; Oreilly, W.; Srnka, L. J.

    1977-01-01

    The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.

  3. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  4. Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong

    2017-11-01

    Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.

  5. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory.

    PubMed

    Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  6. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  7. Mapping transiently formed and sparsely populated conformations on a complex energy landscape

    PubMed Central

    Wang, Yong; Papaleo, Elena; Lindorff-Larsen, Kresten

    2016-01-01

    Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to provide atomic-level descriptions of sparsely populated and transiently formed alternative conformations. Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture key properties previously measured by NMR relaxation dispersion methods including the structure of a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to be relevant for ligand escape. Together, our results provide a comprehensive view of the structural landscape of a protein, and point forward to studies of conformational exchange in systems that are less characterized experimentally. DOI: http://dx.doi.org/10.7554/eLife.17505.001 PMID:27552057

  8. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    PubMed

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  9. Cold starting of fluorescent lamps - part I: a description of the transient regime

    NASA Astrophysics Data System (ADS)

    Langer, Reinhard; Garner, Richard; Paul, Irina; Horn, Siegfried; Tidecks, Reinhard

    2016-10-01

    In this paper we give a proposal for the transient behaviour of a cold-started fluorescent lamp, from the generation of the first conductive channel over the normal and abnormal glow discharge and the glow-to-arc (GTA) transition to the arc discharge in the steady state. Starting from the equilibrium voltage-current characteristics of the lamp and considering recent experimental results a qualitative description of the transient regime is developed, which was so far not available in the literature.

  10. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  11. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  12. PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.

    PubMed

    In, Myung-Ho; Posnansky, Oleg; Speck, Oliver

    2016-05-01

    To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.

  13. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    PubMed

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  14. Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis

    PubMed Central

    Stanko, Vera; Giuliani, Concetta; Retzer, Katarzyna; Djamei, Armin; Wahl, Vanessa; Wurzinger, Bernhard; Wilson, Cathal; Heberle-Bors, Erwin; Teige, Markus; Kragler, Friedrich

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2–AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency. PMID:25064848

  15. Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events Based on Counterpart Light-curve Models

    NASA Astrophysics Data System (ADS)

    Salafia, Om Sharan; Colpi, Monica; Branchesi, Marica; Chassande-Mottin, Eric; Ghirlanda, Giancarlo; Ghisellini, Gabriele; Vergani, Susanna D.

    2017-09-01

    The electromagnetic (EM) follow-up of a gravitational-wave (GW) event requires scanning a wide sky region, defined by the so-called “skymap,” to detect and identify a transient counterpart. We propose a novel method that exploits the information encoded in the GW signal to construct a “detectability map,” which represents the time-dependent (“when”) probability of detecting the transient at each position of the skymap (“where”). Focusing on the case of a neutron star binary inspiral, we model the associated short gamma-ray burst afterglow and macronova emission using the probability distributions of binary parameters (sky position, distance, orbit inclination, mass ratio) extracted from the GW signal as inputs. The resulting family of possible light curves is the basis for constructing the detectability map. As a practical example, we apply the method to a simulated GW signal produced by a neutron star merger at 75 Mpc whose localization uncertainty is very large (˜1500 deg2). We construct observing strategies for optical, infrared, and radio facilities based on the detectability maps, taking VST, VISTA, and MeerKAT as prototypes. Assuming limiting fluxes of r˜ 24.5, J˜ 22.4 (AB magnitudes), and 500 μ {Jy} (1.4 {GHz}) for ˜1000 s of exposure each, the afterglow and macronova emissions are successfully detected with a minimum observing time of 7, 15, and 5 hr respectively.

  16. Modeling rainfall conditions for shallow landsliding in Seattle, Washington

    USGS Publications Warehouse

    Godt, Jonathan W.; Schulz, William H.; Baum, Rex L.; Savage, William Z.

    2008-01-01

    We describe the results from an application of a distributed, transient infiltration–slope-stability model for an 18 km2 area of southwestern Seattle, Washington, USA. The model (TRIGRS) combines an infinite slope-stability calculation and an analytic, one-dimensional solution for pore-pressure diffusion in a soil layer of finite depth in response to time-varying rainfall. The transient solution for pore-pressure response can be superposed on any steady-state groundwater-flow field that is consistent with model assumptions. Applied over digital topography, the model computes a factor of safety for each grid cell at any time during a rainstorm. Input variables may vary from cell to cell, and the rainfall rate can vary in both space and time. For Seattle, topographic slope derived from an airborne laser swath mapping (ALSM)–based 3 m digital elevation model (DEM), maps of soil and water-table depths derived from geotechnical borings, and hourly rainfall intensities were used as model inputs. Material strength and hydraulic properties used in the model were determined from field and laboratory measurements, and a tension-saturated initial condition was assumed. Results are given in terms of a destabilizing intensity and duration of rainfall, and they were evaluated by comparing the locations of 212 historical landslides with the area mapped as potentially unstable. Because the equations of groundwater flow are explicitly solved with respect to time, the results from TRIGRS simulations can be portrayed quantitatively to assess the potential landslide hazard based on rainfall conditions.

  17. Comparison of simulations to experiment for a detailed analysis of space-charge-limited transient current measurements in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-05-01

    Space-charge-limited current transients (also referred as time resolved dark injection) is an attractive technique for mobility measurements in low mobility materials, particularly the organic semiconductors. Transients are generally analyzed in terms of the Many-Rakavy theory, which is an approximate analytical solution of the time-dependent drift-diffusion problem after application of a voltage step. In this contribution, we perform full time-dependent drift-diffusion simulation and compare simulated and experimental transients measured on a sample of triaryl-amine based electroactive dendrimer (experimental conditions: μ≈10-5 cm2/(Vs), L=300 nm, E<105 V/cm). We have found that the Many-Rakavy theory is indeed valid for estimating the mobility value, but it fails to predict quantitatively the time-dependent current response. In order to obtain a good agreement in between simulation and experiment, trapping and quasi-ohmic contact models were needed to be taken into account. In the case of the studied electroactive dendrimer, the experimental results were apparently consistent with the constant mobility Many-Rakavy theory, but with this model, a large uncertainty of 20% was found for the mobility value. We show that this uncertainty can be significantly reduced to 10% if a field-dependent mobility is taken into account in the framework of the extended Gaussian disorder model. Finally, we demonstrate that this fitting procedure between simulated and experimental transient responses also permits to unambiguously provide the values of the contact barrier, the trap concentration, the trap depth in addition to that of the mobility of carriers.

  18. Four RNA families with functional transient structures

    PubMed Central

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. PMID:25751035

  19. Four RNA families with functional transient structures.

    PubMed

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.

  20. X-Ray Dust Tomography: Mapping the Galaxy one X-ray Transient at a Time

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian; Corrales, Lia

    2018-01-01

    Tomography using X-ray light echoes from dust scattering by interstellar clouds is an accurate tool to study the line-of-sight distribution of dust. It can be used to measure distances to molecular clouds and X-ray sources, it can map Galactic structure in dust, and it can be used for precision measurements of dust composition and grain size distribution. Necessary conditions for observing echoes include a suitable X-ray lightcurve and sufficient dust column density to the source. I will discuss a tool set for studying dust echoes and show results obtained for some of the brightest echoes detected to date.

  1. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    PubMed

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  2. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    ERIC Educational Resources Information Center

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  3. Hierarchy of simulation models for a turbofan gas engine

    NASA Technical Reports Server (NTRS)

    Longenbaker, W. E.; Leake, R. J.

    1977-01-01

    Steady-state and transient performance of an F-100-like turbofan gas engine are modeled by a computer program, DYNGEN, developed by NASA. The model employs block data maps and includes about 25 states. Low-order nonlinear analytical and linear techniques are described in terms of their application to the model. Experimental comparisons illustrating the accuracy of each model are presented.

  4. CHI Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.

    2017-10-01

    At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  5. Plasmoid formation in the elongated current sheet during transient CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2016-10-01

    The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.

  6. Non-dispersive carrier transport in molecularly doped polymers and the convection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Tyutnev, A. P.; Parris, P. E.; Saenko, V. S.

    2015-08-01

    We reinvestigate the applicability of the concept of trap-free carrier transport in molecularly doped polymers and the possibility of realistically describing time-of-flight (TOF) current transients in these materials using the classical convection-diffusion equation (CDE). The problem is treated as rigorously as possible using boundary conditions appropriate to conventional time of flight experiments. Two types of pulsed carrier generation are considered. In addition to the traditional case of surface excitation, we also consider the case where carrier generation is spatially uniform. In our analysis, the front electrode is treated as a reflecting boundary, while the counter electrode is assumed to act either as a neutral contact (not disturbing the current flow) or as an absorbing boundary at which the carrier concentration vanishes. As expected, at low fields transient currents exhibit unusual behavior, as diffusion currents overwhelm drift currents to such an extent that it becomes impossible to determine transit times (and hence, carrier mobilities). At high fields, computed transients are more like those typically observed, with well-defined plateaus and sharp transit times. Careful analysis, however, reveals that the non-dispersive picture, and predictions of the CDE contradict both experiment and existing disorder-based theories in important ways, and that the CDE should be applied rather cautiously, and even then only for engineering purposes.

  7. Spatially and temporally resolved exciton dynamics and transport in single nanostructures and assemblies

    NASA Astrophysics Data System (ADS)

    Huang, Libai

    2015-03-01

    The frontier in solar energy conversion now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. To address this new frontier, I will discuss our recent efforts on elucidating multi-scale energy transfer, migration, and dissipation processes with simultaneous femtosecond temporal resolution and nanometer spatial resolution. We have developed ultrafast microscopy that combines ultrafast spectroscopy with optical microscopy to map exciton dynamics and transport with simultaneous ultrafast time resolution and diffraction-limited spatial resolution. We have employed pump-probe transient absorption microscopy to elucidate morphology and structure dependent exciton dynamics and transport in single nanostructures and molecular assemblies. More specifically, (1) We have applied transient absorption microscopy (TAM) to probe environmental and structure dependent exciton relaxation pathways in sing-walled carbon nanotubes (SWNTs) by mapping dynamics in individual pristine SWNTs with known structures. (2) We have systematically measured and modeled the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical microscopy and stochastic exciton modeling, we address exciton transport and relaxation pathways, especially those related to disorder.

  8. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  9. Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current

    PubMed Central

    Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.

    2015-01-01

    Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272

  10. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  11. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  12. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  13. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  14. Voltage and Current Clamp Transients with Membrane Dielectric Loss

    PubMed Central

    Fitzhugh, R.; Cole, K. S.

    1973-01-01

    Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 μF/cm2. Curtis and Cole (1938, J. Gen. Physiol. 21:757) found, however, that the membrane had a constant phase angle impedance z = z1(jωτ)-α, with a mean α = 0.85. (α = 1.0 for an ideal capacitor; α < 1.0 may represent dielectric loss.) This result is supported by more recently published experimental data. For comparison with experiments, we have computed functions expressing voltage and current transients with constant phase angle capacitance, a parallel leakage conductance, and a series resistance, at nine values of α from 0.5 to 1.0. A series in powers of tα provided a good approximation for short times; one in powers of t-α, for long times; for intermediate times, a rational approximation matching both series for a finite number of terms was used. These computations may help in determining experimental series resistances and parallel leakage conductances from membrane voltage or current clamp data. PMID:4754194

  15. Profiling of Current Transients in Capacitor Type Diamond Sensors.

    PubMed

    Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai

    2015-06-08

    The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo's theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μ(e) = 4000 cm2/Vs and holes μ(h) = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion D(a) = 97 cm2/s and the carrier recombination lifetime τ(R,CVD) ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond.

  16. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  17. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    PubMed Central

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-01-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845

  18. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  19. Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.

    2014-12-01

    Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.

  20. Methane seeps along boundaries of arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Anthony, P.; Walter Anthony, K. M.; Grosse, G.; Chanton, J.

    2014-12-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs. In the Arctic, impermeable icy permafrost and glacial overburden form a 'cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. We document the release of geologic methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska. Through aerial and ground surveys we mapped >150,000 seeps identified as bubbling-induced open holes in lake ice. Subcap methane seeps had anomalously high fluxes, 14C-depletion, and stable isotope values matching known coalbed and thermogenic methane accumulations in Alaska. Additionally, we observed younger subcap methane seeps in Greenland that were associated with ice-sheet retreat since the Little Ice Age. These correlations suggest that in a warming climate, continued disintegration of permafrost, glaciers, and parts of the polar ice sheets will relax pressure on subsurface seals and further open conduits, allowing a transient expulsion of geologic methane currently trapped by the cryosphere cap.

  1. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.

    PubMed

    Kennedy, Tadhg; Bezuidenhout, Michael; Palaniappan, Kumaranand; Stokes, Killian; Brandon, Michael; Ryan, Kevin M

    2015-07-28

    Here we report the rational design of a high-capacity Li-ion anode material comprising Ge nanowires with Si branches. The unique structure provides an electrode material with tunable properties, allowing the performance to be tailored for either high capacity or high rate capability by controlling the mass ratio of Si to Ge. The binder free Si-Ge branched nanowire heterostructures are grown directly from the current collector and exhibit high capacities of up to ∼1800 mAh/g. Rate capability testing revealed that increasing the Ge content within the material boosted the performance of the anode at fast cycling rates, whereas a higher Si content was optimal at slower rates of charge and discharge. Using ex-situ electron microscopy, Raman spectroscopy and energy dispersive X-ray spectroscopy mapping, the composition of the material is shown to be transient in nature, transforming from a heterostructure to a Si-Ge alloy as a consequence of repeated lithiation and delithiation.

  2. High Precision Thermal, Structural and Optical Analysis of an External Occulter Using a Common Model and the General Purpose Multi-Physics Analysis Tool Cielo

    NASA Technical Reports Server (NTRS)

    Hoff, Claus; Cady, Eric; Chainyk, Mike; Kissil, Andrew; Levine, Marie; Moore, Greg

    2011-01-01

    The efficient simulation of multidisciplinary thermo-opto-mechanical effects in precision deployable systems has for years been limited by numerical toolsets that do not necessarily share the same finite element basis, level of mesh discretization, data formats, or compute platforms. Cielo, a general purpose integrated modeling tool funded by the Jet Propulsion Laboratory and the Exoplanet Exploration Program, addresses shortcomings in the current state of the art via features that enable the use of a single, common model for thermal, structural and optical aberration analysis, producing results of greater accuracy, without the need for results interpolation or mapping. This paper will highlight some of these advances, and will demonstrate them within the context of detailed external occulter analyses, focusing on in-plane deformations of the petal edges for both steady-state and transient conditions, with subsequent optical performance metrics including intensity distributions at the pupil and image plane.

  3. Real-Time Occupancy Change Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector to the detected change, it provides the actual x,y position of the change.

  4. Simulating Electron Cyclotron Maser Emission for Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Llama, Joe; Jardine, Moira

    2018-01-01

    Zeeman-Doppler Imaging (ZDI) is a powerful technique that enables us to map the large-scale magnetic fields of stars spanning the pre- and main-sequence. Coupling these magnetic maps with field extrapolation methods allow us to investigate the topology of the closed, X-ray bright corona, and the cooler, open stellar wind.Using ZDI maps of young M dwarfs with simultaneous radio light curves obtained from the VLA, we present the results of modeling the Electron-Cyclotron Maser (ECM) emission from these systems. We determine the X-ray luminosity and ECM emission that is produced using the ZDI maps and our field extrapolation model. We compare these findings with the observed radio light curves of these stars. This allows us to predict the relative phasing and amplitude of the stellar X-ray and radio light curves.This benchmarking of our model using these systems allows us to predict the ECM emission for all stars that have a ZDI map and an observed X-ray luminosity. Our model allows us to understand the origin of transient radio emission observations and is crucial for disentangling stellar and exoplanetary radio signals.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin

    Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less

  6. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

    PubMed

    Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David

    2009-03-01

    We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

  7. OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James

    In this paper, we model the observable signatures of tidal disruptions of white dwarf (WD) stars using massive black holes (MBHs) of moderate mass, ≈10{sup 3}–10{sup 5} M{sub ⊙}. When the WD passes deep enough within the MBH’s tidal field, these signatures include thermonuclear transients from burning during maximum compression. We combine a hydrodynamic simulation that includes nuclear burning of the disruption of a 0.6 M{sub ⊙} C/O WD with a Monte Carlo radiative transfer calculation to synthesize the properties of a representative transient. The transient’s emission emerges in the optical, with light curves and spectra reminiscent of Type I supernovae. Themore » properties are strongly viewing angle dependent, and key spectral signatures are ≈10,000 km s{sup −1} doppler shifts, due to the orbital motion of the unbound ejecta. Disruptions of He WDs likely produce large quantities of intermediate-mass elements, offering a possible production mechanism for Ca-rich transients. Accompanying multi-wavelength transients are fueled by accretion and arise from the nascent accretion disk and relativistic jet. If MBHs of moderate mass exist with number densities similar to those of supermassive BHs, both high-energy wide-field monitors and upcoming optical surveys should detect tens to hundreds of WD tidal disruptions per year. The current best strategy for their detection may therefore be deep optical follow-up of high-energy transients of unusually long duration. The detection rate or the nondetection of these transients by current and upcoming surveys can thus be used to place meaningful constraints on the extrapolation of the MBH mass function to moderate masses.« less

  8. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs.

    PubMed Central

    Nebreda, A R; Hunt, T

    1993-01-01

    During studies of the activation and inactivation of the cyclin B-p34cdc2 protein kinase (MPF) in cell-free extracts of Xenopus oocytes and eggs, we found that a bacterially expressed fusion protein between the Escherichia coli maltose-binding protein and the Xenopus c-mos protein kinase (malE-mos) activated a 42 kDa MAP kinase. The activation of MAP kinase on addition of malE-mos was consistent, whereas the activation of MPF was variable and failed to occur in some oocyte extracts in which cyclin A or okadaic acid activated both MPF and MAP kinase. In cases when MPF activation was transient, MAP kinase activity declined after MPF activity was lost, and MAP kinase, but not MPF, could be maintained at a high level by the presence of malE-mos. When intact oocytes were treated with progesterone, however, the activation of MPF and MAP kinase occurred simultaneously, in contrast to the behaviour of extracts. These observations suggest that one role of c-mos may be to maintain high MAP kinase activity in meiosis. They also imply that the activation of MPF and MAP kinase in vivo are synchronous events that normally rely on an agent that has still to be identified. Images PMID:8387916

  9. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  10. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  11. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  12. Mapping the band structure of a surface phononic crystal

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Wright, O. B.; Matsuda, O.

    2011-01-01

    We map the band structure of surface acoustic modes of a periodic array of copper lines embedded in a SiO2 film on a silicon substrate by means of the laser-induced transient grating technique. A detailed map of the lowest sheet of the ω(k) surface and partial maps of two higher-order sheets are obtained. We discuss the topology of the ω(k) surface and explain how it arises from the Rayleigh and Sezawa modes of the film/substrate system. In the vicinity of the bandgap formed at the Brillouin zone boundary, the first and second dispersion sheets take the form of a saddle and a bowl, respectively, in agreement with a weak perturbation model. The shape of the third dispersion sheet, however, appears to defy expectations based on the perturbation approach. In particular, it contains minima located off the symmetry directions, which implies the existence of zero group velocity modes with an obliquely directed wavevector.

  13. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA.

    PubMed

    Li, Zhiru; Dugan, Aisling S; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R

    2009-09-17

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.

  14. Neutronics and Transient Calculations for the Conversion of the Transient Reactor Rest Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.

    2015-01-01

    The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less

  15. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP.

    PubMed Central

    Sokolov, V S; Apell, H J; Corrie, J E; Trentham, D R

    1998-01-01

    Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C. PMID:9591656

  16. Examining within- and across-day relationships between transient and chronic stress and parent food-related parenting practices in a racially/ethnically diverse and immigrant population : Stress types and food-related parenting practices.

    PubMed

    Berge, Jerica M; Tate, Allan; Trofholz, Amanda; Fertig, Angela; Crow, Scott; Neumark-Sztainer, Dianne; Miner, Michael

    2018-01-16

    Although prior research suggests that stress may play a role in parent's use of food-related parenting practices, it is unclear whether certain types of stress (e.g., transient, chronic) result in different food-related parenting practices. Identifying whether and how transient (i.e., momentary; parent/child conflict) and chronic (i.e., long-term; unemployment >6 months) sources of stress are related to parent food-related parenting practices is important with regard to childhood obesity. This is particularly important within racially/ethnically diverse parents who may be more likely to experience both types of stress and who have higher levels of obesity and related health problems. The current study examined the association between transient and chronic stressors and food-related parenting practices in a racially/ethnically diverse and immigrant sample. The current study is a cross-sectional, mixed-methods study using ecological momentary assessment (EMA). Parents (mean age = 35; 95% mothers) of children ages 5-7 years old (n = 61) from six racial/ethnic groups (African American, American Indian, Hispanic, Hmong, Somali, White) participated in this ten-day in-home observation with families. Transient stressors, specifically interpersonal conflicts, had significant within-day effects on engaging in more unhealthful food-related parenting practices the same evening with across-day effects weakening by day three. In contrast, financial transient stressors had stronger across-day effects. Chronic stressors, including stressful life events were not consistently associated with more unhealthful food-related parenting practices. Transient sources of stress were significantly associated with food-related parenting practices in racially/ethnically diverse and immigrant households. Chronic stressors were not consistently associated with food-related parenting practices. Future research and interventions may want to assess for transient sources of stress in parents and target these momentary factors in order to promote healthful food-related parenting practices.

  17. Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond

    PubMed Central

    Qin, Sanbo; Zhou, Huan-Xiang

    2013-01-01

    Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496

  18. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  19. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  20. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity.

    PubMed

    Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M

    2011-08-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P < .0001) at the forearm; Transient Placebo TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  2. Fault Diagnosis of Induction Machines in a Transient Regime Using Current Sensors with an Optimized Slepian Window.

    PubMed

    Burriel-Valencia, Jordi; Puche-Panadero, Ruben; Martinez-Roman, Javier; Sapena-Bano, Angel; Pineda-Sanchez, Manuel

    2018-01-06

    The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current's spectrogram with a significant reduction of the required computational resources.

  3. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  4. Supra- and Sub-Baseline Phosphocreatine Recovery in Developing Brain after Transient Hypoxia-Ischaemia: Relation to Baseline Energetics, Insult Severity and Outcome

    ERIC Educational Resources Information Center

    Iwata, Osuke; Iwata, Sachiko; Bainbridge, Alan; De Vita, Enrico; Matsuishi, Toyojiro; Cady, Ernest B.; Robertson, Nicola J.

    2008-01-01

    Following hypoxia-ischaemia (HI), an early biomarker of insult severity is desirable to target neuroprotective therapies to patients most likely to benefit; currently there are no biomarkers within the "latent phase" period before the establishment of secondary energy failure. Brief transient phosphocreatine (PCr) recovery overshoot (measured…

  5. Radio Non-Detection of the Currently Outbursting Transient Source in NGC 6440

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Bahramian, A.; Sivakoff, G. R.; Heinke, C. O.; Shaw, A. W.; Wijnands, R.; Degenaar, N.; Miller-Jones, J. C. A.; Kuulkers, R. Plotkin E.; Chomiuk, L.; Strader, J.; Tremou, E.; Kennea, J. A.; Altamirano, D.; in't Zand, J. J. M.; Deller, A.; Maccarone, T. J.

    2017-10-01

    We report follow-up VLA radio observations of NGC 6440, which has recently shown evidence of transient X-ray activity (ATel #10821, #10826). Our VLA observations occurred on 2017 Oct 11, with scans on source between 01:07:09 - 02:48:18 UTC (MJD = 58037.0466 - 58037.1169), in X band (8 - 12 GHz).

  6. Transient potentials in dendritic systems of arbitrary geometry.

    PubMed

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  7. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  8. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, Joan; Riera-Guasp, Martín; Antonino-Daviu, Jose A.; Habetler, Thomas G.

    2016-12-01

    The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution.

  9. Pharmacokinetics and electrophysiological effects of sotalol hydrochloride in horses.

    PubMed

    Broux, B; De Clercq, D; Decloedt, A; Vera, L; Devreese, M; Gehring, R; Croubels, S; van Loon, G

    2018-05-01

    Arrhythmias in horses may require long-term anti-arrhythmic therapy. Unfortunately, oral anti-arrhythmic drugs for use in horses are currently scarce. In human patients and small animals, sotalol, a β-blocker with class III anti-arrhythmic properties, is often used for long-term treatment. To determine the pharmacokinetics of sotalol at multiple oral dosages in unfasted horses, as well as the effects on electro- and echocardiographic measurements, right atrial and ventricular monophasic action potential (MAP) and effective refractory period (ERP). Placebo controlled, double-blinded experiment. Six healthy, unfasted Warmblood horses were given either 0, 2, 3 or 4 mg/kg bodyweight (bwt) sotalol orally (PO) twice daily (bid) for 9 days in a randomised cross-over design. Echocardiography and surface electrocardiography were performed and plasma concentrations of sotalol and right atrial and right ventricular MAPs and ERPs were determined at steady-state conditions. Statistical analysis was performed using a repeated measures univariate analysis with post hoc Bonferroni corrections. Calculated mean steady-state plasma concentrations determined by nonlinear mixed-effect modelling were 287 (range 234-339), 409 (359-458) and 543 (439-646) ng/mL for 2, 3 and 4 mg/kg bwt sotalol PO bid respectively. Sotalol significantly increased the QT interval and ERPs, but, despite increasing plasma concentrations, higher dosages did not result in a progressive increase in QT interval or ERPs. Echocardiographic and other electrocardiographic measurements did not change significantly. MAP durations at 90% repolarisation were not significantly different during sotalol treatment. Besides transient local sweating, no side effects were noted. Study size and ad libitum feeding of hay. Sotalol at a dose of 2, 3 and 4 mg/kg bwt PO bid increases the QT interval and ERP and might be a useful drug for long-term anti-arrhythmic therapy in horses. © 2017 EVJ Ltd.

  10. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  11. Characterization of electrical appliances in transient state

    NASA Astrophysics Data System (ADS)

    Wójcik, Augustyn; Winiecki, Wiesław

    2017-08-01

    The article contains the study about electrical appliance characterization on the basis of power grid signals. To represent devices, parameters of current and voltage signals recorded during transient states are used. In this paper only transients occurring as a result of switching on devices are considered. The way of data acquisition performed in specialized measurement setup developed for electricity load monitoring is described. The paper presents the method of transients detection and the method of appliance parameters calculation. Using the set of acquired measurement data and appropriate software the set of parameters for several household appliances operating in different operating conditions was processed. Usefulness of appliances characterization in Non-Intrusive Appliance Load Monitoring System (NIALMS) with the use of proposed method is discussed focusing on obtained results.

  12. Rapid Measurement of Room Temperature Ionic Liquid Electrochemical Gas Sensor using Transient Double Potential Amperometry

    PubMed Central

    Wan, Hao; Yin, Heyu; Mason, Andrew J.

    2016-01-01

    Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O2] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications. PMID:28603384

  13. Rapid Measurement of Room Temperature Ionic Liquid Electrochemical Gas Sensor using Transient Double Potential Amperometry.

    PubMed

    Wan, Hao; Yin, Heyu; Mason, Andrew J

    2017-04-01

    Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O 2 ] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications.

  14. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    PubMed

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Ion transfer through solvent polymeric membranes driven by an exponential current flux.

    PubMed

    Molina, A; Torralba, E; González, J; Serna, C; Ortuño, J A

    2011-03-21

    General analytical equations which govern ion transfer through liquid membranes with one and two polarized interfaces driven by an exponential current flux are derived. Expressions for the transient and stationary E-t, dt/dE-E and dI/dE-E curves are obtained, and the evolution from transient to steady behaviour has been analyzed in depth. We have also shown mathematically that the voltammetric and stationary chronopotentiometric I(N)-E curves are identical (with E being the applied potential for voltammetric techniques and the measured potential for chronopotentiometric techniques), and hence, their derivatives provide identical information.

  16. Semi-Supervised Novelty Detection with Adaptive Eigenbases, and Application to Radio Transients

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Majid, Walid A.; Reed, Colorado J.; Wagstaff, Kiri L.

    2011-01-01

    We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses adaptive eigenbases to combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply the method to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies.

  17. Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.

    PubMed

    Guo, Lian; Radisic, Aleksandar; Searson, Peter C

    2005-12-22

    Nucleation and growth during bulk electrodeposition is studied using kinetic Monte Carlo (KMC) simulations. Ion transport in solution is modeled using Brownian dynamics, and the kinetics of nucleation and growth are dependent on the probabilities of metal-on-substrate and metal-on-metal deposition. Using this approach, we make no assumptions about the nucleation rate, island density, or island distribution. The influence of the attachment probabilities and concentration on the time-dependent island density and current transients is reported. Various models have been assessed by recovering the nucleation rate and island density from the current-time transients.

  18. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  19. Theory of passive proton conductance in lipid bilayers.

    PubMed

    Nagle, J F

    1987-10-01

    The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.

  20. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)‐mobilized Ca2+: 8‐pCPT‐AM fails to induce CaMKII activation following intracellular Ca2+ store depletion and inhibition of IP3 receptors blocks both 8‐pCPT‐AM‐mediated CaMKII phosphorylation and STOC activity. 8‐pCPT‐AM does not directly activate BKCa channels, but STOCs cannot be generated by 8‐pCPT‐AM in the presence of ryanodine. Furthermore, exposure to 8‐pCPT‐AM significantly slows the initial rate of [Ca2+]i rise induced by the RyR activator caffeine without significantly affecting the caffeine‐induced Ca2+ transient amplitude, a measure of Ca2+ store content. We conclude that Epac‐mediated STOC activity (i) occurs via activation of CaMKII and (ii) is driven by changes in the underlying behaviour of RyR channels. To our knowledge, this is the first report of CaMKII initiating cellular activity linked to vasorelaxation and suggests novel roles for this Ca2+ and redox‐sensing enzyme in the regulation of vascular tone and blood flow. PMID:28731505

  1. Time-dependent quantum transport and power-law decay of the transient current in a nano-relay and nano-oscillator

    NASA Astrophysics Data System (ADS)

    Cuansing, Eduardo C.; Liang, Gengchiau

    2011-10-01

    Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interlead coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on, the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuits where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interlead coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interlead coupling.

  2. Monitoring transients in low inductance circuits

    DOEpatents

    Guilford, Richard P.; Rosborough, John R.

    1987-01-01

    A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.

  3. Phase-Amplitude Response Functions for Transient-State Stimuli

    PubMed Central

    2013-01-01

    Abstract The phase response curve (PRC) is a powerful tool to study the effect of a perturbation on the phase of an oscillator, assuming that all the dynamics can be explained by the phase variable. However, factors like the rate of convergence to the oscillator, strong forcing or high stimulation frequency may invalidate the above assumption and raise the question of how is the phase variation away from an attractor. The concept of isochrons turns out to be crucial to answer this question; from it, we have built up Phase Response Functions (PRF) and, in the present paper, we complete the extension of advancement functions to the transient states by defining the Amplitude Response Function (ARF) to control changes in the transversal variables. Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-train stimulus, and compare the predictions given by the PRC-approach (a 1D map) to those given by the PRF-ARF-approach (a 2D map); we observe differences up to two orders of magnitude in favor of the 2D predictions, especially when the stimulation frequency is high or the strength of the stimulus is large. We also explore the role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons. Summing up, we aim at enlightening the contribution of transient effects in predicting the phase response and showing the limits of the phase reduction approach to prevent from falling into wrong predictions in synchronization problems. List of Abbreviations PRC phase response curve, phase resetting curve. PRF phase response function. ARF amplitude response function. PMID:23945295

  4. The Studies of a Vacuum Gap Breakdown after High-Current Arc Interruption with Increasing the Voltage

    NASA Astrophysics Data System (ADS)

    Schneider, A. V.; Popov, S. A.; Batrakov, A. V.; Dubrovskaya, E. L.; Lavrinovich, V. A.

    2017-12-01

    Vacuum-gap breakdown has been studied after high-current arc interruption with a subsequent increase in the transient recovery voltage across a gap. The effects of factors, such as the rate of the rise in the transient voltage, the potential of the shield that surrounds a discharge gap, and the arc burning time, have been determined. It has been revealed that opening the contacts earlier leads to the formation of an anode spot, which is the source of electrode material vapors into the discharge gap after current zero moment. Under the conditions of increasing voltage, this fact results in the breakdown. Too late opening leads to the breakdown of a short gap due to the high electric fields.

  5. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  6. On the VHF Source Retrieval Errors Associated with Lightning Mapping Arrays (LMAs)

    NASA Technical Reports Server (NTRS)

    Koshak, W.

    2016-01-01

    This presentation examines in detail the standard retrieval method: that of retrieving the (x, y, z, t) parameters of a lightning VHF point source from multiple ground-based Lightning Mapping Array (LMA) time-of-arrival (TOA) observations. The solution is found by minimizing a chi-squared function via the Levenberg-Marquardt algorithm. The associated forward problem is examined to illustrate the importance of signal-to-noise ratio (SNR). Monte Carlo simulated retrievals are used to assess the benefits of changing various LMA network properties. A generalized retrieval method is also introduced that, in addition to TOA data, uses LMA electric field amplitude measurements to retrieve a transient VHF dipole moment source.

  7. X-ray Reverberation Mapping of Ci Cam

    NASA Astrophysics Data System (ADS)

    Bartlett, Elizabeth; Garcia, M.

    2009-01-01

    We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.

  8. Recent wetland land loss due to hurricanes: improved estimates based upon multiple source images

    USGS Publications Warehouse

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Barras, John A.; Brock, John C.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    The objective of this study was to provide a moderate resolution 30-m fractional water map of the Chenier Plain for 2003, 2006 and 2009 by using information contained in high-resolution satellite imagery of a subset of the study area. Indices and transforms pertaining to vegetation and water were created using the high-resolution imagery, and a threshold was applied to obtain a categorical land/water map. The high-resolution data was used to train a decision-tree classifier to estimate percent water in a lower resolution (Landsat) image. Two new water indices based on the tasseled cap transformation were proposed for IKONOS imagery in wetland environments and more than 700 input parameter combinations were considered for each Landsat image classified. Final selection and thresholding of the resulting percent water maps involved over 5,000 unambiguous classified random points using corresponding 1-m resolution aerial photographs, and a statistical optimization procedure to determine the threshold at which the maximum Kappa coefficient occurs. Each selected dataset has a Kappa coefficient, percent correctly classified (PCC) water, land and total greater than 90%. An accuracy assessment using 1,000 independent random points was performed. Using the validation points, the PCC values decreased to around 90%. The time series change analysis indicated that due to Hurricane Rita, the study area lost 6.5% of marsh area, and transient changes were less than 3% for either land or water. Hurricane Ike resulted in an additional 8% land loss, although not enough time has passed to discriminate between persistent and transient changes.

  9. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    PubMed

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  10. Searching for MHz Transients with the VLA Low-band Ionosphere and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Polisensky, Emil; Peters, Wendy; Giacintucci, Simona; Clarke, Tracy; Kassim, Namir E.; hyman, Scott D.; van der Horst, Alexander; Linford, Justin; Waldron, Zach; Frail, Dale

    2018-01-01

    NRL and NRAO have expanded the low frequency capabilities of the VLA through the VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ), effectively making the instrument two telescopes in one. VLITE is a commensal observing system that harvests data from the prime focus in parallel with normal Cassegrain focus observing on a subset of VLA antennas. VLITE provides over 6000 observing hours per year in a > 5 square degree field-of-view using 64 MHz bandwidth centered on 352 MHz. By operating in parallel, VLITE offers invaluable low frequency data to targeted observations of transient sources detected at higher frequencies. With arcsec resolution and mJy sensitivity, VLITE additionally offers great potential for blind searches of rarer radio-selected transients. We use catalog matching software on the imaging products from the daily astrophysics pipeline and the LOFAR Transients Pipeline (TraP) on repeated observations of the same fields to search for coherent and incoherent astronomical transients on timescales of a few seconds to years. We present the current status of the VLITE transient science program from its initial deployment on 10 antennas in November 2014 through its expansion to 16 antennas in the summer of 2017. Transient limits from VLITE’s first year of operation (Polisensky et al. 2016) are updated per the most recent analysis.

  11. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  12. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  13. Profiling of Current Transients in Capacitor Type Diamond Sensors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai

    2015-01-01

    The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo’s theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μe = 4000 cm2/Vs and holes μh = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion Da = 97 cm2/s and the carrier recombination lifetime τR,CVD ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond. PMID:26061200

  14. VOEventNet: An Open Source of Transient Alerts for Astronomers.

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Williams, R.; Graham, M. J.; Mahabal, A.; Djorgovski, S. G.; White, R. R.; Vestrand, W. T.; Bloom, J.

    2007-12-01

    Event based astronomy is acquiring an increasingly important role in astronomy as large time-domain surveys such as Palomar Transient Factory (PTF), Pan-STARRs, SkyMapper and Allan Telescope Array (ATA) surveys come online. These surveys are expected to discover thousands of transients each year ranging from near earth asteroids to distant SNe. Although the primary instruments for of these surveys are in place, in order to fully utilize these event discovery streams, automated alerting and follow-up is a necessity. For the past two years the VOEventNet network has been globally distributing information about transient astronomical events using the VOEvent format, a Virtual Observatory standard. Events messages are openly distributed so that follow-up can utilize the most appropriate resources available in order to characterize the nature of the transients. Since its inception VOEventNet has broadcast more than 3500 SDSSSS Supernova candidates, 3300 GRB alert and follow-up notices from GCN, 700 OGLE microlensing event candidates, and 4300 newly discovered asteroid and optical transient candidates from the Palomar Quest survey. Additional transient event streams are expected this season including optical transients from the Catalina Sky Survey. VOEventNet astronomical transient events streams are available to all astronomers via traditional HTML tables, RSS news-feeds, real-time publication (via Jabber and TCP), and Google Sky mashups. VOEventNet currently carries out optical transient event follow-up with the Palomar 60 and 200in (Caltech), Faulkes Telescopes North and South (LCOGTN), RAPTOR (LANL), and PARITEL (UCB; CfA).

  15. Transient behavior of an actively mode-locked semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.

    1982-01-01

    Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.

  16. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  17. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  18. The performance of cable braids and terminations to lightning induced transients

    NASA Technical Reports Server (NTRS)

    Crofts, David

    1991-01-01

    The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.

  19. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.

    PubMed

    Rotskoff, Grant M

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  20. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  1. A numerical simulation of the full two-dimensional electrothermal de-icer pad. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Masiulaniec, Konstanty C.

    1988-01-01

    The ability to predict the time-temperature history of electrothermal de-icer pads is important in the subsequent design of improved and more efficient versions. These de-icer pads are installed near the surface of aircraft components, for the specific purpose of removing accreted ice. The proposed numerical model can incorporate the full 2-D geometry through a section of a region (i.e., section of an airfoil), that current 1-D numerical codes are unable to do. Thus, the effects of irregular layers, curvature, etc., can now be accounted for in the thermal transients. Each layer in the actual geometry is mapped via a body-fitted coordinate transformation into uniform, rectangular computational grids. The relevant heat transfer equations are transformed and discretized. To model the phase change that might occur in any accreted ice, in an enthalpy formulation the phase change equations are likewise transformed and discretized. The code developed was tested against numerous classical numerical solutions, as well as against experimental de-icing data on a UH1H rotor blade obtained from the NASA Lewis Research Center. The excellent comparisons obtained show that this code can be a useful tool in predicting the performance of current de-icer models, as well as in the designing of future models.

  2. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  3. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  4. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  5. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  6. Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase

    PubMed Central

    Cheng, Hongwei; Smith, Godfrey L.; Hancox, Jules C.; Orchard, Clive H.

    2011-01-01

    The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na–Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca2+]i transients from cells isolated from the rabbit AVN. Spontaneous [Ca2+]i transients were monitored from undialysed AVN cells at 37 °C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca2+]i transients. However, in voltage clamp experiments in addition to blocking NCX current (INCX) KB-R7943 partially inhibited L-type calcium current (ICa,L). Rapid reduction of external [Na+] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca2+]i transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca2+ release influences spontaneous activity in AVN cells, and that this occurs via [Ca2+]i-activated INCX; however, the inhibitory action of KB-R7943 on ICa,L means that care is required in the interpretation of data obtained using this compound. PMID:21163524

  7. New X-ray outburst of accreting millisecond pulsar SWIFT J1756.9-2508 detected by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2018-04-01

    During recent observations (1-2 Apr 2018, PI: E.Bozzo) of the weak X-ray burster IGR J17379-3747 (#11447,#11487, Chelovekov et al. 2006, AstL, 32, 456) and regular observations of Galactic center region (2-3 Apr 2018, PI: R.A. Sunyaev) we detected a new X-ray transient in 20-60 keV sky maps obtained by IBIS/ISGRI.

  8. Changes in left ventricular repolarization and ion channel currents following a transient rate increase superimposed on bradycardia in anesthetized dogs.

    PubMed

    Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P

    2000-06-01

    We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).

  9. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.

    PubMed

    Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L

    2018-04-26

    Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.

  10. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    NASA Astrophysics Data System (ADS)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  11. Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Gregory Herbert; Chen, Ken Shuang

    2004-06-01

    This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less

  12. CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm

    NASA Astrophysics Data System (ADS)

    Shamir, L.; Nemiroff, R. J.

    2004-05-01

    One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.

  13. Transient resonances in the inspirals

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Flanagan, Eanna

    2009-05-01

    We show that the two body problem in general relativity in the highly relativistic regime has a qualitatively new feature: the occurence of transient resonances. The resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. The resonances make the orbit more sensitive to changes in the initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in the standard post-Newtonian expansion used for two body systems at large separation. Our results directly apply to an important potential source of gravitational waves, namely the gradual inspiral of compact objects into much more massive black holes. Exploiting observations of these gravitational waves to map the spacetime geometry of black holes is contingent upon accurate theoretical models (templates) of the binary dynamics. At present, only the leading order in the mass ratio gravitational waveforms can be computed. Corrections to the waveform's phase due to resonance effects scale as the square root of the inverse of the mass ratio and are characterized by sudden jumps in the time derivatives of the phase. We numerically estimate the net size of these corrections and find indications that the phase error is of order a few cycles for mass ratios ˜10^- 3 but will be significant (of order tens of cycles) for mass ratios ˜10-6. Computations of these corrections will require the computation of pieces of the forcing terms in the equations of motion which are currently unknown.

  14. Modeling of environmentally induced transients within satellites

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.

    1987-01-01

    A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.

  15. Influence of menopause status and age on integrated central and peripheral hemodynamic responses to subsystolic cuffing during submaximal exercise

    PubMed Central

    Gramm, Courtney; Randall, Nicholas R.; Olson, Thomas P.

    2016-01-01

    Although pathophysiological links between postmenopause and healthy aging remain unclear, both factors are associated with increased blood pressure and sympathetic nerve activity (SNA) in women. Activation of polymodal musculoskeletal neural afferents originating within adventia of venules modulates SNA and blood pressure control during exercise in healthy adults. We hypothesized transient subsystolic regional circulatory occlusion (RCO) during exercise sensitizes these afferents leading to augmented systemic vascular resistance (SVR)-mediated increased mean arterial pressure (MAP) in postmenopause vs. premenopause. Normotensive women in premenopause or postmenopause (n = 14 and 14; ages: 30 ± 9 and 55 ± 7 yr, respectively; P < 0.01) performed: 1) peak exercise testing and 2) fixed-load cycling at 30% peak workload (48 ± 11 and 38 ± 6 W, respectively; P < 0.01), whereby the initial 3 min were control exercise without RCO (CTL), thereafter including 2 min of bilateral-thigh RCO to 20, 40, 60, 80, or 100 mmHg (randomized), with 2 min deflation between RCO. Both MAP (17 ± 4 vs. 4 ± 4%, P = 0.02) and SVR (16 ± 8 vs. −3 ± 8%, P = 0.04) increased at 80 mmHg from CTL in postmenopause vs. premenopause, respectively. However, cardiac index was similar in postmenopause vs. premenopause at 80 mmHg from CTL (1 ± 6 vs. 7 ± 6%, respectively; P = 0.15). There was no continuous effect of aging in MAP (P = 0.12), SVR (P = 0.07), or cardiac index (P = 0.18) models. These data suggest transient locomotor subsystolic RCO sensitizes musculoskeletal afferents, which provoke increased SVR to generate augmented MAP during exercise in postmenopause. These observations provide a novel approach for understanding the age-independent variability in exercise blood pressure control across the normotensive adult pre- to postmenopause spectrum. PMID:27765745

  16. Influence of menopause status and age on integrated central and peripheral hemodynamic responses to subsystolic cuffing during submaximal exercise.

    PubMed

    Van Iterson, Erik H; Gramm, Courtney; Randall, Nicholas R; Olson, Thomas P

    2016-12-01

    Although pathophysiological links between postmenopause and healthy aging remain unclear, both factors are associated with increased blood pressure and sympathetic nerve activity (SNA) in women. Activation of polymodal musculoskeletal neural afferents originating within adventia of venules modulates SNA and blood pressure control during exercise in healthy adults. We hypothesized transient subsystolic regional circulatory occlusion (RCO) during exercise sensitizes these afferents leading to augmented systemic vascular resistance (SVR)-mediated increased mean arterial pressure (MAP) in postmenopause vs. premenopause. Normotensive women in premenopause or postmenopause (n = 14 and 14; ages: 30 ± 9 and 55 ± 7 yr, respectively; P < 0.01) performed: 1) peak exercise testing and 2) fixed-load cycling at 30% peak workload (48 ± 11 and 38 ± 6 W, respectively; P < 0.01), whereby the initial 3 min were control exercise without RCO (CTL), thereafter including 2 min of bilateral-thigh RCO to 20, 40, 60, 80, or 100 mmHg (randomized), with 2 min deflation between RCO. Both MAP (17 ± 4 vs. 4 ± 4%, P = 0.02) and SVR (16 ± 8 vs. -3 ± 8%, P = 0.04) increased at 80 mmHg from CTL in postmenopause vs. premenopause, respectively. However, cardiac index was similar in postmenopause vs. premenopause at 80 mmHg from CTL (1 ± 6 vs. 7 ± 6%, respectively; P = 0.15). There was no continuous effect of aging in MAP (P = 0.12), SVR (P = 0.07), or cardiac index (P = 0.18) models. These data suggest transient locomotor subsystolic RCO sensitizes musculoskeletal afferents, which provoke increased SVR to generate augmented MAP during exercise in postmenopause. These observations provide a novel approach for understanding the age-independent variability in exercise blood pressure control across the normotensive adult pre- to postmenopause spectrum. Copyright © 2016 the American Physiological Society.

  17. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  18. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  19. Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Herr, M. D.; Sinoway, L. I.

    2000-01-01

    We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

  20. Triggered Firing and Atrial Fibrillation in Transgenic Mice With Selective Atrial Fibrosis Induced by Overexpression of TGF-β1

    PubMed Central

    Choi, Eue-Keun; Chang, Po-Cheng; Lee, Young-Soo; Lin, Shien-Fong; Zhu, Wuqiang; Maruyama, Mitsunori; Fishbein, Michael C.; Chen, Zhenhui; der Lohe, Michael Rubart-von; Field, Loren J.; Chen, Peng-Sheng

    2013-01-01

    Background Calcium transient triggered firing (CTTF) is induced by large intracellular calcium (Cai) transient and short action potential duration (APD). We hypothesized that CTTF underlies the mechanisms of early afterdepolarization (EAD) and spontaneous recurrent atrial fibrillation (AF) in transgenic (Tx) mice with overexpression of transforming growth factor β1 (TGF-β1). Methods and Results MHC-TGFcys33ser Tx mice develop atrial fibrosis because of elevated levels of TGF-β1. We studied membrane potential and Cai transients of isolated superfused atria from Tx and wild-type (Wt) littermates. Short APD and persistently elevated Cai transients promoted spontaneous repetitive EADs, triggered activity and spontaneous AF after cessation of burst pacing in Tx but not Wt atria (39% vs. 0%, P=0.008). We were able to map optically 4 episodes of spontaneous AF re-initiation. All first and second beats of spontaneous AF originated from the right atrium (4/4, 100%), which is more severely fibrotic than the left atrium. Ryanodine and thapsigargin inhibited spontaneous re-initiation of AF in all 7 Tx atria tested. Western blotting showed no significant changes of calsequestrin or sarco/endoplasmic reticulum Ca2+-ATPase 2a. Conclusions Spontaneous AF may occur in the Tx atrium because of CTTF, characterized by APD shortening, prolonged Cai transient, EAD and triggered activity. Inhibition of Ca2+ release from the sarcoplasmic reticulum suppressed spontaneous AF. Our results indicate that CTTF is an important arrhythmogenic mechanism in TGF-β1 Tx atria. PMID:22447020

  1. Development and validation of a complementary map to enhance the existing 1998 to 2008 Abbreviated Injury Scale map

    PubMed Central

    2011-01-01

    Introduction Many trauma registries have used the Abbreviated Injury Scale 1990 Revision Update 98 (AIS98) to classify injuries. In the current AIS version (Abbreviated Injury Scale 2005 Update 2008 - AIS08), injury classification and specificity differ substantially from AIS98, and the mapping tools provided in the AIS08 dictionary are incomplete. As a result, data from different AIS versions cannot currently be compared. The aim of this study was to develop an additional AIS98 to AIS08 mapping tool to complement the current AIS dictionary map, and then to evaluate the completed map (produced by combining these two maps) using double-coded data. The value of additional information provided by free text descriptions accompanying assigned codes was also assessed. Methods Using a modified Delphi process, a panel of expert AIS coders established plausible AIS08 equivalents for the 153 AIS98 codes which currently have no AIS08 map. A series of major trauma patients whose injuries had been double-coded in AIS98 and AIS08 was used to assess the maps; both of the AIS datasets had already been mapped to another AIS version using the AIS dictionary maps. Following application of the completed (enhanced) map with or without free text evaluation, up to six AIS codes were available for each injury. Datasets were assessed for agreement in injury severity measures, and the relative performances of the maps in accurately describing the trauma population were evaluated. Results The double-coded injuries sustained by 109 patients were used to assess the maps. For data conversion from AIS98, both the enhanced map and the enhanced map with free text description resulted in higher levels of accuracy and agreement with directly coded AIS08 data than the currently available dictionary map. Paired comparisons demonstrated significant differences between direct coding and the dictionary maps, but not with either of the enhanced maps. Conclusions The newly-developed AIS98 to AIS08 complementary map enabled transformation of the trauma population description given by AIS98 into an AIS08 estimate which was statistically indistinguishable from directly coded AIS08 data. It is recommended that the enhanced map should be adopted for dataset conversion, using free text descriptions if available. PMID:21548991

  2. Development and validation of a complementary map to enhance the existing 1998 to 2008 Abbreviated Injury Scale map.

    PubMed

    Palmer, Cameron S; Franklyn, Melanie; Read-Allsopp, Christine; McLellan, Susan; Niggemeyer, Louise E

    2011-05-08

    Many trauma registries have used the Abbreviated Injury Scale 1990 Revision Update 98 (AIS98) to classify injuries. In the current AIS version (Abbreviated Injury Scale 2005 Update 2008 - AIS08), injury classification and specificity differ substantially from AIS98, and the mapping tools provided in the AIS08 dictionary are incomplete. As a result, data from different AIS versions cannot currently be compared. The aim of this study was to develop an additional AIS98 to AIS08 mapping tool to complement the current AIS dictionary map, and then to evaluate the completed map (produced by combining these two maps) using double-coded data. The value of additional information provided by free text descriptions accompanying assigned codes was also assessed. Using a modified Delphi process, a panel of expert AIS coders established plausible AIS08 equivalents for the 153 AIS98 codes which currently have no AIS08 map. A series of major trauma patients whose injuries had been double-coded in AIS98 and AIS08 was used to assess the maps; both of the AIS datasets had already been mapped to another AIS version using the AIS dictionary maps. Following application of the completed (enhanced) map with or without free text evaluation, up to six AIS codes were available for each injury. Datasets were assessed for agreement in injury severity measures, and the relative performances of the maps in accurately describing the trauma population were evaluated. The double-coded injuries sustained by 109 patients were used to assess the maps. For data conversion from AIS98, both the enhanced map and the enhanced map with free text description resulted in higher levels of accuracy and agreement with directly coded AIS08 data than the currently available dictionary map. Paired comparisons demonstrated significant differences between direct coding and the dictionary maps, but not with either of the enhanced maps. The newly-developed AIS98 to AIS08 complementary map enabled transformation of the trauma population description given by AIS98 into an AIS08 estimate which was statistically indistinguishable from directly coded AIS08 data. It is recommended that the enhanced map should be adopted for dataset conversion, using free text descriptions if available.

  3. Effect of Intense Optical Excitation on Internal Electric Field Evolution in CdTe Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ichinohe, Y.; Seto, S.

    2018-03-01

    The time-of-flight (TOF) transient currents in radiation detectors made of CdTe and Cd0.9Zn0.1Te (CZT) have been measured at several optical excitation intensities to investigate the effect of drifting carriers on the internal field. Both detectors show so-called space-charge-perturbed (SCP) current under intense optical excitation. A Monte Carlo (MC) simulation combined with an iterative solution of Poisson's equation is used to reproduce the observed currents under several bias voltages and excitation intensities. The SCP theory describes well the transient current in the CZT detector, whereas injection of holes from the anode and a corresponding reduction of the electron lifetime are further required to describe that in the CdTe detector. We visualize the temporal changes in the charge distribution and internal electric field profiles of both detectors.

  4. Effect of load transients on SOFC operation—current reversal on loss of load

    NASA Astrophysics Data System (ADS)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  5. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) dramatically changes shrub steppe ecosystems in the Northern Great Basin, United States.Current-season cheatgrass location and percent cover are difficult to estimate rapidly.We explain the development of a near-real-time cheatgrass percent cover dataset and map in the Northern Great Basin for the current year (2015), display the current year’s map, provide analysis of the map, and provide a website link to download the map (as a PDF) and the associated dataset.The near-real-time cheatgrass percent cover dataset and map were consistent with non-expedited, historical cheatgrass percent cover datasets and maps.Having cheatgrass maps available mid-summer can help land managers, policy makers, and Geographic Information Systems personnel as they work to protect socially relevant areas such as critical wildlife habitats.

  6. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.

    NASA Astrophysics Data System (ADS)

    Rotskoff, Grant

    We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.

  7. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  8. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  10. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  11. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes.

    PubMed

    Hong, Ting-Ting; Smyth, James W; Chu, Kevin Y; Vogan, Jacob M; Fong, Tina S; Jensen, Brian C; Fang, Kun; Halushka, Marc K; Russell, Stuart D; Colecraft, Henry; Hoopes, Charles W; Ocorr, Karen; Chi, Neil C; Shaw, Robin M

    2012-05-01

    Heart failure is a growing epidemic, and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T tubules. Bridging integrator 1 (BIN1) is a membrane scaffolding protein that causes Cav1.2 to traffic to T tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Intact myocardium and freshly isolated cardiomyocytes from nonfailing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch-clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking-competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after small hairpin RNA-mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino-mediated knockdown of BIN1. BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced to 42% by imaging, and a biochemical T-tubule fraction of Cav1.2 is reduced to 68%. The total calcium current is reduced to 41% in a cell line expressing a nontrafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. BIN1 is Reduced and Cav1.2 Trafficking is Impaired in Human Failing Cardiomyocytes

    PubMed Central

    Hong, Ting-Ting; Smyth, James W.; Chu, Kevin Y.; Vogan, Jacob M.; Fong, Tina S.; Jensen, Brian C.; Fang, Kun; Halushka, Marc K.; Russell, Stuart D.; Colecraft, Henry; Hoopes, Charles W.; Ocorr, Karen; Chi, Neil C.; Shaw, Robin M.

    2011-01-01

    Background Heart failure is a growing epidemic and a typical aspect of heart failure pathophysiology is altered calcium transients. Normal cardiac calcium transients are initiated by Cav1.2 channels at cardiac T-tubules. BIN1 is a membrane scaffolding protein that causes Cav1.2 to traffic to T-tubules in healthy hearts. The mechanisms of Cav1.2 trafficking in heart failure are not known. Objective To study BIN1 expression and its effect on Cav1.2 trafficking in failing hearts. Methods Intact myocardium and freshly isolated cardiomyocytes from non-failing and end-stage failing human hearts were used to study BIN1 expression and Cav1.2 localization. To confirm Cav1.2 surface expression dependence on BIN1, patch clamp recordings were performed of Cav1.2 current in cell lines with and without trafficking competent BIN1. Also, in adult mouse cardiomyocytes, surface Cav1.2 and calcium transients were studied after shRNA mediated knockdown of BIN1. For a functional readout in intact heart, calcium transients and cardiac contractility were analyzed in a zebrafish model with morpholino mediated knockdown of BIN1. Results BIN1 expression is significantly decreased in failing cardiomyocytes at both mRNA (30% down) and protein (36% down) levels. Peripheral Cav1.2 is reduced 42% by imaging and biochemical T-tubule fraction of Cav1.2 is reduced 68%. Total calcium current is reduced 41% in a cell line expressing non-trafficking BIN1 mutant. In mouse cardiomyocytes, BIN1 knockdown decreases surface Cav1.2 and impairs calcium transients. In zebrafish hearts, BIN1 knockdown causes a 75% reduction in calcium transients and severe ventricular contractile dysfunction. Conclusions The data indicate that BIN1 is significantly reduced in human heart failure, and this reduction impairs Cav1.2 trafficking, calcium transients, and contractility. PMID:22138472

  13. Starting Performance Analysis for Universal Motors by FEM

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazumi; Sakamoto, Shin-Ichi

    This paper presents a novel transient analysis of the universal motors taking into account the time-varying brush-contact resistance and mechanical loss. The transient current, torque and speed during the starting process are computed by solving the electromagnetic, circuit and dynamic motion equations, simultaneously. The computed performances have been validated by tests in a 500-W, 2-pole, 50Hz, 100V universal motor.

  14. High energy transients: The millisecond domain

    NASA Astrophysics Data System (ADS)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  15. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu; Hulsart, R.; Mernick, K.

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  16. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE PAGES

    Liu, Chuyu; Hulsart, R.; Mernick, K.; ...

    2018-05-08

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  17. Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Cadeau, Trevor J.; Krause, Thomas W.

    2009-03-01

    Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.

  18. Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paniagua, J.; Rohatgi, U.S.; Prasad, V.

    1996-10-01

    RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).

  19. Low-Dimensional Model of a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2003-11-01

    In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.

  20. Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.

  1. Interacting Supernovae: Types IIn and Ibn

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  2. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P <0.001 versus controls). The arrhythmogenicity index was increased ( P <0.001) and the corrected QT interval on ECG was prolonged ( P <0.001) in HFpEF rats. Optical mapping of HFpEF hearts demonstrated prolonged action potentials ( P <0.05) and multiple reentry circuits during induced VA. Single-cell recordings of cardiomyocytes isolated from HFpEF rats confirmed a delay of repolarization ( P =0.001) and revealed downregulation of transient outward potassium current ( I to ; P <0.05). The rapid components of the delayed rectifier potassium current ( I Kr ) and the inward rectifier potassium current ( I K1 ) were also downregulated ( P <0.05), but the current densities were much lower than for I to . In accordance with the reduction of I to , both Kcnd3 transcript and Kv4.3 protein levels were decreased in HFpEF rat hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.

  3. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  4. Repassivation Investigations on Aluminium: Physical Chemistry of the Passive State

    NASA Astrophysics Data System (ADS)

    Nagy, Tristan Oliver; Weimerskirch, Morris Jhängi Joseph; Pacher, Ulrich; Kautek, Wolfgang

    2016-09-01

    We show the temporal change in repassivation mechanism as a time-dependent linear combination of a high-field model of oxide growth (HFM) and the point defect model (PDM). The observed switch in transient repassivation current-decrease under potentiostatic control occurs independently of the active electrode size and effective repassivation time for all applied overpotentials. For that, in situ depassivation of plasma electrolytically oxidized (PEO) coatings on aluminium was performed with nanosecond laser pulses at 266 nm and the repassivation current transients were recorded as a function of pulse number. A mathematical model combines the well established theories of oxide-film formation and growth kinetics, giving insight in the non linear transient behaviour of micro-defect passivation. According to our findings, the repassivation process can be described as a charge consumption via two concurrent channels. While the major current-decay at the very beginning of the fast healing oxide follows a point-defect type exponential damping, the HFM mechanism supersedes gradually, the longer the repassivation evolves. Furthermore, the material seems to reminisce former laser treatments via defects built-in during depassivation, leading to a higher charge contribution of the PDM mechanism at higher pulse numbers.

  5. Networks of Learning

    NASA Astrophysics Data System (ADS)

    Bettencourt, Luis; Kaiser, David

    2004-03-01

    Based on an a historically documented example of scientific discovery - Feynman diagrams as the main calculational tool of theoretical high energy Physics - we map the time evolution of the social network of early adopters through in the US, UK, Japan and the USSR. The spread of the technique for total number of users in each region is then modelled in terms of epidemic models, highlighting parallel and divergent aspects of this analogy. We also show that transient social arrangements develop as the idea is introduced and learned, which later disappear as the technique becomes common knowledge. Such early transient is characterized by abnormally low connectivity distribution powers and by high clustering. This interesting early non-equilibrium stage of network evolution is captured by a new dynamical model for network evolution, which coincides in its long time limit with familiar preferential aggregation dynamics.

  6. Full two-dimensional transient solutions of electrothermal aircraft blade deicing

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.; Leffel, K. L.

    1985-01-01

    Two finite difference methods are presented for the analysis of transient, two-dimensional responses of an electrothermal de-icer pad of an aircraft wing or blade with attached variable ice layer thickness. Both models employ a Crank-Nicholson iterative scheme, and use an enthalpy formulation to handle the phase change in the ice layer. The first technique makes use of a 'staircase' approach, fitting the irregular ice boundary with square computational cells. The second technique uses a body fitted coordinate transform, and maps the exact shape of the irregular boundary into a rectangular body, with uniformally square computational cells. The numerical solution takes place in the transformed plane. Initial results accounting for variable ice layer thickness are presented. Details of planned de-icing tests at NASA-Lewis, which will provide empirical verification for the above two methods, are also presented.

  7. The chaos within Sudoku.

    PubMed

    Ercsey-Ravasz, Mária; Toroczkai, Zoltán

    2012-01-01

    The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the basis of many applications, including protein folding and the ground-state problem of glassy spin systems. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show that the escape rate κ, an invariant of transient chaos, provides a scalar measure of the puzzle's hardness that correlates well with human difficulty ratings. Accordingly, η = -log₁₀κ can be used to define a "Richter"-type scale for puzzle hardness, with easy puzzles having 0 < η ≤ 1, medium ones 1 < η ≤ 2, hard with 2 < η ≤ 3 and ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4.

  8. The Chaos Within Sudoku

    NASA Astrophysics Data System (ADS)

    Ercsey-Ravasz, Mária; Toroczkai, Zoltán

    2012-10-01

    The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the basis of many applications, including protein folding and the ground-state problem of glassy spin systems. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show that the escape rate κ, an invariant of transient chaos, provides a scalar measure of the puzzle's hardness that correlates well with human difficulty ratings. Accordingly, η = -log10 κ can be used to define a ``Richter''-type scale for puzzle hardness, with easy puzzles having 0 < η <= 1, medium ones 1 < η <= 2, hard with 2 < η <= 3 and ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4.

  9. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  10. On tridimensional rip current modeling

    NASA Astrophysics Data System (ADS)

    Marchesiello, Patrick; Benshila, Rachid; Almar, Rafael; Uchiyama, Yusuke; McWilliams, James C.; Shchepetkin, Alexander

    2015-12-01

    Do lateral shear instabilities of nearshore circulation account for a substantial part of Very Low-Frequency (VLF) variability? If yes, it would promote stirring and mixing of coastal waters and surf-shelf exchanges. Another question is whether tridimensional transient processes are important for instability generation. An innovative modeling system with tridimensional wave-current interactions was designed to investigate transient nearshore currents and interactions between nearshore and innershelf circulations. We present here some validation of rip current modeling for the Aquitanian coast of France, using in-situ and remote video sensing. We then proceed to show the benefits of 3D versus 2D (depth-mean flow) modeling of rip currents and their low-frequency variability. It appears that a large part of VLF motions is due to intrinsic variability of the tridimensional flow. 3D models may thus provide a valuable, only marginally more expensive alternative to conventional 2D approaches that miss the vertical flow structure and its nonlinear interaction with the depth-averaged flow.

  11. Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector

    NASA Astrophysics Data System (ADS)

    Shishido, Hiroaki; Yamaguchi, Hiroyuki; Miki, Yuya; Miyajima, Shigeyuki; Oikawa, Kenichi; Harada, Masahide; Hidaka, Mutsuo; Oku, Takayuki; Arai, Masatoshi; Fujimaki, Akira; Ishida, Takekazu

    2017-09-01

    We demonstrate neutron detection using a solid-state 3He-free superconducting current-biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line and 10B neutron absorption layer. The CB-KID is based on the transient process of kinetic inductance of Cooper pairs induced by the nuclear reaction between 10B and neutrons. Therefore, the CB-KID can be operated in a wide superconducting region in the bias current-temperature diagram, as demonstrated in this paper. The transient change of the kinetic inductance induces the electromagnetic wave pulse under a DC bias current. The signal propagates along the meander line toward both sides with opposite polarity, where the signal polarity is dominated by the bias current direction. The full width at half maximum of the signals remains on the order of a few tens of ns, which confirms the high-speed operation of our detectors. We determine the neutron incident position within 1.3 mm accuracy in one dimension using the multichannel CB-KIDs.

  12. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  13. GCN/TAN: A Status Report

    NASA Astrophysics Data System (ADS)

    Barthelmy, Scott

    2015-04-01

    The Gamma-ray Coordinates Network / Transient Astronomy Network (GCN/TAN) is your one-stop shopping place for all transient astronomy. It collects nearly all the astrophysical transients from the missions (space-based and ground-based), puts them into a standard format, and distributes them to whomever wishes to receive them. This is all done autonomously (completely autonomous within GCN/TAN, and almost always autonomously within the producer end of operations). This automation means minimal time delays (<0.1 sec within GCN for socket-based distribution methods, and up to 30 sec for email-based which is dependant on the internet email protocol and the number of hops (both of which are out of the control of GCN/TAN). A status report on the current set of sources of transient information, plus recently-added and soon-to-be-added source will be given. Also, a standing request for GCN/TAN to incorporate your transient data stream; plus instruction for customers to receive GCN/TAAN Notice and Circular information.

  14. Transient electro-thermal characterization of Si-Ge heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Sahoo, Amit Kumar; Weiß, Mario; Fregonese, Sébastien; Malbert, Nathalie; Zimmer, Thomas

    2012-08-01

    In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230 GHz and 290 GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R-C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.

  15. Using a PFET To Commutate an SCR

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Ripple, W. E.

    1984-01-01

    Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.

  16. Modeling of grain-oriented Si-steel and amorphous alloy iron core under ferroresonance using Jiles-Atherton hysteresis method

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Zou, Mi; Yang, Ming; Yang, Qing; Peng, Daixiao

    2018-05-01

    Amorphous alloy is increasingly widely used in the iron core of power transformer due to its excellent low loss performance. However, its potential harm to the power system is not fully studied during the electromagnetic transients of the transformer. This study develops a simulation model to analyze the effect of transformer iron core materials on ferroresonance. The model is based on the transformer π equivalent circuit. The flux linkage-current (ψ-i) Jiles-Atherton reactor is developed in an Electromagnetic Transients Program-Alternative Transients Program and is used to represent the magnetizing branches of the transformer model. Two ferroresonance cases are studied to compare the performance of grain-oriented Si-steel and amorphous alloy cores. The ferroresonance overvoltage and overcurrent are discussed under different system parameters. Results show that amorphous alloy transformer generates higher voltage and current than those of grain-oriented Si-steel transformer and significantly harms the power system safety.

  17. Experiments in sensing transient rotational acceleration cues on a flight simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1979-01-01

    Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing.

  18. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions.

    PubMed

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-10

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  19. Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor

    NASA Astrophysics Data System (ADS)

    Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June

    2018-03-01

    We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.

  20. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions

    NASA Astrophysics Data System (ADS)

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-01

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  1. Fractal-Based Image Compression

    DTIC Science & Technology

    1990-01-01

    used Ziv - Lempel - experiments and for software development. Addi- Welch compression algorithm (ZLW) [51 [4] was used tional thanks to Roger Boss, Bill...vol17no. 6 (June 4) and with the minimum number of maps. [5] J. Ziv and A. Lempel , Compression of !ndivid- 5 Summary ual Sequences via Variable-Rate...transient and should be discarded. 2.5 Collage Theorem algorithm2 C3.2 Deterministic Algorithm for IFS Attractor For fast image compression the best

  2. Deglaciation and Latest Pleistocene and Early Holocene Glacier Readvances on the Alaska Peninsula: Records of Rapid Climate Change Due to Transient Changes, in Solar Intensity and Atmospheric CO2 Content?

    DTIC Science & Technology

    Geologic mapping near Windy Creek, Katmai National Park, identified two sets of glacial deposits postdating late-Wisconsin Iliuk moraines and...between ca. 10,000 and 12,000 years B.P. We suggest that rapid deglaciation following deposition of the Iliuk drift occurred ca. 13,000-12,000 years B.P

  3. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  4. On the transient dynamics of piezoelectric-based, state-switched systems

    NASA Astrophysics Data System (ADS)

    Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.

    2018-01-01

    This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.

  5. Magnetic-Flux-Compensated Voltage Divider

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2005-01-01

    A magnetic-flux-compensated voltage-divider circuit has been proposed for use in measuring the true potential across a component that is exposed to large, rapidly varying electric currents like those produced by lightning strikes. An example of such a component is a lightning arrester, which is typically exposed to currents of the order of tens of kiloamperes, having rise times of the order of hundreds of nanoseconds. Traditional voltage-divider circuits are not designed for magnetic-flux-compensation: They contain uncompensated loops having areas large enough that the transient magnetic fluxes associated with large transient currents induce spurious voltages large enough to distort voltage-divider outputs significantly. A drawing of the proposed circuit was not available at the time of receipt of information for this article. What is known from a summary textual description is that the proposed circuit would contain a total of four voltage dividers: There would be two mixed dividers in parallel with each other and with the component of interest (e.g., a lightning arrester), plus two mixed dividers in parallel with each other and in series with the component of interest in the same plane. The electrical and geometric configuration would provide compensation for induced voltages, including those attributable to asymmetry in the volumetric density of the lightning or other transient current, canceling out the spurious voltages and measuring the true voltage across the component.

  6. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C.; Wachs, D.; Carmack, J.

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less

  7. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for theoretical calculations on the nature of core-excited states in halogenated hydrocarbons, especially in the transition state region along the C—I reaction coordinate.« less

  8. Cartographic mapping study

    NASA Technical Reports Server (NTRS)

    Wilson, C.; Dye, R.; Reed, L.

    1982-01-01

    The errors associated with planimetric mapping of the United States using satellite remote sensing techniques are analyzed. Assumptions concerning the state of the art achievable for satellite mapping systems and platforms in the 1995 time frame are made. An analysis of these performance parameters is made using an interactive cartographic satellite computer model, after first validating the model using LANDSAT 1 through 3 performance parameters. An investigation of current large scale (1:24,000) US National mapping techniques is made. Using the results of this investigation, and current national mapping accuracy standards, the 1995 satellite mapping system is evaluated for its ability to meet US mapping standards for planimetric and topographic mapping at scales of 1:24,000 and smaller.

  9. Fault-Tolerant Sequencer Using FPGA-Based Logic Designs for Space Applications

    DTIC Science & Technology

    2013-12-01

    Prototype Board SBU single bit upset SDK software development kit SDRAM synchronous dynamic random-access memory SEB single-event burnout ...current VHDL VHSIC hardware description language VHSIC very-high-speed integrated circuits VLSI very-large- scale integration VQFP very...transient pulse, called a single-event transient (SET), or even cause permanent damage to the device in the form of a burnout or gate rupture. The SEE

  10. Look-ahead Dynamic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  11. Effects of elevated artificial pneumoperitoneum pressure on invasive blood pressure and levels of blood gases.

    PubMed

    Hypolito, Octavio; Azevedo, João Luiz; Gama, Fernanda; Azevedo, Otavio; Miyahira, Susana Abe; Pires, Oscar César; Caldeira, Fabiana Alvarenga; Silva, Thamiris

    2014-01-01

    to evaluate the clinical, hemodynamic, gas analysis and metabolic repercussions of high transient pressures of pneumoperitoneum for a short period of time to ensure greater security for introduction of the first trocar. sixty-seven patients undergoing laparoscopic procedures were studied and randomly distributed in P12 group: n=30 (intraperitoneal pressure [IPP] 12mmHg) and P20 group: n=37 (IPP of 20mmHg). Mean arterial pressure (MAP) was evaluated by catheterization of the radial artery; and through gas analysis, pH, partial pressure of oxygen (PaO2), partial pressure of CO2 (PaCO2), bicarbonate (HCO3) and alkalinity (BE) were evaluated. These parameters were measured in both groups at time zero before pneumoperitoneum (TP0); at time 1 (TP1) when IPP reaches 12mmHg in both groups; at time 2 (TP2) after five min with IPP=12mmHg in P12 and after 5min with IPP=20mmHg at P20; and at time 3 (TP3) after 10min with IPP=12mmHg in P12 and with return of IPP from 20 to 12mmHg, starting 10min after TP1 in P20. Different values from those considered normal for all parameters assessed, or the appearance of atypical organic phenomena, were considered as clinical changes. there were statistically significant differences in P20 group in MAP, pH, HCO3 and BE, but within normal limits. No clinical and pathological changes were observed. high and transient intra-abdominal pressure causes changes in MAP, pH, HCO3 and BE, but without any clinical impact on the patient. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Mapping saltwater intrusion in the Biscayne Aquifer, Miami-Dade County, Florida using transient electromagnetic sounding

    USGS Publications Warehouse

    Fitterman, David V.

    2014-01-01

    Saltwater intrusion in southern Florida poses a potential threat to the public drinking-water supply that is typically monitored using water samples and electromagnetic induction logs collected from a network of wells. Transient electromagnetic (TEM) soundings are a complementary addition to the monitoring program because of their ease of use, low cost, and ability to fill in data gaps between wells. TEM soundings have been used to map saltwater intrusion in the Biscayne aquifer over a large part of south Florida including eastern Miami-Dade County and the Everglades. These two areas are very different with one being urban and the other undeveloped. Each poses different conditions that affect data collection and data quality. In the developed areas, finding sites large enough to make soundings is difficult. The presence of underground pipes further restricts useable locations. Electromagnetic noise, which reduces data quality, is also an issue. In the Everglades, access to field sites is difficult and working in water-covered terrain is challenging. Nonetheless, TEM soundings are an effective tool for mapping saltwater intrusion. Direct estimates of water quality can be obtained from the inverted TEM data using a formation factor determined for the Biscayne aquifer. This formation factor is remarkably constant over Miami-Dade County owing to the uniformity of the aquifer and the absence of clay. Thirty-six TEM soundings were collected in the Model Land area of southeast Miami-Dade County to aid in calibration of a helicopter electromagnetic (HEM) survey. The soundings and HEM survey revealed an area of saltwater intrusion aligned with canals and drainage ditches along U.S. Highway 1 and the Card Sound Road. These canals and ditches likely reduced freshwater levels through unregulated drainage and provided pathways for seawater to flow at least 12.4 km inland.

  13. Identification of ischemic regions in a rat model of stroke.

    PubMed

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W; Frahm, Christiane

    2009-01-01

    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.

  14. Identification of Ischemic Regions in a Rat Model of Stroke

    PubMed Central

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W.; Frahm, Christiane

    2009-01-01

    Background Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Methodology/Principal Findings Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. Conclusions/Significance TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study. PMID:19274095

  15. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less

  16. Top-down influences on ambiguous perception: the role of stable and transient states of the observer

    PubMed Central

    Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen

    2014-01-01

    The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays. PMID:25538601

  17. Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments.

    PubMed

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P

    2018-01-10

    Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

  18. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  19. The influence of eddy currents on magnetic actuator performance

    NASA Technical Reports Server (NTRS)

    Zmood, R. B.; Anand, D. K.; Kirk, J. A.

    1987-01-01

    The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.

  20. Low K+-induced hyperpolarizations trigger transient depolarizations and action potentials in rabbit ventricular myocytes

    PubMed Central

    Akuzawa-Tateyama, M; Tateyama, M; Ochi, R

    1998-01-01

    The effects of large reductions of [K+]o on membrane potential were studied in isolated rabbit ventricular myocytes using the whole-cell patch clamp technique.Decreasing [K+]o from the normal level of 5.4 mm to 0.1 mm increased resting membrane potential (Vrest) from −75.6 ± 0.3 to −140.3 ± 1.9 mV (means ± s.e.m; n = 127), induced irregular, transient depolarizations with mean maximal amplitudes of 19.5 ± 1.5 mV and elicited action potentials in 56.7 % of trials. The action potentials exhibited overshoots of 37.9 ± 1.5 mV (n = 72) and sustained plateaux.Addition of 0.1 mm La3+ in the presence of 0.1 mm[K+]o significantly increased Vrest but decreased the amplitude of transient depolarizations and suppressed the firing of action potentials.Replacement of external Na+ or Cl− with N-methyl-D-glucamine or aspartate, respectively, or internal dialysis with 10 mm EGTA or BAPTA had little effect on low [K+]o-induced membrane potential changes.Hyperpolarizing voltage clamp pulses to potentials between −110 and −200 mV activated irregular inward currents that increased in amplitude and frequency with increasing hyperpolarization and were depressed by 0.1 mm La3+.The generation of transient depolarizations by low [K+]o can be explained as being a consequence of decreasing the inward rectifier K+ current (IK1) and the appearance of inward currents reflecting electroporation resulting from strong electric fields across the membrane. PMID:9824717

  1. The Monitoring Of Thunderstorm In Sao Paulo's Urban Areas, Brazil

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Pereira, A.; Beneti, C.; Jusevicius, M.; Kawano, M.; Bianchi, R.; Bellodi, M.

    2005-12-01

    A monitoring of thunderstorm in urban areas occurred in the vicinity of Sao Bernardo do Campo, Sao Paulo from November 2004 to March 2005. Eight thunderstorms were monitored by local electric field, video camera, Brazilian Lightning Location Network (RINDAT) and weather radar. The most of these thunderstorms were associated with the local convection and cold front. Some of these events presented floods in the vicinity of Sao Bernardo and in the Metropolitan Area of Sao Paulo (MASP) being associated with local sea breeze circulation and the heat island effect. The convectives cells exceeding 100km x 100 km of area, actives between 2 and 3 hours. The local electric field identified the electrification stage of thunderstorms, high transients of lightning and total lightning rate of above 10 flashes per minute. About 29.5 thousands of cloud-to-ground lightning flashes were analyzed . From the total set of CG flashes analyzed, about 94 percent were negative strokes and presented average peak current of above 25kA, common for this region. Some lightning images were obtained by video camera and compared with transients of lightning and lightning detection network data. The most of these transients of lightning presented continuing current duration between 100ms and 200ms. A CG lightning occurred on 25th February was visually observed 3.5km from FEI campus, Sao Bernardo do Campo. This lightning presented negative polarity and estimed peak current of above 30kA. A spider was visually observed over FEI Campus at 17th March. No transients of lightning and recording by lightning location network were found.

  2. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro.

    PubMed Central

    Thayer, S A; Miller, R J

    1990-01-01

    1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering component which was responsible for the more efficient removal of [Ca2+]i observed when large Ca2+ loads were applied to the cell. 7. When cells were superfused with 50 mM-K+, [Ca2+]i transients recorded from the cell soma returned to control levels very slowly. Pharmacological studies indicated that mitochondria were cycling Ca2+ during this sustained elevation in [Ca2+]i. In contrast, [Ca2+]i transients recorded from cell processes returned to basal levels relatively rapidly. 8. Extracellular Na(+)-dependent Ca2+ efflux did not significantly contribute to buffering [Ca2+]i transients in dorsal root ganglion neurone cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2213592

  3. Integrating smart roadside initiative into the V2I component of the connected vehicle program : task 3.2.

    DOT National Transportation Integrated Search

    2015-01-01

    This document details an analysis that maps the current Connected Vehicle development effort to the SRI efforts currently underway. The document provides a mapping of how SRI incorporates into the Connected Vehicle program. This mapping is performed ...

  4. The large-scale ionospheric transient current system response to upstream solar wind IMF Bz north-south and south-north turnings as seen by the WIND satellite and the full SuperMAG network of ground based magnetometers

    NASA Astrophysics Data System (ADS)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2017-04-01

    We characterise the response of the quiet-time (no substorms or storms) large scale ionospheric convection system to north-south and south-north IMF turnings by using a dynamical network of ground-based magnetometers. Canonical correlation between all pairs of SuperMAG magnetometer stations in the northern hemisphere (MLat 50-82°) is used to establish the extent of near-simultaneous magnetic response between regions of MLT-MLat. Parameters and maps that describe spatial-temporal correlation are used to characterise the system and its response to the turnings aggregated over several hundred events. We find that regions that experience large increases in correlation post-turning coincide with typical locations of a two cell convection system and are influenced by the IMF By. The time between the turnings reaching the magnetopause and a network response is found to be ˜8-10 minutes and correlation in the dayside occurs 2-8 mins before that in the nightside.

  5. Fractures, stress and fluid flow prior to stimulation of well 27-15, Desert Peak, Nevada, EGS project

    USGS Publications Warehouse

    Davatzes, Nicholas C.; Hickman, Stephen H.

    2009-01-01

    A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.

  6. Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng

    2018-04-01

    Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.

  7. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing-Bing; Liu, Jian; Wei, Xu

    We investigate the transient photoexcited lattice dynamics in a layered perovskite Mott insulator Sr2IrO4 film by femtosecond X-ray diffraction using a laser plasma-based X-ray source. The ultrafast structural dynamics of Sr2IrO4 thin films are determined by observing the shift and broadening of (0012) Bragg diffraction after excitation by 1.5 eV and 3.0 eV pump photons for films with different thicknesses. The observed transient lattice response can be well interpreted as a distinct three-step dynamics due to the propagation of coherent acoustic phonons generated by photoinduced quasiparticles (QPs). Employing a normalized phonon propagation model, we found that the photoinduced angular shiftsmore » of the Bragg peak collapse into a universal curve after introducing normalizedn coordinates to account for different thicknesses and pump photon energies, pinpointing the origin of the lattice distortion and its early evolution. In addition, a transient photocurrent measurement indicates that the photoinduced QPs are charge neutral excitons. Mapping the phonon propagation and correlating its dynamics with the QP by ultrafast X-ray diffraction (UXRD) establish a powerful way to study electron-phonon coupling and uncover the exotic physics in strongly correlated systems under nonequilibrium conditions.« less

  9. Visual scan-path analysis with feature space transient fixation moments

    NASA Astrophysics Data System (ADS)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  10. Effects of premature stimulation on HERG K+ channels

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I

    2001-01-01

    The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759

  11. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  12. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  13. Cardiomyocyte dysfunction during the chronic phase of Chagas disease.

    PubMed

    Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos

    2013-04-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.

  14. Cardiomyocyte dysfunction during the chronic phase of Chagas disease

    PubMed Central

    Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos

    2013-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure. PMID:23579807

  15. The Evaluation of Argument Mapping as a Learning Tool: Comparing the Effects of Map Reading versus Text Reading on Comprehension and Recall of Arguments

    ERIC Educational Resources Information Center

    Dwyer, Christopher P.; Hogan, Michael J.; Stewart, Ian

    2010-01-01

    The current study compared the effects on comprehension and memory of learning via text versus learning via argument map. Argument mapping is a method of diagrammatic representation of arguments designed to simplify the reading of an argument structure and allow for easy assimilation of core propositions and relations. In the current study, 400…

  16. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  17. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  18. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor.

    PubMed

    Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D

    2006-05-01

    The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.

  19. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and gravity, seismic, direct-current resistivity, and transient-electromagnetic information from ground-based geophysical surveys. Results of the surveys will be used along with available subsurface information to describe the spatial extent of the alluvial aquifers and the general lithologic distribution within the alluvial aquifers.

  20. Transient flow conditions change how we should think about WHPA delineation: a joint frequency and probability analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez Pretelin (1), Abelardo; Nowak (1), Wolfgang

    2017-04-01

    Well head protection areas (WHPAs) are frequently used as safety measures for drinking water wells, preventing them from being polluted by restricting land use activities in their proximities. Two sources of uncertainty are involved during delineation: 1) uncertainty in aquifer parameters and 2) time-varying groundwater flow scenarios and their own inherent uncertainties. The former has been studied by Enzenhoefer et al (2012 [1] and 2014 [2]) as probabilistic risk version of WHPA delineation. The latter is frequently neglected and replaced by steady-state assumptions; thereby ignoring time-variant flow conditions triggered either by anthropogenic causes or climatic conditions. In this study we analyze the influence of transient flow considerations in WHPA delineation, following annual seasonality behavior; with transiency represented by four transient conditions: (I) regional groundwater flow direction, (II) strength of the regional hydraulic gradient, (III) natural recharge to the groundwater and (IV) pumping rate. Addressing WHPA delineation in transient flow scenarios is computationally expensive. Thus, we develop an efficient method using a dynamic superposition of steady-state flow solutions coupled with a reversed formulation of advective-dispersive transport based on a Lagrangian particle tracking with continuous injection. This analysis results in a time-frequency map of pixel-wise membership to the well catchment. Additional to transient flow conditions, we recognize two sources of uncertainty, inexact knowledge of transient drivers and parameters. The uncertainties are accommodated through Monte Carlo simulation. With the help of a global sensitivity analysis, we investigate the impact of transiency in WHPA solutions. In particular, we evaluate: (1) Among all considered transients, which ones are the most influential. (2) How influential in WHPA delineation is the transience-related uncertainty compared to aquifer parameter uncertainty. Literature [1] R. Enzenhoefer, W. Nowak, and R. Helmig. Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria. Advances in Water Resources, 36:121-132, 2012. [2] R. Enzenhoefer, T. Bunk, and W. Nowak. Nine steps to risk-informed wellhead protection and management: a case study. Ground water, 52:161-174, 2014.

  1. Lithium Battery Transient Response as a Diagnostic Tool

    NASA Astrophysics Data System (ADS)

    Denisov, E.; Nigmatullin, R.; Evdokimov, Y.; Timergalina, G.

    2018-05-01

    Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U 2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.

  2. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  3. Simulation and analysis of the effect of ungrounded rectangular loop distributed parameters on TEM response

    NASA Astrophysics Data System (ADS)

    Shi, Zongyang; Liu, Lihua; Xiao, Pan; Geng, Zhi; Liu, Fubo; Fang, Guangyou

    2018-02-01

    An ungrounded loop in the shallow subsurface transient electromagnetic surveys has been studied as the transmission line model for early turn-off stage, which can accurately explicate the early turn-off current waveform inconsistency along the loop. In this paper, the Gauss-Legendre numerical integration method is proposed for the first time to simulate and analyze the transient electromagnetic (TEM) response considering the different early turn-off current waveforms along the loop. During the simulation, these integral node positions along the loop are firstly determined by solving these zero points of Legendre polynomial, then the turn-off current of each node position is simulated by using the transfer function of the transmission line. Finally, the total TEM response is calculated by using the Gauss-Legendre integral formula. In addition, the comparison and analysis between the results affected by the distributed parameters and that generated by lumped parameters are presented. It is found that the TEM responses agree well with each other after current is thoroughly switched off, while the transient responses in turn-off stage are completely different. It means that the position dependence of the early turn-off current should be introduced into the forward model during the early response data interpretation of the shallow TEM detection of the ungrounded loop. Furthermore, the TEM response simulations at four geometric symmetry points are made. It shows that early responses of different geometric symmetry points are also inconsistent. The research on the influence of turn-off current position dependence on the early response of geometric symmetry point is of great significance to guide the layout of the survey lines and the transmitter location.

  4. Effect of extracellular ATP on contraction, cytosolic calcium activity, membrane voltage and ion currents of rat mesangial cells in primary culture.

    PubMed Central

    Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.

    1993-01-01

    1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366

  5. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  6. Use of MAGSAT anomaly data for crustal structure and mineral resources in the US Midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1981-01-01

    The analysis and preliminary interpretation of investigator-B MAGSAT data are addressed. The data processing included: (1) removal of spurious data points; (2) statistical smoothing along individual data tracks, to reduce the effect of geomagnetic transient disturbances; (3) comparison of data profiles spatially coincident in track location but acquired at different times; (4) reduction of data by weighted averaging to a grid with 1 deg xl deg latitude/longitude spacing, and with elevations interpolated and weighted to a common datum of 400 km; (5) wavelength filtering; and (6) reduction of the anomaly map to the magnetic pole. Agreement was found between a magnitude data anomaly map and a reduce-to-the-pole map supporting the general assumption that, on a large scale (long wavelength), it is induced crustal magnetization which is responsible for major anamalies. Anomalous features are identified and explanations are suggested with regard to crustal structure, petrologic characteristics, and Curie temperature isotherms.

  7. Effects of shipping on marine acoustic habitats in Canadian Arctic estimated via probabilistic modeling and mapping.

    PubMed

    Aulanier, Florian; Simard, Yvan; Roy, Nathalie; Gervaise, Cédric; Bandet, Marion

    2017-12-15

    Canadian Arctic and Subarctic regions experience a rapid decrease of sea ice accompanied with increasing shipping traffic. The resulting time-space changes in shipping noise are studied for four key regions of this pristine environment, for 2013 traffic conditions and a hypothetical tenfold traffic increase. A probabilistic modeling and mapping framework, called Ramdam, which integrates the intrinsic variability and uncertainties of shipping noise and its effects on marine habitats, is developed and applied. A substantial transformation of soundscapes is observed in areas where shipping noise changes from present occasional-transient contributor to a dominant noise source. Examination of impacts on low-frequency mammals within ecologically and biologically significant areas reveals that shipping noise has the potential to trigger behavioral responses and masking in the future, although no risk of temporary or permanent hearing threshold shifts is noted. Such probabilistic modeling and mapping is strategic in marine spatial planning of this emerging noise issues. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. A quasi-crisis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren

    2002-03-01

    A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads: ∝ (p-p_c)^-ν , where is defined as the averaged length of quasi-transients. The scaling exponent ν=1.66 ± 0.04. The critical parameter value equals p_c=-1.0069799. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  9. Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.

  10. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  11. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    PubMed Central

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-01-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915

  12. The Chaos Within Sudoku

    PubMed Central

    Ercsey-Ravasz, Mária; Toroczkai, Zoltán

    2012-01-01

    The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the basis of many applications, including protein folding and the ground-state problem of glassy spin systems. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show that the escape rate κ, an invariant of transient chaos, provides a scalar measure of the puzzle's hardness that correlates well with human difficulty ratings. Accordingly, η = −log10 κ can be used to define a “Richter”-type scale for puzzle hardness, with easy puzzles having 0 < η ≤ 1, medium ones 1 < η ≤ 2, hard with 2 < η ≤ 3 and ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4. PMID:23061008

  13. Putting a Ring on it: Light Echoes from X-ray Transients as Probes of Interstellar Dust and Galactic Structure

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian

    2017-09-01

    When an X-ray transient exhibits a bright flare, scattering by interstellar dust clouds can give rise to a light echo in the form of concentric rings. To date, three such echoes have been detected, each leading to significant discoveries and press attention. We propose a Target-of-Opportunity campaign to observe future echoes with the aim to follow the temporal evolution of the echo in order to (a) map the 3D distribution interstellar dust along the line of sight to parsec accuracy, (b) constrain the composition and grain size distribution of ISM dust in each of the clouds towards the source, (c) measure the distance to the X-ray source, (d) constrain the velocity dispersion of molecular clouds and (e) search for evidence of streaming velocities by combing X-ray and CO data on the clouds.

  14. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  15. Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  16. Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  17. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.

    PubMed Central

    Robertson, B; Lukashev, E P

    1995-01-01

    The photocurrent transient generated by bacteriorhodopsin (bR) on a tin-oxide electrode is due to pH change and not to charge displacement as previously assumed. Films of either randomly oriented or highly oriented purple membranes were deposited on transparent electrodes made of tin-oxide-coated glass. The membranes contained either wild-type or D96N-mutant bR. When excited with yellow light through the glass, the bR pumps protons across the membrane. The result is a rapid local pH change as well as a charge displacement. Experiments with these films show that it is the pH change rather than the displacement that produces the current transient. The calibration for the transient pH measurement is given. The sensitivity of a tin-oxide electrode to a transient pH change is very much larger than its sensitivity to a steady-state pH change. PMID:7787036

  18. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  19. The Dynamic Radio Sky: Future Directions at cm/m-Wavelengths

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Cordes, J.; Croft, S.; Lazio, J.; Lorimer, D.; McLaughlin, M.

    2009-01-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, recent discoveries from limited surveys and serendipitous discoveries indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenonmena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The current generation of new meter- and centimeter-wave radio telescopes such as the MWA, LWA, PAPER, and ATA will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the SKA. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars.

  20. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  1. Understanding heat and fluid flow in linear GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-01-01

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  2. Understanding heat and fluid flow in linear GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-12-31

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  3. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy

    USGS Publications Warehouse

    Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A.

    2006-01-01

    We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.

  4. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  5. Acute lipophilicity-dependent effect of intravascular simvastatin in the early phase of focal cerebral ischemia.

    PubMed

    Beretta, S; Pastori, C; Sala, G; Piazza, F; Ferrarese, C; Cattalini, A; de Curtis, M; Librizzi, L

    2011-05-01

    The acute effects of simvastatin lactone (lipophilic) and simvastatin acid (hydrophilic) on transient focal ischemia were assessed using the isolated guinea pig brain maintained in vitro by arterial perfusion. This new model of cerebral ischemia allows the assessment of the very early phase of the ischemic process, with the functional preservation of the vascular and neuronal compartments and the blood-brain barrier (bbb). The middle cerebral artery was transiently tied for 30 min followed by reperfusion for 60 min. Statins (nanomolar doses) were administered by intravascular continuous infusion starting 60 min before ischemia induction. Brain cortical activity and arterial vascular tone were continuously recorded. At the end of the experiment immunoreactivity for microtubule-associated protein 2 (MAP-2), expression of survival kinases (ERK and Akt) and total anti-oxidant capacity were assayed. Brains treated with simvastatin lactone showed i) reduced amplitude and delayed onset of ischemic depressions, ii) preservation of MAP-2 immunoreactivity, iii) activation of ERK signaling in the ischemic hemisphere and iv) increase in whole-brain anti-oxidant capacity. Treatment with the bbb-impermeable simvastatin acid was ineffective on the above-mentioned parameters. Vascular resistance recordings and Akt signaling were unchanged by any statin treatment. Our findings suggest that intravascular-delivered simvastatin exerts an acute lipophilicity-dependent protective effect in the early phase of cerebral ischemia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors

    PubMed Central

    Wyrsch, Nicolas; Choong, Gregory; Miazza, Clément; Ballif, Christophe

    2008-01-01

    Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode. PMID:27873778

  7. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  8. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less

  9. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  10. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2012-11-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  11. Self-healing fuse

    NASA Technical Reports Server (NTRS)

    Jones, N. D.; Kinsinger, R. E.; Harris, L. P.

    1974-01-01

    Fast-acting current limiting device provides current overload protection for vulnerable circuit elements and then re-establishes conduction path within milliseconds. Fuse can also perform as fast-acting switch to clear transient circuit overloads. Fuse takes advantage of large increase in electrical resistivity that occurs when liquid metal vaporizes.

  12. Distinct neural circuits for control of movement vs. holding still

    PubMed Central

    2017-01-01

    In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the eyes and a “neural integrator” that transforms that transient input into sustained activity that holds the eyes. Different parts of the cerebellum adaptively control the motor commands during these two phases: the oculomotor vermis participates in fine tuning the transient neural signals that move the eyes, monitoring the activity of the premotor circuit via efference copy, whereas the flocculus participates in controlling the sustained neural signals that hold the eyes, monitoring the activity of the neural integrator. Here, I review the oculomotor literature and then ask whether this separation of control between moving and holding is a design principle that may be shared with other modalities of movement. To answer this question, I consider neurophysiological and psychophysical data in various species during control of head movements, arm movements, and locomotion, focusing on the brain stem, motor cortex, and hippocampus, respectively. The review of the data raises the possibility that across modalities of motor control, circuits that are responsible for producing commands that change the sensory state of a body part are distinct from those that produce commands that maintain that sensory state. PMID:28053244

  13. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  14. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  15. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum.

    PubMed

    Liu, Ying; Li, Yueqin; Zhang, Di; Liu, Jiali; Gou, Kemian; Cui, Sheng

    2015-05-01

    The corpus luteum (CL) is a transient endocrine gland developed from the ovulated follicles, and the most important function is to synthesize and secrete progesterone (P(4)), a key hormone to maintain normal pregnancy and estrous cycle in most mammals. It is known that estrogen has a vital role in stimulating P(4) synthesis in CL, but it still remains unclear about the mechanism of estradiol (E(2)) regulating P(4) production in CL. Our results here first show that all of the CL cells express MAPK 8 (MAP3K8), and the MAP3K8 level is much higher at the midstage than at the early and late stages during CL development. The further functional studies show that the forced inhibition of endogenous MAP3K8 by using MAP3K8 small interfering RNA and MAP3K8 signaling inhibitor (MAP3K8i) in the luteal cells significantly block the P(4) synthesis and neutralize the enhancing effect of E(2) on P(4) production in the CL. In addition, our results here demonstrate that the stimulating effect of E(2) on P(4) synthesis relies on the estrogen no-classical protein-coupled receptor 30, and MAP3K8 is involved in mediating the protein-coupled receptor 30signaling of E(2) affecting P(4) synthesis via stimulating ERK phosphorylation. These novel findings are critical for our understanding the ovary physiology and pathological mechanism.

  16. MAPPING SPATIAL THEMATIC ACCURACY WITH FUZZY SETS

    EPA Science Inventory

    Thematic map accuracy is not spatially homogenous but variable across a landscape. Properly analyzing and representing spatial pattern and degree of thematic map accuracy would provide valuable information for using thematic maps. However, current thematic map accuracy measures (...

  17. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.

  18. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; hide

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate early on-orbit user readiness for this new capability.

  19. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  20. Lightning Magnetic Field Measurements around Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

Top