Sample records for transient elastography te

  1. Comparison of acoustic radiation force impulse elastography and transient elastography for prediction of hepatocellular carcinoma recurrence after radiofrequency ablation.

    PubMed

    Yoon, Jun Sik; Lee, Yu Rim; Kweon, Young-Oh; Tak, Won Young; Jang, Se Young; Park, Soo Young; Hur, Keun; Park, Jung Gil; Lee, Hye Won; Chun, Jae Min; Han, Young Seok; Lee, Won Kee

    2018-05-23

    To compare the clinical value of acoustic radiation force impulse (ARFI) elastography and transient elastography (TE) for hepatocellular carcinoma (HCC) recurrence prediction after radiofrequency ablation (RFA) and to investigate other predictors of HCC recurrence. Between 2011 and 2016, 130 patients with HCC who underwent ARFI elastography and TE within 6 months before curative RFA were prospectively enrolled. Independent predictors of HCC recurrence were analyzed separately using ARFI elastography and TE. ARFI elastography and TE accuracy to predict HCC recurrence was determined by receiver operating characteristic curve analysis. Of all included patients (91 men; mean age, 63.5 years; range: 43-84 years), 51 (42.5%) experienced HCC recurrence during the follow-up period (median, 21.9 months). In multivariable analysis using ARFI velocity, serum albumin and ARFI velocity [hazard ratios: 2.873; 95% confidence interval (CI): 1.806-4.571; P<0.001] were independent predictors of recurrence, and in multivariable analysis using TE value, serum albumin and TE value (hazard ratios: 1.028; 95% CI: 1.013-1.043; P<0.001) were independent predictors of recurrence. The area under the receiver operating characteristic curve of ARFI elastography (0.821; 95% CI: 0.747-0.895) was not statistically different from that of TE (0.793; 95% CI: 0.712-0.874) for predicting HCC recurrence (P=0.827). The optimal ARFI velocity and TE cutoff values were 1.6 m/s and 14 kPa, respectively. ARFI elastography and TE yield comparable predictors of HCC recurrence after RFA.

  2. Feasibility of transient elastography versus real-time two-dimensional shear wave elastography in difficult-to-scan patients.

    PubMed

    Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda; Hansen, Janne Fuglsang; Madsen, Bjørn Stæhr; Søholm, Jacob; Krag, Aleksander; Thiele, Maja

    2016-11-01

    Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness measurements in patients with an invalid TE examination. We reviewed 1975 patients with 5764 TE exams performed between 2007 and 2014, to identify failures and unreliable exams. Fifty-four patients with an invalid TE at their latest appointment entered a comparative feasibility study of TE vs. 2D-SWE. The initial TE exam was successful in 93% (1835/1975) of patients. Success rate increased from 89% to 96% when the XL probe became available (OR: 1.07, 95% CI 1.06-1.09). Likewise, re-examining those with a failed or unreliable TE led to a reliable TE in 96% of patients. Combining availability of the XL probe with TE re-examination resulted in a 99.5% success rate on a per-patient level. When comparing the feasibility of TE vs. 2D-SWE, 96% (52/54) of patients obtained a reliable TE, while 2D-SWE was reliable in 63% (34/54, p < 0.001). The odds of a successful 2D-SWE exam decreased with higher skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE.

  3. Non-invasive assessment of liver fibrosis by transient elastography in post transfusional iron overload.

    PubMed

    Mirault, Tristan; Lucidarme, Damien; Turlin, Bruno; Vandevenne, Philippe; Gosset, Pierre; Ernst, Olivier; Rose, Christian

    2008-04-01

    Liver fibrosis, assessed by biopsy, is the main complication of post transfusional liver iron overload. Transient elastography (TE) is a new, non invasive method able to measure liver stiffness (LS) caused by fibrosis. We prospectively evaluated the predictive value of LS measurement for liver fibrosis evaluation in 15 chronically transfused patients and compared these results with the METAVIR histological fibrosis stage from liver biopsies. Mean TE values significantly differed in patients with severe fibrosis (METAVIR F3, F4): 9.1 (+/-3.7 SD) kPa from those with mild or no fibrosis (METAVIR F0, F1, F2): 5.9 (+/-1.8 SD) kPa (P = 0.046). TE value above 6.25 kPa (Se = 80%; Sp = 70%; AUROC = 0.820) identified patients at risk for severe fibrosis (Negative Predictive Value 88%; Positive Predictive Value 57%). Transient elastography appears to be a reliable tool to evaluate liver fibrosis in post-transfusional iron overload.

  4. Real-Time Shear Wave versus Transient Elastography for Predicting Fibrosis: Applicability, and Impact of Inflammation and Steatosis. A Non-Invasive Comparison.

    PubMed

    Poynard, Thierry; Pham, Tam; Perazzo, Hugo; Munteanu, Mona; Luckina, Elena; Elaribi, Djamel; Ngo, Yen; Bonyhay, Luminita; Seurat, Noemie; Legroux, Muriel; Ngo, An; Deckmyn, Olivier; Thabut, Dominique; Ratziu, Vlad; Lucidarme, Olivier

    2016-01-01

    Real-time shear wave elastography (2D-SWE) is a two-dimensional transient elastography and a competitor as a biomarker of liver fibrosis in comparison with the standard reference transient elastography by M probe (TE-M). The aims were to compare several criteria of applicability, and to assess inflammation and steatosis impact on elasticity values, two unmet needs. We took FibroTest as the fibrosis reference and ActiTest and SteatoTest as quantitative estimates of inflammation and steatosis. After standardization of estimates, analyses used curve fitting, quantitative Lin concordance coefficient [LCC], and multivariate logistic regression. A total of 2,251 consecutive patients were included. We validated the predetermined 0.2 kPa cut-off as a too low minimal elasticity value identifying not-reliable 2D-SWE results (LCC with FibroTest = 0.0281[-0.119;0.175]. Other criteria, elasticity CV, body mass index and depth of measures were not sufficiently discriminant. The applicability of 2D-SWE (95%CI) 89.6%(88.2-90.8), was significantly higher than that of TE, 85.6%(84.0-87.0; P<0.0001). In patients with non-advanced fibrosis (METAVIR F0F1F2), elasticity values estimated by 2D-SWE was less impacted by inflammation and steatosis than elasticity value estimated by TE-M: LCC (95%CI) 0.039 (0.021;0.058) vs 0.090 (0.068;0.112;P<0.01) and 0.105 (0.068;0.141) vs 0.192 (0.153;0.230; P<0.01) respectively. The three analyses methods gave similar results. Elasticity results including very low minimal signal in the region of interest should be considered not reliable. 2D-SWE had a higher applicability than TE, the reference elastography, with less impact of inflammation and steatosis especially in patients with non-advanced fibrosis, as presumed by blood tests. ClinicalTrials.gov NCT01927133.

  5. Assessment of liver fibrosis in chronic hepatitis: comparison of shear wave elastography and transient elastography.

    PubMed

    Paul, Shashi B; Das, Prasenjit; Mahanta, Mousumi; Sreenivas, Vishnubhatla; Kedia, Saurabh; Kalra, Nancy; Kaur, Harpreet; Vijayvargiya, Maneesh; Ghosh, Shouriyo; Gamanagatti, Shivanand R; Shalimar; Gupta, Siddhartha Dutta; Acharya, Subrat K

    2017-12-01

    To evaluate the diagnostic accuracy of shear wave elastography (SWE) and transient elastography (TE) in the evaluation of liver fibrosis in chronic hepatitis B (CHB) and C (CHC) patients taking liver biopsy as gold standard. Ethics committee approved this prospective cross-sectional study. Between October 2012 and December 2014, consecutive CHB/CHC patients fulfilling the inclusion criteria were included-age more than 18 years, informed written consent, willing and suitable for liver biopsy. SWE, TE, and biopsy were performed the same day. Liver stiffness measurement (LSM) cut-offs for various stages of fibrosis were generated for SWE and TE. AUC, sensitivity, specificity, and positive/negative predictive values were estimated individually or in combination. CH patients (n = 240, CHB 172, CHC 68), 176 males, 64 females, mean age 32.6 ± 11.6 years were enrolled. Mean LSM of patients with no histological fibrosis (F0) was 5.0 ± 0.7 and 5.1+1.4 kPa on SWE and TE, respectively. For differentiating F2 and F3-4 fibrosis on SWE, at 7.0 kPa cut-off, the sensitivity was 81.3% and specificity 77.6%. For TE, at 8.3 kPa cut-off, sensitivity was 81.8% and specificity 83.1%. For F3 vs. F4, SWE sensitivity was 83.3% and specificity 90.7%. At 14.8 kPa cut-off, TE showed similar sensitivity (83.3%) but specificity increased to 96.5%. Significant correlation between SWE and TE was observed (r = 0.33, p < 0.001). On combining SWE and TE, a drop in sensitivity with increased specificity for all stages of liver fibrosis occured. SWE is an accurate technique for evaluating liver fibrosis. SWE compares favorably with TE especially for predicting advanced fibrosis/cirrhosis. Combining SWE and TE further improves specificity.

  6. Measurement of real-time tissue elastography in a phantom model and comparison with transient elastography in pediatric patients with liver diseases.

    PubMed

    Schenk, Jens-Peter; Alzen, Gerhard; Klingmüller, Volker; Teufel, Ulrike; El Sakka, Saroa; Engelmann, Guido; Selmi, Buket

    2014-01-01

    We aimed to determine the comparability of real-time tissue elastography (RTE) and transient elastography (TE) in pediatric patients with liver diseases. RTE was performed on the Elasticity QA Phantom Model 049 (Computerized Imaging Reference Systems Company Inc., Norfolk, Virginia, USA), which has five areas with different levels of stiffness. RTE measurements of relative stiffness (MEAN [mean value of tissue elasticity], AREA [% of blue color-coded stiffer tissue]) in the phantom were compared with the phantom stiffness specified in kPa (measurement unit of TE). RTE and TE were performed on 147 pediatric patients with various liver diseases. A total of 109 measurements were valid. The participants had following diseases: metabolic liver disease (n=25), cystic fibrosis (n=20), hepatopathy of unknown origin (n=11), autoimmune hepatitis (n=12), Wilson's disease (n=11), and various liver parenchyma alterations (n=30). Correlations between RTE and TE measurements in the patients were calculated. In addition, RTE was performed on a control group (n=30), and the RTE values between the patient and control groups were compared. The RTE parameters showed good correlation in the phantom model with phantom stiffness (MEAN/kPa, r=-0.97; AREA/kPa, r=0.98). However, the correlation of RTE and TE was weak in the patient group (MEAN/kPa, r=-0.23; AREA/kPa, r=0.24). A significant difference was observed between the patient and control groups (MEAN, P = 5.32 e-7; AREA, P = 1.62 e-6). In the phantom model, RTE was correlated with kPa, confirming the presumed comparability of the methods. However, there was no direct correlation between RTE and TE in patients with defined liver diseases under real clinical conditions.

  7. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    PubMed

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P < 0.001), inflammation grade (r = 0.52, P < 0.001) and collagen content (r = 0.53, P = 0.036). For detection of moderate-to-advanced fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Diagnostic performance of transient elastography for detection of methotrexate-induced liver injury using Roenigk classification in Asian patients with psoriasis: a retrospective study.

    PubMed

    Rongngern, Pasinee; Chularojanamontri, Leena; Wongpraparut, Chanisada; Silpa-Archa, Narumol; Chotiyaputta, Watcharasak; Pongpaibul, Ananya; Charatcharoenwitthaya, Phunchai

    2017-07-01

    Liver biopsy, the gold standard for monitoring methotrexate-induced liver fibrosis in psoriasis patients, has potential morbidity and mortality. Transient elastography (TE) has been widely used as an alternative non-invasive method. Currently, psoriasis-specific data of TE comparing to Roenigk histopathology is lacking. This retrospective study assessed the diagnostic performance of TE in the detection of methotrexate-induced liver injury and liver fibrosis in Asian psoriasis patients. Risk factors that associated with liver injury by TE and histopathology were also determined. Psoriasis patients who had received methotrexate and undergone both TE and liver biopsy (gold standard) examinations between 2005 and 2016 were enrolled. Ten of 41 patients developed methotrexate-induced liver injury (Roenigk grade ≥3a) and two of them had significant liver fibrosis (Metavir fibrosis stage ≥2). Area under the receiver operating characteristic curve (AUROC = 0.78) indicated that TE was capable of identifying patients with and without liver injury. Using a cut-off TE value of 7.1 kilopascal (kPa), this ultrasound-based elastography yielded 50% sensitivity and 83.9% specificity for detecting methotrexate-induced liver injury and had 50% sensitivity and 76.9% specificity for identifying significant liver fibrosis. A total cumulative dosage of methotrexate, age, gender, metabolic syndrome, and metabolic components were not significantly associated with TE values ≥7.1 kPa and Roenigk grade ≥3a. Thus, using clinical context, laboratory information, and a cut-off TE value of 7.1, TE is an attractable non-invasive tool for identify psoriasis patients who have a low probability of methotrexate-induced liver injury and significant liver fibrosis. Liver biopsy can be reserved for selected patients.

  9. Non-Invasive Evaluation of Cystic Fibrosis Related Liver Disease in Adults with ARFI, Transient Elastography and Different Fibrosis Scores

    PubMed Central

    Oltmanns, Annett; Güttler, Andrea; Petroff, David; Wirtz, Hubert; Mainz, Jochen G.; Mössner, Joachim; Berg, Thomas; Tröltzsch, Michael; Keim, Volker; Wiegand, Johannes

    2012-01-01

    Background Cystic fibrosis-related liver disease (CFLD) is present in up to 30% of cystic fibrosis patients and can result in progressive liver failure. Diagnosis of CFLD is challenging. Non-invasive methods for staging of liver fibrosis display an interesting diagnostic approach for CFLD detection. Aim We evaluated transient elastography (TE), acoustic radiation force impulse imaging (ARFI), and fibrosis indices for CFLD detection. Methods TE and ARFI were performed in 55 adult CF patients. In addition, AST/Platelets-Ratio-Index (APRI), and Forns' score were calculated. Healthy probands and patients with alcoholic liver cirrhosis served as controls. Results Fourteen CF patients met CFLD criteria, six had liver cirrhosis. Elastography acquisition was successful in >89% of cases. Non-cirrhotic CFLD individuals showed elastography values similar to CF patients without liver involvement. Cases with liver cirrhosis differed significantly from other CFLD patients (ARFI: 1.49 vs. 1.13 m/s; p = 0.031; TE: 7.95 vs. 4.16 kPa; p = 0.020) and had significantly lower results than individuals with alcoholic liver cirrhosis (ARFI: 1.49 vs. 2.99 m/s; p = 0.002). APRI showed the best diagnostic performance for CFLD detection (AUROC 0.815; sensitivity 85.7%, specificity 70.7%). Conclusions ARFI, TE, and laboratory based fibrosis indices correlate with each other and reliably detect CFLD related liver cirrhosis in adult CF patients. CF specific cut-off values for cirrhosis in adults are lower than in alcoholic cirrhosis. PMID:22848732

  10. Real-Time Shear Wave versus Transient Elastography for Predicting Fibrosis: Applicability, and Impact of Inflammation and Steatosis. A Non-Invasive Comparison

    PubMed Central

    Poynard, Thierry; Pham, Tam; Perazzo, Hugo; Munteanu, Mona; Luckina, Elena; Elaribi, Djamel; Ngo, Yen; Bonyhay, Luminita; Seurat, Noemie; Legroux, Muriel; Ngo, An; Deckmyn, Olivier; Thabut, Dominique; Ratziu, Vlad; Lucidarme, Olivier

    2016-01-01

    Background and Aims Real-time shear wave elastography (2D-SWE) is a two-dimensional transient elastography and a competitor as a biomarker of liver fibrosis in comparison with the standard reference transient elastography by M probe (TE-M). The aims were to compare several criteria of applicability, and to assess inflammation and steatosis impact on elasticity values, two unmet needs. Methods We took FibroTest as the fibrosis reference and ActiTest and SteatoTest as quantitative estimates of inflammation and steatosis. After standardization of estimates, analyses used curve fitting, quantitative Lin concordance coefficient [LCC], and multivariate logistic regression. Results A total of 2,251 consecutive patients were included. We validated the predetermined 0.2 kPa cut-off as a too low minimal elasticity value identifying not-reliable 2D-SWE results (LCC with FibroTest = 0.0281[-0.119;0.175]. Other criteria, elasticity CV, body mass index and depth of measures were not sufficiently discriminant. The applicability of 2D-SWE (95%CI) 89.6%(88.2–90.8), was significantly higher than that of TE, 85.6%(84.0–87.0; P<0.0001). In patients with non-advanced fibrosis (METAVIR F0F1F2), elasticity values estimated by 2D-SWE was less impacted by inflammation and steatosis than elasticity value estimated by TE-M: LCC (95%CI) 0.039 (0.021;0.058) vs 0.090 (0.068;0.112;P<0.01) and 0.105 (0.068;0.141) vs 0.192 (0.153;0.230; P<0.01) respectively. The three analyses methods gave similar results. Conclusions Elasticity results including very low minimal signal in the region of interest should be considered not reliable. 2D-SWE had a higher applicability than TE, the reference elastography, with less impact of inflammation and steatosis especially in patients with non-advanced fibrosis, as presumed by blood tests. Trial Registration ClinicalTrials.gov NCT01927133 PMID:27706177

  11. Performance of 2-D shear wave elastography in liver fibrosis assessment compared with serologic tests and transient elastography in clinical routine.

    PubMed

    Bota, Simona; Paternostro, Rafael; Etschmaier, Alexandra; Schwarzer, Remy; Salzl, Petra; Mandorfer, Mattias; Kienbacher, Christian; Ferlitsch, Monika; Reiberger, Thomas; Trauner, Michael; Peck-Radosavljevic, Markus; Ferlitsch, Arnulf

    2015-09-01

    Liver stiffness values assessed with 2-D shear wave elastography (SWE), transient elastography (TE) and simple serologic tests were compared with respect to non-invasive assessment in a cohort of 127 consecutive patients with chronic liver diseases. The rate of reliable liver stiffness measurements was significantly higher with 2-D SWE than with TE: 99.2% versus 74.8%, p < 0.0001 (different reliability criteria used, according to current recommendations). In univariate analysis, liver stiffness measured with 2-D SWE correlated best with fibrosis stage estimated with TE (r = 0.699, p < 0.0001), followed by Forns score (r = 0.534, p < 0.0001) and King's score (r = 0.512, p < 0.0001). However, in multivariate analysis, only 2-D SWE-measured values remained correlated with fibrosis stage (p < 0.0001). The optimal 2-D SWE cutoff values for predicting significant fibrosis were 8.03 kPa for fibrosis stage ≥2 (area under the receiver operating characteristic curve = 0.832) and 13.1 kPa for fibrosis stage 4 (area under the receiver operating characteristic curve = 0.915), respectively. In conclusion, 2-D SWE can be used to obtain reliable liver stiffness measurements in almost all patients and performs very well in predicting the presence of liver cirrhosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of Acoustic Radiation Force Impulse (ARFI) for Fibrosis Staging in Chronic Liver Diseases.

    PubMed

    Gani, Rino Alvani; Hasan, Irsan; Sanityoso, Andri; Lesmana, Cosmas Rinaldi A; Kurniawan, Juferdy; Jasirwan, Chyntia Olivia Maurine; Kalista, Kemal Fariz; Lutfie, Lutfie

    2017-04-01

    acoustic radiation force impulse (ARFI) is a new proposed noninvasive method for liver fibrosis staging. Integrated with B-mode ultrasonography, ARFI can be used to assess liver tissue condition. However its diagnostic accuracy is still being continuously evaluated. Also, there is lack of data regarding the utilization of ARFI in our population. This study aimed to evaluate the diagnostic value of ARFI as an alternative noninvasive modality for fibrosis staging in chronic hepatitis B and hepatitis C patients in our population. we conducted cross-sectional comparison of ARFI imaging and transient elastography on patients who underwent liver biopsy at Cipto Mangunkusumo Hospital. Fibrosis staging using METAVIR scoring system presented as standard reference. A total of 43 patients underwent liver biopsy was evaluated by ARFI imaging and transient elastography. Cut-off values were determined using receiver-operating characteristic (ROC). both liver stiffness determined by ARFI and transient elastography (TE) were moderately correlated with METAVIR score with value of 0.581 and 0.613, respectively (both P<0.01). Diagnostic accuracy of ARFI predicted significant fibrosis (F≥2) with area under receiver operating characteristic curve (AUROC) of 0.773 (95% CI 0.616-0.930) and even better for cirrhosis (F4 fibrosis), expressed as AUROC of 0.856 (95% CI 0.736-0.975). Transient elastography was better for significant fibrosis with AUROC of 0.761 (95% CI 0.601-0.920) and was best for prediction of cirrhosis, expressed as AUROC of 0.845 (95% CI 0.722-0.968). ARFI is provided with more convenient evaluation of liver tissue condition, and its diagnostic accuracy is not significantly different from TE for staging liver fibrosis.

  13. Transient Elastography (Fibroscan) in Patients with Non-cirrhotic Portal Fibrosis.

    PubMed

    Sharma, Praveen; Agarwal, Rachit; Dhawan, Shashi; Bansal, Naresh; Singla, Vikas; Kumar, Ashish; Arora, Anil

    2017-09-01

    Non-cirrhotic portal hypertension (NCPH) is a common cause of variceal bleed in developing countries. Transient elastography (TE) using Fibroscan is a useful technique for evaluation of fibrosis in patients with liver disease. There is a paucity of studies evaluating TE in patients with Non-cirrhotic portal fibrosis (NCPF) and none in Asian population. Aim of this study was to evaluate role of TE in NCPF. Retrospective data of consecutive patients of NCPF as per Asian pacific association for the study of liver (APASL) guidelines were noted. All patients had liver biopsy, TE, computed tomography of abdomen and hepatic venous pressure gradient (HVPG). Twenty age and gender matched healthy subjects and forty age matched patients with cirrhosis with Child's A were taken as controls. A total of 20 patients with age [median 29.5 (13-50) years], Male:Female = 11:9 with a diagnosis of NCPF were enrolled from January 2011 to December 2015. Of 20 patients 18 patients had variceal bleed and required endoscopic band ligation. There was no difference in haemoglobin and platelet count between patients with cirrhosis and NCPF, but total leucocyte count was significantly lower in patients with NCPF compared to patients with cirrhosis (3.2 vs 6.7 × 10 3 /cumm, P  = 0.01). TE (Fibroscan) was high in patients with NCPF compared to healthy controls (6.8 vs 4.7 kPa, P  = 0.001) but it was significantly low compared to cirrhotic patients (6.8 vs 52.3 kPa, P  = 0.001). HVPG is significant low in patients with NCPF compared to patients with cirrhosis (5.0 vs 16.0 mmHg, P  = 0.001). Transient elastography (Fibroscan) is significantly low in patients with NCPF compared to patients with cirrhosis. It is a very useful non-invasive technique to differentiate between Child's A cirrhosis and non-cirrhotic portal fibrosis.

  14. Comparison of Histochemical Staining Methods and Correlation with Transient Elastography in Acute Hepatitis.

    PubMed

    Cabibi, Daniela; Calvaruso, Vincenza; Giuffrida, Letizia; Ingrao, Sabrina; Balsamo, Laura; Giannone, Antonino Giulio; Petta, Salvatore; Di Marco, Vito

    2015-03-06

    To compare Masson's trichrome (MT), Sirius red (SR) and orcein staining in acute hepatitis (AH) and to correlate them with transient elastography (TE), a noninvasive method to assess hepatic fibrosis. We evaluated liver stiffness by TE in a cohort of 34 consecutive patients and assessed MT-, SR- and orcein-stained biopsies using the METAVIR scoring system and digital image analysis (DIA). MT and SR both showed severe fibrosis (stage III-IV, DIA = 12.7%). Orcein showed absent or mild fibrosis (stage 0-II, DIA = 4.4%; p < 0.05). In 29/34 cases (85%), stiffness values were >12.5 kPa, in keeping with SR/MT but not with orcein results. Even though in AH true elastic fibrosis is typically absent or mild, TE shows elevated stiffness values, in keeping with SR/MT evaluations. If not properly evaluated in the clinical context, these results would lead to an overestimation of fibrosis. Orcein is the only staining able to evidence the absence of true elastic fibrosis, which is a typical feature of AH. This is the first study comparing different staining procedures performed on AH biopsies by DIA versus TE. © 2015 S. Karger AG, Basel.

  15. Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics

    PubMed Central

    Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela

    2015-01-01

    Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985

  16. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography.

    PubMed

    Imajo, Kento; Kessoku, Takaomi; Honda, Yasushi; Tomeno, Wataru; Ogawa, Yuji; Mawatari, Hironori; Fujita, Koji; Yoneda, Masato; Taguri, Masataka; Hyogo, Hideyuki; Sumida, Yoshio; Ono, Masafumi; Eguchi, Yuichiro; Inoue, Tomio; Yamanaka, Takeharu; Wada, Koichiro; Saito, Satoru; Nakajima, Atsushi

    2016-03-01

    Noninvasive methods have been evaluated for the assessment of liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease (NAFLD). We compared the ability of transient elastography (TE) with the M-probe, and magnetic resonance elastography (MRE) to assess liver fibrosis. Findings from magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) measurements were compared with those from TE-based controlled attenuation parameter (CAP) measurements to assess steatosis. We performed a cross-sectional study of 142 patients with NAFLD (identified by liver biopsy; mean body mass index, 28.1 kg/m(2)) in Japan from July 2013 through April 2015. Our study also included 10 comparable subjects without NAFLD (controls). All study subjects were evaluated by TE (including CAP measurements), MRI using the MRE and PDFF techniques. TE identified patients with fibrosis stage ≥2 with an area under the receiver operating characteristic (AUROC) curve value of 0.82 (95% confidence interval [CI]: 0.74-0.89), whereas MRE identified these patients with an AUROC curve value of 0.91 (95% CI: 0.86-0.96; P = .001). TE-based CAP measurements identified patients with hepatic steatosis grade ≥2 with an AUROC curve value of 0.73 (95% CI: 0.64-0.81) and PDFF methods identified them with an AUROC curve value of 0.90 (95% CI: 0.82-0.97; P < .001). Measurement of serum keratin 18 fragments or alanine aminotransferase did not add value to TE or MRI for identifying nonalcoholic steatohepatitis. MRE and PDFF methods have higher diagnostic performance in noninvasive detection of liver fibrosis and steatosis in patients with NAFLD than TE and CAP methods. MRI-based noninvasive assessment of liver fibrosis and steatosis is a potential alternative to liver biopsy in clinical practice. UMIN Clinical Trials Registry No. UMIN000012757. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis.

    PubMed

    Friedrich-Rust, Mireen; Schlueter, Nina; Smaczny, Christina; Eickmeier, Olaf; Rosewich, Martin; Feifel, Kirstin; Herrmann, Eva; Poynard, Thierry; Gleiber, Wolfgang; Lais, Christoph; Zielen, Stefan; Wagner, Thomas O F; Zeuzem, Stefan; Bojunga, Joerg

    2013-09-01

    Patients with cystic fibrosis (CF) have a relevant morbidity and mortality caused by CF-related liver-disease. While transient elastography (TE) is an established elastography method in hepatology centers, Acoustic-Radiation-Force-Impulse (ARFI)-Imaging is a novel ultrasound-based elastography method which is integrated in a conventional ultrasound-system. The aim of the present study was to evaluate the prevalence of liver-fibrosis in patients with CF using TE, ARFI-imaging and fibrosis blood tests. 106 patients with CF were prospectively included in the present study and received ARFI-imaging of the left and right liver-lobe, ARFI of the pancreas TE of the liver and laboratory evaluation. The prevalence of liver-fibrosis according to recently published best practice guidelines for CFLD was 22.6%. Prevalence of significant liver-fibrosis assessed by TE, ARFI-right-liver-lobe, ARFI-left-liver-lobe, Fibrotest, Fibrotest-corrected-by-haptoglobin was 17%, 24%, 40%, 7%, and 16%, respectively. The best agreement was found for TE, ARFI-right-liver-lobe and Fibrotest-corrected-by-haptoglobin. Patients with pancreatic-insufficiency had significantly lower pancreas-ARFI-values as compared to patients without. ARFI-imaging and TE seem to be promising non-invasive methods for detection of liver-fibrosis in patients with CF. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  18. A Meta-analysis for the Diagnostic Performance of Transient Elastography for Clinically Significant Portal Hypertension.

    PubMed

    You, Myung-Won; Kim, Kyung Won; Pyo, Junhee; Huh, Jimi; Kim, Hyoung Jung; Lee, So Jung; Park, Seong Ho

    2017-01-01

    We aimed to evaluate the correlation between liver stiffness measurement using transient elastography (TE-LSM) and hepatic venous pressure gradient and the diagnostic performance of TE-LSM in assessing clinically significant portal hypertension through meta-analysis. Eleven studies were included from thorough literature research and selection processes. The summary correlation coefficient was 0.783 (95% confidence interval [CI], 0.737-0.823). Summary sensitivity, specificity and area under the hierarchical summary receiver operating characteristic curve (AUC) were 87.5% (95% CI, 75.8-93.9%), 85.3 % (95% CI, 76.9-90.9%) and 0.9, respectively. The subgroup with low cut-off values of 13.6-18 kPa had better summary estimates (sensitivity 91.2%, specificity 81.3% and partial AUC 0.921) than the subgroup with high cut-off values of 21-25 kPa (sensitivity 71.2%, specificity 90.9% and partial AUC 0.769). In summary, TE-LSM correlated well with hepatic venous pressure gradient and represented good diagnostic performance in diagnosing clinically significant portal hypertension. For use as a sensitive screening tool, we propose using low cut-off values of 13.6-18 kPa in TE-LSM. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems

    PubMed Central

    2018-01-01

    This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators performed all measurements non-continued and in parallel. The methods were evaluated for inter- and intraobserver variability by intraclass correlation, coefficient of variation and limits of agreement using the median elastography value. All systems used in this study provided high repeatability in quantitative measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All four elastography platforms showed excellent intra-and interobserver agreement (interclass correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant difference in mean elasticity measurements for all systems, except for TE on phantom 4. All four liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms (p<0.001). In the Bland-Altman analysis the differences in measurements were larger for the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability. PMID:29293527

  20. Magnetic resonance imaging and transient elastography in the management of Nonalcoholic Fatty Liver Disease (NAFLD).

    PubMed

    Han, Ma Ai Thanda; Saouaf, Rola; Ayoub, Walid; Todo, Tsuyoshi; Mena, Edward; Noureddin, Mazen

    2017-04-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and cirrhosis worldwide and the second most common cause of liver transplantation in major medical centers. Because liver steatosis and fibrosis severity are related to disease morbidity and mortality, the extent of disease, and disease progression, they need to be assessed and monitored. In addition, innovation with new drug developments requires disease staging and monitoring in both phase 2 and 3 clinical trials. Currently, disease assessment in both clinical practice and research is mostly performed by liver biopsy, an invasive, procedure with risks. Noninvasive, highly accurate tests are needed that could be used in clinical trials as surrogate endpoints and in clinical practice for monitoring patients. Area Covered: We discuss noninvasive tests, transient elastography (TE) with controlled attenuation parameter (CAP), magnetic resonance imaging (MRI), and MR elastography (MRE), summarize the available evidence of their usefulness for assessing steatosis and fibrosis. Therefore they could be used as clinical trials outcomes and in disease monitoring in clinical practice. Expert Commentary: TE with CAP, MRI and MRE are highly accurate noninvasive diagnostic tools for quantifying hepatic steatosis and fibrosis. Therefore they could be used as clinical trials outcomes and in disease monitoring in clinical practice.

  1. Correlation of transient elastography with hepatic venous pressure gradient in patients with cirrhotic portal hypertension: A study of 326 patients from India.

    PubMed

    Kumar, Ashish; Khan, Noor Muhammad; Anikhindi, Shrihari Anil; Sharma, Praveen; Bansal, Naresh; Singla, Vikas; Arora, Anil

    2017-01-28

    To study the diagnostic accuracy of transient elastography (TE) for detecting clinically significant portal hypertension (CSPH) in Indian patients with cirrhotic portal hypertension. This retrospective study was conducted at the Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, on consecutive patients with cirrhosis greater than 15 years of age who underwent hepatic venous pressure gradient (HVPG) and TE from July 2011 to May 2016. Correlation between HVPG and TE was analyzed using the Spearman's correlation test. Receiver operating characteristic (ROC) curves were prepared for determining the utility of TE in predicting various stages of portal hypertension. The best cut-off value of TE for the diagnosis of CSPH was obtained using the Youden index. The study included 326 patients [median age 52 (range 16-90) years; 81% males]. The most common etiology of cirrhosis was cryptogenic (45%) followed by alcohol (34%). The median HVPG was 16.0 (range 1.5 to 30.5) mmHg. Eighty-five percent of patients had CSPH. A significant positive correlation was noted between TE and HVPG (rho 0.361, P < 0.001). The area under ROC curve for TE in predicting CSPH was 0.740 (95%CI: 0.662-0.818) ( P < 0.01). A cut-off value of TE of 21.6 kPa best predicted CSPH with a positive predictive value (PPV) of 93%. TE has a fair positive correlation with HVPG; thus, TE can be used as a non-invasive modality to assess the degree of portal hypertension. A cut-off TE value of 21.6 kPa identifies CSPH with a PPV of 93%.

  2. Correlation of transient elastography with hepatic venous pressure gradient in patients with cirrhotic portal hypertension: A study of 326 patients from India

    PubMed Central

    Kumar, Ashish; Khan, Noor Muhammad; Anikhindi, Shrihari Anil; Sharma, Praveen; Bansal, Naresh; Singla, Vikas; Arora, Anil

    2017-01-01

    AIM To study the diagnostic accuracy of transient elastography (TE) for detecting clinically significant portal hypertension (CSPH) in Indian patients with cirrhotic portal hypertension. METHODS This retrospective study was conducted at the Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, on consecutive patients with cirrhosis greater than 15 years of age who underwent hepatic venous pressure gradient (HVPG) and TE from July 2011 to May 2016. Correlation between HVPG and TE was analyzed using the Spearman’s correlation test. Receiver operating characteristic (ROC) curves were prepared for determining the utility of TE in predicting various stages of portal hypertension. The best cut-off value of TE for the diagnosis of CSPH was obtained using the Youden index. RESULTS The study included 326 patients [median age 52 (range 16-90) years; 81% males]. The most common etiology of cirrhosis was cryptogenic (45%) followed by alcohol (34%). The median HVPG was 16.0 (range 1.5 to 30.5) mmHg. Eighty-five percent of patients had CSPH. A significant positive correlation was noted between TE and HVPG (rho 0.361, P < 0.001). The area under ROC curve for TE in predicting CSPH was 0.740 (95%CI: 0.662-0.818) (P < 0.01). A cut-off value of TE of 21.6 kPa best predicted CSPH with a positive predictive value (PPV) of 93%. CONCLUSION TE has a fair positive correlation with HVPG; thus, TE can be used as a non-invasive modality to assess the degree of portal hypertension. A cut-off TE value of 21.6 kPa identifies CSPH with a PPV of 93%. PMID:28216976

  3. The effects of fatty deposits on the accuracy of the Fibroscan® liver transient elastography ultrasound system

    NASA Astrophysics Data System (ADS)

    Cournane, S.; Browne, J. E.; Fagan, A. J.

    2012-06-01

    A new generation of ultrasound transient elastography (TE) systems have emerged which exploit the well-known correlation between the liver's pathological and mechanical properties through measurements of the Young's elastic modulus; however, little work has been carried out to examine the effect that fatty deposits may have on the TE measurement accuracy. An investigation was carried out on the effects on the measurement accuracy of a TE ultrasound system, the Fibroscan®, caused by overlaying fat layers of varying thickness on healthy liver-mimicking phantoms, simulating in vivo conditions for obese patients. Furthermore, a steatosis effect similar to that in non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) was simulated to investigate its effect on the TE system. A range of novel elastography fat-mimicking materials were developed using 6-10 wt% poly(vinyl alcohol) cryogel capable of achieving a range of acoustic velocities (1482-1530 m s-1) and attenuation coefficients (0.4-1 dB MHz-1 cm-1) for simulating different liver states. Laboratory-based acoustic velocities and attenuation coefficients were measured while the Young's modulus was established through a gold standard compression testing method. A significant variation of the Young's elastic modulus was measured in healthy phantoms with overlaying fat layers of thicknesses exceeding 45 mm, impinging on the scanners region of interest, overestimating the compression tested values by up to 11 kPa in some cases. Furthermore, Fibroscan® measurements of the steatosis phantoms showed a consistent overestimation (˜54%), which strongly suggests that the speed of sound mismatch between that of liver tissue and that assumed by the scanner is responsible for the high clinical cut-offs established in the case of ALD and NAFLD.

  4. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study.

    PubMed

    Simon, Emmanuel G; Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre

    2018-01-01

    Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young's modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50-0.82), and the interobserver ICC for SWS 0.65 (0.37-0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures.

  5. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study

    PubMed Central

    Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre

    2018-01-01

    Background Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. Objective To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young’s modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Materials and methods Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). Main results The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50–0.82), and the interobserver ICC for SWS 0.65 (0.37–0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. Conclusions TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures. PMID:29621270

  6. Association Between Obesity and Discordance in Fibrosis Stage Determination by Magnetic Resonance vs Transient Elastography in Patients With Nonalcoholic Liver Disease.

    PubMed

    Caussy, Cyrielle; Chen, Jun; Alquiraish, Mosab H; Cepin, Sandra; Nguyen, Phirum; Hernandez, Carolyn; Yin, Meng; Bettencourt, Ricki; Cachay, Edward R; Jayakumar, Saumya; Fortney, Lynda; Hooker, Jonathan; Sy, Ethan; Valasek, Mark A; Rizo, Emily; Richards, Lisa; Brenner, David A; Sirlin, Claude B; Ehman, Richard L; Loomba, Rohit

    2018-01-17

    Magnetic resonance elastography (MRE) and transient elastography (TE) are noninvasive techniques used to detect liver fibrosis in nonalcoholic fatty liver disease. MRE detects fibrosis more accurately than TE, but MRE is more expensive, and the concordance between MRE and TE have not been optimally assessed in obese patients. It is important to determine under which conditions TE and MRE produce the same readings, so that some patients can simply undergo TE evaluation to detect fibrosis. We aimed to assess the association between body mass index (BMI) and discordancy between MRE and TE findings, using liver biopsy as the reference, and validated our findings in a separate cohort. We performed a cross-sectional study of 119 adults with nonalcoholic fatty liver disease who underwent MRE, TE with M and XL probe, and liver biopsy analysis from October 2011 through January 2017 (training cohort). MRE and TE results were considered to be concordant if they found patients to have the same stage fibrosis as liver biopsy analysis. We validated our findings in 75 adults with nonalcoholic fatty liver disease who underwent contemporaneous MRE, TE, and liver biopsy at a separate institution from March 2010 through May 2013. The primary outcome was rate of discordance between MRE and TE in determining stage of fibrosis (stage 2-4 vs 0-1). Secondary outcomes were the rate of discordance between MRE and TE in determining dichotomized stage of fibrosis (1-4 vs 0, 3-4 vs 0-2, and 4 vs 0-3). In the training cohort, there was 43.7% discordance in findings from MRE versus TE. BMI associated significantly with discordance in findings from MRE versus TE (odds ratio, 1.69; 95% confidence interval, 1.15-2.51; P = .008) after multivariable adjustment by age and sex. The findings were confirmed in the validation cohort: there was 45.3% discordance in findings from MRE versus TE. BMI again associated significantly with discordance in findings from MRE versus TE (odds ratio, 1.52; 95% confidence interval, 1.04-2.21; P = .029) after multivariable adjustment by age and sex. We identified and validated BMI as a factor significantly associated with discordance of findings from MRE versus TE in assessment of fibrosis stage. The degree of discordancy increases with BMI. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Performance of transient elastography and serum fibrosis biomarkers for non-invasive evaluation of recurrent fibrosis after liver transplantation: A meta-analysis.

    PubMed

    Bhat, Mamatha; Tazari, Mahmood; Sebastiani, Giada

    2017-01-01

    Recurrent fibrosis after liver transplantation (LT) impacts on long-term graft and patient survival. We performed a meta-analysis to compare the accuracy of non-invasive methods to diagnose significant recurrent fibrosis (stage F2-F4) following LT. Studies comparing serum fibrosis biomarkers, namely AST-to-platelet ratio index (APRI), fibrosis score 4 (FIB-4), or transient elastography (TE) with liver biopsy in LT recipients were systematically identified through electronic databases. In the meta-analysis, we calculated the weighted pooled odds ratio and used a fixed effect model, as there was no significant heterogeneity between studies. Eight studies were included for APRI, four for FIB-4, and twelve for TE. The mean prevalence of significant liver fibrosis was 37.4%. The summary odds ratio was significantly higher for TE (21.17, 95% CI confidence interval 14.10-31.77, p = 1X10-30) as compared to APRI (9.02, 95% CI 5.79-14.07; p = 1X10-30) and FIB-4 (7.08, 95% CI 4.00-12.55; p = 1.93X10-11). In conclusion, TE performs best to diagnose recurrent fibrosis in LT recipients. APRI and FIB-4 can be used as an estimate of significant fibrosis at centres where TE is not available. Longitudinal assessment of fibrosis by means of these non-invasive tests may reduce the need for liver biopsy.

  8. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease

    PubMed Central

    Joo, Sae Kyung; Woo, Hyunsik; Lee, Dong Hyeon; Jung, Yong Jin; Kim, Byeong Gwan; Lee, Kook Lae

    2017-01-01

    The diagnostic performance of supersonic shear imaging (SSI) in comparison with those of transient elastography (TE) and acoustic radiation force impulse imaging (ARFI) for staging fibrosis in nonalcoholic fatty liver disease (NAFLD) patients has not been fully assessed, especially in Asian populations with relatively lean NAFLD compared to white populations. Thus, we focused on comparing the diagnostic performances of TE, ARFI, and SSI for staging fibrosis in a head-to-head manner, and identifying the clinical, anthropometric, biochemical, and histological features which might affect liver stiffness measurement (LSM) in our prospective biopsy-proven NAFLD cohort. In this study, ninety-four patients with biopsy-proven NAFLD were included prospectively. Liver stiffness was measured using TE, SSI, and ARFI within 1 month of liver biopsy. The diagnostic performance for staging fibrosis was assessed using receiver operating characteristic (ROC) analysis. Anthropometric data were evaluated as covariates influencing LSM by regression analyses. Liver stiffness correlated with fibrosis stage (p < 0.05); the area under the ROC curve of TE (kPa), SSI (kPa), and ARFI (m/s) were as follows: 0.757, 0.759, and 0.657 for significant fibrosis and 0.870, 0.809, and 0.873 for advanced fibrosis. Anthropometric traits were significant confounders affecting SSI, while serum liver injury markers significantly confounded TE and ARFI. In conclusion, the LSM methods had similar diagnostic performance for staging fibrosis in patients with NAFLD. Pre-LSM anthropometric evaluation may help predict the reliability of SSI. PMID:29176844

  9. Evaluation of transient elastography in assessing liver fibrosis in patients with autoimmune hepatitis.

    PubMed

    Xu, Qinyu; Sheng, Li; Bao, Han; Chen, Xiaoyu; Guo, Canjie; Li, Hai; Ma, Xiong; Qiu, Dekai; Hua, Jing

    2017-03-01

    Transient elastography (TE) can reliably stage liver fibrosis via liver stiffness measurement (LSM) in chronic liver disease. However, the accuracy of TE for assessment of liver fibrosis in patients with autoimmune hepatitis (AIH) is still limited. We evaluate TE in staging liver fibrosis in AIH patients and compare with other noninvasive diagnostic tools. A total of 100 patients with biopsy-proven AIH were included. The correlation between LSM and fibrosis stage was analyzed using Spearman correlation test. The optimal cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. The diagnostic accuracy of LSM for severe fibrosis was compared with those of serum biochemical scores. Median LSM in AIH patients was higher than that of healthy controls (11.2 ± 8.2 kPa vs 4.3 ± 1.4 kPa, P < 0.01). LSM had significant correlation with fibrosis (r = 0.752, P < 0.01) and increased progressively with increasing fibrosis stages in AIH patients. AUROC values of LSM for stages F ≥ 2, F ≥ 3, and F4 were 0.878 (95%CI: 0.789-0.967), 0.883 (0.820-0.946), and 0.914 (0.852-0.976), respectively. The optimal cut-off values of LSM for fibrosis stages F ≥ 2, F ≥ 3, and F4 were 6.45, 8.75, and 12.50 kPa, respectively. LSM was superior to APRI score and FIB-4 score in detecting severe fibrosis (F ≥ 3). Serum ALT levels had minor effect on LSM values. Transient elastography is an accurate and reliable noninvasive tool in assessing liver fibrosis in AIH. Hepatic inflammatory activity had no significant effect on LSM determination. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  10. Serum biomarkers and transient elastography as predictors of advanced liver fibrosis in a United States cohort: the Boston children's hospital experience.

    PubMed

    Lee, Christine K; Perez-Atayde, Antonio R; Mitchell, Paul D; Raza, Roshan; Afdhal, Nezam H; Jonas, Maureen M

    2013-10-01

    To evaluate and compare the ability of serum hyaluronic acid (HA) and human cartilage glycoprotein-39 (YKL-40) values, as well as transient elastography (TE) findings, to predict advanced hepatic fibrosis in a cohort from a single pediatric center. Subjects who underwent liver biopsy analysis within 12 months before enrollment were eligible for this prospective study. HA and YKL-40 measurements were obtained within 1 month of TE. A METAVIR score of F3 or F4 was considered to indicate advanced fibrosis. A total of 128 patients (51% males) aged 1.4 months to 27.6 years (22% aged <2 years) were enrolled. Thirty-one subjects had data on only HA and YKL-40 measurements, and 97 subjects had data on both blood tests and TE. For the prediction of advanced fibrosis, the area under the receiver operating characteristic curve (AUC) values were 0.83 for TE, 0.72 for HA, and 0.52 for YKL-40. The AUC of 0.83 for TE was statistically significantly greater than the AUCs for HA (P = .03) and YKL-40 (P < .0001). Optimal cutpoints for predicting F3-F4 fibrosis were 8.6 kPa for TE (P < .0001), 43 ng/mL for HA (P < .0001), and 26.2 ng/mL for YKL-40 (P = .85). The combination of TE and HA was not better than TE alone for predicting advanced fibrosis (P = .15). In this study, which evaluated TE, HA, and YKL-40 to predict liver fibrosis in children in the US, YKL-40 had no predictive value and TE was superior to HA, but the addition of HA did not improve the performance of TE. Our data suggest that TE and HA may be useful noninvasive tools for assessing liver fibrosis in children. Copyright © 2013 Mosby, Inc. All rights reserved.

  11. Performance of real-time strain elastography, transient elastography, and aspartate-to-platelet ratio index in the assessment of fibrosis in chronic hepatitis C.

    PubMed

    Ferraioli, Giovanna; Tinelli, Carmine; Malfitano, Antonello; Dal Bello, Barbara; Filice, Gaetano; Filice, Carlo; Above, Elisabetta; Barbarini, Giorgio; Brunetti, Enrico; Calderon, Willy; Di Gregorio, Marta; Lissandrin, Raffaella; Ludovisi, Serena; Maiocchi, Laura; Michelone, Giuseppe; Mondelli, Mario; Patruno, Savino F A; Perretti, Alessandro; Poma, Gianluigi; Sacchi, Paolo; Zaramella, Marco; Zicchetti, Mabel

    2012-07-01

    The purpose of this article is to evaluate the diagnostic performance of transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index in assessing fibrosis in patients with chronic hepatitis C by using histologic Metavir scores as reference standard. Consecutive patients with chronic hepatitis C scheduled for liver biopsy were enrolled. Liver biopsy was performed on the same day as transient elastography and real-time strain elastography. Transient elastography and real-time strain elastography were performed in the same patient encounter by a single investigator using a medical device based on elastometry and an ultrasound machine, respectively. Diagnostic performance was assessed by using receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) analysis. One hundred thirty patients (91 men and 39 women) were analyzed. The cutoff values for transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index were 6.9 kPa, 1.82, and 0.37, respectively, for fibrosis score of 2 or higher; 7.3 kPa, 1.86, and 0.70, respectively, for fibrosis score of 3 or higher; and 9.3 kPa, 2.33, and 0.70, respectively, for fibrosis score of 4. AUC values of transient elastography, real-time strain elastography, aspartate-to-platelet ratio index were 0.88, 0.74, and 0.86, respectively, for fibrosis score of 2 or higher; 0.95, 0.80, and 0.89, respectively, for fibrosis score of 3 or higher; and 0.97, 0.80, and 0.84, respectively, for fibrosis score of 4. A combination of the three methods, when two of three were in agreement, showed AUC curves of 0.93, 0.95, and 0.95 for fibrosis scores of 2 or higher, 3 or higher, and 4, respectively. Transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index values were correlated with histologic stages of fibrosis. Transient elastography offered excellent diagnostic performance in assessing severe fibrosis and cirrhosis. Real-time elastography does not yet have the potential to substitute for transient elastography in the assessment of liver fibrosis.

  12. COMPARATIVE STUDY OF FIB-4 INDEX AND TRANSIENT ELASTOGRAPHY AMONG PATIENTS WITH CHRONIC HEPATITIS C VIRUS INFECTION IN GEORGIA.

    PubMed

    Dolmazashvili, E; Karchava, M; Abutidze, A; Sharvadze, L; Tsertsvadze, T

    2017-03-01

    Liver biopsy remains the reference standard for fibrosis staging. However, it has several limitations, which have led to the development of non-invasive methods. We evaluated liver fibrosis severity among HCV infected patients by comparing transient elastography (TE) and FIB-4 index. Retrospective study was conducted. Clinical data for 750 patients were obtained. The mean age of the study population was 51 years; 595 (79.3%) were male and 155 (20.7%) were female. TE and tests on biological samples were performed within one-week timeframe. Additional analyses of prothrombin index, albumin concentration, splenomegaly on abdominal ultrasound and esophageal varices on upper gastrointestinal endoscopy were performed among selected patients. Comparable results were observed among 534 patients (71.2%). FIB-4<1.45 had a negative predictive value of 89% to exclude significant fibrosis and FIB-4>3.25 had a positive predictive value of 100 % to confirm the existence of significant fibrosis. Inconclusive FIB-4 score was obtained in 170 (22.7%) patients. Of them 127 (74.7%) had significant fibrosis (F3-F4) by TE. Discordant results (FIB-4 <1.45 and Liver Stiffness Measurement (LSM) >9.5 kpa) were observed in 46 (6.1%) of patients. Low prothrombin index, low albumin concentration, splenomegaly and esophageal varices were significantly (p<0.001) correlated with TE results. Discrepancy showing high FIB-4 score and low LSM was not observed in our cohort. There was a good correlation between TE and FIB-4 score. FIB-4 could rapidly replace expensive methods to assess liver fibrosis severity in some scenarios. However, our study demonstrated superiority of TE. LSM correlated better with indirect markers of significant fibrosis.

  13. Prevalence in vulnerable population of liver fibrosis identified by transient elastography.

    PubMed

    Chávez-Tapia, Norberto; Torres-Sánchez, Jorge; Romero-Flores, Juan; Álvarez-Quiroz, Paulina; Ramírez-Álvarez, Sandra; Juárez-Hernández, Eva; Pérez-Jáuregui, José; Méndez-Sánchez, Nahum; Uribe, Misael

    2015-01-01

    Transient elastography (TE) is a useful tool for the assessment of hepatic fibrosis as an alternative to liver biopsy, but it has not been validated as a screening procedure in apparently healthy people. To determine the prevalence of advanced liver fibrosis diagnosed by TE in a socioeconomically challenged rural population. We enrolled 299 participants aged over 18 years old from a vulnerable population in Mexico who responded to an open invitation. All participants had their history recorded and underwent a general clinical examination and a liver stiffness measurement, performed by a single operator according to international standards. Overall, 7.35% participants were found to be at high risk for cirrhosis. Three variables correlated with a risk for a TE measure ≥ 9 kPa and significant fibrosis: history of alcohol intake [7.95 vs. 92.04%, odds ratio (OR) 4.47, 95% confidence interval (CI) 1.45-13.78, P = 0.0167], body mass index (BMI) ≥ 30 kg/m2 (30.87 vs. 69.12%, OR 4.25, 95%CI 1.04-6.10, P = 0.049), and history of diabetes mellitus (14.87 vs. 85.12%, OR 2.76, 95%CI 1.002-7.63, P = 0.0419). In the multivariate analyses BMI ≥ 30 kg/m2 was the only significant risk factor for advanced liver fibrosis or cirrhosis (OR 2.54, 95%CI 1.02-6.3, P = 0.0460). TE could be useful as a screening process to identify advanced liver fibrosis in the general and apparently healthy population.

  14. Improvement of liver stiffness measurement, acoustic radiation force impulse measurements, and noninvasive fibrosis markers after direct-acting antivirals for hepatitis C virus G4 recurrence post living donor liver transplantation: Egyptian cohort.

    PubMed

    Alem, Shereen Abdel; Said, Mohamed; Anwar, Ismail; Abdellatif, Zeinab; Elbaz, Tamer; Eletreby, Rasha; AbouElKhair, Mahmoud; El-Serafy, Magdy; Mogawer, Sherif; El-Amir, Mona; El-Shazly, Mostafa; Hosny, Adel; Yosry, Ayman

    2018-05-02

    Progression of recurrent hepatitis C is accelerated in liver transplant (LT) recipients. Direct-acting antivirals (DAAs) have recently emerged as a promising therapeutic regimen for the treatment of hepatitis C virus infection. Rates of sustained virological response (SVR) have drastically improved since the introduction of DAAs. The aim is to elucidate the changes in liver stiffness measurement (LSM) by transient elastography (TE) as well as acoustic radiation force impulse (ARFI) elastography and fibrosis scores after DAA treatment in LT recipients with hepatitis C virus recurrence. A single-center, prospective study including 58 LT recipients with hepatitis C recurrence who received different sofosbuvir-based treatment regimens. Transient elastography and ARFI elastography values were recorded as well as fibrosis 4 score (FIB-4) and aspartate aminotransferase-to-platelet ratio index were calculated at baseline and SVR at week 24 (SVR24). The outcome was improvement in LSM and at least a 20% decrease in LSM at SVR24 compared with baseline. The sustained virological response was 98.1%. There was improvement of platelet counts, alanine aminotransferase, and aspartate aminotransferase, which in turn caused improvement in fibrosis scores at SVR24. LSM by TE and ARFI elastography decreased from the baseline median value of 6.3 kPa (interquartile range [IQR]; 4.6 to 8.8 kPa) and 1.28 m/s (IQR; 1.07 to 1.53 m/s) to an SVR24 median value of 6.2 kPa (IQR; 4.85 to 8.9 kPa) and 1.12 (IQR; 0.97 to 1.30 m/s), respectively. Logistic regression analysis showed that baseline viral load was the only significant predictor of improvement in LS after DAA therapy at SVR24. Sofosbuvir-based treatment resulted in an early improvement in parameters of liver fibrosis in post-LT patients with hepatitis C recurrence. © 2018 Wiley Periodicals, Inc.

  15. Enhanced liver fibrosis test using ELISA assay accurately discriminates advanced stage of liver fibrosis as determined by transient elastography fibroscan in treatment naïve chronic HCV patients.

    PubMed

    Omran, Dalia; Yosry, Ayman; Darweesh, Samar K; Nabeel, Mohammed M; El-Beshlawey, Mohammed; Saif, Sameh; Fared, Azza; Hassany, Mohamed; Zayed, Rania A

    2018-02-01

    Evaluation of liver fibrosis stage is crucial in the assessment of chronic HCV patients, regarding decision to start treatment and during follow-up. Our aim was to assess the validity of the enhanced liver fibrosis (ELF) score in discrimination of advanced stage of liver fibrosis in naïve chronic HCV patients. We prospectively evaluated liver fibrosis stage in one hundred eighty-one naïve chronic HCV Egyptian patients by transient elastography (TE)-FibroScan. Patients were categorized into mild to moderate fibrosis (≤F2) group and advanced fibrosis (≥F3) group. The ELF score components, hyaluronic acid (HA), amino-terminal propeptide of type-III-procollagen (PIIINP) and tissue inhibitor of metalloproteinase type-1 (TIMP-1), were done using ELISA test. The mean values of ELF and its individual components significantly correlated with the hepatic fibrosis stage as measured by TE-FibroScan (P value 0.001). ELF cutoff value of 9.8 generated a sensitivity of 77.8%, specificity of 67.1%, area under the receiver operator characteristic curve (AUROC) of 0.76 with 95% confidence interval [CI] (0.68-0.83) for detecting advanced fibrosis (F ≥ 3). ELF panel is a good, reliable noninvasive test and showed comparable results to TE-FibroScan in detecting liver fibrosis stage in treatment naïve chronic HCV patients.

  16. Transient elastography (FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand?

    PubMed Central

    Mikolasevic, Ivana; Orlic, Lidija; Franjic, Neven; Hauser, Goran; Stimac, Davor; Milic, Sandra

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan®, TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs. PMID:27621571

  17. Are different cut-off values of liver stiffness assessed by transient elastography according to the etiology of liver cirrhosis for predicting significant esophageal varices?

    PubMed

    Sporea, Ioan; Raţiu, Iulia; Bota, Simona; Şirli, Roxana; Jurchiş, Ana

    2013-06-01

    To determine if liver stiffness (LS) measurements by means of Transient Elastography (TE) vary according to the etiology of the underlying liver cirrhosis and to find if there are different TE cut-off values able to predict the presence of significant EV in alcoholic vs. viral etiology of cirrhosis. This retrospective study included patients diagnosed with liver cirrhosis of viral or alcoholic etiology. All patients were evaluated by means of TE (FibroScan) and upper gastrointestinal endoscopy. We performed 10 LS measurements in each patient and a median value expressed in kiloPascals (kPa) was calculated. Only those with a SR >/= 60% and an IQR<30% were considered as reliable MS measurements. According to the presence of EV the patients were divided in two categories: without significant EV and patients with significant EV (at least grade 2). The study included 697 cirrhotic patients with reliable LS measurements. The median LS values assessed by TE were significantly higher in cirrhotic patients with alcoholic etiology as compared with those with viral etiology of liver disease: 41 kPa vs. 21.1 kPa, p<0.0001. In the entire cohort of cirrhotic patients, LS assessed by means of TE for a cut-off value >29.5 kPa, had 77.5% sensitivity and 86.9% specificity for predicting the presence of significant EV (AUROC=0.871). The best LS cut-off value for predicting the presence of significant EV was higher in alcoholic cirrhosis as compared with those with viral etiology of liver cirrhosis: 32.5 kPa (AUROC=0.836) vs. 24.8 kPa (AUROC=0.867). LS cut-off values assessed by TE for predicting significant EV are significantly higher in patients with alcoholic cirrhosis as compared with patients with liver cirrhosis of viral etiology.

  18. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  19. The value of ElastPQ for the evaluation of liver stiffness in patients with B and C chronic hepatopathies.

    PubMed

    Mare, Ruxandra; Sporea, Ioan; Lupuşoru, Raluca; Şirli, Roxana; Popescu, Alina; Danila, Mirela; Pienar, Corina

    2017-05-01

    The aim of this study was to evaluate the diagnostic performance of a point shear wave elastography using ARFI technique - ElastPQ, in patients with B and C chronic hepatopathies, using Transient Elastography (TE) as the reference method, since it is a validated method for liver fibrosis assessment. the study included 228 consecutive subjects with chronic hepatopathies (26% HBV, 74% HCV) from whom 51% had liver cirrhosis. Liver stiffness (LS) was evaluated in the same session by means of 2 elastographic methods: TE (FibroScan, EchoSens) and ElastPQ (Affinity, Philips) techniques. For TE 10 valid LS measurements were performed for each patient and the median value was calculated. Reliable LS measurements by TE (M or XL probe) were considered the median value of 10LS measurements with a success rate ≥60% and an interquartile range <30%. For ElastPQ we calculated the median value of 10LS measurements in the liver parenchyma, at least 1cm below the capsule, avoiding large vessels. For differentiating between stages of liver fibrosis we used the TE cut-off values published in the Tsochatzis meta-analysis: significant fibrosis (F≥2)- 7.0kPa, severe fibrosis (F≥3)- 9.5kPa and for liver cirrhosis (F=4)-12kPa (Tsochatzis et al., 2011). The areas under the receiver operating characteristic curve (AUROCs) were used to assess the diagnostic performance of ElastPQ, correlations between ElastPQ and TE were evaluated. Valid LS measurements were obtained in 90.7% (207/228) cases by means of TE and in 98.7% (225/228) cases with ElastPQ. In the final analysis 205 patients were included. The ElastPQ values ranged from 2.32 to 44.07kPa (median=10.42kPa). Based on TE cut-off values (Tsochatzis et al., 2011) we divided our cohort into 4 groups: F0-F1:61/205 (29.8%); F2: 14/205 (6.8%); F3: 15/205 (7.3%); F=4: 115/205 (56.1%). The best cut-off values for discriminating, significant, severe fibrosis and cirrhosis were 7.2, 8.5 and 8.9kPa, respectively. The AUROCs were calculated considering TE as the reference method: 0.94 for significant fibrosis (F≥2), 0.97 for severe fibrosis (F≥3) and 0.97 for cirrhosis (F=4). In our cohort there was a strong correlation between measurements obtained by Transient Elastography and ElastPQ (r=0.85, p<0.001). ElastPQ seems to have a good diagnostic accuracy for staging liver fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using transient elastography to predict hepatocellular carcinoma recurrence after radiofrequency ablation.

    PubMed

    Lee, Yu Rim; Park, Soo Young; Kim, Seung Up; Jang, Se Young; Tak, Won Young; Kweon, Young Oh; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang-Hyub; Hur, Keun

    2017-05-01

    Liver stiffness (LS) value determined using transient elastography (TE) can be used to assess the degree of liver fibrosis. The study investigated whether TE can predict the recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). This study retrospectively enrolled 228 patients with HCC who received TE and RFA as the first-line treatment for HCC between 2008 and 2015. Cox regression analysis was used to identify independent predictors of HCC recurrence. The median age of the study population (170 men and 58 women) was 61 years. During the study period, HCC recurrence and mortality developed in 125 (54.8%) and 37 (16.2%) patients after RFA, respectively. Liver cirrhosis, platelet count, multiple tumors, and LS value were the independent predictors of HCC recurrence. When the study population was stratified into early (< 12 months) and late (≥ 12 months) recurrence groups, LS value was an independent predictor of late recurrence, along with liver cirrhosis and spleen diameter. The risk of late recurrence was higher in patients with LS values of ≥ 13 kPa than in those with LS values of < 13 kPa (adjusted hazard ratio [HR] = 4.507, 95% confidence interval [CI] 2.131-7.724, P < 0.001). Recurrence was the only predictor of overall survival (HR = 18.583, 95% CI 2.424-142.486, P = 0.005). Findings of this study suggest that LS measurement using TE can be a useful predictor of HCC recurrence after RFA. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  1. Transient elastography for the assessment of chronic liver disease: Ready for the clinic?

    PubMed Central

    Cobbold, JFL; Morin, S; Taylor-Robinson, SD

    2007-01-01

    Transient elastography is a recently developed non-invasive technique for the assessment of hepatic fibrosis. The technique has been subject to rigorous evaluation in a number of studies in patients with chronic liver disease of varying aetiology. Transient elastography has been compared with histological assessment of percutaneous liver biopsy, with high sensitivity and specificity for the diagnosis of cirrhosis, and has also been used to assess pre-cirrhotic disease. However, the cut-off values between different histological stages vary substantially in different studies, patient groups and aetiology of liver disease. More recent studies have examined the possible place of transient elastography in clinical practice, including risk stratification for the development of complications of cirrhosis. This review describes the technique of transient elastography and discusses the interpretation of recent studies, emphasizing its applicability in the clinical setting. PMID:17828808

  2. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study.

    PubMed

    Ferraioli, Giovanna; Tinelli, Carmine; Dal Bello, Barbara; Zicchetti, Mabel; Filice, Gaetano; Filice, Carlo

    2012-12-01

    Real-time shear wave elastography (SWE) is a novel, noninvasive method to assess liver fibrosis by measuring liver stiffness. This single-center study was conducted to assess the accuracy of SWE in patients with chronic hepatitis C (CHC), in comparison with transient elastography (TE), by using liver biopsy (LB) as the reference standard. Consecutive patients with CHC scheduled for LB by referring physicians were studied. One hundred and twenty-one patients met inclusion criteria. On the same day, real-time SWE using the ultrasound (US) system, Aixplorer (SuperSonic Imagine S.A., Aix-en-Provence, France), TE using FibroScan (Echosens, Paris, France), and US-assisted LB were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic (ROC) curve were performed to calculate optimal area under the ROC curve (AUROC) for F0-F1 versus F2-F4, F0- F2 versus F3-F4, and F0-F3 versus F4 for both real-time SWE and TE. Liver stiffness values increased in parallel with degree of liver fibrosis, both with SWE and TE. AUROCs were 0.92 (95% confidence interval [CI]: 0.85-0.96) for SWE and 0.84 (95% CI: 0.76-0.90) for TE (P = 0.002), 0.98 (95% CI: 0.94-1.00) for SWE and 0.96 (95% CI: 0.90-0.99) for TE (P = 0.14), and 0.98 (95% CI: 0.93-1.00) for SWE and 0.96 (95% CI: 0.91-0.99) for TE (P = 0.48), when comparing F0-F1 versus F2- F4, F0- F2 versus F3-F4, and F0 -F3 versus F4, respectively. The results of this study show that real-time SWE is more accurate than TE in assessing significant fibrosis (≥ F2). With respect to TE, SWE has the advantage of imaging liver stiffness in real time while guided by a B-mode image. Thus, the region of measurement can be guided with both anatomical and tissue stiffness information. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Transient Elastography and Controlled Attenuation Parameter for Diagnosing Liver Fibrosis and Steatosis in Ontario: An Economic Analysis

    PubMed Central

    Thavorn, K; Coyle, D

    2015-01-01

    Background Liver fibrosis is characterized by a buildup of connective tissue due to chronic liver damage. Steatosis is the collection of excessive amounts of fat inside liver cells. Liver biopsy remains the gold standard for the diagnosis of liver fibrosis and steatosis, but its use as a diagnostic tool is limited by its invasive nature and high cost. Objectives To evaluate the cost-effectiveness and budget impact of transient elastography (TE) with and without controlled attenuation parameter (CAP) for the diagnosis of liver fibrosis or steatosis in patients with hepatitis B, hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease. Data Sources An economic literature search was performed using computerized databases. For primary economic and budget impact analyses, we obtained data from various sources, such as the Health Quality Ontario evidence-based analysis, published literature, and the Institute for Clinical Evaluative Sciences. Review Methods A systematic review of existing TE cost-effectiveness studies was conducted, and a primary economic evaluation was undertaken from the perspective of the Ontario Ministry of Health and Long-Term Care. Decision analytic models were used to compare short-term costs and outcomes of TE compared to liver biopsy. Outcomes were expressed as incremental cost per correctly diagnosed cases gained. A budget impact analysis was also conducted. Results We included 10 relevant studies that evaluated the cost-effectiveness of TE compared to other noninvasive tests and to liver biopsy; no cost-effectiveness studies of TE with CAP were identified. All studies showed that TE was less expensive but associated with a decrease in the number of correctly diagnosed cases. TE also improved quality-adjusted life-years in patients with hepatitis B and hepatitis C. Our primary economic analysis suggested that TE led to cost savings but was less effective than liver biopsy in the diagnosis of liver fibrosis. TE became more economically attractive with a higher degree of liver fibrosis. TE with CAP was also less expensive and less accurate than liver biopsy. Limitations The model did not take into account long-term costs and consequences associated with TE and liver biopsy and did not include costs to patients and their families, or patient preferences related to diagnostic information. Conclusions TE showed potential cost savings compared to liver biopsy. Further investigation is needed to determine the long-term impacts of TE on morbidity and mortality in Canada and the optimal diagnostic modality for liver fibrosis and steatosis. PMID:26664666

  4. [Utility of Fibroscan in the evaluation of liver fibrosis].

    PubMed

    Carrión, José A

    2009-01-01

    Chronic liver diseases produce a progressive accumulation of collagenous fiber in the liver parenchyma. For years, liver biopsy has been the gold standard to quantify liver fibrosis. Currently, non-invasive alternatives are available to quantify fibrosis. Transient elastography (TE) or Fibroscan quantifies liver rigidity, which is proportional to the grade of liver fibrosis. Studies are available that have evaluated the reliability and limitations of TE in healthy individuals, in patients with acute hepatitis, in distinct chronic liver diseases and in liver transplant recipients. TE is reliable for the diagnosis of liver cirrhosis (F4) and significant fibrosis (F2) but its values may vary according to the patient's characteristics and the etiology of the disease. TE can avoid liver biopsy in 90% of patients with cirrhosis and in up to 70% of those with significant fibrosis when combined with other non-invasive methods.

  5. Transient elastography as a noninvasive assessment tool for hepatopathies of different etiology in pediatric type 1 diabetes mellitus.

    PubMed

    Elkabbany, Zeinab A; Elbarbary, Nancy S; Ismail, Eman A; Mohamed, Nesrine A; Ragab, Dina; Abdel Alem, Shereen; Ezzat, Yasmine M; Maurice, Sarah S; Hashem, Noha U

    2017-01-01

    To identify the prevalence and effect of hepatopathies of different etiologies among pediatric patients with type 1 diabetes mellitus (T1DM) using transient elastography (TE) and its relation to glycemic control. One hundred T1DM patients were studied focusing on liver functions, fasting lipid profile, hemoglobin A1c (HbA1c), hepatitis C virus (HCV), serum immunoglobulins, autoimmune antibodies; anti-nuclear antibody (ANA), anti-smooth muscle antibody (ASMA), and anti-liver kidney microsomal antibody (anti-LKM). Abdominal ultrasound was performed and TE was done for patients with HCV, positive autoimmune antibody and/or abnormal ultrasound findings. Thirty-one patients were found to have one or more hepatic abnormalities; clinical hepatomegaly in 8%, elevated alanine aminotransferase (ALT) in 10%, HCV in 6%, autoimmune hepatitis (AIH) in 11% (10 were positive for ASMA and 2 were positive for ANA while anti-LKM antibodies were negative) and abnormal hepatic ultrasound in 20% (12 non-alcoholic fatty liver disease, 5 AIH, 2 HCV, 1 Mauriac syndrome). Mean liver stiffness in those 31 patients was 7.0±2.1kPa (range, 3.1-11.8kPa); 24 were Metavir F0-F1, 7 were F2-F3 while none was F4. Type 1 diabetic patients with abnormal hepatic ultrasound had higher fasting blood glucose, HbA1c and total cholesterol than those with normal findings. Liver stiffness was significantly higher in patients with abnormal liver ultrasound compared with normal sonography. Liver stiffness was positively correlated to HbA1c and ALT. Hepatic abnormalities are prevalent in T1DM and related to poor metabolic control. TE provides a non-invasive method for detection of hepatopathy-induced fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Estimating chronic hepatitis C prognosis using transient elastography-based liver stiffness: A systematic review and meta-analysis.

    PubMed

    Erman, A; Sathya, A; Nam, A; Bielecki, J M; Feld, J J; Thein, H-H; Wong, W W L; Grootendorst, P; Krahn, M D

    2018-05-01

    Chronic hepatitis C (CHC) is a leading cause of hepatic fibrosis and cirrhosis. The level of fibrosis is traditionally established by histology, and prognosis is estimated using fibrosis progression rates (FPRs; annual probability of progressing across histological stages). However, newer noninvasive alternatives are quickly replacing biopsy. One alternative, transient elastography (TE), quantifies fibrosis by measuring liver stiffness (LSM). Given these developments, the purpose of this study was (i) to estimate prognosis in treatment-naïve CHC patients using TE-based liver stiffness progression rates (LSPR) as an alternative to FPRs and (ii) to compare consistency between LSPRs and FPRs. A systematic literature search was performed using multiple databases (January 1990 to February 2016). LSPRs were calculated using either a direct method (given the difference in serial LSMs and time elapsed) or an indirect method given a single LSM and the estimated duration of infection and pooled using random-effects meta-analyses. For validation purposes, FPRs were also estimated. Heterogeneity was explored by random-effects meta-regression. Twenty-seven studies reporting on 39 groups of patients (N = 5874) were identified with 35 groups allowing for indirect and 8 for direct estimation of LSPR. The majority (~58%) of patients were HIV/HCV-coinfected. The estimated time-to-cirrhosis based on TE vs biopsy was 39 and 38 years, respectively. In univariate meta-regressions, male sex and HIV were positively and age at assessment, negatively associated with LSPRs. Noninvasive prognosis of HCV is consistent with FPRs in predicting time-to-cirrhosis, but more longitudinal studies of liver stiffness are needed to obtain refined estimates. © 2017 John Wiley & Sons Ltd.

  7. Transient Elastography is Superior to FIB-4 in Assessing the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis B

    PubMed Central

    Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Song, Kijun; Han, Kwang-Hyub

    2016-01-01

    Abstract Liver stiffness (LS), assessed using transient elastography (TE), and (FIB-4) can both estimate the risk of developing hepatocellular carcinoma (HCC). We compared prognostic performances of LS and FIB-4 to predict HCC development in patients with chronic hepatitis B (CHB). Data from 1308 patients with CHB, who underwent TE, were retrospectively analyzed. FIB-4 was calculated for all patients. The cumulative rate of HCC development was assessed using Kaplan–Meier curves. The predictive performances of LS and FIB-4 were evaluated using time-dependent receiver-operating characteristic (ROC) curves. The mean age (883 men) was 50 years. During follow-up (median 6.1 years), 119 patients developed HCC. The areas under the ROC curves (AUROCs) predicting HCC risk at 3, 5, and 7 years were consistently greater for LS than for FIB-4 (0.791–0.807 vs 0.691–0.725; all P < 0.05). Similarly, when the respective AUROCs for LS and FIB-4 at every time point during the 7-year follow-up were plotted, LS also showed consistently better performance than FIB-4 after 1 year of enrollment. The combined use of LS and FIB-4 significantly enhanced the prognostic performance compared with the use of FIB-4 alone (P < 0.05), but the performance of the combined scores was statistically similar to that of LS alone (P > 0.05). LS showed significantly better performance than FIB-4 in assessing the risk of HCC development, and the combined use of LS and FIB-4 did not provide additional benefit compared with the use of LS alone. Hence, LS assessed using TE might be helpful for optimizing HCC surveillance strategies. PMID:27196449

  8. Transient Elastography is Superior to FIB-4 in Assessing the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis B.

    PubMed

    Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Song, Kijun; Han, Kwang-Hyub

    2016-05-01

    Liver stiffness (LS), assessed using transient elastography (TE), and (FIB-4) can both estimate the risk of developing hepatocellular carcinoma (HCC). We compared prognostic performances of LS and FIB-4 to predict HCC development in patients with chronic hepatitis B (CHB).Data from 1308 patients with CHB, who underwent TE, were retrospectively analyzed. FIB-4 was calculated for all patients. The cumulative rate of HCC development was assessed using Kaplan-Meier curves. The predictive performances of LS and FIB-4 were evaluated using time-dependent receiver-operating characteristic (ROC) curves.The mean age (883 men) was 50 years. During follow-up (median 6.1 years), 119 patients developed HCC. The areas under the ROC curves (AUROCs) predicting HCC risk at 3, 5, and 7 years were consistently greater for LS than for FIB-4 (0.791-0.807 vs 0.691-0.725; all P < 0.05). Similarly, when the respective AUROCs for LS and FIB-4 at every time point during the 7-year follow-up were plotted, LS also showed consistently better performance than FIB-4 after 1 year of enrollment. The combined use of LS and FIB-4 significantly enhanced the prognostic performance compared with the use of FIB-4 alone (P < 0.05), but the performance of the combined scores was statistically similar to that of LS alone (P > 0.05).LS showed significantly better performance than FIB-4 in assessing the risk of HCC development, and the combined use of LS and FIB-4 did not provide additional benefit compared with the use of LS alone. Hence, LS assessed using TE might be helpful for optimizing HCC surveillance strategies.

  9. Establishing ultrasound based transient elastography cutoffs for different stages of hepatic fibrosis and cirrhosis in Egyptian chronic hepatitis C patients.

    PubMed

    Elsharkawy, Aisha; Alboraie, Mohamed; Fouad, Rabab; Asem, Noha; Abdo, Mahmoud; Elmakhzangy, Hesham; Mehrez, Mai; Khattab, Hany; Esmat, Gamal

    2017-12-01

    Transient elastography is widely used to assess fibrosis stage in chronic hepatitis C (CHC). We aimed to establish and validate different transient elastography cut-off values for significant fibrosis and cirrhosis in CHC genotype 4 patients. The data of 100 treatment-naive CHC patients (training set) and 652 patients (validation set) were analysed. The patients were subjected to routine pretreatment laboratory investigations, liver biopsy and histopathological staging of hepatic fibrosis according to the METAVIR scoring system. Transient elastography was performed before and in the same week as liver biopsy using FibroScan (Echosens, Paris, France). Transient elastography results were correlated to different stages of hepatic fibrosis in both the training and validation sets. ROC curves were constructed. In the training set, the best transient elastography cut-off values for significant hepatic fibrosis (≥F2 METAVIR), advanced hepatic fibrosis (≥F3 METAVIR) and cirrhosis (F4 METAVIR) were 7.1, 9 and 12.2 kPa, with sensitivities of 87%, 87.5% and 90.9% and specificities of 100%, 99.9% and 99.9%, respectively. The application of these cut-offs in the validation set showed sensitivities of 85.5%, 82.8% and 92% and specificities of 86%, 89.4% and 99.01% for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, respectively. Transient elastography performs well for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, with validated cut-offs of 7.1, 9 and 12.2 kPa, respectively, in genotype 4 CHC patients. Copyright © 2017 Pan-Arab Association of Gastroenterology. Published by Elsevier B.V. All rights reserved.

  10. Usefulness of biochemical remission and transient elastography in monitoring disease course in autoimmune hepatitis.

    PubMed

    Hartl, Johannes; Ehlken, Hanno; Sebode, Marcial; Peiseler, Moritz; Krech, Till; Zenouzi, Roman; von Felden, Johann; Weiler-Normann, Christina; Schramm, Christoph; Lohse, Ansgar W

    2017-11-24

    Liver fibrosis regression but also progression may occur in patients with autoimmune hepatitis (AIH) under treatment. There is a need for non-invasive surrogate markers for fibrosis development in AIH to better guide immunosuppressive treatment. The aims of the study were to assess the impact of complete biochemical remission defined as normalisation of aminotransferases and IgG on histological activity and fibrosis development, and the value of repeat transient elastography (TE) measurement for monitoring disease progression in AIH. A total of 131 liver biopsies from 60 patients with AIH and more than 900 TE from 125 patients with AIH, 130 with primary biliary cholangitis (PBC) and 100 with primary sclerosing cholangitis (PSC), were evaluated. Time intervals between TE were at least 12 months. Patients with AIH were treated for at least six months at first TE. In contrast to PBC and PSC, a decrease of liver stiffness (LS) was observed in the whole group of patients with AIH (-6.2%/year; 95% CI -12.6% to -0.2%; p = 0.04). The largest decrease of LS was observed in patients with severe fibrosis at baseline (F4: -11.7%/year; 95% CI -19% to -3.5%; p = 0.006). Complete biochemical remission was strongly linked to regression of LS ("remission": -7.5%/year vs. "no remission": +1.7%/year, p <0.001). Similarly, complete biochemical remission predicted low histological disease activity and was the only independent predictor for histological fibrosis regression (relative risk3.66; 95% CI1.54-10.2; p = 0.001). Patients with F3/F4-fibrosis, who remained in biochemical remission showed a considerable decrease of fibrosis stage (3.7 ± 0.5 to 1.8 ± 1.7; p = 0.007) on histological follow-up. This study demonstrates that complete biochemical remission is a reliable predictor of a good prognosis in AIH and leads to fibrosis regression that can be monitored by TE. Autoimmune hepatitis is an inflammatory disease of the liver, which often progresses to cirrhosis if left untreated or in the case of insufficient treatment response. Current guidelines have defined biochemical remission (normalisation of biochemical markers for liver inflammation) as a major goal in the treatment of AIH. However, data on the prognostic relevance of this definition are scarce. Herein, we demonstrate that the current definition of biochemical remission is a reliable surrogate for low disease activity on histological assessment and for a beneficial long-term disease course. In addition, we establish transient elastography, a non-invasive ultrasound-based method of measuring scarring of liver tissue, as a reliable tool to monitor disease course in AIH. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Cost and time savings from a rapid access model of care using transient elastography to screen and triage patients with chronic Hepatitis C infection.

    PubMed

    Whitty, Jennifer A; Tallis, Caroline; Nguyen, Kim-Huong; Scuffham, Paul A; Crosland, Paul; Hewson, Kaye; Pai Mangalore, Rehka; Black, Marrianne; Holtmann, Gerald

    2014-02-01

    Treatment uptake amongst patients with chronic Hepatitis C virus (HCV) in Australia is relatively low. New approaches to assessment have the potential to reduce public waiting lists, improve access to treatment, and to reduce healthcare costs. To describe the costs to the public hospital system and waiting time associated with a novel integrated rapid access to assessment and treatment (RAAT) model of care that utilizes Transient Elastography (TE) as a specialist outpatient-based approach for a streamlined assessment of patients with chronic HCV, compared to conventional outpatient management with liver biopsy (LB). Time from first medical review to treatment plan and costs associated with detection of fibrosis were recorded for patients receiving RAAT during a 3-month period, and for a similar historical cohort managed conventionally with LB. Costs related to medical and multidisciplinary team reviews and the TE/LB test itself were included. Patients receiving RAAT had lower costs (n = 27, median AU$2716) and shorter time to treatment (median = 194 days) than for conventional management (n = 13, median $5005, 420 days; p < 0.01). Differences related to the lower TE test costs and the lower cost of consults between first medical review and establishment of a treatment plan. Based on real world audit data, this evaluation suggests TE, used as part of a new RAAT model of care, is cost saving to the health system in the short-term and reduces waiting times. The analysis reported here was intended to assess the costs related to detection of fibrosis, and is limited by the small sample size and potential selection bias. Future research should undertake a full economic evaluation at a whole of service level, to consider a more comprehensive and longer-term assessment of the costs and benefits associated with HCV management.

  12. Factors associated with significant liver fibrosis assessed using transient elastography in general population

    PubMed Central

    You, Seng Chan; Kim, Kwang Joon; Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Lee, Won Jae; Han, Kwang-Hyub

    2015-01-01

    AIM: To investigate the prevalence of significant liver fibrosis assessed using transient elastography (TE) and its predictors in asymptomatic general population. METHODS: A total of 159 subjects without chronic viral hepatitis who underwent comprehensive medical health check-up between January 2012 and July 2012 were prospectively recruited. Significant liver fibrosis was defined as liver stiffness value > 7.0 kPa. RESULTS: The mean age and body mass index (BMI) of the study population (men 54.7%) was 56.0 years and 24.3 kg/m2. Among the study subjects, 11 (6.9%) showed significant liver fibrosis. On univariate analysis, BMI, alanine aminotransferase (ALT), homeostasis model assessment of insulin resistance, carotid intimal media thickness (IMT), number of calcified plaques on carotid ultrasound, and visceral fat area on computed tomography were significantly higher in subjects with significant liver fibrosis than in those without (all P < 0.05). However, on multivariate analysis, BMI [odds ratio (OR) =1.487; P = 0.045], ALT (OR = 1.078; P = 0.014), carotid IMT (OR = 3.244; P = 0.027), and the number of calcified carotid plaques (OR = 1.787; P = 0.031) were independent predictors of significant liver fibrosis. CONCLUSION: The prevalence of significant liver fibrosis assessed using TE was 6.9% in apparently healthy subjects. High BMI, high ALT, thicker carotid IMT, and higher numbers of calcified carotid plaques were independently associated with the presence of significant liver fibrosis. PMID:25632188

  13. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Model-based elastography: a survey of approaches to the inverse elasticity problem

    PubMed Central

    Doyley, M M

    2012-01-01

    Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839

  15. Assessment of Liver Fibrosis by Transient Elastography Should Be Done After Hemodialysis in End Stage Renal Disease Patients with Liver Disease.

    PubMed

    Taneja, Sunil; Borkakoty, Amritangsu; Rathi, Sahaj; Kumar, Vivek; Duseja, Ajay; Dhiman, Radha K; Gupta, Krishan L; Chawla, Yogesh

    2017-11-01

    The patients with end stage renal disease (ESRD) are at greater risk of acquiring chronic hepatitis B or C and subsequently development of liver disease. The aim of the study was to assess liver fibrosis by transient elastography (TE) and look for factors associated with change in liver stiffness measurement (LSM) with one session of hemodialysis (HD). Consecutive ESRD patients on maintenance hemodialysis (MHD) with suspected liver disease were enrolled. They underwent LSM by TE before and after one session of HD. Bioelectric impedance analysis was done to evaluate the volume status at the time of TE. Sixty-eight patients with mean age of 40 ± 14 years were included. There was a significant reduction in LSM after HD (18.5 [95% CI 14.8-23.1] vs. 11.2 [95% CI 8.8-13.7] kPa, p < 0.001), with a mean LSM reduction of 7.2 [95% CI 5.25-9.19] kPa. On stratification in two groups by net ultrafiltration during HD (> or < 2.5 liters [L]), change in LSM was substantially higher in patients when total fluid removed was > 2.5 L (8.6 [95% CI 5.7-11.5] vs. 5.1 [95% CI 2.9-7.5], p = 0.05). In 18 patients who underwent liver biopsy, LSM after HD performed better at detecting significant fibrosis, with area under receiver operating characteristics curve 0.71 [95% CI 0.46-0.97], versus 0.64 [95% CI 0.38-0.90], respectively. An LSM value of 12.2 kPa after HD was 71% sensitive and 74% specific for detection of significant fibrosis (≥ F2), while values less than 9 kPa ruled out significant fibrosis with a sensitivity and specificity of 37 and 100%, respectively. LSM by TE decreases significantly after HD in patients with ESRD on long-term MHD. Hence, TE should be done after HD for accurate assessment of liver fibrosis.

  16. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage

    PubMed Central

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F.; Mansour, Joseph M.

    2015-01-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1–2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  17. Comparison of non-invasive assessment to diagnose liver fibrosis in chronic hepatitis B and C patients.

    PubMed

    Stibbe, Krista J M; Verveer, Claudia; Francke, Jan; Hansen, Bettina E; Zondervan, Pieter E; Kuipers, Ernst J; de Knegt, Robert J; van Vuuren, Anneke J

    2011-07-01

    Chronic viral hepatitis B and C cause liver fibrosis, leading to cirrhosis. Fibrosis assessment is essential to establish prognosis and treatment indication. We compared seven non-invasive tests, separately and in combination, in chronic hepatitis patients to detect early stages of fibrosis according to the Metavir score in liver biopsy. Galactose and methacetin breath tests (GBT and MBT), biomarkers (hyaluronic acid (HA), aspartate aminotransferase platelet ratio index (APRI), FibroTest, and Fib-4) and transient elastography (TE) were evaluated in 89 patients. Additionally, 31 healthy controls were included for evaluation of breath tests and biomarkers. Serum markers (HA, APRI, FibroTest, and Fib-4) and elastography significantly distinguished non-cirrhotic (F0123) from cirrhotic (F4) patients (p < 0.001, p = 0.015, p < 0.001, p = 0.005, p = 0.006, respectively). GBT, HA, APRI, FibroTest, Fib-4, and TE detected F01 from F234 (p = 0.04, p = 0.011, p = 0.009, p < 0.001, p < 0.001, and p < 0.001, respectively). A combination of different tests (TE, HA, and FibroTest) improved the performance statistically, area under the curve (AUC) = 0.87 for F234, 0.92 for F34, and 0.90 for F4. HA, APRI, FibroTest, Fib-4, and TE reliably distinguish non-cirrhotic and cirrhotic patients. Except for MBT, all tests discriminate between mild and moderate fibrosis. As single tests: FibroTest, Fib-4, and TE were the most accurate for detecting early fibrosis; combining different non-invasive tests increased the accuracy for detection of liver fibrosis to such an extent and thus might be acceptable to replace liver biopsy.

  18. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study.

    PubMed

    Jansen, Christian; Bogs, Christopher; Verlinden, Wim; Thiele, Maja; Möller, Philipp; Görtzen, Jan; Lehmann, Jennifer; Vanwolleghem, Thomas; Vonghia, Luisa; Praktiknjo, Michael; Chang, Johannes; Krag, Aleksander; Strassburg, Christian P; Francque, Sven; Trebicka, Jonel

    2017-03-01

    Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis of CSPH. We recently showed the algorithm to rule-out CSPH using sequential liver- (L-SWE) and spleen-Shear-wave elastography (S-SWE). This study investigated the diagnostic value of S-SWE for diagnosis of CSPH. One hundred and fifty-eight cirrhotic patients with pressure gradient measurements were included into this prospective multicentre study. L-SWE was measured in 155 patients, S-SWE in 112 patients, and both in 109 patients. Liver-shear-wave elastography and S-SWE correlated with clinical events and decompensation. SWE of liver and spleen revealed strong correlations with the pressure gradient and to differentiate between patients with and without CSPH. The best cut-off values were 24.6 kPa:L-SWE and 26.3 kPa:S-SWE. L-SWE ≤16.0 kPa and S-SWE ≤21.7 kPa were able to rule-out CSPH. Cut-off values of L-SWE >29.5 kPa and S-SWE >35.6 kPa were able to rule-in CSPH (specificity >92%). Patients with a L-SWE >38.0 kPa had likely CSPH. In patients with L-SWE ≤38.0 kPa, a S-SWE >27.9 kPa ruled in CSPH. This algorithm has a sensitivity of 89.2% and a specificity of 91.4% to rule-in CSPH. Patients not fulfilling these criteria may undergo HVPG measurement. Liver and spleen SWE correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Capacity of non-invasive hepatic fibrosis algorithms to replace transient elastography to exclude cirrhosis in people with hepatitis C virus infection: A multi-centre observational study

    PubMed Central

    Riordan, Stephen M.; Bopage, Rohan; Lloyd, Andrew R.

    2018-01-01

    Introduction Achievement of the 2030 World Health Organisation (WHO) global hepatitis C virus (HCV) elimination targets will be underpinned by scale-up of testing and use of direct-acting antiviral treatments. In Australia, despite publically-funded testing and treatment, less than 15% of patients were treated in the first year of treatment access, highlighting the need for greater efficiency of health service delivery. To this end, non-invasive fibrosis algorithms were examined to reduce reliance on transient elastography (TE) which is currently utilised for the assessment of cirrhosis in most Australian clinical settings. Materials and methods This retrospective and prospective study, with derivation and validation cohorts, examined consecutive patients in a tertiary referral centre, a sexual health clinic, and a prison-based hepatitis program. The negative predictive value (NPV) of seven non-invasive algorithms were measured using published and newly derived cut-offs. The number of TEs avoided for each algorithm, or combination of algorithms, was determined. Results The 850 patients included 780 (92%) with HCV mono-infection, and 70 (8%) co-infected with HIV or hepatitis B. The mono-infected cohort included 612 men (79%), with an overall prevalence of cirrhosis of 16% (125/780). An ‘APRI’ algorithm cut-off of 1.0 had a 94% NPV (95%CI: 91–96%). Newly derived cut-offs of ‘APRI’ (0.49), ‘FIB-4’ (0.93) and ‘GUCI’ (0.5) algorithms each had NPVs of 99% (95%CI: 97–100%), allowing avoidance of TE in 40% (315/780), 40% (310/780) and 40% (298/749) respectively. When used in combination, NPV was retained and TE avoidance reached 54% (405/749), regardless of gender or co-infection. Conclusions Non-invasive algorithms can reliably exclude cirrhosis in many patients, allowing improved efficiency of HCV assessment services in Australia and worldwide. PMID:29438397

  20. Capacity of non-invasive hepatic fibrosis algorithms to replace transient elastography to exclude cirrhosis in people with hepatitis C virus infection: A multi-centre observational study.

    PubMed

    Kelly, Melissa Louise; Riordan, Stephen M; Bopage, Rohan; Lloyd, Andrew R; Post, Jeffrey John

    2018-01-01

    Achievement of the 2030 World Health Organisation (WHO) global hepatitis C virus (HCV) elimination targets will be underpinned by scale-up of testing and use of direct-acting antiviral treatments. In Australia, despite publically-funded testing and treatment, less than 15% of patients were treated in the first year of treatment access, highlighting the need for greater efficiency of health service delivery. To this end, non-invasive fibrosis algorithms were examined to reduce reliance on transient elastography (TE) which is currently utilised for the assessment of cirrhosis in most Australian clinical settings. This retrospective and prospective study, with derivation and validation cohorts, examined consecutive patients in a tertiary referral centre, a sexual health clinic, and a prison-based hepatitis program. The negative predictive value (NPV) of seven non-invasive algorithms were measured using published and newly derived cut-offs. The number of TEs avoided for each algorithm, or combination of algorithms, was determined. The 850 patients included 780 (92%) with HCV mono-infection, and 70 (8%) co-infected with HIV or hepatitis B. The mono-infected cohort included 612 men (79%), with an overall prevalence of cirrhosis of 16% (125/780). An 'APRI' algorithm cut-off of 1.0 had a 94% NPV (95%CI: 91-96%). Newly derived cut-offs of 'APRI' (0.49), 'FIB-4' (0.93) and 'GUCI' (0.5) algorithms each had NPVs of 99% (95%CI: 97-100%), allowing avoidance of TE in 40% (315/780), 40% (310/780) and 40% (298/749) respectively. When used in combination, NPV was retained and TE avoidance reached 54% (405/749), regardless of gender or co-infection. Non-invasive algorithms can reliably exclude cirrhosis in many patients, allowing improved efficiency of HCV assessment services in Australia and worldwide.

  1. Screening for Nonalcoholic Fatty Liver Disease in Inflammatory Bowel Diseases: A Cohort Study Using Transient Elastography.

    PubMed

    Saroli Palumbo, Chiara; Restellini, Sophie; Chao, Che-Yung; Aruljothy, Achuthan; Lemieux, Carolyne; Wild, Gary; Afif, Waqqas; Lakatos, Peter L; Bitton, Alain; Cocciolillo, Sila; Ghali, Peter; Bessissow, Talat; Sebastiani, Giada

    2018-06-07

    Inflammatory bowel disease (IBD) patients may be at risk for nonalcoholic fatty liver disease (NAFLD) due to chronic inflammation, hepatotoxic drugs, and alteration of the gut microbiota. Prospective data using accurate diagnostic methods are lacking. We prospectively investigated prevalence and predictors of NAFLD and liver fibrosis by transient elastography (TE) with associated controlled attenuation parameter (CAP) in IBD patients as part of a routine screening program. NAFLD was defined as CAP ≥248 dB/m. Significant liver fibrosis (stage 2 or higher out of 4) was defined as TE measurement ≥7.0 kPa. Predictors of NAFLD and significant liver fibrosis were determined by logistic regression analysis. A total of 384 patients (mean age 42.4 years, 45.0% male, 64.6% with Crohn's disease) with no significant alcohol intake were included. Prevalence of NAFLD and significant liver fibrosis was 32.8% and 12.2%, respectively. Independent predictors of NAFLD were older age (adjusted odds ratio [aOR], 1.45; 95% confidence interval [CI], 1.15-1.82), higher body mass index (BMI; aOR, 1.31; 95% CI, 1.20-1.42) and higher triglycerides (aOR, 1.45; 95% CI, 1.01-2.09). Significant liver fibrosis was independently predicted by older age (aOR, 1.38; 95% CI, 1.12-1.64) and higher BMI (aOR, 1.14; 95% CI, 1.07-1.23). Extrahepatic diseases were more common in IBD patients with NAFLD compared with those without, namely chronic kidney disease (10.3 vs 2.3%; P < 0.001) and cardiovascular diseases (11.3 vs 4.7%; P = 0.02). NAFLD diagnosed by TE with CAP is a frequent comorbidity in IBD patients and is associated with extrahepatic diseases. Noninvasive screening strategies could help early diagnosis and initiation of interventions, including weight loss, correction of dyslipidemia, and linkage to care. 10.1093/ibd/izy200_video1izy200.video15794817619001.

  2. Noninvasive Assessment of Liver Fibrosis By Transient Elastography and FIB4/APRI for Prediction of Treatment Response in Chronic Hepatitis C-An Experience from a Tertiary Care Hospital.

    PubMed

    Taneja, Sunil; Tohra, Sunil; Duseja, Ajay; Dhiman, Radha Krishan; Chawla, Yogesh Kumar

    2016-12-01

    Liver fibrosis and its sequel cirrhosis represent a major health care burden, and assessment of fibrosis by biopsy is gradually being replaced by noninvasive methods. In clinical practice, the determination of fibrosis stage is important, since patients with advanced fibrosis have faster progression to cirrhosis and antiviral therapy is indicated in these patients. To assess the role of transient elastography (TE) and compare it with APRI and FIB4 for predicting liver fibrosis and assessing the effect of host and viral factors on fibrosis and treatment outcome in CHC patients. In a retrospective analysis, 330 CHC patients underwent liver stiffness measurement (LSM) by TE and tests needed for calculating APRI and FIB4 scores at baseline. 228 patients received a combination of Pegylated IFN-based antiviral therapy and were analyzed for therapeutic response. The study included 330 patients (median age 39 years [range 18-67]), predominantly males ( n  = 227, 68.8%) with baseline LSMs. The median liver stiffness was 7.8 kPa (range 3.2-69.1 kPa). LSMs and its thresholds for severe fibrosis progression (≥9.5 kPa) and cirrhosis (≥12.5 kPa) were significantly higher in patients with age ≥40 years, diabetes mellitus, and patients with significant alcohol intake ( P  = 0.003 to P  < 0.001). By taking TE as a reference, the diagnostic accuracy of FIB4 scores for predicting cirrhosis (AUROC 0.896) was good (+LR 13.4) compared to APRI (AUROC 0.823) with moderate likelihood ratio (+LR 6.9). Among 228 treated patients the SVR rate in genotype 3 was 70% versus 57.8% in genotype 1. Fibrosis score F4 ( P  = 0.023) and HCV genotype ( P  = 0.008) were independent predictors of SVR. The study shows that LSM by TE and fibrosis assessment by FIB4/APRI scores can be used with fair reliability to predict fibrosis and treatment response in patients with CHC infection.

  3. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study.

    PubMed

    Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela

    2013-09-01

    Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Transient Elastography vs. Aspartate Aminotransferase to Platelet Ratio Index in Hepatitis C: A Meta-Analysis.

    PubMed

    Mattos, A Z; Mattos, A A

    Many different non-invasive methods have been studied with the purpose of staging liver fibrosis. The objective of this study was verifying if transient elastography is superior to aspartate aminotransferase to platelet ratio index for staging fibrosis in patients with chronic hepatitis C. A systematic review with meta-analysis of studies which evaluated both non-invasive tests and used biopsy as the reference standard was performed. A random-effects model was used, anticipating heterogeneity among studies. Diagnostic odds ratio was the main effect measure, and summary receiver operating characteristic curves were created. A sensitivity analysis was planned, in which the meta-analysis would be repeated excluding each study at a time. Eight studies were included in the meta-analysis. Regarding the prediction of significant fibrosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 11.70 (95% confidence interval = 7.13-19.21) and 8.56 (95% confidence interval = 4.90-14.94) respectively. Concerning the prediction of cirrhosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 66.49 (95% confidence interval = 23.71-186.48) and 7.47 (95% confidence interval = 4.88-11.43) respectively. In conclusion, there was no evidence of significant superiority of transient elastography over aspartate aminotransferase to platelet ratio index regarding the prediction of significant fibrosis, but the former proved to be better than the latter concerning prediction of cirrhosis.

  5. Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites.

    PubMed

    Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian

    2012-01-01

    In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage.

  6. Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites

    PubMed Central

    Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian

    2012-01-01

    Background In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Methods and results Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. Conclusion In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage. PMID:24367229

  7. Transient and 2-Dimensional Shear-Wave Elastography Provide Comparable Assessment of Alcoholic Liver Fibrosis and Cirrhosis.

    PubMed

    Thiele, Maja; Detlefsen, Sönke; Sevelsted Møller, Linda; Madsen, Bjørn Stæhr; Fuglsang Hansen, Janne; Fialla, Annette Dam; Trebicka, Jonel; Krag, Aleksander

    2016-01-01

    Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and collagen-proportionate area were used as reference. We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver biopsy after an overnight fast. Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic accuracy between techniques. The cutoff values for optimal identification of significant fibrosis by transient elastography and 2-dimensional shear wave elastography were 9.6 kPa and 10.2 kPa, and for cirrhosis 19.7 kPa and 16.4 kPa. Negative predictive values were high for both groups, but the positive predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified individuals with significant fibrosis and cirrhosis. In a prospective study of individuals at risk for liver fibrosis due to alcohol consumption, we found elastography to be an excellent tool for diagnosing liver fibrosis and for excluding (ruling out rather than ruling in) cirrhosis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Feasibility of a transient elastography technique for in vitro arterial elasticity assessment.

    PubMed

    Brum, J; Balay, G; Bia, D; Armentano, R L; Negreira, C

    2010-01-01

    The early detection of biomechanical modifications in the arterial wall could be used as a predictor factor for various diseases, for example hypertension or atherosclerosis. In this work a transient elastography technique is used for the in vitro evaluation of the arterial wall elasticity. The obtained Young modulus is compared with the one obtained by a more classical approach: pressure-diameter relationships. As a sample an arterial phantom made of PolyVinyl Alcohol (PVA) gel was used. Diameter variation due to pressure variation inside the phantom was recorded by means of ultrasound. Through both techniques similar Young modulus estimations are obtained showing in this way the feasibility of applying transient elastography for the arterial wall elasticity assessment.

  9. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.

    PubMed

    Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent

    2012-10-01

    Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.

  10. Doppler ultrasonography combined with transient elastography improves the non-invasive assessment of fibrosis in patients with chronic liver diseases.

    PubMed

    Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica

    2017-01-31

    Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.

  11. A comparison of FibroMeter™ NAFLD Score, NAFLD fibrosis score, and transient elastography as noninvasive diagnostic tools for hepatic fibrosis in patients with biopsy-proven non-alcoholic fatty liver disease.

    PubMed

    Aykut, Umut Emre; Akyuz, Umit; Yesil, Atakan; Eren, Fatih; Gerin, Fatma; Ergelen, Rabia; Celikel, Cigdem Ataizi; Yilmaz, Yusuf

    2014-11-01

    Noninvasive markers that purport to distinguish patients with non-alcoholic fatty liver disease (NAFLD) with fibrosis from those without must be evaluated rigorously for their classification accuracy. Herein, we seek to compare the diagnostic performances of three different noninvasive methods (FibroMeter™ NAFLD score, NAFLD Fibrosis score (NFSA), and Transient Elastrography [TE]) for the detection of liver fibrosis in NAFLD patients. A total of 88 patients with biopsy-proven NAFLD were included. The Kleiner system was used for grading fibrosis in liver biopsies. The FibroMeter™ NAFLD score was determined using a proprietary algorithm (regression score). The NFSA score was calculated based on age, hyperglycemia, body mass index, platelets, albumin and serum aminotransferase levels. TE was performed using the Fibroscan apparatus. The sensitivities/specificities for the FibroMeter™ NAFLD score, NFSA, and TE for the diagnosis of significant fibrosis (F2 + F3 + F4 fibrosis) were 38.6%/86.4%, 52.3%/88.6%, and 75.0%/93.2%, respectively. The areas under the receiver operating characteristic curves of TE were significantly higher than those of both the FibroMeter™ NAFLD score and NFSA. No significant differences were found between the FibroMeter™ NAFLD score and NFSA for the detection of significant and severe fibrosis, although the diagnostic performance of the FibroMeter™ NAFLD score was higher than that of the NFSA score for cirrhosis. In summary, TE showed the best diagnostic performance for the noninvasive assessment of liver fibrosis in NAFLD patients. The diagnostic performances of the FibroMeter™ NAFLD score and NFSA did not differ significantly for the detection of both significant and severe fibrosis.

  12. Direct targeting of risk factors significantly increases the detection of liver cirrhosis in primary care: a cross-sectional diagnostic study utilising transient elastography.

    PubMed

    Harman, David J; Ryder, Stephen D; James, Martin W; Jelpke, Matthew; Ottey, Dominic S; Wilkes, Emilie A; Card, Timothy R; Aithal, Guruprasad P; Guha, Indra Neil

    2015-05-03

    To assess the feasibility of a novel diagnostic algorithm targeting patients with risk factors for chronic liver disease in a community setting. Prospective cross-sectional study. Two primary care practices (adult patient population 10,479) in Nottingham, UK. Adult patients (aged 18 years or over) fulfilling one or more selected risk factors for developing chronic liver disease: (1) hazardous alcohol use, (2) type 2 diabetes or (3) persistently elevated alanine aminotransferase (ALT) liver function enzyme with negative serology. A serial biomarker algorithm, using a simple blood-based marker (aspartate aminotransferase:ALT ratio for hazardous alcohol users, BARD score for other risk groups) and subsequently liver stiffness measurement using transient elastography (TE). Diagnosis of clinically significant liver disease (defined as liver stiffness ≥8 kPa); definitive diagnosis of liver cirrhosis. We identified 920 patients with the defined risk factors of whom 504 patients agreed to undergo investigation. A normal blood biomarker was found in 62 patients (12.3%) who required no further investigation. Subsequently, 378 patients agreed to undergo TE, of whom 98 (26.8% of valid scans) had elevated liver stiffness. Importantly, 71/98 (72.4%) patients with elevated liver stiffness had normal liver enzymes and would be missed by traditional investigation algorithms. We identified 11 new patients with definite cirrhosis, representing a 140% increase in the number of diagnosed cases in this population. A non-invasive liver investigation algorithm based in a community setting is feasible to implement. Targeting risk factors using a non-invasive biomarker approach identified a substantial number of patients with previously undetected cirrhosis. The diagnostic algorithm utilised for this study can be found on clinicaltrials.gov (NCT02037867), and is part of a continuing longitudinal cohort study. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  14. Relationship of liver stiffness and controlled attenuation parameter measured by transient elastography with diabetes mellitus in patients with chronic liver disease.

    PubMed

    Ahn, Jem Ma; Paik, Yong-Han; Kim, So Hyun; Lee, Jun Hee; Cho, Ju Yeon; Sohn, Won; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Yoo, Byung Chul

    2014-08-01

    High prevalence of diabetes mellitus in patients with liver cirrhosis has been reported in many studies. The aim of our study was to evaluate the relationship of hepatic fibrosis and steatosis assessed by transient elastography with diabetes in patients with chronic liver disease. The study population consisted of 979 chronic liver disease patients. Liver fibrosis and steatosis were assessed by liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) on transient elastography. Diabetes was diagnosed in 165 (16.9%) of 979 patients. The prevalence of diabetes had significant difference among the etiologies of chronic liver disease. Higher degrees of liver fibrosis and steatosis, assessed by LSM and CAP score, showed higher prevalence of diabetes (F0/1 [14%], F2/3 [18%], F4 [31%], P<0.001; S0/1 [15%], S2 [17%], S3 [26%], P=0.021). Multivariate analysis showed that the independent predictive risk factors for diabetes were hypertension (OR, 1.98; P=0.001), LSM F4 (OR, 1.86; P=0.010), male gender (OR, 1.60; P=0.027), and age>50 yr (OR, 1.52; P=0.046). The degree of hepatic fibrosis but not steatosis assessed by transient elastography has significant relationship with the prevalence of diabetes in patients with chronic liver disease.

  15. Liver Stiffness Evaluation by Transient Elastography in Type 2 Diabetes Mellitus Patients with Ultrasound-proven Steatosis.

    PubMed

    Sporea, Ioan; Mare, Ruxandra; Lupușoru, Raluca; Sima, Alexandra; Sirli, Roxana; Popescu, Alina; Timar, Romulus

    2016-06-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The aim of our study was to evaluate a population of diabetic patients regarding the severity of liver steatosis and liver fibrosis. The study included 392 type 2 diabetic patients prospectively randomized, evaluated in the same session by transabdominal ultrasound to assess steatosis and by liver elastography to assess fibrosis (Transient Elastography - TE, FibroScan, EchoSens). Steatosis severity was graded using a semi-quantitative scale (S0-no steatosis; S1-mild steatosis; S2-moderate steatosis; S3-severe steatosis). For differentiation between stages of liver fibrosis, the following cut-off values were used (Wong et al., 2010): F2-F3: 7-10.2kPa, F4>/=10.3 kPa. Reliable elastographic measurements were obtained in 76% (298/392) patients. By using the proposed cut-off values, significant fibrosis (F2-F3) was found in 18.8% (56) patients with steatosis, while 13.8% (41) had cirrhosis (F4). Significant fibrosis (F2-F3) was found in 20.4% (20/98) of the patients with S1, in 18.6% (22/118) of those with S2 and in 31.8% (14/44) of those with S3, while cirrhosis (F4) was diagnosed in 7.1% (7/98) patients with S1, in 20.3% (24/118) of those with S2 and in 22.7% (10/44) of those with S3. Liver steatosis diagnosed by ultrasound is very frequently found in type 2 diabetes mellitus patients, more than half of them having moderate/severe steatosis. A significant liver stiffness increase was found in more than 30% of these patients. Liver stiffness assessment in type 2 diabetic patients should be performed systematically to identify those with significant liver fibrosis.

  16. Ultrasound elastographic techniques in focal liver lesions

    PubMed Central

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-01-01

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405

  17. Ultrasound elastographic techniques in focal liver lesions.

    PubMed

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-03-07

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.

  18. Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.

    PubMed

    DeWall, Ryan J; Varghese, Tomy; Madsen, Ernest L

    2011-03-01

    This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures.

  19. Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce; Renzi, Daniel

    2006-04-01

    Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).

  20. Transient elastography compared to liver biopsy and morphometry for predicting fibrosis in pediatric chronic liver disease: Does etiology matter?

    PubMed Central

    Behairy, Behairy El-Sayed; Sira, Mostafa Mohamed; Zalata, Khaled Refat; Salama, El-Sayed Ebrahem; Abd-Allah, Mohamed Ahmed

    2016-01-01

    AIM: To evaluate transient elastography (TE) as a noninvasive tool in staging liver fibrosis compared with liver biopsy and morphometry in children with different chronic liver diseases. METHODS: A total of 90 children [50 with chronic hepatitis C virus (HCV), 20 with autoimmune hepatitis (AIH) and 20 with Wilson disease] were included in the study and underwent liver stiffness measurement (LSM) using TE. Liver biopsies were evaluated for fibrosis, qualitatively, by Ishak score and quantitatively by fibrosis area fraction (FAF) using digital image analysis (morphometry). LSM was correlated with fibrosis and other studied variables using spearman correlation. A stepwise multiple regression analysis was also performed to examine independent factors associated with LSM. Different cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. Cut-off values with optimal clinical performance (optimal sensitivity and specificity simultaneously) were selected. RESULTS: The majority of HCV group had minimal activity (80%) and no/mild fibrosis (72%). On the other hand, the majority of AIH group had mild to moderate activity (70%) and moderate to severe fibrosis (95%) and all Wilson disease group had mild to moderate activity (100%) and moderate to severe fibrosis (100%). LSM correlated significantly with both FAF and Ishak scores and the correlation appeared better with the latter (r = 0.839 vs 0.879, P < 0.0001 for both). LSM discriminated individual stages of fibrosis with high performance. Sensitivity ranged from 81.4% to 100% and specificity ranged from 75.0% to 97.2%. When we compared LSM values for the same stage of fibrosis, they varied according to the different etiologies. Higher values were in AIH (16.15 ± 7.23 kPa) compared to Wilson disease (8.30 ± 0.84 kPa) and HCV groups (7.43 ± 1.73 kPa). Multiple regression analysis revealed that Ishak fibrosis stage was the only independent variable associated with higher LSM (P < 0.0001). CONCLUSION: TE appears reliable in distinguishing different stages of liver fibrosis in children. However, its values vary according to the disease type. For that, a disease-specific estimation of cut-off values for fibrosis staging is worthy. PMID:27122674

  1. Dynamics of liver stiffness values by means of transient elastography in patients with HCV liver cirrhosis undergoing interferon free treatment.

    PubMed

    Sporea, Ioan; Lupușoru, Raluca; Mare, Ruxandra; Popescu, Alina; Gheorghe, Liana; Iacob, Speranța; Șirli, Roxana

    2017-06-01

    Liver stiffness (LS) measurement by Transient Elastography (TE) has been widely accepted as a tool for fibrosis assessment. The aim of this study was to assess LS dynamics in a group of patients with HCV liver cirrhosis after interferon free treatment (IFT). This two-center clinical trial included 225 patients with compensated HCV cirrhosis (all genotype 1b), who received IFT for 12 weeks. All patients were evaluated by means of TE at the beginning and at the end of treatment (EOT), and a subgroup (170 patients) also 12 weeks after EOT; all of them had sustained viral response (SVR). Reliable LS measurements (LSM) were defined as a median value of 10 valid LSM, with IQR <30% and SR >/=60%. Both M and XL probes were used. For diagnosing cirrhosis we used a cut-off value of 12kPa as proposed by the Tsochatzis meta-analysis. We considered a decrease or increase of more than 10% in LSM as being significant. Out of 225 subjects, reliable measurements were obtained in 93.7%, so that the final analysis included 211 patients. The mean LS values decreased significantly after IFT: 26.4+/-11.7 vs. 23.5+/-13.3 kPa (p=0.01). Most patients, 59.2% (125/211) presented more than 10% decrease in LS values, 24.1% (51/211) had stable LS values, while in 16.4% (35/211) cases, the LS values increased. In the subgroup of 170 patients with LSM also performed 12 weeks after EOT (SVR), the mean LS values were significantly lower as compared to baseline: 21.3+/-11 kPa vs. 27.4+/-11.9 kPa (p<0.0001) and also as compared to EOT: 21.3+/-11 kPa vs. 23.7+/-13.3 kPa (p<0.0001). In our patients with HCV liver cirrhosis, the mean LS values evaluated by TE significantly decreased after antiviral treatment at EOT and also 12 weeks after EOT as compared to baseline. Overall, about 60% of patients had LS values at EOT lower than at baseline, while 12 weeks after EOT about 75% of patients had LS values lower than at baseline.

  2. Diagnostic Performance of MR Elastography and Vibration-controlled Transient Elastography in the Detection of Hepatic Fibrosis in Patients with Severe to Morbid Obesity

    PubMed Central

    Chen, Jun; Yin, Meng; Talwalkar, Jayant A.; Oudry, Jennifer; Glaser, Kevin J.; Smyrk, Thomas C.; Miette, Véronique; Sandrin, Laurent

    2017-01-01

    Purpose To evaluate the diagnostic performance and examination success rate of magnetic resonance (MR) elastography and vibration-controlled transient elastography (VCTE) in the detection of hepatic fibrosis in patients with severe to morbid obesity. Materials and Methods This prospective and HIPAA-compliant study was approved by the institutional review board. A total of 111 patients (71 women, 40 men) participated. Written informed consent was obtained from all patients. Patients underwent MR elastography with two readers and VCTE with three observers to acquire liver stiffness measurements for liver fibrosis assessment. The results were compared with those from liver biopsy. Each pathology specimen was evaluated by two hepatopathologists according to the METAVIR scoring system or Brunt classification when appropriate. All imaging observers were blinded to the biopsy results, and all hepatopathologists were blinded to the imaging results. Examination success rate, interobserver agreement, and diagnostic accuracy for fibrosis detection were assessed. Results In this obese patient population (mean body mass index = 40.3 kg/m2; 95% confidence interval [CI]: 38.7 kg/m2, 41.8 kg/m2]), the examination success rate was 95.8% (92 of 96 patients) for MR elastography and 81.3% (78 of 96 patients) or 88.5% (85 of 96 patients) for VCTE. Interobserver agreement was higher with MR elastography than with biopsy (intraclass correlation coefficient, 0.95 vs 0.89). In patients with successful MR elastography and VCTE examinations (excluding unreliable VCTE examinations), both MR elastography and VCTE had excellent diagnostic accuracy in the detection of clinically significant hepatic fibrosis (stage F2–F4) (mean area under the curve: 0.93 [95% CI: 0.85, 0.97] vs 0.91 [95% CI: 0.83, 0.96]; P = .551). Conclusion In this obese patient population, both MR elastography and VCTE had excellent diagnostic performance for assessing hepatic fibrosis; MR elastography was more technically reliable than VCTE and had a higher interobserver agreement than liver biopsy. © RSNA, 2016 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on January 25, 2017. PMID:27861111

  3. Shear Wave Velocity Imaging Using Transient Electrode Perturbation: Phantom and ex vivo Validation

    PubMed Central

    Varghese, Tomy; Madsen, Ernest L.

    2011-01-01

    This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures. PMID:21075719

  4. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  5. A comprehensive review of noninvasive liver fibrosis tests in pediatric nonalcoholic Fatty liver disease.

    PubMed

    Mansoor, Sana; Collyer, Elizabeth; Alkhouri, Naim

    2015-06-01

    Nonalcoholic fatty liver disease (NAFLD) and its spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis have been increasing in the pediatric population. The presence and severity of fibrosis in patients with NAFLD are important prognostic factors for the risk of disease progression to cirrhosis. The gold standard for staging liver fibrosis is a liver biopsy. However, given the risks of this procedure, especially in the pediatric population, the development of noninvasive markers to diagnose and monitor progression of NAFLD is desirable. This paper will review recently developed noninvasive methods for diagnosing liver fibrosis in children with NAFLD. These include simple fibrosis scores, advanced biochemical markers, and radiologic imaging studies. Simple fibrosis scores use readily available laboratory tests; available one include AST/ALT ratio, AST to platelet ratio index (APRI), fibrosis (FIB)-4 index, NAFLD fibrosis score (NFS), pediatric NAFLD fibrosis index (PNFI), and pediatric NALFD fibrosis score (PNFS). Advanced biochemical markers include biomarkers of hepatocyte cell death such as cytokeratin 18 fragment levels, and markers of extracellular matrix turnover such as the Enhanced Liver Fibrosis (ELF) test and hyaluronic acid. Radiologic imaging studies estimate liver stiffness as a surrogate for liver fibrosis; these include transient elastography (TE), magnetic resonance elastography (MRE), and acoustic radiation force impulse imaging (ARFI).

  6. Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions

    PubMed Central

    Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.

    2016-01-01

    Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833

  7. [Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].

    PubMed

    Shin, Jung Woo; Park, Neung Hwa

    2016-07-25

    The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis.

  8. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.

    PubMed

    Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C

    2016-02-01

    In the last 12 - 18 months nearly all ultrasound manufacturers have arrived to implement ultrasound shear wave elastography modality in their equipment for the assessment of chronic liver disease; the few remaining players are expected to follow in 2016.When all manufacturers rush to a new technology at the same time, it is evident that the clinical demand for this information is of utmost value. Around 1990, there was similar demand for color Doppler ultrasound; high demand for contrast-enhanced ultrasonography was evident at the beginning of this century, and around 2010 demand increased for strain elastography. However, some issues regarding the new shear wave ultrasound technologies must be noted to avoid misuse of the resulting information for clinical decisions. As new articles are expected to appear in 2016 reporting the findings of the new technologies from various companies, we felt that the beginning of this year was the right time to present an appraisal of these issues. We likewise expect that in the meantime EFSUMB will release a new update of the existing guidelines 1 2.The first ultrasound elastography method became available 13 years ago in the form of transient elastography with Fibroscan(®) 3. It was the first technique providing non-invasive quantitive information about the stiffness of the liver and hence regarding the amount of fibrosis in chronic liver disease 3. The innovation was enormous, since a non-invasive modality was finally available to provide findings otherwise achievable only by liver biopsy. In fact, prior to ultrasound elastography, a combination of conventional and Doppler ultrasound parameters were utilized to inform the physician about the presence of cirrhosis and portal hypertension 4. However, skilled operators were required, reproducibility and diagnostic accuracy were suboptimal, and it was not possible to differentiate the pre-cirrhotic stages of fibrosis. All these limitations were substantially improved by transient elastography, performed with Fibroscan(®), a technology dedicated exclusively to liver elastography. Since then, more than 1300 articles dealing with transient elastography have been listed in PubMed, some describing results with more than 10,000 patients 5. The technique has been tested in nearly all liver disease etiologies, with histology as the reference standard. Meta-analysis of data, available in many etiologies 6, showed good performance and reproducibility as well as some situations limiting reliability 5. Thresholds for the different fibrosis stages (F0 to F4) have been provided by many large-scale studies utilizing histology as the reference standard 7. Transient elastography tracks the velocity of shear waves generated by the gentle hit of a piston on the skin, with the resulting compression wave traveling in the liver along its longitudinal axis. The measurement is made in a 4 cm long section of the liver, thus able to average slightly inhomogeneous fibrotic deposition.In 2008 a new modality became available, Acoustic Radiation Force Impulse (ARFI) quantification, and classified by EFSUMB 1 as point shear wave elastography (pSWE), since the speed of the shear wave (perpendicular to the longitudinal axis) is measured in a small region (a "point", few millimeters) at a freely-choosen depth within 8 cm from the skin. This technology was the first to be implemented in a conventional ultrasound scanner by Siemens(®) 8. Several articles have been published regarding this technology, most with the best reference standards 9, some including findings on more than 1000 hepatitis C patients 10 or reporting meta-analysis of data 11. Although the correlation between Siemens pSWE and transient elastography appeared high 12 13, the calculated thresholds for the different fibrosis stages and the stiffness ranges between the two techniques are not superimposable.Interestingly, pSWE appears to provide greater applicability than transient elastography for measuring both liver 13 and spleen stiffness, which is a new application of elastography 14, of interest for the prediction of the degree of portal hypertension 15 16.Nowadays other companies have started producing equipment with pSWE technology, but only very few articles have been published so far, for instance describing the use of Philips(®) equipment, which was the second to provide pSWE. These articles show preliminary good results also in comparison with TE 17 18. Not enough evidence is currently available in the literature about the elastographic performance of the products most recently introduced to the market. Furthermore, with some products the shear wave velocities generated by a single ultrasound acoustic push pulse can be measured in a bidimensional area (a box in the range of 2 - 3 cm per side) rather than in a single small point, producing a so-called bidimensional 2D-SWE 1. The stiffness is depicted in color within the area and refreshing of the measurement occurs every 1 - 2 seconds. Once the best image is acquired, the operator chooses a Region Of Interest (ROI) within the color box, where the mean stiffness is then calculated. 2D-SWE can be performed as a "one shot" technique or as a semi-"real-time" technique for a few seconds (at about 1 frame per second) in order to obtain a stable elastogram. With either technique, there should be no motion/breathing during image acquisition. A bidimensional averaged area should overcome the limitation of pSWE to inadvertently investigate small regions of greater or lesser stiffness than average. A shear wave quality indicator could be useful to provide real-time feedback and optimize placement of the sampling ROIs, a technology recently presented by Toshiba(®), but which is still awaiting validation in the literature.Supersonic Imagine by Aixplorer(®) which works with a different modality of insonation and video analysis compared to the the previously-mentioned three techniques (i. e., transient elastography, pSWE and 2D-SWE), leading to a bidimensional assessment of liver stiffness in real time up to 5 Hz and in larger regions; thus this technique is also termed real-time 2 D SWE. It has been available on the market for a few years 19 20, and many articles have been published showing stiffness values quite similar to those of Fibroscan(®) 21; likewise, defined thresholds based on histological findings have appeared in several articles 19 20 21.After this brief summary of the technological state of the art we would like to mention the following critical issues that we believe every user should note prior to providing liver stiffness reports. · The thresholds obtained from the "oldest" techniques for the various fibrosis stages based on hundreds of patients with histology as reference standard cannot be straightforwardly applied to the new ultrasound elastography techniques, even if based on the same principle (e. g. pSWE). In fact, the different manufacturers apply proprietary patented calculation modes, which might result in slightly to moderately different values. It should be kept in mind that the range for intermediate fibrosis stages (F1 to F3) is quite narrow, in the order of 2 - 3 kilopascal (over a total range spanning 2 to 75 kPa with Fibroscan), so that slightly different differences in outputs could shift the assessment of patients from one stage to another. Comparative studies using phantoms and healthy volunteers, as well as patients, are eagerly awaited. In fact, the equipment might not produce linear correlations of measurements at different degrees of severity of fibrosis. As a theoretical example, some equipment might well correlate in their values with an older technique, such as transient elastography, at low levels of liver fibrosis, but not as well in cases of more advanced fibrosis or vice versa. Consequentely, when elastography data are included in a report, the equipment utilized for the measurement should be clearly specified, and conclusions about the fibrosis stage should be withheld if an insufficient number of comparative studies with solid reference standards are available for that specific equipment.. · Future studies using histology as a reference might be biased in comparison to previous studies, since nowadays fewer patients with chronic hepatitis C or hepatitis B undergo biopsy. In fact, due to wide availability of effective drugs as well as the use of established elastography methods for patients with viral hepatitis, most cases submitted to biopsy today have uncertain etiology or inconsistent and inconclusive clinical data. Therefore, extrapolated thresholds from such inhomogeneous populations applied to more ordinary patients with viral hepatitis might become problematic in the future, although no better solution is currently anticipated. This situation might lead to the adoption of a standard validated elastographic method as reference, but this has to be agreed-upon at an international level.. · Ultrasound elastography embedded in conventional scanners usually allows the choice of where to place the ROI within the color stiffness box and whether to confirm or exclude each single measurement when determining the final value. Thus, the operator has a greater potential to influence the final findings than with Fibroscan®, where these choices are not available. This has to be kept in mind to avoid the possibility that an operator could, even inadvertently, tend to confirm an assumption about that specific patient or to confirm the patient's expectations.. · Quality criteria for the new technologies following transient elastography are absent (depending on the manufacturer) or have not been satisfactorily defined, so that the information potentially inserted in a report cannot currently be judged for its reliability by the clinician.. (ABSTRACT TRUNCATED) © Georg Thieme Verlag KG Stuttgart · New York.

  9. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  10. Noninvasive scoring system for significant inflammation related to chronic hepatitis B

    NASA Astrophysics Data System (ADS)

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-03-01

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (-) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (-) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.

  11. Can transient elastography, Fib-4, Forns Index, and Lok Score predict esophageal varices in HCV-related cirrhotic patients?

    PubMed

    Hassan, Eman M; Omran, Dalia A; El Beshlawey, Mohamad L; Abdo, Mahmoud; El Askary, Ahmad

    2014-02-01

    Gastroesophageal varices are present in approximately 50% of patients with liver cirrhosis. The aim of this study was to evaluate liver stiffness measurement (LSM), Fib-4, Forns Index and Lok Score as noninvasive predictors of esophageal varices (EV). This prospective study included 65 patients with HCV-related liver cirrhosis. All patients underwent routine laboratory tests, transient elastograhy (TE) and esophagogastroduodenoscopy. FIB-4, Forns Index and Lok Score were calculated. The diagnostic performances of these methods were assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy and receiver operating characteristic curves. All predictors (LSM, FIB-4, Forns Index and Lok Score) demonstrated statistically significant correlation with the presence and the grade of EV. TE could diagnose EV at a cutoff value of 18.2kPa. Fib-4, Forns Index, and Lok Score could diagnose EV at cutoff values of 2.8, 6.61 and 0.63, respectively. For prediction of large varices (grade 2, 3), LSM showed the highest accuracy (80%) with a cutoff of 22.4kPa and AUROC of 0.801. Its sensitivity was 84%, specificity 72%, PPV 84% and NPV 72%. The diagnostic accuracies of FIB-4, Forns Index and Lok Score were 70%, 70% and76%, respectively, at cutoffs of 3.3, 6.9 and 0.7, respectively. For diagnosis of large esophageal varices, adding TE to each of the other diagnostic indices (serum fibrosis scores) increased their sensitivities with little decrease in their specificities. Moreover, this combination decreased the LR- in all tests. Noninvasive predictors can restrict endoscopic screening. This is very important as non invasiveness is now a major goal in hepatology. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  12. The role of ultrasound elastographic techniques in chronic liver disease: current status and future perspectives.

    PubMed

    Piscaglia, Fabio; Marinelli, Sara; Bota, Simona; Serra, Carla; Venerandi, Laura; Leoni, Simona; Salvatore, Veronica

    2014-03-01

    This review illustrates the state of the art clinical applications and the future perspectives of ultrasound elastographic methods for the evaluation of chronic liver diseases, including the most widely used and validated technique, transient elastography, followed by shear wave elastography and strain imaging elastography. Liver ultrasound elastography allows the non-invasive evaluation of liver stiffness, providing information regarding the stage of fibrosis, comparable to liver biopsy which is still considered the gold standard; in this way, it can help physicians in managing patients, including the decision as to when to start antiviral treatment. The characterization of focal liver lesions and the prognostic role of the elastographic technique in the prediction of complications of cirrhosis are still under investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. [Comparison of the M and XL FibroScan(®) probes to estimate liver stiffness by transient elastography].

    PubMed

    Herrero, José Ignacio; Iñarrairaegui, Mercedes; D'Avola, Delia; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2014-04-01

    The FibroScan(®) XL probe has been specifically designed for obese patients to measure liver stiffness by transient elastography, but it has not been well tested in non-obese patients. The aim of this study was to compare the M and XL FibroScan(®) probes in a series of unselected obese (body mass index above 30 kg/m(2)) and non-obese patients with chronic liver disease. Two hundred and fifty-four patients underwent a transient elastography examination with both the M and XL probes. The results obtained with the two probes were compared in the whole series and in obese (n=82) and non-obese (n=167) patients separately. The reliability of the examinations was assessed using the criteria defined by Castéra et al. The proportion of reliable exams was significantly higher when the XL probe was used (83% versus 73%; P=.001). This significance was maintained in the group of obese patients (82% versus 55%; P<.001), but not in the non-obese patients (84% versus 83%). Despite a high correlation between the stiffness values obtained with the two probes (R=.897; P<.001), and a high concordance in the estimation of fibrosis obtained with the two probes (Cronbach's alpha value: 0.932), the liver stiffness values obtained with the XL probe were significantly lower than those obtained with the M probe, both in the whole series (9.5 ± 9.1 kPa versus 11.3 ± 12.6 kPa; P<0.001) and in the obese and non-obese groups. In conclusion, transient elastography with the XL probe allows a higher proportion of reliable examinations in obese patients but not in non-obese patients. Stiffness values were lower with the XL probe than with the M probe. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  14. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Cournane, S.; Cannon, L.; Browne, J. E.; Fagan, A. J.

    2010-10-01

    The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 µm Al2O3 and 3 µm Al2O3, were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s-1, respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.

  15. Experiences of liver health related uncertainty and self-reported stress among people who inject drugs living with hepatitis C virus: a qualitative study.

    PubMed

    Goutzamanis, Stelliana; Doyle, Joseph S; Thompson, Alexander; Dietze, Paul; Hellard, Margaret; Higgs, Peter

    2018-04-02

    People who inject drugs (PWID) are most at risk of hepatitis C virus infection in Australia. The introduction of transient elastography (TE) (measuring hepatitis fibrosis) and direct acting antiviral medications will likely alter the experience of living with hepatitis C. We aimed to explore positive and negative influences on wellbeing and stress among PWID with hepatitis C. The Treatment and Prevention (TAP) study examines the feasibility of treating hepatitis C mono-infected PWID in community settings. Semi-structured interviews were conducted with 16 purposively recruited TAP participants. Participants were aware of their hepatitis C seropositive status and had received fibrosis assessment (measured by TE) prior to interview. Questions were open-ended, focusing on the impact of health status on wellbeing and self-reported stress. Interviews were voice recorded, transcribed verbatim and thematically analysed, guided by Mishel's (1988) theory of Uncertainty in Illness. In line with Mishel's theory of Uncertainty in Illness all participants reported hepatitis C-related uncertainty, particularly mis-information or a lack of knowledge surrounding liver health and the meaning of TE results. Those with greater fibrosis experienced an extra layer of prognostic uncertainty. Experiences of uncertainty were a key motivation to seek treatment, which was seen as a way to regain some stability in life. Treatment completion alleviated hepatitis C-related stress, and promoted feelings of empowerment and confidence in addressing other life challenges. TE scores seemingly provide some certainty. However, when paired with limited knowledge, particularly among people with severe fibrosis, TE may be a source of uncertainty and increased personal stress. This suggests the need for simple education programs and resources on liver health to minimise stress.

  16. 31Phosphorus magnetic resonance spectroscopy of the liver for evaluating inflammation and fibrosis in autoimmune hepatitis.

    PubMed

    Puustinen, Lauri; Hakkarainen, Antti; Kivisaari, Reetta; Boyd, Sonja; Nieminen, Urpo; Färkkilä, Martti; Lundbom, Nina; Arkkila, Perttu

    2017-08-01

    Liver biopsy is the gold standard in evaluating inflammation and fibrosis in autoimmune hepatitis. In search of non-invasive follow-up tools in autoimmune hepatitis, we evaluated 31 phosphorus magnetic resonance spectroscopy ( 31 P MRS). Twelve consecutive AIH patients (mean age 42.8 years, 10 women) underwent liver biopsy, routine laboratory liver function tests, which were compared to findings in 31 P MRS and transient elastography (TE). Phosphoenolpuryvate (PEP) correlated with the grade of inflammation (r = 0.746, p = .005) and thromboplastin time (r = 0.592, p = .043). It also differentiated patients with active inflammation from patients without (t = 3.781, p = .009). There was no correlation between PEP and aminotransferase or immunoglobulin G levels. The phosphoethanolamine (PE)/phosphocholine (PC) ratio, PE/glyserophosphoethanolamine (GPE) ratio and PC/[total phosphomonoester (PME) + phosphodiester (PDE)] ratios correlated with immunoglobulin G (r = 0.764, p = .006; r = 0.618, p = .043; and r= -0.636, p = .035, respectively). PME/PDE and PE/GPE correlated with fibrosis (r = 0.668, p = .018 and r = 0.604, p = .037). PE/GPE also differentiated F3 from F0-2 patients (t = 3.810, p = .003). Phosphorus metabolites did not correlate with TE results and TE did not correlate with liver histology or laboratory parameters. 31 P MRS seems to detect active inflammation and advanced fibrosis in AIH patients. TE was ineffective in fibrosis quantification.

  17. Accuracy of the Enhanced Liver Fibrosis Test vs FibroTest, Elastography, and Indirect Markers in Detection of Advanced Fibrosis in Patients With Alcoholic Liver Disease.

    PubMed

    Thiele, Maja; Madsen, Bjørn Stæhr; Hansen, Janne Fuglsang; Detlefsen, Sönke; Antonsen, Steen; Krag, Aleksander

    2018-04-01

    Alcohol is the leading cause of cirrhosis and liver-related mortality, but we lack serum markers to detect compensated disease. We compared the accuracy of the Enhanced Liver Fibrosis test (ELF), the FibroTest, liver stiffness measurements (made by transient elastography and 2-dimensional shear-wave elastography), and 6 indirect marker tests in detection of advanced liver fibrosis (Kleiner stage ≥F3). We performed a prospective study of 10 liver fibrosis markers (patented and not), all performed on the same day. Patients were recruited from primary centers (municipal alcohol rehabilitation, n = 128; 6% with advanced fibrosis) and secondary health care centers (hospital outpatient clinics, n = 161; 36% with advanced fibrosis) in the Region of Southern Denmark from 2013 through 2016. Biopsy-verified fibrosis stage was used as the reference standard. The primary aim was to validate ELF in detection of advanced fibrosis in patients with alcoholic liver disease recruited from primary and secondary health care centers, using the literature-based cutoff value of 10.5. Secondary aims were to assess the diagnostic accuracy of ELF for significant fibrosis and cirrhosis and to determine whether combinations of fibrosis markers increase diagnostic yield. The ELF identified patients with advanced liver fibrosis with an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% confidence interval 0.89-0.96); findings did not differ significantly between patients from primary vs secondary care (P = .917). ELF more accurately identified patients with advanced liver fibrosis than indirect marker tests, but ELF and FibroTest had comparable diagnostic accuracies (AUROC of FibroTest, 0.90) (P = .209 for comparison with ELF). Results from the ELF and FibroTest did not differ significantly from those of liver stiffness measurement in intention-to-diagnose analyses (AUROC for transient elastography, 0.90), but did differ in the per-protocol analysis (AUROC for transient elastography, 0.97) (P = .521 and .004 for comparison with ELF). Adding a serum marker to transient elastography analysis did not increase accuracy. For patients in primary care, ELF values below 10.5 and FibroTest values below 0.58 had negative predictive values for advanced liver fibrosis of 98% and 94%, respectively. In a prospective, direct comparison of tests, ELF and FibroTest identified advanced liver fibrosis in alcoholic patients from primary and secondary care with high diagnostic accuracy (AUROC values of 0.90 or higher using biopsy as reference). Advanced fibrosis can be ruled out in primary health care patients based on an ELF value below 10.5 or a FibroTest value below 0.58. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce; Renzi, Daniel

    2006-04-01

    Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).

  19. Transient micro-elastography: A novel non-invasive approach to measure liver stiffness in mice

    PubMed Central

    Bastard, Cécile; Bosisio, Matteo R; Chabert, Michèle; Kalopissis, Athina D; Mahrouf-Yorgov, Meriem; Gilgenkrantz, Hélène; Mueller, Sebastian; Sandrin, Laurent

    2011-01-01

    AIM: To develop and validate a transient micro-elastography device to measure liver stiffness (LS) in mice. METHODS: A novel transient micro-elastography (TME) device, dedicated to LS measurements in mice with a range of measurement from 1-170 kPa, was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston. The novel probe was validated in a classical fibrosis model (CCl4) and in a transgenic murine model of systemic amyloidosis. RESULTS: TME could be successfully performed in control mice below the xiphoid cartilage, with a mean LS of 4.4 ± 1.3 kPa, a mean success rate of 88%, and an excellent intra-observer agreement (0.98). Treatment with CCl4 over seven weeks drastically increased LS as compared to controls (18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa). Moreover, fibrosis stage was highly correlated with LS (Spearman coefficient = 0.88, P < 0.01). In the amyloidosis model, much higher LS values were obtained, reaching maximum values of > 150 kPa. LS significantly correlated with the amyloidosis index (0.93, P < 0.0001) and the plasma concentration of mutant hapoA-II (0.62, P < 0.005). CONCLUSION: Here, we have established the first non-invasive approach to measure LS in mice, and have successfully validated it in two murine models of high LS. PMID:21448348

  20. Clinical Application of Vibration Controlled Transient Elastography in Patients with Chronic Hepatitis B

    PubMed Central

    Liang, Xie-Er; Chen, Yong-Peng

    2017-01-01

    Abstract Evaluation of the extent and progression of liver fibrosis and cirrhosis is of critical importance in the management and prognosis of patients with chronic hepatitis B. Due to the limitation of liver biopsy, non-invasive methods, especially liver stiffness measurement (LSM) by vibration controlled transient elastography, have been developed and widely applied for liver fibrosis assessment. LSM aims to reduce, but not to substitute, the need for liver biopsy for fibrosis/cirrhosis diagnosis. While LSM may have potential utility in monitoring treatment response, its applications in prediction of liver complications in terms of portal hypertension and esophageal varices, as well as disease prognosis, have been gradually validated. Here, we review the latest clinical applications of LSM in patients with chronic hepatitis B. PMID:29226103

  1. Coffee Intake Is Associated with a Lower Liver Stiffness in Patients with Non-Alcoholic Fatty Liver Disease, Hepatitis C, and Hepatitis B.

    PubMed

    Hodge, Alexander; Lim, Sarah; Goh, Evan; Wong, Ophelia; Marsh, Philip; Knight, Virginia; Sievert, William; de Courten, Barbora

    2017-01-10

    There is emerging evidence for the positive effects or benefits of coffee in patients with liver disease. We conducted a retrospective cross-sectional study on patients with non-alcoholic fatty liver disease (NAFLD), hepatitis C virus (HCV), and hepatitis B virus (HBV) infection to determine the effects of coffee intake on a non-invasive marker of liver fibrosis: liver stiffness assessed by transient elastography (TE). We assessed coffee and tea intake and measured TE in 1018 patients with NAFLD, HCV, and HBV (155 with NAFLD, 378 with HCV and 485 with HBV). Univariate and multivariate regression models were performed taking into account potential confounders. Liver stiffness was higher in males compared to females ( p < 0.05). Patients with HBV had lower liver stiffness than those with HCV and NAFLD. After adjustment for age, gender, smoking, alcohol consumption, M or XL probe, and disease state (NAFLD, HCV, and HBV status), those who drank 2 or more cups of coffee per day had a lower liver stiffness ( p = 0.044). Tea consumption had no effect ( p = 0.9). Coffee consumption decreases liver stiffness, which may indicate less fibrosis and inflammation, independent of disease state. This study adds further evidence to the notion of coffee maybe beneficial in patients with liver disease.

  2. Future role of MR elastography in tissue engineering and regenerative medicine.

    PubMed

    Othman, Shadi F; Xu, Huihui; Mao, Jeremy J

    2015-05-01

    Tissue engineering (TE) has been introduced for more than 25 years without a boom in clinical trials. More than 70 TE-related start-up companies spent more than $600 million/year, with only two FDA-approved tissue-engineered products. Given the modest performance in clinically approved organs, TE is a tenaciously promising field. The TE community is advocating the application of clinically driven methodologies in large animal models enabling clinical translation. This challenge is hindered by the scarcity of tissue biopsies and the absence of standardized evaluation tools, but can be negated through non-invasive assessment of growth and integration, with reduced sample size and low cost. Solving this issue will speed the transition to cost-efficient clinical studies. In this paper we: (a) introduce magnetic resonance elastography to the tissue-engineering and regenerative medicine (TERM) community; (b) review recent MRE applications in TERM; and (c) discuss future directions of MRE in TERM. We have used MRE to study engineered tissues both in vitro and in vivo, where the mechanical properties of mesenchymally derived constructs were progressively monitored before and after tissues were implanted in mouse models. This study represents a stepping stone toward the applications of MRE in directing clinical trials with low cost and likely expediting the translation to more relevantly large animal models and clinical trials. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Minimal hepatic encephalopathy in patients with cirrhosis by measuring liver stiffness and hepatic venous pressure gradient.

    PubMed

    Sharma, Praveen; Kumar, Ashish

    2012-01-01

    Transient elastography (TE) of liver and hepatic venous pressure gradient (HVPG) allows accurate prediction of cirrhosis and its complications in patients with chronic liver disease. There is no study on prediction of minimal hepatic encephalopathy (MHE) using TE and HVPG in patients with cirrhosis. Consecutive cirrhotic patients who never had an episode of hepatic encephalopathy (HE) were enrolled. All patients were assessed by psychometry (number connection test (NCT-A and B), digit symbol test (DST), serial dot test (SDT), line tracing test (LTT)), critical flicker frequency test (CFF), TE by FibroScan and HVPG. MHE was diagnosed if there were two or more abnormal psychometry tests (± 2 SD controls). 150 patients with cirrhosis who underwent HVPG were screened; 91 patients (61%, age 44.0 ± 11.4 years, M:F:75:16, Child's A:B:C 18:54:19) met the inclusion criteria. Fifty three (58%) patients had MHE (Child A (7/18, 39%), Child B (32/54, 59%) and Child C (14/19, 74%)). There was no significant difference between alanine aminotranferease (ALT), aspartate aminotransferase (AST) and total bilirubin level in patients with MHE versus non MHE. Patients with MHE had significantly lower CFF than non MHE patients (38.4 ± 3.0 vs. 40.2 ± 2.2 Hz, P = 0.002). TE and HVPG in patients with MHE did not significantly differ from patients with no MHE (30.9 ± 17.2 vs. 29.8 ± 18.2 KPas, P = 0.78; and 13.6 ± 2.7 vs. 13.6 ± 3.2 mmHg, P = 0.90, respectively).There was significant correlation of TE with Child's score (0.25, P = 0.01), MELD (0.40, P = 0.001) and HVPG (0.72, P = 0.001) while no correlation with psychometric tests, CFF and MHE. TE by FibroScan and HVPG cannot predict minimal hepatic encephalopathy in patients with cirrhosis.

  4. Progression of Liver Fibrosis in HIV/HCV Co-Infection: A Comparison between Non-Invasive Assessment Methods and Liver Biopsy

    PubMed Central

    Schmid, Patrick; Bregenzer, Andrea; Huber, Milo; Rauch, Andri; Jochum, Wolfram; Müllhaupt, Beat; Vernazza, Pietro; Opravil, Milos; Weber, Rainer

    2015-01-01

    Objectives To evaluate the diagnostic performance of seven non-invasive tests (NITs) of liver fibrosis and to assess fibrosis progression over time in HIV/HCV co-infected patients. Methods Transient elastography (TE) and six blood tests were compared to histopathological fibrosis stage (METAVIR). Participants were followed over three years with NITs at yearly intervals. Results Area under the receiver operating characteristic curve (AUROC) for significant fibrosis (> = F2) in 105 participants was highest for TE (0.85), followed by FIB-4 (0.77), ELF-Test (0.77), APRI (0.76), Fibrotest (0.75), hyaluronic acid (0.70), and Hepascore (0.68). AUROC for cirrhosis (F4) was 0.97 for TE followed by FIB-4 (0.91), APRI (0.89), Fibrotest (0.84), Hepascore (0.82), ELF-Test (0.82), and hyaluronic acid (0.79). A three year follow-up was completed by 87 participants, all on antiretroviral therapy and in 20 patients who completed HCV treatment (9 with sustained virologic response). TE, APRI and Fibrotest did not significantly change during follow-up. There was weak evidence for an increase of FIB-4 (mean increase: 0.22, p = 0.07). 42 participants had a second liver biopsy: Among 38 participants with F0-F3 at baseline, 10 were progessors (1-stage increase in fibrosis, 8 participants; 2-stage, 1; 3-stage, 1). Among progressors, mean increase in TE was 3.35 kPa, in APRI 0.36, and in FIB-4 0.75. Fibrotest results did not change over 3 years. Conclusion TE was the best NIT for liver fibrosis staging in HIV/HCV co-infected patients. APRI-Score, FIB-4 Index, Fibrotest, and ELF-Test were less reliable. Routinely available APRI and FIB-4 performed as good as more expensive tests. NITs did not change significantly during a follow-up of three years, suggesting slow liver disease progression in a majority of HIV/HCV co-infected persons on antiretroviral therapy. PMID:26418061

  5. Progression of Liver Fibrosis in HIV/HCV Co-Infection: A Comparison between Non-Invasive Assessment Methods and Liver Biopsy.

    PubMed

    Schmid, Patrick; Bregenzer, Andrea; Huber, Milo; Rauch, Andri; Jochum, Wolfram; Müllhaupt, Beat; Vernazza, Pietro; Opravil, Milos; Weber, Rainer

    2015-01-01

    To evaluate the diagnostic performance of seven non-invasive tests (NITs) of liver fibrosis and to assess fibrosis progression over time in HIV/HCV co-infected patients. Transient elastography (TE) and six blood tests were compared to histopathological fibrosis stage (METAVIR). Participants were followed over three years with NITs at yearly intervals. Area under the receiver operating characteristic curve (AUROC) for significant fibrosis (> = F2) in 105 participants was highest for TE (0.85), followed by FIB-4 (0.77), ELF-Test (0.77), APRI (0.76), Fibrotest (0.75), hyaluronic acid (0.70), and Hepascore (0.68). AUROC for cirrhosis (F4) was 0.97 for TE followed by FIB-4 (0.91), APRI (0.89), Fibrotest (0.84), Hepascore (0.82), ELF-Test (0.82), and hyaluronic acid (0.79). A three year follow-up was completed by 87 participants, all on antiretroviral therapy and in 20 patients who completed HCV treatment (9 with sustained virologic response). TE, APRI and Fibrotest did not significantly change during follow-up. There was weak evidence for an increase of FIB-4 (mean increase: 0.22, p = 0.07). 42 participants had a second liver biopsy: Among 38 participants with F0-F3 at baseline, 10 were progessors (1-stage increase in fibrosis, 8 participants; 2-stage, 1; 3-stage, 1). Among progressors, mean increase in TE was 3.35 kPa, in APRI 0.36, and in FIB-4 0.75. Fibrotest results did not change over 3 years. TE was the best NIT for liver fibrosis staging in HIV/HCV co-infected patients. APRI-Score, FIB-4 Index, Fibrotest, and ELF-Test were less reliable. Routinely available APRI and FIB-4 performed as good as more expensive tests. NITs did not change significantly during a follow-up of three years, suggesting slow liver disease progression in a majority of HIV/HCV co-infected persons on antiretroviral therapy.

  6. Treatment Options

    MedlinePlus

    ... disease (e.g. through a physical exam, blood tests and imaging studies such as an ultrasound). So talk to your ... monitor your health through a physical exam, blood tests and imaging studies (such as an ultrasound, FibroScan [Transient Elastography] or ...

  7. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter.

    PubMed

    Wong, Vincent Wai-Sun; Petta, Salvatore; Hiriart, Jean-Baptiste; Cammà, Calogero; Wong, Grace Lai-Hung; Marra, Fabio; Vergniol, Julien; Chan, Anthony Wing-Hung; Tuttolomondo, Antonino; Merrouche, Wassil; Chan, Henry Lik-Yuen; Le Bail, Brigitte; Arena, Umberto; Craxì, Antonio; de Lédinghen, Victor

    2017-09-01

    Controlled attenuation parameter (CAP) can be performed together with liver stiffness measurement (LSM) by transient elastography (TE) and is often used to diagnose fatty liver. We aimed to define the validity criteria of CAP. CAP was measured by the M probe prior to liver biopsy in 754 consecutive patients with different liver diseases at three centers in Europe and Hong Kong (derivation cohort, n=340; validation cohort, n=414; 101 chronic hepatitis B, 154 chronic hepatitis C, 349 non-alcoholic fatty liver disease, 37 autoimmune hepatitis, 49 cholestatic liver disease, 64 others; 277 F3-4; age 52±14; body mass index 27.2±5.3kg/m 2 ). The primary outcome was the diagnosis of fatty liver, defined as steatosis involving ≥5% of hepatocytes. The area under the receiver-operating characteristics curve (AUROC) for CAP diagnosis of fatty liver was 0.85 (95% CI 0.82-0.88). The interquartile range (IQR) of CAP had a negative correlation with CAP (r=-0.32, p<0.001), suggesting the IQR-to-median ratio of CAP would be an inappropriate validity parameter. In the derivation cohort, the IQR of CAP was associated with the accuracy of CAP (AUROC 0.86, 0.89 and 0.76 in patients with IQR of CAP <20 [15% of patients], 20-39 [51%], and ≥40dB/m [33%], respectively). Likewise, the AUROC of CAP in the validation cohort was 0.90 and 0.77 in patients with IQR of CAP <40 and ≥40dB/m, respectively (p=0.004). The accuracy of CAP in detecting grade 2 and 3 steatosis was lower among patients with body mass index ≥30kg/m 2 and F3-4 fibrosis. The validity of CAP for the diagnosis of fatty liver is lower if the IQR of CAP is ≥40dB/m. Lay summary: Controlled attenuation parameter (CAP) is measured by transient elastography (TE) for the detection of fatty liver. In this large study, using liver biopsy as a reference, we show that the variability of CAP measurements based on its interquartile range can reflect the accuracy of fatty liver diagnosis. In contrast, other clinical factors such as adiposity and liver enzyme levels do not affect the performance of CAP. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Noninvasive methods, including transient elastography, for the detection of liver disease in adults with cystic fibrosis

    PubMed Central

    Sadler, Matthew D; Crotty, Pam; Fatovich, Linda; Wilson, Stephanie; Rabin, Harvey R; Myers, Robert P

    2015-01-01

    BACKGROUND: Liver disease is the third leading cause of mortality in patients with cystic fibrosis (CF). However, detection of CF-associated liver disease (CFLD) is challenging. OBJECTIVE: To evaluate the diagnostic performance of noninvasive methods for the detection of CFLD with a focus on transient elastography (TE). METHODS: Patients at the Adult CF Clinic of Calgary and Southern Alberta (n=127) underwent liver stiffness measurement (LSM) by TE using the FibroScan (FS, Ecosens, France) M probe; aspartate amino-transferase to platelet ratio index (APRI) and FibroTest (FT) scores were also calculated. The diagnostic performance of these tools for the detection of CFLD (defined as two or more the following criteria: abnormal liver biochemistry, hepatomegaly or sonographic abnormalities other than steatosis) were compared using the area under ROC curves. RESULTS: Forty-seven percent of the cohort was male. The median age was 27 years (interquartile range [IQR] 22 to 37 years) and body mass index 21 kg/m2 (IQR 19 kg/m2 to 23 kg/m2); 25% of patients were on ursodeoxycholic acid and 12% had undergone lung transplantation. The prevalence of CFLD was 14% (n=18). FS was successful in all patients; one (0.8%) patient had poorly reliable results (IQR/M >30% and LSM ≥7.1kPa). Compared with patients without CFLD (n=109), individuals with CFLD had higher median LSM according to FS (3.9 kPa [IQR 3.4 to 4.9 kPa] versus 6.4 kPa [IQR 4.4 to 8.0 kPa]), APRI (0.24 [IQR 0.17 to 0.31] versus 0.50 [IQR 0.22 to 1.18]) and FT scores (0.08 [IQR 0.05 to 1.5] versus 0.18 [IQR 0.11 to 0.35]; all P<0.05). Area under ROC curve for FS, APRI and FT for the detection of CFLD were 0.78 (95% CI 0.65 to 0.92), 0.72 (95% CI 0.56 to 0.87) and 0.76 (95% CI 0.62 to 0.90) (P not significant). At a threshold of >5.2 kPa, the sensitivity, specificity, positive and negative predictive values of LSM according to FS for detecting CFLD were 67%, 83%, 40% and 94%, respectively. CONCLUSIONS: FS, APRI and FT were useful noninvasive methods for detecting CFLD in adults. PMID:25855877

  9. A combined model based on spleen stiffness measurement and Baveno VI criteria to rule out high-risk varices in advanced chronic liver disease.

    PubMed

    Colecchia, Antonio; Ravaioli, Federico; Marasco, Giovanni; Colli, Agostino; Dajti, Elton; Di Biase, Anna Rita; Bacchi Reggiani, Maria Letizia; Berzigotti, Annalisa; Pinzani, Massimo; Festi, Davide

    2018-05-03

    Recently, Baveno VI guidelines suggested that esophagogastroduodenoscopy (EGD) can be avoided in patients with compensated advanced chronic liver disease (cACLD) who have a liver stiffness measurement (LSM) <20 kPa and platelet count >150,000/mm 3 . We aimed to: assess the performance of spleen stiffness measurement (SSM) in ruling out patients with high-risk varices (HRV); validate Baveno VI criteria in a large population and assess how the sequential use of Baveno VI criteria and SSM could safely avoid the need for endoscopy. We retrospectively analyzed 498 patients with cACLD who had undergone LSM/SSM by transient elastography (TE) (FibroScan®), platelet count and EGDs from 2012 to 2016 referred to our tertiary centre. The new combined model was validated internally by a split-validation method, and externally in a prospective multicentre cohort of 115 patients. SSM, LSM, platelet count and Child-Pugh-B were independent predictors of HRV. Applying the newly identified SSM cut-off (≤46 kPa) or Baveno VI criteria, 35.8% and 21.7% of patients in the internal validation cohort could have avoided EGD, with only 2% of HRVs being missed with either model. The combination of SSM with Baveno VI criteria would have avoided an additional 22.5% of EGDs, reaching a final value of 43.8% spared EGDs, with <5% missed HRVs. Results were confirmed in the prospective external validation cohort, as the combined Baveno VI/SSM ≤46 model would have safely spared (0 HRV missed) 37.4% of EGDs, compared to 16.5% when using the Baveno VI criteria alone. A non-invasive prediction model combining SSM with Baveno VI criteria may be useful to rule out HRV and could make it possible to avoid a significantly larger number of unnecessary EGDs compared to Baveno VI criteria only. Spleen stiffness measurement assessed by transient elastography, the most widely used elastography technique, is a non-invasive technique that can help the physician to better stratify the degree of portal hypertension and the risk of esophageal varices in patients with compensated advanced chronic liver disease. Performing spleen stiffness measurement together with liver stiffness measurement during the same examination is simple and fast and this sequential model can identify a greater number of patients that can safely avoid endoscopy, which is an invasive and expensive examination. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  10. Transient elastography for the diagnosis of liver fibrosis.

    PubMed

    de Lédinghen, Victor; Vergniol, Julien

    2010-11-01

    Transient elastography (FibroScan(®)) is a noninvasive method proposed for the assessment of liver fibrosis in patients with chronic liver diseases by measuring liver stiffness. It can be easily performed at the bedside or in the outpatient clinic with immediate results and good reproducibility. FibroScan is validated for the diagnosis of significant fibrosis and cirrhosis in chronic hepatitis C, in recurrence of hepatitis C after liver transplantation, in co-infected HIV-HCV patients, in chronic hepatitis B, in chronic cholestatic diseases, in alcoholic disease and in nonalcoholic fatty liver disease. FibroScan is an excellent tool for the early detection of cirrhosis and for the evaluation of portal hypertension, and may have prognostic value in this setting. FibroScan evaluates liver stiffness, which is related to fibrosis, but also inflammation and portal hypertension. Therefore, FibroScan values have to be interpreted according to clinical, biological and morphological data.

  11. Liver fibrosis diagnosis by blood test and elastography in chronic hepatitis C: agreement or combination?

    PubMed

    Calès, P; Boursier, J; Lebigot, J; de Ledinghen, V; Aubé, C; Hubert, I; Oberti, F

    2017-04-01

    In chronic hepatitis C, the European Association for the Study of the Liver and the Asociacion Latinoamericana para el Estudio del Higado recommend performing transient elastography plus a blood test to diagnose significant fibrosis; test concordance confirms the diagnosis. To validate this rule and improve it by combining a blood test, FibroMeter (virus second generation, Echosens, Paris, France) and transient elastography (constitutive tests) into a single combined test, as suggested by the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America. A total of 1199 patients were included in an exploratory set (HCV, n = 679) or in two validation sets (HCV ± HIV, HBV, n = 520). Accuracy was mainly evaluated by correct diagnosis rate for severe fibrosis (pathological Metavir F ≥ 3, primary outcome) by classical test scores or a fibrosis classification, reflecting Metavir staging, as a function of test concordance. Score accuracy: there were no significant differences between the blood test (75.7%), elastography (79.1%) and the combined test (79.4%) (P = 0.066); the score accuracy of each test was significantly (P < 0.001) decreased in discordant vs. concordant tests. Classification accuracy: combined test accuracy (91.7%) was significantly (P < 0.001) increased vs. the blood test (84.1%) and elastography (88.2%); accuracy of each constitutive test was significantly (P < 0.001) decreased in discordant vs. concordant tests but not with combined test: 89.0 vs. 92.7% (P = 0.118). Multivariate analysis for accuracy showed an interaction between concordance and fibrosis level: in the 1% of patients with full classification discordance and severe fibrosis, non-invasive tests were unreliable. The advantage of combined test classification was confirmed in the validation sets. The concordance recommendation is validated. A combined test, expressed in classification instead of score, improves this rule and validates the recommendation of a combined test, avoiding 99% of biopsies, and offering precise staging. © 2017 John Wiley & Sons Ltd.

  12. Predictive value of liver and spleen stiffness in advanced alcoholic cirrhosis with refractory ascites.

    PubMed

    Lindner, Franziska; Mühlberg, Reinhard; Wiegand, Johannes; Tröltzsch, Michael; Hoffmeister, Albrecht; Keim, Volker; Karlas, Thomas

    2018-06-01

     Recurrent ascitic decompensation is a frequent complication of advanced alcoholic liver disease. Ascites can be controlled by transjugular intrahepatic portosystemic shunt (TIPS) implantation, but specific pre-procedural outcome predictors are not well established. Liver and spleen stiffness measurement (LSM, SSM) correlate with outcome of compensated liver disease, but data for decompensated cirrhosis disease are scarce. Therefore, the predictive value of LSM and SSM was evaluated in patients with refractory ascites treated with TIPS insertion or receiving conservative therapy.  Patients with alcoholic liver cirrhosis and recurrent or refractory ascites were stratified according to TIPS eligibility. LSM was prospectively assessed by transient elastography (TE, XL probe) and point shear wave elastography (pSWE). pSWE was also used for SSM. The primary study endpoint was transplant-free survival after 12 months. In addition, correlation of LSM and SSM with TIPS complications was analyzed.  43 patients (16 % female, age 55.5 [28.6 - 79.6] years) were recruited, n = 20 underwent TIPS and n = 23 were treated with repeated paracenteses only. 15 patients died and five underwent liver transplantation during follow-up. LSM and SSM at baseline did not predict the patients' outcome in the TIPS cohort and in patients with conservative therapy. SSM was increased in two cases with spontaneous TIPS occlusion and declined after revision.  LSM and SSM cannot be recommended for risk stratification in cirrhotic patients with refractory ascites. SSM may be useful in monitoring TIPS function during follow-up. © Georg Thieme Verlag KG Stuttgart · New York.

  13. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  14. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography.

    PubMed

    Zhao, Jingxin; Zhai, Fei; Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis.

  15. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography

    PubMed Central

    Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385

  16. Subcirrhotic liver stiffness by FibroScan correlates with lower risk of hepatocellular carcinoma in patients with HBV-related cirrhosis.

    PubMed

    Jeon, Mi Young; Lee, Hye Won; Kim, Seung Up; Heo, Ja Yoon; Han, Sojung; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang-Hyub

    2017-05-01

    The risk of developing hepatocellular carcinoma (HCC) varies, even in the context of cirrhosis. We investigated the relationship between liver stiffness (LS) in subcirrhotic range, assessed via transient elastography (TE), and risk of HCC development in patients with chronic hepatitis B (CHB)-related cirrhosis. Data on 540 patients presenting with clinically evident CHB-related cirrhosis between April 2006 and December 2014 were reviewed retrospectively. Subcirrhotic range of LS was defined by TE values ≤13 kPa. Of the study population, 214 (39.6%) had LS values in the subcirrhotic range. During follow-up (median 54.1 months), 81 patients (15.0%) developed HCC. In conjunction with age, male gender, and diabetes mellitus, subcirrhotic LS value (hazard ratio = 0.462) was an independent predictor of HCC development on multivariate analysis (all p < 0.05). Cumulative HCC incidence was significantly lower for patients in subcirrhotic (versus cirrhotic) LS range (log-rank test, p < 0.05). In our cohort, the modified REACH-B score performed better than other prediction models, namely REACH-B, CU-HCC, and LSM-HCC scoring systems (area under receiver operating characteristic curve: 0.717 versus 0.669, 0.578, and 0.624, respectively, for 7-year HCC risk). A significant association between subcirrhotic range of LS value and lower risk of HCC development was identified in patients with clinically evident CHB-related cirrhosis. Thus, different TE-based HCC surveillance strategies may be required even in patients with identical liver cirrhosis disease category.

  17. Longitudinal Liver Stiffness Assessment in Patients with Chronic Hepatitis C Undergoing Antiviral Therapy

    PubMed Central

    Martinez, Stella M.; Foucher, Juliette; Combis, Jean-Marc; Métivier, Sophie; Brunetto, Maurizia; Capron, Dominique; Bourlière, Marc; Bronowicki, Jean-Pierre; Dao, Thong; Maynard-Muet, Marianne; Lucidarme, Damien; Merrouche, Wassil; Forns, Xavier; de Lédinghen, Victor

    2012-01-01

    Background/Aims Liver stiffness (LS) measurement by means of transient elastography (TE) is accurate to predict fibrosis stage. The effect of antiviral treatment and virologic response on LS was assessed and compared with untreated patients with chronic hepatitis C (CHC). Methods TE was performed at baseline, and at weeks 24, 48, and 72 in 515 patients with CHC. Results 323 treated (62.7%) and 192 untreated patients (37.3%) were assessed. LS experienced a significant decline in treated patients and remained stable in untreated patients at the end of study (P<0.0001). The decline was significant for patients with baseline LS ≥ 7.1 kPa (P<0.0001 and P 0.03, for LS ≥9.5 and ≥7.1 kPa vs lower values, respectively). Sustained virological responders and relapsers had a significant LS improvement whereas a trend was observed in nonresponders (mean percent change −16%, −10% and −2%, for SVR, RR and NR, respectively, P 0.03 for SVR vs NR). In multivariate analysis, high baseline LS (P<0.0001) and ALT levels, antiviral therapy and non-1 genotype were independent predictors of LS improvement. Conclusions LS decreases during and after antiviral treatment in patients with CHC. The decrease is significant in sustained responders and relapsers (particularly in those with high baseline LS) and suggests an improvement in liver damage. PMID:23082200

  18. Surrogate endpoints for clinical trials in primary sclerosing cholangitis: Review and results from an International PSC Study Group consensus process.

    PubMed

    Ponsioen, Cyriel Y; Chapman, Roger W; Chazouillères, Olivier; Hirschfield, Gideon M; Karlsen, Tom H; Lohse, Ansgar W; Pinzani, Massimo; Schrumpf, Erik; Trauner, Michael; Gores, Gregory J

    2016-04-01

    Primary sclerosing cholangitis (PSC) is a rare, but serious, cholestatic disease for which, to date, no effective therapy exists to halt disease progression toward end-stage liver disease. Clinical trial design to study drugs that improve prognosis is hampered by the relatively low event rate of clinically relevant endpoints. To overcome this shortcoming, there is an urgent need to identify appropriate surrogate endpoints. At present, there are no established surrogate endpoints. This article provides a critical review and describes the results of a consensus process initiated by the International PSC Study Group to delineate appropriate candidate surrogate endpoints at present for clinical trials in this frequently dismal disease. The consensus process resulted in a shortlist of five candidates as surrogate endpoints for measuring disease progression: alkaline phosphatase (ALP); transient elastography (TE); histology; combination of ALP+histology; and bilirubin. Of these, histology, ALP, and TE came out as the most promising. However, the expert panel concluded that no biomarker currently exceeds level 3 validation. Combining multiple endpoints is advisable. At present, there are insufficient data to support level 2 validation for any surrogate endpoint in PSC. Concerted efforts by all stakeholders are highly needed. Novel, promising noninvasive biomarkers are under study and should be incorporated as exploratory endpoints in clinical trials. © 2015 by the American Association for the Study of Liver Diseases.

  19. Coffee Intake Is Associated with a Lower Liver Stiffness in Patients with Non-Alcoholic Fatty Liver Disease, Hepatitis C, and Hepatitis B

    PubMed Central

    Hodge, Alexander; Lim, Sarah; Goh, Evan; Wong, Ophelia; Marsh, Philip; Knight, Virginia; Sievert, William; de Courten, Barbora

    2017-01-01

    There is emerging evidence for the positive effects or benefits of coffee in patients with liver disease. We conducted a retrospective cross-sectional study on patients with non-alcoholic fatty liver disease (NAFLD), hepatitis C virus (HCV), and hepatitis B virus (HBV) infection to determine the effects of coffee intake on a non-invasive marker of liver fibrosis: liver stiffness assessed by transient elastography (TE). We assessed coffee and tea intake and measured TE in 1018 patients with NAFLD, HCV, and HBV (155 with NAFLD, 378 with HCV and 485 with HBV). Univariate and multivariate regression models were performed taking into account potential confounders. Liver stiffness was higher in males compared to females (p < 0.05). Patients with HBV had lower liver stiffness than those with HCV and NAFLD. After adjustment for age, gender, smoking, alcohol consumption, M or XL probe, and disease state (NAFLD, HCV, and HBV status), those who drank 2 or more cups of coffee per day had a lower liver stiffness (p = 0.044). Tea consumption had no effect (p = 0.9). Coffee consumption decreases liver stiffness, which may indicate less fibrosis and inflammation, independent of disease state. This study adds further evidence to the notion of coffee maybe beneficial in patients with liver disease. PMID:28075394

  20. Assessment of biopsy‐proven liver fibrosis by two‐dimensional shear wave elastography: An individual patient data‐based meta‐analysis

    PubMed Central

    de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C.‐W.; Leung, Vivian Y.‐F.; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K.; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen‐Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich‐Rust, Mireen

    2017-01-01

    Two‐dimensional shear wave elastography (2D‐SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate‐sized clinical trials. We aimed at running a larger‐scale meta‐analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D‐SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D‐SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D‐SWE was 0.022‐0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003‐0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. Conclusion: 2D‐SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head‐to‐head comparison between 2D‐SWE and other imaging modalities to establish disease‐specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260‐272). PMID:28370257

  1. Comparison of nine blood tests and transient elastography for liver fibrosis in chronic hepatitis C: the ANRS HCEP-23 study.

    PubMed

    Zarski, Jean-Pierre; Sturm, Nathalie; Guechot, Jérôme; Paris, Adeline; Zafrani, Elie-Serge; Asselah, Tarik; Boisson, Renée-Claude; Bosson, Jean-Luc; Guyader, Dominique; Renversez, Jean-Charles; Bronowicki, Jean-Pierre; Gelineau, Marie-Christine; Tran, Albert; Trocme, Candice; De Ledinghen, Victor; Lasnier, Elisabeth; Poujol-Robert, Armelle; Ziegler, Frédéric; Bourliere, Marc; Voitot, Hélène; Larrey, Dominique; Rosenthal-Allieri, Maria Alessandra; Fouchard Hubert, Isabelle; Bailly, François; Vaubourdolle, Michel

    2012-01-01

    Blood tests and transient elastography (Fibroscan™) have been developed as alternatives to liver biopsy. This ANRS HCEP-23 study compared the diagnostic accuracy of nine blood tests and transient elastography (Fibroscan™) to assess liver fibrosis, vs. liver biopsy, in untreated patients with chronic hepatitis C (CHC). This was a multicentre prospective independent study in 19 French University hospitals of consecutive adult patients having simultaneous liver biopsy, biochemical blood tests (performed in a centralized laboratory) and Fibroscan™. Two experienced pathologists independently reviewed the liver biopsies (mean length=25±8.4 mm). Performance was assessed using ROC curves corrected by Obuchowski's method. Fibroscan™ was not interpretable in 113 (22%) patients. In the 382 patients having both blood tests and interpretable Fibroscan™, Fibroscan™ performed similarly to the best blood tests for the diagnosis of significant fibrosis and cirrhosis. Obuchowski's measure showed Fibrometer® (0.86), Fibrotest® (0.84), Hepascore® (0.84), and interpretable Fibroscan™ (0.84) to be the most accurate tests. The combination of Fibrotest®, Fibrometer®, or Hepascore® with Fibroscan™ or Apri increases the percentage of well classified patients from 70-73% to 80-83% for significant fibrosis, but for cirrhosis a combination offers no improvement. For the 436 patients having all the blood tests, AUROC's ranged from 0.82 (Fibrometer®) to 0.75 (Hyaluronate) for significant fibrosis, and from 0.89 (Fibrometer® and Hepascore®) to 0.83 (FIB-4) for cirrhosis. Contrarily to blood tests, performance of Fibroscan™ was reduced due to uninterpretable results. Fibrotest®, interpretable Fibroscan™, Fibrometer®, and Hepascore® perform best and similarly for diagnosis of significant fibrosis and cirrhosis. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Use of transient elastography to predict de novo recurrence after radiofrequency ablation for hepatocellular carcinoma

    PubMed Central

    Lee, Sang Hoon; Kim, Seung Up; Jang, Jeong Won; Bae, Si Hyun; Lee, Sanghun; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang–Hyub

    2015-01-01

    Background/purpose Liver stiffness (LS) measurement using transient elastography can accurately assess the degree of liver fibrosis, which is associated with the risk of the development of hepatocellular carcinoma (HCC). We investigated whether LS values could predict HCC de novo recurrence after radiofrequency ablation (RFA). Methods This retrospective, multicenter study analyzed 111 patients with HCC who underwent RFA and LS measurement using transient elastography between May 2005 and April 2011. All patients were followed until March 2013 to monitor for HCC recurrence. Results This study included 76 men and 35 women with a mean age of 62.4 years, and the mean LS value was 21.2 kPa. During the follow-up period (median 22.4 months), 47 (42.3%) patients experienced HCC de novo recurrence, and 18 (16.2%) died. Patients with recurrence had significantly more frequent liver cirrhosis, more frequent history of previous treatment for HCC, higher total bilirubin, larger spleen size, larger total tumor size, higher tumor number, higher LS values, and lower platelet counts than those without recurrence (all P<0.05). On multivariate analysis, together with previous anti-HCC treatment history, patients with LS values >13.0 kPa were at significantly greater risk for recurrence after RFA, with a hazard ratio (HR) of 3.115 (95% confidence interval [CI], 1.238–7.842, P<0.05). Moreover, LS values independently predicted the mortality after RFA, with a HR of 9.834 (95% CI, 1.148–84.211, P<0.05), together with total bilirubin. Conclusions Our data suggest that LS measurement is a useful predictor of HCC de novo recurrence and overall survival after RFA. PMID:25678801

  3. Use of transient elastography to predict de novo recurrence after radiofrequency ablation for hepatocellular carcinoma.

    PubMed

    Lee, Sang Hoon; Kim, Seung Up; Jang, Jeong Won; Bae, Si Hyun; Lee, Sanghun; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Han, Kwang-Hyub

    2015-01-01

    Liver stiffness (LS) measurement using transient elastography can accurately assess the degree of liver fibrosis, which is associated with the risk of the development of hepatocellular carcinoma (HCC). We investigated whether LS values could predict HCC de novo recurrence after radiofrequency ablation (RFA). This retrospective, multicenter study analyzed 111 patients with HCC who underwent RFA and LS measurement using transient elastography between May 2005 and April 2011. All patients were followed until March 2013 to monitor for HCC recurrence. This study included 76 men and 35 women with a mean age of 62.4 years, and the mean LS value was 21.2 kPa. During the follow-up period (median 22.4 months), 47 (42.3%) patients experienced HCC de novo recurrence, and 18 (16.2%) died. Patients with recurrence had significantly more frequent liver cirrhosis, more frequent history of previous treatment for HCC, higher total bilirubin, larger spleen size, larger total tumor size, higher tumor number, higher LS values, and lower platelet counts than those without recurrence (all P<0.05). On multivariate analysis, together with previous anti-HCC treatment history, patients with LS values >13.0 kPa were at significantly greater risk for recurrence after RFA, with a hazard ratio (HR) of 3.115 (95% confidence interval [CI], 1.238-7.842, P<0.05). Moreover, LS values independently predicted the mortality after RFA, with a HR of 9.834 (95% CI, 1.148-84.211, P<0.05), together with total bilirubin. Our data suggest that LS measurement is a useful predictor of HCC de novo recurrence and overall survival after RFA.

  4. Noninvasive biomarkers in non-alcoholic fatty liver disease: Current status and a glimpse of the future

    PubMed Central

    Fitzpatrick, Emer; Dhawan, Anil

    2014-01-01

    The development of non invasive biomarkers of disease has become a major focus of interest in nonalcoholic fatty liver disease (NAFLD). The large prevalence of the disease and the invasive nature of the investigation means that screening with liver biopsy is impractical. In addition to screening, the differentiation of those with simple steatosis vs steatohepatitis and fibrosis is clinically important as the prognosis of each differs. Serum biomarkers may be a combination of simple markers derived from large data sets or direct markers of disease activity. Serum markers of inflammation, apoptosis and oxidative stress in addition to fibrosis have been extensively studied in patients with NAFLD. Other techniques such as transient elastography, magnetic resonance elastography and acoustic radiation force imaging are becoming more established as noninvasive methods of detecting fibrosis in a variety of chronic liver conditions in addition to NAFLD. Newer high throughput methods such as proteomics and glycomics allow the nonhypothesis-driven identification of novel markers and may also potentially contribute to our understanding of the pathogenesis of the condition. This review addresses some of the methodological issues which need to be considered in the search for the ideal biomarker. It is likely that a combination of serum biomarkers and techniques such as transient elastography may provide the optimal diagnostic discrimination however this remains to be proven in large studies. PMID:25152587

  5. Changes in liver stiffness and steatosis among patients with hepatitis C virus infection who received direct-acting antiviral therapy and achieved sustained virological response.

    PubMed

    Kobayashi, Natsuko; Iijima, Hiroko; Tada, Toshifumi; Kumada, Takashi; Yoshida, Masahiro; Aoki, Tomoko; Nishimura, Takashi; Nakano, Chikage; Takata, Ryo; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Sakai, Yoshiyuki; Aizawa, Nobuhiro; Nishikawa, Hiroki; Ikeda, Naoto; Iwata, Yoshinori; Enomoto, Hirayuki; Hirota, Seiichi; Fujimoto, Jiro; Nishiguchi, Shuhei

    2018-05-01

    Whether direct-acting antiviral (DAA) therapy can reduce liver fibrosis and steatosis in patients with chronic hepatitis C virus (HCV) infection remains unclear. We evaluated sequential changes in liver stiffness and steatosis using transient elastography (TE) and the TE-based controlled attenuation parameter (CAP) in patients with HCV who received DAA therapy. A total of 57 patients with HCV who received DAA therapy and achieved sustained virological response (SVR) were analyzed. Liver stiffness as evaluated with TE, steatosis as evaluated with CAP, and laboratory data were assessed before treatment (baseline), at end of treatment (EOT), 24 weeks after EOT (SVR24), and 48 weeks after EOT (SVR48). Alanine aminotransferase levels, corresponding to the presence of necroinflammatory activity, significantly decreased overall, with significant differences between baseline and EOT, EOT, and SVR24, and baseline and SVR48. However, alanine aminotransferase levels showed no significant changes between SVR24 and SVR48. Median (interquartile range) liver stiffness values at baseline, EOT, SVR24, and SVR48 were 8.3 (5.0-14.8), 7.4 (4.6-14.7), 5.3 (4.1-11.8), and 5.4 (4.0-13.4) kPa, respectively (baseline vs. EOT, P=0.044; EOT vs. SVR24, P=0.011; and SVR24 vs. SVR48, P=0.054). In patients with fatty liver (CAP≥236 dB/m, n=14), CAP values at baseline and SVR48 were 253 (245-278) and 229 (209-249) dB/m, respectively (P=0.020). Liver stiffness at SVR24 might reflect liver fibrosis in the patients who received DAA therapy and achieved SVR. In addition, liver steatosis reduces in the same cohort with fatty liver.

  6. Elastography methods for the non-invasive assessment of portal hypertension.

    PubMed

    Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A

    2018-02-01

    The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.

  7. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis.

    PubMed

    Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C-W; Leung, Vivian Y-F; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen-Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich-Rust, Mireen

    2018-01-01

    Two-dimensional shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate-sized clinical trials. We aimed at running a larger-scale meta-analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D-SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D-SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D-SWE was 0.022-0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003-0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. 2D-SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head-to-head comparison between 2D-SWE and other imaging modalities to establish disease-specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260-272). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  8. Assessment of Liver Viscoelasticity for the Diagnosis of Early Stage Fatty Liver Disease Using Transient Elastography

    NASA Astrophysics Data System (ADS)

    Remenieras, Jean-Pierre; Dejobert, Maelle; Bastard, Cécile; Miette, Véronique; Perarnau, Jean-Marc; Patat, Frédéric

    Nonalcoholic fatty liver disease (NAFLD) is characterized by accumulation of fat within the Liver. The main objective of this work is (1) to evaluate the feasibility of measuring in vivo in the liver the shear wave phase velocity dispersion cs(ω) between 20 Hz and 90 Hz using vibration-controlled transient elastography (VCTE); (2) to estimate through the rheological Kelvin-Voigt model the shear elastic μ and shear viscosity η modulus; (3) to correlate the evolution of these viscoelastic parameters on two patients at Tours Hospital with the hepatic fat percentage measured with T1-weighted gradient-echo in-and out-phase MRI sequence. For the first volunteer who has 2% of fat in the liver, we obtained μ = 1233 ± 133 Pa and η = 0.5 ± 0.4 Pa.s. For the patient with 22% of fat, we measure μ = 964 ± 91 Pa and η = 1.77 ± 0.3 Pa.s. In conclusion, this novel method showed to be sensitive in characterizing the visco-elastic properties of fatty liver.

  9. In vivo time-harmonic multifrequency elastography of the human liver

    NASA Astrophysics Data System (ADS)

    Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf

    2014-04-01

    Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.

  10. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.

    2017-05-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  11. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    PubMed

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  12. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    PubMed Central

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-01-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437

  13. Accuracy of transient elastography-FibroScan®, acoustic radiation force impulse (ARFI) imaging, the enhanced liver fibrosis (ELF) test, APRI, and the FIB-4 index compared with liver biopsy in patients with chronic hepatitis C.

    PubMed

    Ragazzo, Taisa Grotta; Paranagua-Vezozzo, Denise; Lima, Fabiana Roberto; de Campos Mazo, Daniel Ferraz; Pessoa, Mário Guimarães; Oliveira, Claudia Pinto; Alves, Venancio Avancini Ferreira; Carrilho, Flair José

    2017-10-01

    Although liver biopsy is the gold standard for determining the degree of liver fibrosis, issues regarding its invasiveness and the small amount of liver tissue evaluated can limit its applicability and interpretation in clinical practice. Non-invasive evaluation methods for liver fibrosis can address some of these limitations. The aim of this study was to evaluate the accuracy of transient elastography-FibroScan®, acoustic radiation force impulse (ARFI), enhanced liver fibrosis (ELF), the aspartate aminotransferase-to-platelet ratio index (APRI), and the FIB-4 index compared with liver biopsy in hepatitis C. We evaluated chronic hepatitis C patients who were followed at the Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas, Department of Gastroenterology of University of São Paulo School of Medicine, São Paulo, Brazil, and who underwent liver biopsy. The accuracy of each method was determined by a receiver operating characteristic (ROC) curve analysis, and fibrosis was classified as significant fibrosis (≥F2), advanced fibrosis (≥F3), or cirrhosis (F4). The Obuchowski method was also used to determine the diagnostic accuracy of each method at the various stages of fibrosis. In total, 107 FibroScan®, 51 ARFI, 68 ELF, 106 APRI, and 106 FIB-4 analyses were performed. A total of 107 patients were included in the study. The areas under the ROC curve (AUROCs) according to fibrosis degree were as follows: significant fibrosis (≥F2): FibroScan®: 0.83, FIB-4: 0.76, ELF: 0.70, APRI: 0.69, and ARFI: 0.67; advanced fibrosis (≥F3): FibroScan®: 0.85, ELF: 0.82, FIB-4: 0.77, ARFI: 0.74, and APRI: 0.71; and cirrhosis (F4): APRI: 1, FIB-4: 1, FibroScan®: 0.99, ARFI: 0.96, and ELF: 0.94. The accuracies of transient elastography, ARFI, ELF, APRI and FIB-4 determined by the Obuchowski method were F0-F1: 0.81, 0.78, 0.44, 0.72 and 0.67, respectively; F1-F2: 0.73, 0.53, 0.62, 0.60, and 0.68, respectively; F2-F3: 0.70, 0.64, 0.77, 0.60, and 0.67, respectively; and F3-F4: 0.98, 0.96, 0.82, 1, and 1, respectively. Transient elastography remained the most effective method for evaluating all degrees of fibrosis. The accuracy of all methodologies was best at F4.

  14. Evaluating Diagnostic Accuracy of Noninvasive Tests in Assessment of Significant Liver Fibrosis in Chronic Hepatitis C Egyptian Patients.

    PubMed

    Omran, Dalia; Zayed, Rania A; Nabeel, Mohammed M; Mobarak, Lamiaa; Zakaria, Zeinab; Farid, Azza; Hassany, Mohamed; Saif, Sameh; Mostafa, Muhammad; Saad, Omar Khalid; Yosry, Ayman

    2018-05-01

    Stage of liver fibrosis is critical for treatment decision and prediction of outcomes in chronic hepatitis C (CHC) patients. We evaluated the diagnostic accuracy of transient elastography (TE)-FibroScan and noninvasive serum markers tests in the assessment of liver fibrosis in CHC patients, in reference to liver biopsy. One-hundred treatment-naive CHC patients were subjected to liver biopsy, TE-FibroScan, and eight serum biomarkers tests; AST/ALT ratio (AAR), AST to platelet ratio index (APRI), age-platelet index (AP index), fibrosis quotient (FibroQ), fibrosis 4 index (FIB-4), cirrhosis discriminant score (CDS), King score, and Goteborg University Cirrhosis Index (GUCI). Receiver operating characteristic curves were constructed to compare the diagnostic accuracy of these noninvasive methods in predicting significant fibrosis in CHC patients. TE-FibroScan predicted significant fibrosis at cutoff value 8.5 kPa with area under the receiver operating characteristic (AUROC) 0.90, sensitivity 83%, specificity 91.5%, positive predictive value (PPV) 91.2%, and negative predictive value (NPV) 84.4%. Serum biomarkers tests showed that AP index and FibroQ had the highest diagnostic accuracy in predicting significant liver fibrosis at cutoff 4.5 and 2.7, AUROC was 0.8 and 0.8 with sensitivity 73.6% and 73.6%, specificity 70.2% and 68.1%, PPV 71.1% and 69.8%, and NPV 72.9% and 72.3%, respectively. Combined AP index and FibroQ had AUROC 0.83 with sensitivity 73.6%, specificity 80.9%, PPV 79.6%, and NPV 75.7% for predicting significant liver fibrosis. APRI, FIB-4, CDS, King score, and GUCI had intermediate accuracy in predicting significant liver fibrosis with AUROC 0.68, 0.78, 0.74, 0.74, and 0.67, respectively, while AAR had low accuracy in predicting significant liver fibrosis. TE-FibroScan is the most accurate noninvasive alternative to liver biopsy. AP index and FibroQ, either as individual tests or combined, have good accuracy in predicting significant liver fibrosis, and are better combined for higher specificity.

  15. Non-alcoholic fatty liver disease (NAFLD) and significant hepatic fibrosis defined by non-invasive assessment in patients with type 2 diabetes.

    PubMed

    Sobhonslidsuk, Abhasnee; Pulsombat, Akharawit; Kaewdoung, Piyaporn; Petraksa, Supanna

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), the most common liver problem in diabetes, is a risk factor for liver cancer. Diabetes, high body mass index (BMI) and old age can all contribute to NAFLD progression. Transient elastography (TE) is used for non-invasive fibrosis assessment. To identify the prevalence of NAFLD and significant hepatic fibrosis in diabetic patients and to assess associated factors. One hundred and forty-one diabetic and 60 normal subjects were screened. Fatty liver was diagnosed when increased hepatic echogenicity and vascular blunting were detected by ultrasonography. Liver stiffness measurement (LSM) representing hepatic fibrosis was assessed by TE. LSM ≥7 kPa was used to define significant hepatic fibrosis. Four cases were excluded due to positive hepatitis B viral markers and failed TE. Diabetic patients had higher BMI, systolic blood pressure, waist circumference and fasting glucose levels than normal subjects. Fatty liver was diagnosed in 82 (60.7%) diabetic patients but in none of the normal group. BMI (OR: 1.31; 95%CI: 1.02-1.69; p=0.038) and alanine aminotransferase (ALT)(OR: 1.14; 95%CI: 1.05-1.23; p=0.002) were associated with NAFLD. Diabetic patients with NAFLD had higher LSM than those without [5.99 (2.4) vs 4.76 (2.7) kPa, p=0.005)]. Significant hepatic fibrosis was more common in diabetic patients than in normal subjects [22 (16.1%) vs 1 (1.7%), p=0.002]. Aspartate aminotransferase (AST)(OR: 1.24; 95%CI: 1.07-1.42; p=0.003) was associated with significant hepatic fibrosis. Sixty and sixteen percent of diabetic patients were found to have NAFLD and significant hepatic fibrosis. High BMI and ALT levels are the predictors of NAFLD, and elevated AST level is associated with significant hepatic fibrosis.

  16. Simultaneous 3D MR elastography of the in vivo mouse brain

    NASA Astrophysics Data System (ADS)

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.; Klatt, Dieter

    2017-10-01

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIM-MRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits non-uniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIM-PC, the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. The SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.

  17. Simultaneous 3D MR elastography of the in vivo mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIMMRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits nonuniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIMPC,more » the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. As a result, the SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.« less

  18. Simultaneous 3D MR elastography of the in vivo mouse brain

    DOE PAGES

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.; ...

    2017-09-15

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIMMRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits nonuniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIMPC,more » the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. As a result, the SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.« less

  19. Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B.

    PubMed

    Enomoto, Masaru; Morikawa, Hiroyasu; Tamori, Akihiro; Kawada, Norifumi

    2014-09-14

    Infection with hepatitis B virus is an important health problem worldwide: it affects more than 350 million people and is a leading cause of liver-related morbidity, accounting for 1 million deaths annually. Hepatic fibrosis is a consequence of the accumulation of extracellular matrix components in the liver. An accurate diagnosis of liver fibrosis is essential for the management of chronic liver disease. Liver biopsy has been considered the gold standard for diagnosing disease, grading necroinflammatory activity, and staging fibrosis. However, liver biopsy is unsuitable for repeated evaluations because it is invasive and can cause major complications, including death. Several noninvasive evaluations have been introduced for the assessment of liver fibrosis: serum biomarkers, combined indices or scores, and imaging techniques including transient elastography, acoustic radiation force impulse, real-time tissue elastography, and magnetic resonance elastography. Here, we review the recent progress of noninvasive assessment of liver fibrosis in patients with chronic hepatitis B. Most noninvasive evaluations for liver fibrosis have been validated first in patients with chronic hepatitis C, and later in those with chronic hepatitis B. The establishment of a noninvasive assessment of liver fibrosis is urgently needed to aid in the management of this leading cause of chronic liver disease.

  20. The factors associated with longitudinal changes in liver stiffness in patients with chronic hepatitis B

    PubMed Central

    Yo, In Ku; Park, Jin Woong; Lee, Jong Joon; Lee, Jung Hyun; Won, In Sik; Na, Sun Young; Jang, Pil Kyu; Park, Pyung Hwa; Choi, Duck Joo; Kim, Yun Soo; Kim, Ju Hyun

    2015-01-01

    Background/Aims Liver stiffness (LS) as assessed by transient elastography (TE) can change longitudinally in patients with chronic hepatitis B (CHB). The aim of this study was to identify the factors that improve LS. Methods Between April 2007 and December 2012, 151 patients with CHB who underwent two TE procedures with an interval of about 2 years were enrolled. Ninety-six of the 151 patients were treated with nucleos(t)ide analogues [the antiviral therapy (+) group], while the remaining 55 patients were not [the antiviral therapy (-) group]. The two groups of patients were stratified according to whether they exhibited an improvement or a deterioration in LS during the study period (defined as an LS change of ≤0 or >0 kPa, respectively, over a 1-year period), and their data were compared. Results No differences were observed between the antiviral therapy (+) and (-) groups with respect to either their clinical characteristics or their initial LS. The observed LS improvement was significantly greater in the antiviral therapy (+) group than in the antiviral therapy (-) group (-3.0 vs. 0.98 kPa, P=0.011). In the antiviral therapy (+) group, the initial LS was higher in the LS improvement group (n=63) than in the LS deterioration group (n=33; 7.9 vs. 4.8 kPa, P<0.001). However, there were no differences in any other clinical characteristic. In the antiviral therapy (-) group, the initial LS was also higher in the LS improvement group (n=29) than in the LS deterioration group (n=26; 8.3 vs. 6.5 kPa, P=0.021), with no differences in any other clinical characteristic. Conclusions A higher initial LS was the only factor associated with LS improvement in patients with CHB in this study. PMID:25834800

  1. The factors associated with longitudinal changes in liver stiffness in patients with chronic hepatitis B.

    PubMed

    Yo, In Ku; Kwon, Oh Sang; Park, Jin Woong; Lee, Jong Joon; Lee, Jung Hyun; Won, In Sik; Na, Sun Young; Jang, Pil Kyu; Park, Pyung Hwa; Choi, Duck Joo; Kim, Yun Soo; Kim, Ju Hyun

    2015-03-01

    Liver stiffness (LS) as assessed by transient elastography (TE) can change longitudinally in patients with chronic hepatitis B (CHB). The aim of this study was to identify the factors that improve LS. Between April 2007 and December 2012, 151 patients with CHB who underwent two TE procedures with an interval of about 2 years were enrolled. Ninety-six of the 151 patients were treated with nucleos(t)ide analogues [the antiviral therapy (+) group], while the remaining 55 patients were not [the antiviral therapy (-) group]. The two groups of patients were stratified according to whether they exhibited an improvement or a deterioration in LS during the study period (defined as an LS change of ≤0 or >0 kPa, respectively, over a 1-year period), and their data were compared. No differences were observed between the antiviral therapy (+) and (-) groups with respect to either their clinical characteristics or their initial LS. The observed LS improvement was significantly greater in the antiviral therapy (+) group than in the antiviral therapy (-) group (-3.0 vs. 0.98 kPa, P=0.011). In the antiviral therapy (+) group, the initial LS was higher in the LS improvement group (n=63) than in the LS deterioration group (n=33; 7.9 vs. 4.8 kPa, P<0.001). However, there were no differences in any other clinical characteristic. In the antiviral therapy (-) group, the initial LS was also higher in the LS improvement group (n=29) than in the LS deterioration group (n=26; 8.3 vs. 6.5 kPa, P=0.021), with no differences in any other clinical characteristic. A higher initial LS was the only factor associated with LS improvement in patients with CHB in this study.

  2. Relevance of Adipose Tissue Stiffness Evaluated by Transient Elastography (AdipoScan™) in Morbidly Obese Patients before Bariatric Surgery

    NASA Astrophysics Data System (ADS)

    Sasso, Magali; Abdennour, Meriem; Liu, Yuejun; Hazrak, Hecham; Aron-Wisnewsky, Judith; Bouillot, Jean-Luc; Le Naour, Gilles; Bedossa, Pierre; Torjman, Joan; Clément, Karine; Miette, Véronique

    Subcutaneous adipose tissue (scAT) in human obesity undergoes severe alteration such as fibrosis which is related to metabolic alterations and to less efficiency in losing weight after bariatric surgery. There is currently no non-invasive tool to assess fibrosis in scAT. Vibration Controlled Transient Elastography (VCTE) using FibroScan® is widely used to assess liver fibrosis in clinical practice. A novel device named AdipoScan™ which is based on VCTE has been developed by Echosens (Paris) so as to assess scAT. The objective of this study is to show the first AdipoScan clinical results. AdipoScan™ was assessed in vivo on 73 morbidly obese patients candidate for bariatric surgery who were enrolled in the Pitié Salpêtrière hospital. scAT shear wave speed measured by AdipoScan™ is significantly associated with scAT fibrosis, gender, hypertension status, total body fat mass assessed by DXA, hypertension status, glycemic, lipid, hepatic parameters and adiponectin. Results suggest that scAT evaluation before bariatric surgery can be useful in clinical practice since it is related to scAT fibrosis -who plays in role in weight loss resistance after bariatric surgery- and to obesity induced co-morbidities such as diabetes, hypertension liver dysfunction.

  3. Serial Liver Stiffness Measurements and Monitoring of Liver-Transplanted Patients in a Real-Life Clinical Practice

    PubMed Central

    Rinaldi, Luca; Valente, Giovanna; Piai, Guido

    2016-01-01

    Background Liver transplanted patients need close surveillance for early signs of graft disease. Objectives Transient elastography can safely be repeated over time, offering serial liver stiffness measurement values. Serial stiffness measurements were compared to single baseline stiffness measurements in predicting the appearance of liver-related clinical events and guiding subsequent clinical decisions. Methods One hundred and sixty liver transplanted patients were observed for three years in our real-life practice. Results Liver stiffness measurements were stable in 75% of patients, decreased in 4% of patients, and increased in 21% of patients. The pattern of increased stiffness measurements was associated with both HCV-RNA positive status and the presence of an active biliary complication of liver transplantation and was more predictive of a clinically significant event resulting from any disease of the transplanted liver when compared to a stable pattern or to a single liver stiffness measurement. The procedures that were consequently performed were often diagnostic for unexpected situations, both in HCV-RNA positive and HCV-RNA negative patients. Conclusions The pattern of longitudinally increased liver stiffness measurements efficiently supported clinical decisions for individualized management strategies. Repeated transient elastography in real-life clinical practice appears to have a practical role in monitoring liver transplanted patients. PMID:28123442

  4. Optical coherence elastography assesses tissue modifications in laser reshaping of cornea and cartilages

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.

    2018-02-01

    Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.

  5. Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness.

    PubMed

    Stasi, Cristina; Milani, Stefano

    2016-01-28

    The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have "grey area" values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest.

  6. Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness

    PubMed Central

    Stasi, Cristina; Milani, Stefano

    2016-01-01

    The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have “grey area” values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest. PMID:26819535

  7. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  8. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension.

    PubMed

    Mandorfer, Mattias; Kozbial, Karin; Schwabl, Philipp; Freissmuth, Clarissa; Schwarzer, Rémy; Stern, Rafael; Chromy, David; Stättermayer, Albert Friedrich; Reiberger, Thomas; Beinhardt, Sandra; Sieghart, Wolfgang; Trauner, Michael; Hofer, Harald; Ferlitsch, Arnulf; Ferenci, Peter; Peck-Radosavljevic, Markus

    2016-10-01

    We aimed to investigate the impact of sustained virologic response (SVR) to interferon (IFN)-free therapies on portal hypertension in patients with paired hepatic venous pressure gradient (HVPG) measurements. One hundred and four patients with portal hypertension (HVPG ⩾6mmHg) who underwent HVPG and liver stiffness measurement before IFN-free therapy (baseline [BL]) were retrospectively studied. Among 100 patients who achieved SVR, 60 patients underwent HVPG and transient elastography (TE) after antiviral therapy (follow-up [FU]). SVR to IFN-free therapies significantly decreased HVPG across all BL HVPG strata: 6-9mmHg (BL: 7.37±0.28 vs. FU: 5.11±0.38mmHg; -2.26±0.42mmHg; p<0.001), 10-15mmHg (BL: 12.2±0.4 vs. FU: 8.91±0.62mmHg; -3.29±0.59mmHg; p<0.001) and ⩾16mmHg (BL: 19.4±0.73 vs. FU: 17.1±1.21mmHg; -2.3±0.89mmHg; p=0.018). In the subgroup of patients with BL HVPG of 6-9mmHg, HVPG normalized (<6mmHg) in 63% (12/19) of patients, while no patient progressed to ⩾10mmHg. Among patients with BL HVPG ⩾10mmHg, a clinically relevant HVPG decrease ⩾10% was observed in 63% (26/41); 24% (10/41) had a FU HVPG <10mmHg. Patients with Child-Pugh stage B were less likely to have a HVPG decrease (hazard ratio [HR]: 0.103; 95% confidence interval [CI]: 0.02-0.514; p=0.006), when compared to Child-Pugh A patients. In the subgroup of patients with BL CSPH, the relative change in liver stiffness (per %; HR: 0.972; 95% CI: 0.945-0.999; p=0.044) was a predictor of a HVPG decrease ⩾10%. The area under the receiver operating characteristic curve for the diagnosis of FU CSPH by FU liver stiffness was 0.931 (95% CI: 0.865-0.997). SVR to IFN-free therapies might ameliorate portal hypertension across all BL HVPG strata. However, changes in HVPG seemed to be more heterogeneous among patients with BL HVPG of ⩾16mmHg and a HVPG decrease was less likely in patients with more advanced liver dysfunction. TE might be useful for the non-invasive evaluation of portal hypertension after SVR. We investigated the impact of curing hepatitis C using novel interferon-free treatments on portal hypertension, which drives the development of liver-related complications and mortality. Cure of hepatitis C decreased portal pressure, but a decrease was less likely among patients with more pronounced hepatic dysfunction. Transient elastography, which is commonly used for the non-invasive staging of liver disease, might identify patients without clinically significant portal hypertension after successful treatment. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Imaging of optically diffusive media by use of opto-elastography

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Funke, Arik R.; Daoudi, Khalid; Tanter, Mickael; Fink, Mathias; Boccara, Claude

    2007-02-01

    We present a camera-based optical detection scheme designed to detect the transient motion created by the acoustic radiation force in elastic media. An optically diffusive tissue mimicking phantom was illuminated with coherent laser light, and a high speed camera (2 kHz frame rate) was used to acquire and cross-correlate consecutive speckle patterns. Time-resolved transient decorrelations of the optical speckle were measured as the results of localised motion induced in the medium by the radiation force and subsequent propagating shear waves. As opposed to classical acousto-optic techniques which are sensitive to vibrations induced by compressional waves at ultrasonic frequencies, the proposed technique is sensitive only to the low frequency transient motion induced in the medium by the radiation force. It therefore provides a way to assess both optical and shear mechanical properties.

  10. Liver elasticity measurement before and after biliary drainage in patients with obstructive jaundice: a prospective cohort studya prospective cohort study.

    PubMed

    Kubo, Kimitoshi; Kawakami, Hiroshi; Kuwatani, Masaki; Nishida, Mutsumi; Kawakubo, Kazumichi; Kawahata, Shuhei; Taya, Yoko; Kubota, Yoshimasa; Amano, Toraji; Shirato, Hiroki; Sakamoto, Naoya

    2016-07-08

    Obstructive jaundice has been reported to influence liver elasticity, independent of liver fibrosis. The aim of our prospective study was to evaluate the changes in liver elasticity, before and after biliary drainage, in patients with obstructive jaundice, and to evaluate the correlation between elasticity measures and serum markers of liver fibrosis. This is a prospective cohort study of 20 patients with obstructive jaundice. Liver elasticity was assessed by Transient Elastography (TE) and Virtual Touch™ Quantification (VTQ). Serum total bilirubin (T-Bil) level was measured before biliary drainage (Day 0), with measures repeated at 2 days (Day 2) and 7 days (Day 7) after biliary drainage. Serum levels of the following markers of liver fibrosis were also obtained on Day 0 and Day 7: hyaluronic acid (HA), procollagen-III-peptide (P-III-P). T-Bil, TE, and VTQ for the left (VTQ-L) and right (VTQ-R) lobes of the liver were all elevated before biliary drainage, with respective levels, measured at Day 0, of 11.9 ± 1.5 mg/dl, 12.1 ± 0.9 kPa, 2.23 ± 0.10 m/s, and 1.85 ± 0.10 m/s. All values decreased on Day 7 after drainage: T-Bil, 4.7 ± 1.0 mg/dl (P < 0.001); TE, 7.6 ± 0.6 kPa (P < 0.001); VTQ-L, 1.53 ± 0.08 m/s (P < 0.001); and VTQ-R, 1.30 ± 0.05 m/s (P < 0.001). Similar changes were observed in serum markers of liver fibrosis. Liver elasticity measures correlated with serum levels of T-Bil, P-III-P, and HA (r = 0.35-0.67, P < 0.001). This study confirmed decreases in liver elasticity, measured by TE and VTQ, after biliary drainage. Measures of liver elasticity correlated to levels of T-Bil and serum markers of liver fibrosis. (UMIN ID: UMIN00001284313). University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN ID: UMIN00001284313 ); Registration date: 2014-01-14.

  11. Protein and vitamin B6 intake are associated with liver steatosis assessed by transient elastography, especially in obese individuals.

    PubMed

    Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Provenzano, Francesco; Colica, Carmela; Torti, Carlo; Romeo, Stefano; Pujia, Arturo; Montalcini, Tiziana

    2017-09-01

    Although the detrimental effects of several dietary components on the promotion of nonalcoholic fatty liver disease are well known, no studies have assessed the role of dietary vitamin B6. Moreover, studies on the associations between dietary components or body composition indices and liver steatosis assessed by transient elastography are rare. Our aim was to identify the nutritional factors and anthropometric parameters associated with liver steatosis. In this cross-sectional study, we enrolled 168 individuals (35% obese) who underwent a liver steatosis assessment by Controlled Attenuation Parameter measurement and nutritional assessment. Tertiles of vitamin B6 intake were positively associated with hepatic steatosis (B=1.89, P =0.026, confidence interval [CI] 0.03-0.80) as well as with triglycerides, glucose, alanine aminotransferase (ALT), and body mass index . In obese individuals, after multivariable analysis, the Controlled Attenuation Parameter score was still associated with triglycerides, ALT, and total protein intake (B=0.56, P =0.01, CI 0.10-1.02). Participants in tertile I (low intake) had a lower Controlled Attenuation Parameter than those in tertile III ( P =0.01). We found a positive association between hepatic steatosis or Controlled Attenuation Parameter score and vitamin B6/total protein intake, probably related to the high intake of meat. Vitamin B6 might have a pathogenic role related to the increase of hepatic steatosis.

  12. Reproducible Crystal Growth Experiments in Microgravity Science Glovebox at the International Space Station (SUBSA Investigation)

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.

    2005-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.

  13. Metabolic profile of liver damage in non-cirrhotic virus C and autoimmune hepatitis: A proton decoupled 31P-MRS study.

    PubMed

    Hakkarainen, Antti; Puustinen, Lauri; Kivisaari, Reetta; Boyd, Sonja; Nieminen, Urpo; Arkkila, Perttu; Lundbom, Nina

    2017-05-01

    To study liver 31 P MRS, histology, transient elastography, and liver function tests in patients with virus C hepatitis (HCV) or autoimmune hepatitis (AIH) to test the hypothesis that 31 P MR metabolic profile of these diseases differ. 25 patients with HCV (n=12) or AIH (n=13) underwent proton decoupled 31 P MRS spectroscopy performed on a 3.0T MR imager. Intensities of phosphomonoesters (PME) of phosphoethanolamine (PE) and phosphocholine (PC), phosphodiesters (PDE) of glycerophosphoethanolamine (GPE) and glycerophosphocholine (GPC), and γ, α and β resonances of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH) were determined. Liver stiffness was measured by transient elastography. Inflammation and fibrosis were staged according to METAVIR from biopsy samples. Activities of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALT) and thromboplastin time (TT) were determined from serum samples. PME had a stronger correlation with AST (z=1.73, p=0.04) and ALT (z=1.77, p=0.04) in HCV than in AIH patients. PME, PME/PDE, PE/GPE correlated positively and PDE negatively with inflammatory activity. PE, PC and PME correlated positively with liver function tests. 31 P-MRS suggests a more serious liver damage in HCV than in AIH with similar histopathological findings. 31 P-MRS is more sensitive in detecting inflammation than fibrosis in the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measuring spleen stiffness to predict varices in chronic hepatitis B cirrhotic patients with or without receiving non-selective beta-blockers.

    PubMed

    Wong, Grace Lai-Hung; Kwok, Raymond; Chan, Henry Lik-Yuen; Tang, Stephen Pui-Kit; Lee, Eugenia; Lam, Thomas Chi-Ho; Lau, Tiffany Wing-Yan; Ma, Teresa Man-Kee; Wong, Betsy Chi-Kuen; Wong, Vincent Wai-Sun

    2016-08-01

    we aimed to investigate the accuracy of liver (LSM) spleen stiffness measurement (SSM) with transient elastography (TE) to predict varices in the presence of non-selective beta-blockers (NSBB). In this cross-sectional study of consecutive patients with chronic hepatitis B (CHB) and cirrhosis, all patients underwent TE and upper endoscopic examinations. LSM and SSM in predicting varices in patients receiving and not receiving NSBB were evaluated. Altogether 144 CHB patients (29 receiving NSBB; 35 with any varices, 31 and 11 with esophageal and gastric varices, respectively) were recruited. Their mean LSM and SSM were 13.3 ± 9.0 kPa and 32.8 ± 19.2 kPa, respectively. The correlation between LSM and SSM was better in the NSBB subgroup (r = 0.525, P = 0.003) than its counterpart (r = 0.329, P  < 0.001). The area under receiver operating characteristic curve (AUROC) of LSM and SSM for any varices was 0.675 and 0.685 (P = 0.002 and 0.001), respectively. SSM of 18.9 kPa had a negative predictive value of 92.1% and negative likelihood ratio of 0.27 for ruling out any varices; and SSM of 54.9 kPa had a positive predictive value of 56.5% and a positive likelihood ratio of 4.05 to rule in varices. The AUROC of LSM for varices was 0.742 and 0.549 in patients with or without NSBB, respectively; the corresponding AUROC of SSM was 0.572 and 0.603, respectively. SSM only has modest accuracy to predict varices independent of NSBB use. An SSM cutoff value of 18.9 kPa may be adopted to achieve a high negative predictive value to rule out varices. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  15. Prevalence and predictive factors of moderate/severe liver steatosis in chronic hepatitis C (CHC) infected patients evaluated with Controlled Attenuation Parameter (CAP).

    PubMed

    Cardoso, Ana Carolina; Perez, Renata M; de Figueiredo-Mendes, Claudio; Carvalho Leite, Nathalie; Coelho, Henrique Sergio Moraes; Villela-Nogueira, Cristiane A

    2018-05-16

    A novel controlled attenuation parameter (CAP) using FibroScan ® has been developed for assessment of liver steatosis. The aim was to evaluate the frequency and associated factors for moderate/severe steatosis evaluated by CAP in CHC patients submitted to transient elastography (TE) by FibroScan ® . CHC patients underwent TE with CAP evaluation. The classification of steatosis was defined as: CAP < 222 dB/m = S0; CAP ≥ 222 dB/m and <233dB /m = S1; ≥233 dB/m <290dB/m = S2 and >= 290 dB/m = S3. The prevalence of moderate/severe steatosis (CAP ≥ S2) and the related independent factors were identified by a logistic regression analysis. A significance level of 5% was adopted. 1104 CHC patients, 85% genotype-1 were included (mean age 55 ± 11 yrs; 46% male, mean BMI 25 ± 4 Kg/m 2 ). Systemic arterial hypertension and type 2 diabetes mellitus prevalences were 39% and 17% respectively. Liver stiffness measurement ≥ 9.5 kPa was observed in 39% of patients and steatosis was identified in 50% (S1 = 7%, S2 = 28% and S3 = 15%). The variables independently associated with moderate/severe steatosis were: male gender (OR=1.35; p=0.037; 95% CI:1.01 - 1.81); systemic arterial hypertension (OR=1.57; p=0.002; 95% CI:1.17 - 2.10) and BMI (OR=1.17; p <0.01;95% CI: 1.12 - 1.22). In conclusion, when CAP was adopted as a tool to detect steatosis, genotype 1 CHC patients presented a high prevalence of moderate/advanced steatosis. In these patients, liver steatosis was associated mostly to metabolic factors (arterial hypertension and high BMI). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Hepatitis B virus sequencing and liver fibrosis evaluation in HIV/HBV co-infected Nigerians.

    PubMed

    Grant, Jennifer; Agbaji, Oche; Kramvis, Anna; Yousif, Mukhlid; Auwal, Mu'azu; Penugonda, Sudhir; Ugoagwu, Placid; Murphy, Robert; Hawkins, Claudia

    2017-06-01

    Molecular characteristics of hepatitis B virus (HBV), such as genotype and genomic mutations, may contribute to liver-related morbidity and mortality. The association of these characteristics with liver fibrosis severity in sub-Saharan Africa is uncertain. We aimed to characterise molecular HBV features in human immunodeficiency virus (HIV)/HBV co-infected Nigerians and evaluate associations between these characteristics and liver fibrosis severity before and after antiretroviral therapy (ART) initiation. HIV/HBV co-infected Nigerians underwent liver fibrosis estimation by transient elastography (TE) prior to and 36 months after ART initiation. Basal core promoter/precore (BCP/PC) and preS1/preS2/S regions of HBV were sequenced from baseline plasma samples. We evaluated associations between HBV mutations and liver fibrosis severity by univariate and multivariable regression. At baseline, 94 patients underwent TE with median liver stiffness of 6.4 (IQR 4.7-8.7) kPa. Patients were predominantly infected with HBV genotype E (45/46) and HBe-antigen negative (75/94, 79.8%). We identified BCP A1762T/G1764A in 15/35 (43%), PC G1896A in 20/35 (57%), 'a' determinant mutations in 12/45 (26.7%) and preS2 deletions in 6/16 (37.5%). PreS2 mutations were associated with advanced fibrosis in multivariable analysis. At follow-up, median liver stiffness was 5.2 (IQR 4.1-6.6) kPa. No HBV molecular characteristics were associated with lack of fibrosis regression, although HIV virologic control, body mass index (BMI) and baseline CD4+ T-cell count were associated with a decline in fibrosis stage. Frequent BCP/PC and preS1/preS2/S mutations were found in ART-naïve HIV/HBV co-infected Nigerians. Median liver stiffness declined after initiation of ART, regardless of pre-ART HBV mutational pattern or virologic characteristics. © 2017 John Wiley & Sons Ltd.

  17. Real-time elastography as a noninvasive assessment of liver fibrosis in chronic hepatitis C Egyptian patients: a prospective study

    PubMed Central

    Mobarak, Lamiaa; Nabeel, Mohammed M.; Hassan, Ehsan; Omran, Dalia; Zakaria, Zeinab

    2016-01-01

    Background Hepatitis C virus is a worldwide problem. Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy. The aim of this study was to evaluate the diagnostic accuracy of real-time elastography (RTE) in the assessment of liver fibrosis in patients with chronic hepatitis C (CHC), compared with transient elastography and liver biopsy. Methods RTE, FibroScan and liver biopsy were performed in 50 CHC patients. In addition, aspartate aminotransferase to platelet ratio index (APRI) and routine laboratory values were included in the analysis. Results RTE was able to diagnose significant hepatic fibrosis (F ≥2) according to METAVIR scoring system at cut-off value of 2.49 with sensitivity 100%, specificity 66%, and area under the receiver-operating characteristics (AUROC) 0.8. FibroScan was able to predict significant fibrosis at cut-off value 7.5 KPa with sensitivity 88%, specificity 100%, and AUROC 0.94.APRI was able to predict significant hepatic fibrosis (F ≥2) with sensitivity 54%, specificity 80%, and AUROC 0.69. There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001). Conclusions Although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients especially in cases with technical limitations for FibroScan. PMID:27366038

  18. Real-time elastography as a noninvasive assessment of liver fibrosis in chronic hepatitis C Egyptian patients: a prospective study.

    PubMed

    Mobarak, Lamiaa; Nabeel, Mohammed M; Hassan, Ehsan; Omran, Dalia; Zakaria, Zeinab

    2016-01-01

    Hepatitis C virus is a worldwide problem. Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy. The aim of this study was to evaluate the diagnostic accuracy of real-time elastography (RTE) in the assessment of liver fibrosis in patients with chronic hepatitis C (CHC), compared with transient elastography and liver biopsy. RTE, FibroScan and liver biopsy were performed in 50 CHC patients. In addition, aspartate aminotransferase to platelet ratio index (APRI) and routine laboratory values were included in the analysis. RTE was able to diagnose significant hepatic fibrosis (F ≥2) according to METAVIR scoring system at cut-off value of 2.49 with sensitivity 100%, specificity 66%, and area under the receiver-operating characteristics (AUROC) 0.8. FibroScan was able to predict significant fibrosis at cut-off value 7.5 KPa with sensitivity 88%, specificity 100%, and AUROC 0.94.APRI was able to predict significant hepatic fibrosis (F ≥2) with sensitivity 54%, specificity 80%, and AUROC 0.69. There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001). Although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients especially in cases with technical limitations for FibroScan.

  19. Non-invasive diagnosis of hepatitis B virus-related cirrhosis

    PubMed Central

    Lee, Sangheun; Kim, Do Young

    2014-01-01

    Chronic hepatitis B (CHB) infection is a major public health problem associated with significant morbidity and mortality worldwide. Twenty-three percent of patients with CHB progress naturally to liver cirrhosis, which was earlier thought to be irreversible. However, it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs. Thus, early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB. Liver biopsy is the reference standard for assessment of liver fibrosis. However, the method is invasive, and is associated with pain and complications that can be fatal. In addition, intra- and inter-observer variability compromises the accuracy of liver biopsy data. Only small tissue samples are obtained and fibrosis is heterogeneous in such samples. This confounds the two types of observer variability mentioned above. Such limitations have encouraged development of non-invasive methods for assessment of fibrosis. These include measurements of serum biomarkers of fibrosis; and assessment of liver stiffness via transient elastography, acoustic radiation force impulse imaging, real-time elastography, or magnetic resonance elastography. Although significant advances have been made, most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection. In the present review, we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice. PMID:24574713

  20. Practice guideline for the performance of breast ultrasound elastography.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Cho, Nariya; Koo, Hye Ryoung; Yi, Ann; Kim, Seung Ja; Youk, Ji Hyun; Son, Eun Ju; Choi, Seon Hyeong; Kook, Shin Ho; Chung, Jin; Cha, Eun Suk; Park, Jeong Seon; Jung, Hae Kyoung; Ko, Kyung Hee; Choi, Hye Young; Ryu, Eun Bi; Moon, Woo Kyung

    2014-01-01

    Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.

  1. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    DOE PAGES

    Serafini, John; Hossain, A.; James, R. B.; ...

    2017-07-03

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd 0.92Mg 0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelength 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms atmore » different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ~500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, due to a twinned structure and misalignment of the tested (Cd,Mg)Te crystal.« less

  2. Intestinal lymphangiectasia and reversible high liver stiffness.

    PubMed

    Milazzo, Laura; Peri, Anna Maria; Lodi, Lucia; Gubertini, Guido; Ridolfo, Anna Lisa; Antinori, Spinello

    2014-08-01

    Primary intestinal lymphangiectasia (PIL) is a protein-losing enteropathy characterized by tortuous and dilated lymph channels of the small bowel. The main symptoms are bilateral lower limb edema, serosal effusions, and vitamin D malabsorption resulting in osteoporosis. We report here a case of long-lasting misdiagnosed PIL with a peculiar liver picture, characterized by a very high stiffness value at transient elastography, which decreased with clinical improvement. The complex interplay between lymphatic and hepatic circulatory system is discussed. © 2014 by the American Association for the Study of Liver Diseases.

  3. Elastography for the pancreas: Current status and future perspective

    PubMed Central

    Kawada, Natsuko; Tanaka, Sachiko

    2016-01-01

    Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas. PMID:27076756

  4. Elastography for the pancreas: Current status and future perspective.

    PubMed

    Kawada, Natsuko; Tanaka, Sachiko

    2016-04-14

    Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas.

  5. Exposure to previous cART is associated with significant liver fibrosis and cirrhosis in human immunodeficiency virus-infected patients.

    PubMed

    Anadol, Evrim; Lust, Kristina; Boesecke, Christoph; Schwarze-Zander, Carolynne; Mohr, Raphael; Wasmuth, Jan-Christian; Rockstroh, Jürgen Kurt; Trebicka, Jonel

    2018-01-01

    Combined antiretroviral therapy (cART) has improved survival in HIV-patients. While the first antiretrovirals, which became available in particular D-drugs (especially didanosine and stavudine) and unboosted protease inhibitors, may impair liver function, the modern cART seems to decrease liver fibrosis. This study assessed the influence of exposure to previous antiretrovirals on liver fibrosis in HIV-infected patients. This observational cross-sectional single-center study recruited 333 HIV patients and assessed liver fibrosis using transient elastography (TE). 83% were male with a median age of 45, while 131 were co-infected with viral hepatitis. Overall, 18% had significant fibrosis and 7.5% had cirrhosis. 11% of HIV mono-infected patients had significant fibrosis and 2% had cirrhosis. HCV infection (OR:5.3), history of exposure to didanosine (OR:2.7) and HIV load below 40copies/mL (OR:0.5) were independently associated with significant fibrosis, while HCV (OR:5.8), exposure to didanosine (OR:2.9) and azidothymidine (OR:2.8) were independently associated with cirrhosis. Interestingly, in HIV mono-infected patients, a HIV-load below 40copies/mL (OR:0.4) was independently associated with significant fibrosis, and didanosine (OR:20.8) with cirrhosis. In conclusion, history of exposure to didanosine and azidothymidine continues to have an impact on the presence of liver cirrhosis in HIV patients. However, HCV co-infection and ongoing HIV-replication have the strongest effect on development of significant fibrosis in these patients.

  6. Elastography in clinical practice.

    PubMed

    Barr, Richard G

    2014-11-01

    Elastography is a new technique that evaluates tissue stiffness. There are two elastography methods, strain and shear wave elastography. Both techniques are being used to evaluate a wide range of applications in medical imaging. Elastography of breast masses and prostates have been shown to have high accuracy for characterizing masses and can significantly decrease the need for biopsies. Shear wave elastography has been shown to be able to detect and grade liver fibrosis and may decrease the need for liver biopsy. Evaluation of other organs is still preliminary. This article reviews the principles of elastography and its potential clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sonoelastography in the musculoskeletal system: Current role and future directions.

    PubMed

    Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor

    2016-11-28

    Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.

  8. What we need to know when performing and interpreting US elastography

    PubMed Central

    Park, So Hyun; Kim, So Yeon; Suh, Chong Hyun; Lee, Seung Soo; Kim, Kyoung Won; Lee, So Jung; Lee, Moon-Gyu

    2016-01-01

    According to the increasing need for accurate staging of hepatic fibrosis, the ultrasound (US) elastography techniques have evolved significantly over the past two decades. Currently, US elastography is increasingly used in clinical practice. Previously published studies have demonstrated the excellent diagnostic performance of US elastography for the detection and staging of liver fibrosis. Although US elastography may seem easy to perform and interpret, there are many technical and clinical factors which can affect the results of US elastography. Therefore, clinicians who are involved with US elastography should be aware of these factors. The purpose of this article is to present a brief overview of US techniques with the relevant technology, the clinical indications, diagnostic performance, and technical and biological factors which should be considered in order to avoid misinterpretation of US elastography results. PMID:27729637

  9. The relationship between visceral obesity and hepatic steatosis measured by controlled attenuation parameter

    PubMed Central

    Jung, Kyu Sik; Chon, Young Eun; Huh, Ji Hye; Park, Kyeong Hye; Chung, Jae Bock; Kim, Chang Oh; Han, Kwang-Hyub

    2017-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is closely related with obesity. However, obese subjects, generally represented by high BMI, do not always develop NAFLD. A number of possible causes of NAFLD have been studied, but the exact mechanism has not yet been elucidated. Methods A total of 304 consecutive subjects who underwent general health examinations including abdominal ultrasonography, transient elastography and abdominal fat computed tomography were prospectively enrolled. Significant steatosis was diagnosed by ultrasonography and controlled attenuation parameter (CAP) assessed by transient elastography. Results Visceral fat area (VFA) was significantly related to hepatic steatosis assessed by CAP, whereas body mass index (BMI) was related to CAP only in univariate analysis. In multiple logistic regression analysis, VFA (odds ratio [OR], 1.010; 95% confidence interval [CI], 1.001–1.019; P = 0.028) and triglycerides (TG) (OR, 1.006; 95% CI, 1.001–1.011; P = 0.022) were independent risk factors for significant hepatic steatosis. The risk of significant hepatic steatosis was higher in patients with higher VFA: the OR was 4.838 (P<0.001; 95% CI, 2.912–8.039) for 100200 cm2, compared to patients with a VFA ≤100 cm2. Conclusions Our data demonstrated that VFA and TG is significantly related to hepatic steatosis assessed by CAP not BMI. This finding suggests that surveillance for subjects with NAFLD should incorporate an indicator of visceral obesity, and not simply rely on BMI. PMID:29077769

  10. Prognostic value of the combined use of transient elastography and fibrotest in patients with chronic hepatitis B.

    PubMed

    Park, Mi Sung; Kim, Seung Up; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Shin, Seung Hwan; Kang, Wonseok; Moon, Chansoo; Han, Kwang-Hyub

    2015-02-01

    Liver stiffness (LS) measurement using transient elastography and the FibroTest (FT) are alternatives to liver biopsy (LB) in assessing liver fibrosis. We investigated the prognostic role of the combined use of LS and FT in predicting liver-related events (LREs) in patients with chronic hepatitis B (CHB). Consecutive patients with CHB who underwent LB, along with LS and FT on the same day were recruited. LRE was defined as hepatic decompensation, hepatocellular carcinoma (HCC) or liver-related death. A total of 151 patients (86 male) were analyzed. During follow-up (median 59.9 months), overall 18 (11.9%) patients experienced LREs. The areas under receiver-operating characteristic curves of LS, FT, LS + FT and LS × FT in predicting LRE were 0.701, 0.668, 0.702 and 0.741 respectively. After adjusting for age and histological fibrosis staging, significant variables in univariate analysis (both P < 0.05), LS + FT and LS × FT were independent predictors of LREs with hazard ratios (HRs) of 1.080 and 1.126 (all P < 0.05) respectively. When subjects were divided into three groups according to quartile stratification (low quartile, interquartile and high quartile) using LS + FT and LS × FT, cumulative LRE development rate significantly increased with a corresponding increase in value among three groups respectively (log-rank test, all P < 0.05). The combined use of LS and FT significantly predicted forthcoming LRE development, but with only a slight additional benefit compared to LS or FT alone. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of Intense Optical Excitation on Internal Electric Field Evolution in CdTe Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ichinohe, Y.; Seto, S.

    2018-03-01

    The time-of-flight (TOF) transient currents in radiation detectors made of CdTe and Cd0.9Zn0.1Te (CZT) have been measured at several optical excitation intensities to investigate the effect of drifting carriers on the internal field. Both detectors show so-called space-charge-perturbed (SCP) current under intense optical excitation. A Monte Carlo (MC) simulation combined with an iterative solution of Poisson's equation is used to reproduce the observed currents under several bias voltages and excitation intensities. The SCP theory describes well the transient current in the CZT detector, whereas injection of holes from the anode and a corresponding reduction of the electron lifetime are further required to describe that in the CdTe detector. We visualize the temporal changes in the charge distribution and internal electric field profiles of both detectors.

  12. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    NASA Astrophysics Data System (ADS)

    Serafini, John; Hossain, A.; James, R. B.; Guziewicz, M.; Kruszka, R.; Słysz, W.; Kochanowska, D.; Domagala, J. Z.; Mycielski, A.; Sobolewski, Roman

    2017-07-01

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd0.92Mg0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelengths of 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms at different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ˜500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, apparently, due to the disorientation of the tested crystal that resulted in the non-optimal EO measurement condition.

  13. Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift

    NASA Astrophysics Data System (ADS)

    Lyubomirsky, Igor; Rabinal, M. K.; Cahen, David

    1997-05-01

    We show that the transient ion drift (TID) method, which is based on recording junction capacitance under constant reverse bias [A. Zamouche, T. Heiser, and A. Mesli, Appl. Phys. Lett. 66, 631 (1995)], can be used not only for measurements of the diffusion coefficient of mobile impurities, but also to estimate the concentration of mobile species as part of the total dopant density. This is illustrated for CdTe, contaminated by Cu, and intentionally doped by Li or Ag and for CuInSe2. We show also that, with some restrictions, the TID method can be used if the mobile ions are major dopants. This is demonstrated using Schottky barriers on CdTe, and p-n junction devices in (Hg,Cd)Te, and CuInSe2. The values that we obtain for the diffusion coefficients (for Li, Ag, and Cu in CdTe and for Cu in CuInSe2) agree well with measured or extrapolated values, obtained by other methods, as reported in the literature. Furthermore, we could distinguish between diffusion and chemical reactions of dopants, as demonstrated for the case of Cu in CdTe and Ag-doped (Hg,Cd)Te. In the former case this allows us to separate copper-free from contaminated CdTe samples.

  14. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?

    PubMed

    Berko, Netanel S; Hay, Arielle; Sterba, Yonit; Wahezi, Dawn; Levin, Terry L

    2015-09-01

    Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31%, respectively, with a sensitivity of 40% and specificity of 67%. Compression-strain US elastography does not accurately detect active myositis in children with juvenile idiopathic inflammatory myopathy and cannot replace MRI as the imaging standard for detecting myositis in these children. The association between abnormal US elastography and increased muscle echogenicity suggests that elastography is capable of detecting muscle derangement in patients with myositis; however further studies are required to determine the clinical significance of these findings.

  15. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  16. A simple method for MR elastography: a gradient-echo type multi-echo sequence.

    PubMed

    Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro

    2015-01-01

    To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  18. [Elastography as an additional tool in breast sonography. Technical principles and clinical applications].

    PubMed

    Rjosk-Dendorfer, D; Reichelt, A; Clevert, D-A

    2014-03-01

    In recent years the use of elastography in addition to sonography has become a routine clinical tool for the characterization of breast masses. Whereas free hand compression elastography results in qualitative imaging of tissue stiffness due to induced compression, shear wave elastography displays quantitative information of tissue displacement. Recent studies have investigated the use of elastography in addition to sonography and improvement of specificity in differentiating benign from malignant breast masses could be shown. Therefore, additional use of elastography could help to reduce the number of unnecessary biopsies in benign breast lesions especially in category IV lesions of the ultrasound breast imaging reporting data system (US-BI-RADS).

  19. Assessing Age-Related Changes in the Biomechanical Properties of Rabbit Lens Using a Coaligned Ultrasound and Optical Coherence Elastography System

    PubMed Central

    Wu, Chen; Han, Zhaolong; Wang, Shang; Li, Jiasong; Singh, Manmohan; Liu, Chih-hao; Aglyamov, Salavat; Emelianov, Stanislav; Manns, Fabrice; Larin, Kirill V.

    2015-01-01

    Purpose. To evaluate the capability of a novel, coaligned focused ultrasound and phase-sensitive optical coherence elastography (US-OCE) system to assess age-related changes in biomechanical properties of the crystalline lens in situ. Methods. Low-amplitude elastic deformations in young and mature rabbit lenses were measured by an US-OCE system consisting of a spectral-domain optical coherence tomography (OCT) system coaligned with a focused ultrasound system used to produce a transient force on the lens surface. Uniaxial compressional tests were used to validate the OCE data. Results. The OCE measurements showed that the maximum displacements of the young rabbit lenses were significantly larger than those of the mature lenses, indicating a gradual increase of the lens stiffness with age. Temporal analyses of the displacements also demonstrate a similar trend of elastic properties in these lenses. The stress-strain measurements using uniaxial mechanical tests confirmed the results obtained by the US-OCE system. Conclusions. The results demonstrate that the US-OCE system can be used for noninvasive analysis and quantification of lens biomechanical properties in situ and possibly in vivo. PMID:25613945

  20. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.

    PubMed

    Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.

  1. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    NASA Astrophysics Data System (ADS)

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-01

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  2. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    PubMed

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-07

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  3. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications

    PubMed Central

    Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799

  4. Cost-Effective Evaluation of Nonalcoholic Fatty Liver Disease With NAFLD Fibrosis Score and Vibration Controlled Transient Elastography.

    PubMed

    Tapper, Elliot B; Sengupta, Neil; Hunink, M G Myriam; Afdhal, Nezam H; Lai, Michelle

    2015-09-01

    The risk of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is traditionally assessed with a liver biopsy, which is both costly and associated with adverse events. We sought to compare the cost-effectiveness of four different strategies to assess fibrosis risk in patients with NAFLD: vibration controlled transient elastography (VCTE), the NAFLD fibrosis score (NFS), combination testing with NFS and VCTE, and liver biopsy (usual care). We developed a probabilistic decision analytical microsimulation state-transition model wherein we simulated a cohort of 10,000 50-year-old Americans with NAFLD undergoing evaluation by a gastroenterologist. VCTE performance was obtained from a prospective cohort of 144 patients with NAFLD. Both the NFS alone and the NFS/VCTE strategies were cost effective at $5,795 and $5,768 per quality-adjusted life years (QALY), respectively. In the microsimulation, the NFS alone and NFS/VCTE strategies were the most cost-effective (dominant) in 66.8 and 33.2% of samples given a willingness-to-pay threshold of $100,000 per QALY. In a sensitivity analysis, the minimum cost per liver biopsy at which the NFS is cost saving is $339 and the maximum cost per VCTE exam at which the NFS/VCTE strategy remains cost saving is $1,593. The expected value of further research on this topic is $526 million. Non-invasive risk stratification with both the NFS alone and the NFS/VCTE are cost-effective strategies for the evaluation and management of patients with NAFLD presenting to a gastroenterologist. Further research is needed to better define the natural history of NAFLD and the effect of novel treatments on decision making.

  5. Prediction of posthepatectomy liver failure using transient elastography in patients with hepatitis B related hepatocellular carcinoma.

    PubMed

    Lei, Jie-Wen; Ji, Xiao-Yu; Hong, Jun-Feng; Li, Wan-Bin; Chen, Yan; Pan, Yan; Guo, Jia

    2017-12-29

    It is essential to accurately predict Postoperative liver failure (PHLF) which is a life-threatening complication. Liver hardness measurement (LSM) is widely used in non-invasive assessment of liver fibrosis. The aims of this study were to explore the application of preoperative liver stiffness measurements (LSM) by transient elastography in predicting postoperative liver failure (PHLF) in patients with hepatitis B related hepatocellular carcinoma. The study included 247 consecutive patients with hepatitis B related hepatocellular carcinoma who underwent hepatectomy between May 2015 and September 2015. Detailed preoperative examinations including LSM were performed before hepatectomy. The endpoint was the development of PHLF. All of the patients had chronic hepatitis B defined as the presence of hepatitis B surface antigen (HBsAg) for more than 6 months and 76 (30.8%) had cirrhosis. PHLF occurred in 37 (14.98%) patients. Preoperative LSM (odds ratio, OR, 1.21; 95% confidence interval, 95% CI: 1.13-1.29; P < 0.001) and international normalized ratio (INR) (OR, 1.07; 95% CI: 1.01-1.12; P < 0.05) were revealed to be independent risk factors for PHLF, and a new model was defined as LSM-INR index (LSM-INR index = 0.191*LSM + 6.317*INR-11.154). The optimal cutoff values of LSM and LSM-INR index for predicting PHLF were 14 kPa (AUC 0.86, 95% CI: 0.811-0.901, P < 0.001) and -1.92 (AUC 0.87, 95% CI: 0.822-0.909, P < 0.001), respectively. LSM can be helpful for surgeons to make therapeutic decisions in patients with hepatitis B related hepatocellular carcinoma.

  6. Evaluation of right ventricular function using liver stiffness in patients with left ventricular assist device.

    PubMed

    Kashiyama, Noriyuki; Toda, Koichi; Nakamura, Teruya; Miyagawa, Shigeru; Nishi, Hiroyuki; Yoshikawa, Yasushi; Fukushima, Satsuki; Saito, Shunsuke; Yoshioka, Daisuke; Sawa, Yoshiki

    2017-04-01

    Although right ventricular failure (RVF) is a major concern after left ventricular assist device (LVAD) implantation, methodologies to evaluate RV function remain limited. Liver stiffness (LS), which is closely related to right-sided filling pressure and may indicate RVF severity, could be non-invasively and repeatedly assessed using transient elastography. Here we investigated the suitability of LS as a parameter of RV function in pre- and post-LVAD periods. The study included 55 patients with LVAD implantation as a bridge to transplantation between 2011 and 2015 whose LS was assessed using transient elastography. Seventeen patients presented with RVF, defined as requiring inotropic support for ≥30 days, nitric oxygen inhalation for ≥5 days, and/or mechanical RV support following LVAD implantation. Survival of patients with RVF was significantly worse compared with that of patients without RVF. Multivariate logistic regression analysis identified preoperative LS, LV diastolic dimension, RV stroke work index, and dilated phase of hypertrophic cardiomyopathy aetiology as significant risk factors; the combination of these parameters could improve predictive power of post-LVAD RVF with areas under the curve of 0.89. Furthermore, LS was significantly decreased by LV unloading and significantly correlated with right-sided filling pressure. In addition to dilated hypertrophic cardiomyopathy aetiology, reduced RV stroke work index and small LV dimension, we demonstrated that non-invasively measured LS was a predictor of post-LVAD RVF and can be used as a parameter for the evaluation and optimization of RV function in the perioperative period. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.

  7. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762

  8. Finite element analysis to investigate variability of MR elastography in the human thigh.

    PubMed

    Hollis, L; Barnhill, E; Perrins, M; Kennedy, P; Conlisk, N; Brown, C; Hoskins, P R; Pankaj, P; Roberts, N

    2017-11-01

    To develop finite element analysis (FEA) of magnetic resonance elastography (MRE) in the human thigh and investigate inter-individual variability of measurement of muscle mechanical properties. Segmentation was performed on MRI datasets of the human thigh from 5 individuals and FEA models consisting of 12 muscles and surrounding tissue created. The same material properties were applied to each tissue type and a previously developed transient FEA method of simulating MRE using Abaqus was performed at 4 frequencies. Synthetic noise was applied to the simulated data at various levels before inversion was performed using the Elastography Software Pipeline. Maps of material properties were created and visually assessed to determine key features. The coefficient of variation (CoV) was used to assess the variability of measurements in each individual muscle and in the groups of muscles across the subjects. Mean measurements for the set of muscles were ranked in size order and compared with the expected ranking. At noise levels of 2% the CoV in measurements of |G * | ranged from 5.3 to 21.9% and from 7.1 to 36.1% for measurements of ϕ in the individual muscles. A positive correlation (R 2 value 0.80) was attained when the expected and measured |G * | ranking were compared, whilst a negative correlation (R 2 value 0.43) was found for ϕ. Created elastograms demonstrated good definition of muscle structure and were robust to noise. Variability of measurements across the 5 subjects was dramatically lower for |G * | than it was for ϕ. This large variability in ϕ measurements was attributed to artefacts. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  10. Correlation of cell-free DNA plasma concentration with severity of non-alcoholic fatty liver disease.

    PubMed

    Karlas, Thomas; Weise, Lara; Kuhn, Stephanie; Krenzien, Felix; Mehdorn, Matthias; Petroff, David; Linder, Nicolas; Schaudinn, Alexander; Busse, Harald; Keim, Volker; Pratschke, Johann; Wiegand, Johannes; Splith, Katrin; Schmelzle, Moritz

    2017-05-19

    The assessment of fibrosis and inflammatory activity is essential to identify patients with non-alcoholic fatty liver disease (NAFLD) at risk for progressive disease. Serum markers and ultrasound-based methods can replace liver biopsy for fibrosis staging, whereas non-invasive characterization of inflammatory activity remains a clinical challenge. Cell-free DNA (cfDNA) is a novel non-invasive biomarker for assessing cellular inflammation and cell death, which has not been evaluated in NAFLD. Patients and healthy controls from two previous studies were included. NAFLD disease activity and severity were non-invasively characterized by liver stiffness measurement (transient elastography, TE) including steatosis assessment with controlled attenuation parameter (CAP), single-proton magnetic resonance spectroscopy ( 1 H-MRS) for determination of hepatic fat fraction, aminotransferases and serum ferritin. cfDNA levels (90 and 222 bp fragments) were analyzed using quantitative real-time PCR. Fifty-eight NAFLD patients (age 62 ± 11 years, BMI 28.2 ± 3.5 kg/m 2 ) and 13 healthy controls (age 38 ± 12 years, BMI 22.4 ± 2.1 kg/m 2 ) were included. 90 bp cfDNA levels were significantly higher in NAFLD patients compared to healthy controls: 3.7 (1.3-23.1) vs. 2.9 (1.4-4.1) ng/mL (p = 0.014). In the NAFLD cohort, circulating cfDNA correlated significantly with disease activity and severity, especially in patients with elevated liver stiffness (n = 13, 22%) compared to cases with TE values ≤7 kPa: cf90 bp 6.05 (2.41-23.13) vs. 3.16 (1.29-7.31) ng/mL (p < 0.001), and cf222 bp 14.41 (9.27-22.90) vs. 11.32 (6.05-18.28) ng/mL (p = 0.0041). Cell-free DNA plasma concentration correlates with established non-invasive markers of NAFLD activity and severity. Therefore, cfDNA should be further evaluated as biomarker for identifying patients at risk for progressive NAFLD.

  11. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide.

    PubMed

    Davies, A; Dixon, M; Callanan, D; Huszczuk, A; Widdicombe, J G; Wise, J C

    1978-07-01

    Anaesthetized rabbits were given 200 ppm sulphur dioxide to breathe for 10 min. This abolished activity in 23 of 26 pulmonary stretch receptors, while leaving that of lung irritant receptors unimpaired. The Breuer-Hering reflex was abolished and breathing became deeper and slower. Inspiratory time (tI) was increased and expiratory time (tE) decreased. Subsequent vagotomy increased tidal volume (VT), tI and tE. In animals with stretch receptors blocked, injections of phenyl diguanide and histamine still increased breathing frequency and decreased VT, indicating that reflexes from lung irritant and J-receptors were intact. Inhalation of 8% CO2 caused a bigger increase in frequency and tidal volume in rabbits with stretch receptor block compared with controls or those after vagotomy. Induction of pneumothorax with stretch receptor block transiently prolonged tI and shortened tE; removal of the pneumothorax also transiently shortened tE and usually also decreased tI. The results suggest that lung irritant receptors reflexly shorten tE in all our experimental conditions, but have various effects on tI which may depend on the timing of the irritant receptor discharge and refractoriness of the inspiratory response.

  12. Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study.

    PubMed

    Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir

    2017-08-01

    Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.

  13. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.

    PubMed

    Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn

    2018-01-01

    To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P < .001). Combined strain and shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Coinheritance of hereditary spherocytosis and reversibility of cirrhosis in a young female patient with hereditary hemochromatosis.

    PubMed

    Höblinger, A; Erdmann, C; Strassburg, C P; Sauerbruch, T; Lammert, F

    2009-04-16

    Here we report a 33-years-old woman with hereditary spherocytosis and hemochromatosis due to homozygosity for the C282Y mutation of the HFE gene. The coinheritance of both conditions led to severe iron overload and liver cirrhosis at young age. The patient was treated by repeated phlebotomy, and reversibility of cirrhosis was documented by transient elastography. This report discusses the pathophysiology of iron accumulation in patients with hemolytic anemia combined with HFE C282Y homozygosity. The case indicates that patients with hematological disorders characterized by increased erythropoetic activity should be screened for HFE mutations.

  15. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    PubMed

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  16. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    PubMed Central

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  17. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.

    PubMed

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to determine the methodology, indications and technique of examination.

  18. The diagnostic performance of shear-wave elastography for liver fibrosis in children and adolescents: A systematic review and diagnostic meta-analysis.

    PubMed

    Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young

    2018-03-01

    To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.

  19. Current status of musculoskeletal application of shear wave elastography.

    PubMed

    Ryu, JeongAh; Jeong, Woo Kyoung

    2017-07-01

    Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.

  20. Current status of musculoskeletal application of shear wave elastography

    PubMed Central

    2017-01-01

    Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography. PMID:28292005

  1. Strain Elastography - How To Do It?

    PubMed Central

    Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland

    2017-01-01

    Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273

  2. A stepwise algorithm using an at-a-glance first-line test for the non-invasive diagnosis of advanced liver fibrosis and cirrhosis.

    PubMed

    Boursier, Jérôme; de Ledinghen, Victor; Leroy, Vincent; Anty, Rodolphe; Francque, Sven; Salmon, Dominique; Lannes, Adrien; Bertrais, Sandrine; Oberti, Frederic; Fouchard-Hubert, Isabelle; Calès, Paul

    2017-06-01

    Chronic liver diseases (CLD) are common, and are therefore mainly managed by non-hepatologists. These physicians lack access to the best non-invasive tests of liver fibrosis, and consequently cannot accurately determine the disease severity. Referral to a hepatologist is then needed. We aimed to implement an algorithm, comprising a new first-line test usable by all physicians, for the detection of advanced liver fibrosis in all CLD patients. Diagnostic study: 3754 CLD patients with liver biopsy were 2:1 randomized into derivation and validation sets. Prognostic study: longitudinal follow-up of 1275 CLD patients with baseline fibrosis tests. Diagnostic study: the easy liver fibrosis test (eLIFT), an "at-a-glance" sum of points attributed to age, gender, gamma-glutamyl transferase, aspartate aminotransferase (AST), platelets and prothrombin time, was developed for the diagnosis of advanced fibrosis. In the validation set, eLIFT and fibrosis-4 (FIB4) had the same sensitivity (78.0% vs. 76.6%, p=0.470) but eLIFT gave fewer false positive results, especially in patients ≥60years old (53.8% vs. 82.0%, p<0.001), and was thus more suitable as screening test. FibroMeter with vibration controlled transient elastography (VCTE) was the most accurate among the eight fibrosis tests evaluated. The sensitivity of the eLIFT-FM VCTE algorithm (first-line eLIFT, second-line FibroMeter VCTE ) was 76.1% for advanced fibrosis and 92.1% for cirrhosis. Prognostic study: patients diagnosed as having "no/mild fibrosis" by the algorithm had excellent liver-related prognosis with thus no need for referral to a hepatologist. The eLIFT-FM VCTE algorithm extends the detection of advanced liver fibrosis to all CLD patients and reduces unnecessary referrals of patients without significant CLD to hepatologists. Blood fibrosis tests and transient elastography accurately diagnose advanced liver fibrosis in the large population of patients having chronic liver disease, but these non-invasive tests are only currently available in specialized centers. We have developed an algorithm including the easy liver fibrosis test (eLIFT), a new simple and widely available blood test. It is used as a first-line procedure that selects at-risk patients who need further evaluation with the FibroMeter VCTE , an accurate fibrosis test combining blood markers and transient elastography result. This new algorithm, called the eLIFT-FM VCTE , accurately identifies the patients with advanced chronic liver disease who need referral to a specialist, and those with no or mild liver lesions who can remain under the care of their usual physician. No registration (analysis of pooled data from previously published diagnostic studies). Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Ultrafast charge transfer between MoTe2 and MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Pan, Shudi; Ceballos, Frank; Bellus, Matthew Z.; Zereshki, Peymon; Zhao, Hui

    2017-03-01

    High quality and stable electrical contact between metal and two-dimensional materials, such as transition metal dichalcogenides, is a necessary requirement that has yet to be achieved in order to successfully exploit the advantages that these materials offer to electronics and optoelectronics. MoTe2, owing to its phase changing property, can potentially offer a solution. A recent study demonstrated that metallic phase of MoTe2 connects its semiconducting phase with very low resistance. To utilize this property to connect other two-dimensional materials, it is important to achieve efficient charge transfer between MoTe2 and other semiconducting materials. Using MoS2 as an example, we report ultrafast and efficient charge transfer between MoTe2 and MoS2 monolayers. In the transient absorption measurements, an ultrashort pump pulse is used to selectively excite electrons in MoTe2. The appearance of the excited electrons in the conduction band of MoS2 is monitored by using a probe pulse that is tuned to the resonance of MoS2. We found that electrons transfer to MoS2 on a time scale of at most 0.3 ps. The transferred electrons give rise to a large transient absorption signal at both A-exciton and B-exciton resonances due to the screening effect. We also observed ultrafast transfer of holes from MoS2 to MoTe2. Our results suggest the feasibility of using MoTe2 as a bridge material to connect MoS2 and other transition metal dichalcogenides, and demonstrate a new transition metal dichalcogenide heterostructure involving MoTe2, which extends the spectral range of such structures to infrared.

  4. Transient and diffusion analysis of HgCdTe

    NASA Technical Reports Server (NTRS)

    Clayton, J. C.

    1982-01-01

    Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.

  5. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  6. Characterization of focal breast lesions by means of elastography.

    PubMed

    Fischer, T; Sack, I; Thomas, A

    2013-09-01

    The modern method of sonoelastography of the breast is used for differentiating focal lesions. This review gives an overview of the different techniques available and discusses their roles in the routine clinical setting. The presented techniques include compression or vibration elastography as well as shear wave elastography. Descriptions of the methods are supplemented by a discussion of the clinical role of each technique based on the most recent literature. We discuss by outlining two recent experimental approaches - MRI and tomosynthesis elastography. Currently available data suggest that elastography is an important supplementary tool for the differentiation of breast tumors under routine clinical conditions. The specificity improves with the immediate availability of additional diagnostic information using real-time techniques and/or the calculation of strain ratios (SR). Elastography is especially helpful in women with involuted breasts for differentiating BI-RADS-US 3 and 4 lesions and for evaluating very small cancers without the typical imaging features of malignancy. Here, elastography techniques are highly specific, while the sensitivity decreases compared to B-mode ultrasound. SR calculation is especially helpful in women who have a high risk of breast cancer and high pretest likelihood. B-mode ultrasound is still the first-line method for the initial evaluation of the breast. If suspicious findings are detected, elastography with or without SR calculation is the most crucial supplementary tool. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Shear Wave Elastography May Add a New Dimension to Ultrasound Evaluation of Thyroid Nodules: Case Series with Comparative Evaluation

    PubMed Central

    Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof

    2012-01-01

    Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685

  8. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    PubMed Central

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction. PMID:24194676

  9. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    PubMed

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  10. Liver elastography, comments on EFSUMB elastography guidelines 2013

    PubMed Central

    Cui, Xin-Wu; Friedrich-Rust, Mireen; Molo, Chiara De; Ignee, Andre; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F

    2013-01-01

    Recently the European Federation of Societies for Ultrasound in Medicine and Biology Guidelines and Recommendations have been published assessing the clinical use of ultrasound elastography. The document is intended to form a reference and to guide clinical users in a practical way. They give practical advice for the use and interpretation. Liver disease forms the largest section, reflecting published experience to date including evidence from meta-analyses with shear wave and strain elastography. In this review comments and illustrations on the guidelines are given. PMID:24151351

  11. Elastography methods applicable to the eye

    NASA Astrophysics Data System (ADS)

    Khan, Altaf A.; Cortina, Soledad M.; Chamon, Wallace; Royston, Thomas J.

    2014-02-01

    Elastography is the mapping of tissues and cells by their respective mechanical properties, such as elasticity and viscosity. Our interest primarily lies in the human eye. Combining Scanning Laser Doppler Vibrometry (SLDV) with geometrically focused mechanical vibratory excitations of the cornea, it is possible to reconstruct these mechanical properties of the cornea. Experiments were conducted on phantom corneas as well as excised donor human corneas to test feasibility and derive a method of modeling. Finite element analysis was used to recreate the phantom studies and corroborate with the experimental data. Results are in close agreement. To further expand the study, lamb eyes were used in MR Elastography studies. 3D wave reconstruction was created and elastography maps were obtained. With MR Elastography, it would be possible to noninvasively measure mechanical properties of anatomical features not visible to SLDV, such as the lens and retina. Future plans include creating a more robust finite element model, improving the SLDV method for in-vivo application, and continuing experiments with MR Elastography.

  12. Ultrasound elastography of the lower uterine segment in women with a previous cesarean section: Comparison of in-/ex-vivo elastography versus tensile-stress-strain-rupture analysis.

    PubMed

    Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael

    2018-06-01

    The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p < 0.001, 95%CI [0.48, 0.92]). The laboratory experiment illustrated that, the break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p < 0.001, 95%CI [0.55, 0.91]). Two extremely stiff LUS-specimens (outlier or extreme values) rupture even at less stroke/strain than would be expected by their thickness. This study confirms that US elastography can help in determining viscoelastic properties of the LUS in women with a previous CS. The data from our small series are promising. However whether individual extreme values of high stiffness and consecutive restricted biomechanical resilience can explain the phenomenon of rupture during TOLAC in cases of LUS with adequate thickness remains a question which prospective trials have to analyze before US elastography can be introduced into clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  14. Elastography in the differential diagnosis of thyroid nodules in Hashimoto thyroiditis.

    PubMed

    Şahin, Mustafa; Çakal, Erman; Özbek, Mustafa; Güngünes, Aşkin; Arslan, Müyesser Sayki; Akkaymak, Esra Tutal; Uçan, Bekir; Ünsal, Ilknur Öztürk; Bozkurt, Nujen Çolak; Delibaşi, Tuncay

    2014-08-01

    Elastography is a method which assesses the risk of the malignancy and provides information about the degree of hardness in tissue. Hashimoto's thyroiditis, autoimmune lymphocytic infiltration and fibrosis, is considered to be a very common disease that is able to change the hardness of the tissue. The diagnostic value of elastography of this group of patients has not previously been reported. In our study, we aimed to determine the diagnostic value of elastography in 283 patients (255 female, 28 male) with Hashimoto's thyroiditis. Elastography score and index were measured with real-time ultrasound elastography (Hitachi(®) EUB 7000 HV machine with using 13 MHz linear transducer). The outcome of this measure shows that malignant nodules were with higher elastography scores (ES) and strain indexes (SI) values. ES ≥3 were observed in 16/20 malignant and 130/263 benign nodules, respectively. The area under the curve (AUC) for the elasto score (AUC) was 0.72 (p = 0.001), and AUC for the strain index was 0.77 (p < 0.0001). Accordingly, our study suggests that strain index reflects malignancy better than the elasto score. We conclude that elastography score is ≥3 providing 80 % sensitivity and 50 %, six specificity for diagnosing malignancy. For strain index, we found that 2.45 (72.2 % sensitivity and 70 % specificity) is a cut-off point. We have detected a lower cut-off point for SI in Hashimoto patients although sensitivity and specificity decreases in Hashimoto in this population.

  15. Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography

    PubMed Central

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231

  16. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis.

    PubMed

    Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun

    2017-01-01

    To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.

  17. Advances in the treatment of portal hypertension in cirrhosis.

    PubMed

    Kimer, N; Wiese, S; Mo, S; Møller, S; Bendtsen, F

    2016-08-01

    Non-selective beta-blockers and handling of esophageal varices has been key elements in the treatment of portal hypertension in recent decades. Liver vein catheterization has been essential in diagnosis and monitoring of portal hypertension, but ongoing needs for noninvasive tools has led to research in areas of both biomarkers, and transient elastography, which displays promising results in discerning clinically significant portal hypertension. Novel research into the areas of hepatic stellate cell function and the dynamic components of portal hypertension has revealed promising areas of treatment modalities, targeting intestinal decontamination, angiogenesis, inflammation and oxidative stress. Future studies may reveal if these initiatives lead to developments of new drugs for treatment of portal hypertension.

  18. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  19. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  20. Elastography for the differentiation of benign and malignant liver lesions: a meta-analysis.

    PubMed

    Ma, Xuelei; Zhan, Wenli; Zhang, Binglan; Wei, Benling; Wu, Xin; Zhou, Min; Liu, Lei; Li, Ping

    2014-05-01

    The objective of this paper was to evaluate the overall accuracy of elastography in the diagnosis of benign and malignant liver lesions by liver biopsy as the gold standard. Literature databases were searched. The studies which were related to evaluate the diagnostic value of elastography for differentiation in benign and malignant liver lesions in English or Chinese were included. The summary receiver operating characteristic (SROC) curve was performed, and the areas under the curve (AUC) were also calculated to present the accuracy of the elastography for the diagnosis of benign and malignant liver lesions. Six studies which included a total of 448 liver lesions in 384 patients were analyzed. The summary sensitivity and specificity of elastography for the differentiation of malignant liver lesions were 85% (95% CI, 80 to 89%) and 84% (95% CI, 80 to 88%), respectively. And the summary diagnostic odds ratio was 46.33 (95% CI, 15.22 to 141.02), and the SROC was 0.9328. Elastography has a high sensitivity and specificity differentiation for benign and malignant liver lesions. As a non-invasive method, it is promising to be applied to clinical practice. To estimate elastography objectively, a large, prospective, international, and multi-center study is still needed.

  1. Shear wave elastography with a new reliability indicator.

    PubMed

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  2. Shear wave elastography with a new reliability indicator

    PubMed Central

    Dong, Yi

    2016-01-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731

  3. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    PubMed

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  4. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    PubMed

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  5. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses

    PubMed Central

    2010-01-01

    Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Conclusions Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification. PMID:21122101

  6. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.

    PubMed

    Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair

    2010-01-01

    Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification.

  7. Prediction of Esophageal Varices in Patients with Cirrhosis: Usefulness of Three-dimensional MR Elastography with Echo-planar Imaging Technique

    PubMed Central

    Shin, Sung Ui; Yu, Mi Hye; Yoon, Jeong Hee; Han, Joon Koo; Choi, Byung-Ihn; Glaser, Kevin J.; Ehman, Richard L.

    2014-01-01

    Purpose To determine the diagnostic performance of magnetic resonance (MR) elastography in comparison to spleen length and dynamic contrast material–enhanced (DCE) MR imaging in association with esophageal varices in patients with liver cirrhosis by using endoscopy as the reference standard. Materials and Methods This retrospective study received institutional review board approval, and informed consent was waived. One hundred thirty-nine patients with liver cirrhosis who underwent liver DCE MR imaging, including MR elastography, were included. Hepatic stiffness (HS) and spleen stiffness (SS) values assessed with MR elastography, as well as spleen length, were correlated with the presence of esophageal varices and high-risk varices by using Spearman correlation analysis. The diagnostic performance of MR elastography was compared with that of DCE MR imaging and combined assessment of MR elastography and DCE MR imaging by using receiver operating characteristic analysis. MR elastography reproducibility was assessed prospectively, with informed consent, in another 15 patients by using intraclass correlation coefficients. Results There were significant positive linear correlations between HS, SS, and spleen length and the grade of esophageal varices (r = 0.46, r = 0.48, and r = 0.36, respectively; all P < .0001). HS and SS values (>4.81 kPa and >7.60 kPa, respectively) showed better performance than did spleen length in the association with esophageal varices (P = .0306 and P = .0064, respectively). Diagnostic performance of HS and SS in predicting high-risk varices was comparable to that of DCE MR imaging (P = .1282 and P = .1371, respectively). When MR elastography and DCE MR imaging were combined, sensitivity improved significantly (P = .0004). MR elastography was highly reproducible (intraclass correlation coefficient > 0.9). Conclusion HS and SS are associated with esophageal varices and showed better performance than did spleen length in assessing the presence of esophageal varices. MR elastography is comparable to DCE MR imaging in predicting the presence of esophageal varices and high-risk varices, but, when assessed in combination, sensitivity is higher. © RSNA, 2014 Online supplemental material is available for this article. PMID:24620910

  8. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.

    PubMed

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-07

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  9. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    NASA Astrophysics Data System (ADS)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  10. Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography

    PubMed Central

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-01-01

    Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330

  11. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.

  12. MEASUREMENT OF CONTROLLED ATTENUATION PARAMETER: A SURROGATE MARKER OF HEPATIC STEATOSIS IN PATIENTS OF NONALCOHOLIC FATTY LIVER DISEASE ON LIFESTYLE MODIFICATION - A PROSPECTIVE FOLLOW-UP STUDY.

    PubMed

    Paul, Jayanta; Venugopal, Raj Vigna; Peter, Lorance; Shetty, Kula Naresh Kumar; Shetti, Mohit P

    2018-01-01

    Liver biopsy is a gold standard method for hepatic steatosis assessment. However, liver biopsy is an invasive and painful procedure and can cause severe complications therefore it cannot be frequently used in case of follow-up of patients. Non-invasive assessment of steatosis and fibrosis is of growing relevance in non-alcoholic fatty liver disease (NAFLD). To evaluate hepatic steatosis, transient elastography with controlled attenuation parameter (CAP) measurement is an option now days. Aim of this study is to evaluate role of measurement of controlled attenuation parameter, a surrogate marker of hepatic steatosis in patients of nonalcoholic fatty liver disease on lifestyle modification. In this study, initially 37 participants were included who were followed up after 6 months with transient elastography, blood biochemical tests and anthropometric measurements. The results were analyzed by Multivariate linear regression analysis and paired samples t-test (Dependent t-test) with 95% confidence interval. Correlation is calculated by Pearson correlation coefficients. Mean CAP value for assessing hepatic steatosis during 1st consultation (278.57±49.13 dB/m) was significantly improved (P=0.03) after 6 months of lifestyle modification (252.91±62.02 dB/m). Only fasting blood sugar (P=0.008), weight (P=0.000), body mass index (BMI) (P=0.000) showed significant positive correlation with CAP. Only BMI (P=0.034) and weight (P=0.035) were the independent predictor of CAP value in NAFLD patients. Lifestyle modification improves the hepatic steatosis, and CAP can be used to detect the improvement of hepatic steatosis during follow-up in patients with NAFLD on lifestyle modification. There is no relation between CAP and Fibroscan score in NAFLD patients. Only BMI and weight can predict CAP value independently.

  13. Transient elastography for diagnosis of advanced fibrosis and portal hypertension in patients with hepatitis C recurrence after liver transplantation.

    PubMed

    Carrión, Jose A; Navasa, Miquel; Bosch, Jaume; Bruguera, Miquel; Gilabert, Rosa; Forns, Xavier

    2006-12-01

    Recurrence of hepatitis C after liver transplantation (LT) is the main cause of graft loss and retransplantation. Frequent liver biopsies are essential to follow-up hepatitis C virus (HCV)-induced liver damage. However, liver biopsy is an invasive and expensive procedure. We evaluated prospectively the diagnostic accuracy of noninvasive measurement of liver stiffness (by transient elastography) to assess the severity of hepatitis C recurrence after LT. For this purpose, we included 124 HCV-infected liver transplant recipients who underwent 169 liver biopsies and 129 hepatic hemodynamic studies with determination of hepatic venous pressure gradient (HVPG). Simultaneously, patients underwent measurement of liver stiffness. Liver fibrosis was mild (F0-F1) in 96 cases (57%) and significant (F2-F4) in 73 (43%). HVPG was normal (<6 mm Hg) in 69 cases (54%) and elevated (>or=6 mm Hg) in 60 (46%). Using a liver stiffness cutoff value of 8.5 kilopascals, the sensitivity, specificity, negative predictive value, and positive predictive value for diagnosis of fibrosis >or=F2 were 90%, 81%, 79%, and 92%, respectively. The area under the curve (AUC) for diagnosis of fibrosis >or=F2, >or=F3 and F4 were 0.90, 0.93, and 0.98, respectively. There was a close direct correlation between liver stiffness and HVPG (Pearson coefficient, 0.84; P < 0.001) and the AUC for diagnosis of portal hypertension (HVPG >or=6 mm Hg) was 0.93. Importantly, none of the individuals with liver stiffness below the cutoff value had either bridging fibrosis (F3) or cirrhosis (F4) or significant portal hypertension (HVPG >or=10 mm Hg). In conclusion, determination of liver stiffness is an extremely valuable tool to assess the severity of HCV recurrence after LT and in reducing the need of follow-up liver biopsies.

  14. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography.

    PubMed

    Vergari, Claudio; Dubois, Guillaume; Vialle, Raphael; Gennisson, Jean-Luc; Tanter, Mickael; Dubousset, Jean; Rouch, Philippe; Skalli, Wafa

    2016-04-01

    Intervertebral disc (IVD) is key to spine biomechanics, and it is often involved in the cascade leading to spinal deformities such as idiopathic scoliosis, especially during the growth spurt. Recent progress in elastography techniques allows access to non-invasive measurement of cervical IVD in adults; the aim of this study was to determine the feasibility and reliability of shear wave elastography in healthy children lumbar IVD. Elastography measurements were performed in 31 healthy children (6-17 years old), in the annulus fibrosus and in the transverse plane of L5-S1 or L4-L5 IVD. Reliability was determined by three experienced operators repeating measurements. Average shear wave speed in IVD was 2.9 ± 0.5 m/s; no significant correlations were observed with sex, age or body morphology. Intra-operator repeatability was 5.0 % while inter-operator reproducibility was 6.2 %. Intraclass correlation coefficient was higher than 0.9 for each operator. Feasibility and reliability of IVD shear wave elastography were demonstrated. The measurement protocol is compatible with clinical routine and the results show the method's potential to give an insight into spine deformity progression and early detection. • Intervertebral disc mechanical properties are key to spine biomechanics • Feasibility of shear wave elastography in children lumbar disc was assessed • Measurement was fast and reliable • Elastography could represent a novel biomarker for spine pathologies.

  15. Ultrasound elastography of the prostate: state of the art.

    PubMed

    Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O

    2013-05-01

    Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Correlates of mammographic density in B-mode ultrasound and real time elastography.

    PubMed

    Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R

    2012-07-01

    The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.

  17. Shear-wave elastography of the breast: value of a quality measure and comparison with strain elastography.

    PubMed

    Barr, Richard G; Zhang, Zheng

    2015-04-01

    To determine whether addition of quality measure (QM) of shear-wave (SW) velocity (Vs) estimation can increase SW elastography sensitivity for breast cancer. With written informed consent, this institutional review board-approved, HIPAA-compliant study included 143 women (mean age, 48.5 years ± 8.7) scheduled for breast biopsy. Mean lesion size was 16.4 mm ± 11.8; 95 (66%) lesions were benign; 48 (34%), malignant. If more than one lesion was present, lesion with highest Breast Imaging Reporting and Data System (BI-RADS) category was chosen. If there were more than one with highest BI-RADS category, a lesion was randomly selected. Conventional ultrasonography (US), strain elastography, and SW elastography were performed with QM. QM assesses SW quality to provide accurate Vs. Lesions were evaluated for Vs and QM (high or low). Lesions with Vs of less than 4.5 m/sec were classified benign; lesions with Vs of 4.5 m/sec or greater, malignant. Results were correlated with pathologic findings. Vs data with or without incorporating QM were used to determine SW elastography diagnostic performance. Binomial proportions and exact 95% confidence intervals (CIs) were calculated. In 95 benign lesions, 13 (14%) had no SW elastography signal; 77 (81%), Vs of less than 4.5 m/sec; and five (5%), Vs of 4.5 m/sec or greater. In 48 malignant lesions, eight (17%) had no SW elastography signal; 20 (42%), Vs of less than 4.5 m/sec; and 20 (42%), V of 4.5 m/sec or greater. QM was low in 17 of 20 (85%) malignant lesions with Vs of less than 4.5 m/sec. Without QM, using Vs of 4.5 m/sec or greater as test positive, SW elastography had lesion-level sensitivity of 50% (95% CI: 34%, 66%); specificity, 94% (95% CI: 86%, 98%); positive predictive value (PPV), 80% (95% CI: 59%, 93%); and negative predictive value (NPV), 79% (95% CI: 70%, 87%). Using QM where additional lesions with both low Vs and low QM were treated as test positive, SW elastography had lesion-level sensitivity of 93% (95% CI: 80%, 98%); specificity, 89% (95% CI: 80%, 95%); PPV, 80% (95% CI: 66%, 91%); and NPV, 96% (95% CI: 89%, 99%). Addition of QM can improve SW elastography sensitivity, with no significant change in specificity. © RSNA, 2014 Online supplemental material is available for this article.

  18. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions.

    PubMed

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-Sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-08-28

    To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL.

  19. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions

    PubMed Central

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-01-01

    AIM To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). METHODS A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. RESULTS SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. CONCLUSION Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL. PMID:28932088

  20. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players.

    PubMed

    Ooi, Chin Chin; Richards, Paula J; Maffulli, Nicola; Ede, David; Schneider, Michal E; Connell, David; Morrissey, Dylan; Malliaras, Peter

    2016-05-01

    To investigate the diagnostic performance of grey scale Ultrasound (US), power Doppler (PD) and US elastography for diagnosing painful patellar tendinopathy, and to establish their relationship with Victorian Institute of Sport Assessment-Patella (VISA-P) scores in a group of volleyball players with and without symptoms of patellar tendinopathy. Cross-sectional study. Thirty-five volleyball players (70 patellar tendons) were recruited during a national university volleyball competition. Players were imaged with conventional US followed by elastography. The clinical findings of painful patellar tendons were used as the reference standard for diagnosing patellar tendinopathy. In addition, all participants completed the VISA-P questionnaires. Of the 70 patellar tendons, 40 (57.1%) were clinically painful. The diagnostic accuracy of grey scale US, PD and elastography were 60%, 50%, 62.9%, respectively, with sensitivity/specificity of 72.5%/43.3%, 12.5%/100%, and 70%/53.3%, respectively. Combined US elastography and grey scale imaging achieved 82.5% sensitivity, 33.3% specificity and 61.4% accuracy while routine combination technique of PD and grey scale imaging revealed 72.5% sensitivity, 43.3% specificity and 60.0% accuracy. Tendons in players categorized as soft on elastography had statistically significantly greater AP thickness (p<0.001) and lower VISA-P scores (p=0.004) than those categorized as hard. There was no significant association between grey scale US abnormalities (hypoechogenicities and/or fusiform swelling) and VISA-P scores (p=0.098). Soft tendon properties depicted by US elastography may be more related to patellar tendon symptoms compared to grey scale US abnormalities. The supplementation of US elastography to conventional US may enhance the sensitivity for diagnosing patellar tendinopathy in routine clinical practice. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Comparison of non-invasive assessment of liver fibrosis in patients with alpha1-antitrypsin deficiency using magnetic resonance elastography (MRE), acoustic radiation force impulse (ARFI) Quantification, and 2D-shear wave elastography (2D-SWE).

    PubMed

    Reiter, Rolf; Wetzel, Martin; Hamesch, Karim; Strnad, Pavel; Asbach, Patrick; Haas, Matthias; Siegmund, Britta; Trautwein, Christian; Hamm, Bernd; Klatt, Dieter; Braun, Jürgen; Sack, Ingolf; Tzschätzsch, Heiko

    2018-01-01

    Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis. Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE. A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE. The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.

  2. Optical coherence elastography – OCT at work in tissue biomechanics [Invited

    PubMed Central

    Larin, Kirill V.; Sampson, David D.

    2017-01-01

    Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography – the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright. PMID:28271011

  3. Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.

    2017-02-01

    Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.

  4. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.

    PubMed

    Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine

    2014-01-01

    The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.

  5. Recent advances in the diagnosis and treatment of primary biliary cholangitis

    PubMed Central

    Huang, Ying-Qiu

    2016-01-01

    Primary biliary cholangitis (PBC), formerly referred to as primary biliary cirrhosis, is an infrequent progressive intrahepatic cholestatic autoimmune illness that can evolve into hepatic fibrosis, hepatic cirrhosis, hepatic failure, and, in some cases, hepatocellular carcinoma. The disease itself is characterized by T-lymphocyte-mediated chronic non-suppurative destructive cholangitis and elevated serum levels of extremely specific anti-mitochondrial autoantibodies (AMAs). In this article, we will not only review epidemiology, risk factors, natural history, predictive scores, radiologic approaches (e.g., acoustic radiation force impulse imaging, vibration controlled transient elastography, and magnetic resonance elastography), clinical features, serological characteristics covering biochemical markers, immunoglobulins, infections markers, biomarkers, predictive fibrosis marker, specific antibodies (including AMAs such as AMA-M2), anti-nuclear autoantibodies [such as anti-multiple nuclear dot autoantibodies (anti-sp100, PML, NDP52, anti-sp140), anti-rim-like/membranous anti-nuclear autoantibodies (anti-gp210, anti-p62), anti-centromere autoantibodies, and some of the novel autoantibodies], histopathological characteristics of PBC, diagnostic advances, and anti-diastole of PBC. Furthermore, this review emphasizes the recent advances in research of PBC in terms of therapies, including ursodeoxycholic acid, budesonide, methotrexate, obeticholic acid, cyclosporine A, fibrates such as bezafibrate and fenofibrate, rituximab, mesenchymal stem cells transplant, and hepatic transplant. Currently, hepatic transplant remains the only optimal choice with acknowledged treatment efficiency for end-stage PBC patients. PMID:27957241

  6. Ultrasound elastography in the early diagnosis of plantar fasciitis.

    PubMed

    Lee, So-Yeon; Park, Hee Jin; Kwag, Hyon Joo; Hong, Hyun-Pyo; Park, Hae-Won; Lee, Yong-Rae; Yoon, Kyung Jae; Lee, Yong-Taek

    2014-01-01

    The purpose of this study was to investigate whether ultrasound (US) elastography is useful for the early diagnosis of plantar fasciitis. We retrospectively reviewed US elastography findings of 18 feet with a clinical history and physical examination highly suggestive of plantar fasciitis but with normal findings on conventional US imaging as well as 18 asymptomatic feet. Softening of the plantar fascia was significantly greater in the patient than in the control group [Reviewers 1 and 2: 89% (16/18) vs. 50% (9/18), P=.027, respectively]. US elastography is useful for the early diagnosis of plantar fasciitis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  8. Te(II)/Te(IV) Mediated C-N Bond Formation on 2,5-Diphenyltellurophene and a Reassignment of the Product from the Reaction of PhI(OAc)2 with 2 TMS-OTf.

    PubMed

    Aprile, Antonino; Iversen, Kalon J; Wilson, David J D; Dutton, Jason L

    2015-05-18

    We report a novel C-H to C-N bond metathesis at the 3-position of 1,2-diphenyltellurophene via oxidation of the Te(II) center to Te(IV) using the I(III) oxidant [PhI(4-DMAP)2](2+). Spontaneous reduction of a transient Te(IV) coordination compound to Te(II) generates an electrophilic equivalent of 4-DMAP that substitutes at a C-H bond at the 3-position of the tellurophene. Theoretical and synthetic reaction pathway studies confirm that a Te(IV) coordination complex with 4-DMAP is an intermediate. In the course of these pathway studies, it was also found that the identity of the I(III) oxidant generated from PhI(OAc)2 and 2 TMS-OTf is PhI(OAc)(OTf) and not PhI(OTf)2, as had been previously thought.

  9. Transient segregation behavior in Cd1-xZnxTe with low Zn content-A qualitative and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Neubert, M.; Jurisch, M.

    2015-06-01

    The paper analyzes experimental compositional profiles in Vertical Bridgman (VB, VGF) grown (Cd,Zn)Te crystals, found in the literature. The origin of the observed axial ZnTe-distribution profiles is attributed to dendritic growth after initial nucleation from supercooled melts. The analysis was done by utilizing a boundary layer model providing a very good approximation of the experimental data. Besides the discussion of the qualitative results also a quantitative analysis of the fitted model parameters is presented as far as it is possible by the utilized model.

  10. Sonographic Elastography of Mastitis.

    PubMed

    Sousaris, Nicholas; Barr, Richard G

    2016-08-01

    Sonographic elastography has been shown to be a useful imaging modality in characterizing breast lesions as benign or malignant. However, in preliminary research, mastitis has given false-positive findings on both strain and shear wave elastography. In this article, we review the findings in mastitis with and without abscess formation on both strain and shear wave elastography. The elastographic findings in all cases were suggestive of a malignancy according to published thresholds. In cases of mastitis with abscess formation, there is a characteristic appearance, with a central very soft area (abscess cavity) and a very stiff outer rim (edema and inflammation). This appearance should raise the suspicion of mastitis with abscess formation, since these findings are rare in breast cancers.

  11. Analisys of pectoralis major tendon in weightlifting athletes using ultrasonography and elastography.

    PubMed

    Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; Oliveira, Gabriela Clemente de; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno

    2015-01-01

    To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Patients' mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group.

  12. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  13. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  14. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    PubMed

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  15. Elastography: current status, future prospects, and making it work for you.

    PubMed

    Garra, Brian S

    2011-09-01

    Elastography has emerged as a useful adjunct tool for ultrasound diagnosis. Elastograms are images of tissue stiffness and may be in color, grayscale, or a combination of the two. The first and most common application of elastography is for the diagnosis of breast lesions where studies have shown an area under the receiver operating characteristic curve of 0.88 to 0.95 for distinguishing cancer from benign lesions. The technique is also useful for the diagnosis of complex cysts, although different scanners may vary in how they display such lesions. Recent advances in elastography include quantification using strain ratios, acoustic radiation force impulse imaging, and shear wave velocity estimation. These are useful not only for characterizing focal masses but also for diagnosing diffuse organ diseases such as liver cirrhosis. Other near term potential applications for elastography include characterization of thyroid nodules and lymph node evaluation for metastatic disease. Prostate cancer detection is also a potential application, but obtaining high-quality elastograms may be difficult. This area is evolving. Other promising applications include atheromatous plaque and arterial wall evaluation, venous thrombus evaluation, graft rejection, and monitoring of tumor ablation therapy. When contemplating the acquisition of a system with elastography in this rapidly evolving field, a clear picture of the manufacturer's plans for future upgrades (including quantification) should be obtained.

  16. The theory of transient radiation of a charged particle in a waveguide with an anisotropic magnetodielectric filling

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. A.

    2015-08-01

    We have considered transient radiation of a charged particle that moves at a constant velocity perpendicularly to the axis of a regular waveguide filled with an anisotropic magnetodielectric medium. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in the waveguide have been found. Energies of transient radiation of the particle moving in a rectangular waveguide have been determined. We have obtained conditions of occurrence, the frequency, and the energy of Vavilov-Cherenkov radiation.

  17. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  18. System for robot-assisted real-time laparoscopic ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  19. Endoscopic ultrasound elastography: Current status and future perspectives

    PubMed Central

    Cui, Xin-Wu; Chang, Jian-Min; Kan, Quan-Cheng; Chiorean, Liliana; Ignee, Andre; Dietrich, Christoph F

    2015-01-01

    Elastography is a new ultrasound modality that provides images and measurements related to tissue stiffness. Endoscopic ultrasound (EUS) has played an important role in the diagnosis and management of numerous abdominal and mediastinal diseases. Elastography by means of EUS examination can assess the elasticity of tumors in the proximity of the digestive tract that are hard to reach with conventional transcutaneous ultrasound probes, such as pancreatic masses and mediastinal or abdominal lymph nodes, thus improving the diagnostic yield of the procedure. Results from previous studies have promised benefits for EUS elastography in the differential diagnosis of lymph nodes, as well as for assessing masses with pancreatic or gastrointestinal (GI) tract locations. It is important to mention that EUS elastography is not considered a modality that can replace biopsy. However, it may be a useful adjunct, improving the accuracy of EUS-fine needle aspiration biopsy (EUS-FNAB) by selecting the most suspicious area to be targeted. Even more, it may be useful for guiding further clinical management when EUS-FNAB is negative or inconclusive. In the present paper we will discuss the current knowledge of EUS elastography, including the technical aspects, along with its applications in the differential diagnosis between benign and malignant solid pancreatic masses and lymph nodes, as well as its aid in the differentiation between normal pancreatic tissues and chronic pancreatitis. Moreover, the emergent indication and future perspectives are summarized, such as the benefit of EUS elastography in EUS-guided fine needle aspiration biopsy, and its uses for characterization of lesions in liver, biliary tract, adrenal glands and GI tract. PMID:26715804

  20. [Real-time elastography in the diagnosis of prostate cancer: personal experience].

    PubMed

    Romagnoli, Andrea; Autieri, Gaspare; Centrella, Danilo; Gastaldi, Christian; Pedaci, Giuseppe; Rivolta, Lorenzo; Pozzi, Emilio; Anghileri, Alessio; Cerabino, Maurizio; Bianchi, Carlo Maria; Roggia, Alberto

    2010-01-01

    Prostate cancer is the most common cancer in men. In the future, a significant further increase in the incidence of prostate cancer is expected. The indication to perform a prostate biopsy is digital rectal examination suspicious for prostate cancer, total prostate specific antigen (PSA) value, free PSA/total PSA ratio, PSA density and PSA velocity, and an evidence of hypoechoic area at transrectal ultrasound scan. Unfortunately the specificity and sensibility are still poor. The aim of this retrospective study is to evaluate the specificity and sensibility of real time elastography versus ultrasound transrectal B-mode scan. We retrospectively evaluated 108 pts. having undergone TRUS-guided transrectal prostate biopsy (10 samples). The indication for biopsy is: digital rectal examination, total prostate specific antigen (PSA) value, PSA ratio, PSA density and PSA velocity suspicious for prostate cancer, and/or an evidence of hypoechoic area at transrectal ultrasound scan, and/or hard area at real-time elastography. The mean age of patients is 66.8 years, mean PSA 6.5 ng/mL, and mean ratio 16.5%. We compared the histopathological findings of needle prostate biopsies with the results of transrectal ultrasound and transrectal real-time elastography. 32/108 (29.6%) pts. were positive for prostate cancer (mean Gleason score 7.08), mean PSA 14 ng/mL and mean ratio 9.5%. Transrectal ultrasound scan shows a sensibility of 69% and specificity of 68%. Transrectal ultrasound scan shows a VPP of 51.4%. Transrectal ultrasound scan shows a VPN of 80.9%. Real-time elastography shows a sensibility of 56% and specificity of 85.7%. Real-time elastography shows a VPP of 60.1%. Real-time elastography shows a VPN of 83%. Elastography has a significantly higher specificity for the detection of prostate cancer than the conventionally used examinations including DRE and TRUS. It is a useful real-time diagnostic method because it is not invasive, and simultaneous evaluation is possible while performing TRUS.

  1. Transient radiation in an anisotropic magnetodielectric plate in a waveguide

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. A.

    2017-02-01

    We have considered transient radiation of a charged particle in an anisotropic magnetodielectric plate placed into a regular waveguide. It is assumed that the charged particle passes through the plate moving at a constant velocity perpendicularly to the waveguide axis. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in different regions of the waveguide have been obtained. Energies of transient radiation of the moving particle have been calculated. The properties of transient radiation and Vavilov-Cherenkov radiation have been analyzed for the case of a rectangular waveguide. Energies of transient radiation have been calculated for the case of a "thin" plate in the waveguide, when the wavelength in the plate is much greater than the length of the plate.

  2. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    PubMed

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.

  3. Towards the Early Detection of Breast Cancer in Young Women

    DTIC Science & Technology

    2005-10-01

    T. Shiina, and F. Tranquart. Progress in Freehand Elastography of the Breast . IEICE Transactions on Information and Systems, E85D (1):5–14, 2002. [3...Meaney, Naomi R. Miller, Tsuyoshi Shiina, and Francois Tranquart. Progress in freehand elastography of the breast . IEICE Transactions on Information...solution of the non-linear inverse elasticity problem 28 [26] Liew HL and Pinsky PM. Recovery of shear modulus in elastography using an adjoint method

  4. The emergence of optical elastography in biomedicine

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Wijesinghe, Philip; Sampson, David D.

    2017-04-01

    Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques -- optical coherence elastography and Brillouin microscopy -- have recently shown particular promise for medical applications, such as in ophthalmology and oncology, and as new techniques in cell mechanics.

  5. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires.

    PubMed

    Lo, Shun Shang; Major, Todd A; Petchsang, Nattasamon; Huang, Libai; Kuno, Masaru K; Hartland, Gregory V

    2012-06-26

    Semiconductor nanostructures produced by wet chemical synthesis are extremely heterogeneous, which makes single particle techniques a useful way to interrogate their properties. In this paper the ultrafast dynamics of single CdTe nanowires are studied by transient absorption microscopy. The wires have lengths of several micrometers and lateral dimensions on the order of 30 nm. The transient absorption traces show very fast decays, which are assigned to charge carrier trapping into surface defects. The time constants vary for different wires due to differences in the energetics and/or density of surface trap sites. Measurements performed at the band edge compared to the near-IR give slightly different time constants, implying that the dynamics for electron and hole trapping are different. The rate of charge carrier trapping was observed to slow down at high carrier densities, which was attributed to trap-state filling. Modulations due to the fundamental and first overtone of the acoustic breathing mode were also observed in the transient absorption traces. The quality factors for these modes were similar to those measured for metal nanostructures, and indicate a complex interaction with the environment.

  6. Breast elastography: Identification of benign and malignant cancer based on absolute elastic modulus measurement using vibro-elastography

    NASA Astrophysics Data System (ADS)

    Arroyo, Junior; Saavedra, Ana Cecilia; Guerrero, Jorge; Montenegro, Pilar; Aguilar, Jorge; Pinto, Joseph A.; Lobo, Julio; Salcudean, Tim; Lavarello, Roberto; Castañeda, Benjamín.

    2018-03-01

    Breast cancer is a public health problem with 1.7 million new cases per year worldwide and with several limitations in the state-of-art screening techniques. Ultrasound elastography involves a set of techniques intended to facilitate the noninvasive diagnosis of cancer. Among these, Vibro-elastography is an ultrasound-based technique that employs external mechanical excitation to infer the elastic properties of soft tissue. In this paper, we evaluate the Vibro-elastography performance in the differentiation of benign and malignant breast lesions. For this study, a group of 18 women with clinically confirmed tumors or suspected malignant breast lesions were invited to participate. For each volunteer, an elastogram was obtained, and the mean elasticity of the lesion and the adjacent healthy tissue were calculated. After the acquisition, the volunteers underwent core-needle biopsy. The histopathological results allowed to validate the Vibro-elastography diagnosis, which ranged from benign to malignant lesions. Results indicate that the mean elasticity value of the benign lesions, malignant lesions and healthy breast tissue were 39.4 +/- 12 KPa, 55.4 +/- 7.02 KPa and 23.91 +/- 4.57 kPa, respectively. The classification between benign and malignant breast cancer was performed using Support Vector Machine based on the measured lesion stiffness. A ROC curve permitted to quantify the accuracy of the differentiation and to define a suitable cutoff value of stiffness, obtaining an AUC of 0.90 and a cutoff value of 44.75 KPa. The results obtained suggest that Vibro-elastography allows differentiating between benign and malignant lesions. Furthermore, the elasticity values obtained for benign, malignant and healthy tissue are consistent with previous reports.

  7. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses.

    PubMed

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. The potential role of elastography in differentiating between endometrial polyps and submucosal fibroids: a preliminary study

    PubMed Central

    2015-01-01

    Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids. PMID:26327901

  9. The potential role of elastography in differentiating between endometrial polyps and submucosal fibroids: a preliminary study.

    PubMed

    Woźniak, Sławomir

    2015-06-01

    Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids.

  10. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  11. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    PubMed

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  13. Analisys of pectoralis major tendon in weightlifting athletes using ultrasonography and elastography

    PubMed Central

    Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; de Oliveira, Gabriela Clemente; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno

    2015-01-01

    ABSTRACT Objective To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. Methods This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Results Patients’ mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Conclusion Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group. PMID:26761551

  14. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  15. Xe-126 Excesses: Monoisotopic Anomalies in Regolith Samples?

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Levskii, L. K.

    2003-01-01

    We present new Xe isotopic signatures of Pesyanoe regolith samples which document excesses of 126Xe and we explore the possibility that it formed by low-energy reactions on transient Te-rich coatings.

  16. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand

    NASA Astrophysics Data System (ADS)

    Koulali, A.; McClusky, S.; Wallace, L.; Allgeyer, S.; Tregoning, P.; D'Anastasio, E.; Benavente, R.

    2017-08-01

    Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck 30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand's continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust.

  17. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  18. CdTe X-ray detectors under strong optical irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cola, Adriano; Farella, Isabella

    2014-11-17

    The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.

  19. Annual Technical Report, Materials Research Laboratory July 1, 1979 - June 30, 1980.

    DTIC Science & Technology

    1980-06-30

    dense, highly degenerate, transient electron hole systems in PbTe, nSb, a H9 Cd Te. In these experiments an intense ultrashort pulse generated a high...J. Gerritsen, J. Appl. Phys. 51 (1980), 1603. "Generation of Ultrashort Pulses in Synchronous Pumping of Near-Millimeter Wave Lasers ," A. V. Nurmikko...deformation caused by a relatively large amplitude stress pulse . . The relationship between strain rate, stress, and temperature has been examined for bcc

  20. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis.

    PubMed

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke.

  1. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  2. A first demonstration of audio-frequency optical coherence elastography of tissue

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.

    2008-12-01

    Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.

  3. Reproducibility of shear wave elastography (SWE) in patients with chronic liver disease

    PubMed Central

    Salomone Megna, Angelo; Ragucci, Monica; De Luca, Massimo; Marino Marsilia, Giuseppina; Nardone, Gerardo; Coccoli, Pietro; Prinster, Anna; Mannelli, Lorenzo; Vergara, Emilia; Monti, Serena; Liuzzi, Raffaele; Incoronato, Mariarosaria

    2017-01-01

    The presence of significant fibrosis is an indicator for liver disease staging and prognosis. The aim of the study was to determine reproducibility of real-time shear wave elastography using a hepatic biopsy as the reference standard to identify patients with chronic liver disease. Forty patients with chronic liver disease and 12 normal subjects received shear wave elastography performed by skilled operators. Interoperator reproducibility was studied in 29 patients. Fibrosis was evaluated using the Metavir score. The median and range shear wave elastography values in chronic liver disease subjects were 6.15 kPa and 3.14–16.7 kPa and were 4.49 kPa and 2.92–7.32 kPa in normal subjects, respectively. With respect to fibrosis detected by liver biopsy, shear wave elastography did not change significantly between F0 and F1 (p = 0.334), F1 and F2 (p = 0.611), or F3 and F4 (0.327); a significant difference was observed between the F0-F2 and F3-F4 groups (p = 0.002). SWE also correlated with inflammatory activity (Rs = 0.443, p = 0.0023) and ALT levels (Rs = 0.287, p = 0.0804). Age, sex and body mass index did not affect shear wave elastography measurements. Using receiver operator characteristic curves, two threshold values for shear wave elastography were identified: 5.62 kPa for patients with fibrosis (≥F2; sensitivity 80%, specificity 69.4%, and accuracy 77%) and 7.04 kPa for patients with severe fibrosis (≥F3; sensitivity 88.9%, specificity 81%, and accuracy 89%). Overall interobserver agreement was excellent and was analysed using an interclass correlation coefficient (0.94; CI 0.87–0.97).This study shows that shear wave elastography executed by skilled operators can be performed on almost all chronic liver disease patients with high reproducibility. It is not influenced by age, sex or body mass index, identifies severely fibrotic patients and is also related to inflammatory activity. PMID:29023554

  4. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  5. [Shear waves elastography of the placenta in pregnant baboon].

    PubMed

    Quarello, E; Lacoste, R; Mancini, J; Melot-Dusseau, S; Gorincour, G

    2015-03-01

    To evaluate tissue characteristics of the placenta by transabdominal ShearWave Elastography in pregnant baboon. For 9 months (03/2013-12/2013) two operators (EQ, GG) performed ultrasound of the placenta during pregnancy pregnant baboons station partner primatology project. The identification of the placenta was performed previously in 2D ultrasound. The elastography method was then activated. Three measurements were carried out by operator for each placenta. The intraclass correlation coefficients within and between observers were calculated for the objective assessment (elastography) of placental maturity. During the study period, 21 pregnant baboons were included and ultrasounds were performed between 1 and 3 times each. The measurements have been carried out by two operators in 100% of cases. The intra- and inter-observer ICC for single values are respectively 0.657 - 95% CI (0.548 to 0.752) and 0.458 - 95% CI (0.167 to 0.675). The intra- and inter-observer ICC for average values are respectively 0.852 - 95% CI (0.784 to 0.901) and 0.628 - 95% CI (0.286 to 0.806). The study by transabdominal ShearWave Elastography of placenta's pregnant baboons is possible. The intra- and inter-operator reproducibility of this method is good using the average of three measurements. The objective study via elastography ShearWave of the degree of placental maturity seems not yet be used in clinical practice. Studies of larger cohorts are needed. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity.

    PubMed

    Pavlides, Michael; Banerjee, Rajarshi; Tunnicliffe, Elizabeth M; Kelly, Catherine; Collier, Jane; Wang, Lai Mun; Fleming, Kenneth A; Cobbold, Jeremy F; Robson, Matthew D; Neubauer, Stefan; Barnes, Eleanor

    2017-07-01

    The diagnosis of non-alcoholic steatohepatitis and fibrosis staging are central to non-alcoholic fatty liver disease assessment. We evaluated multiparametric magnetic resonance in the assessment of non-alcoholic steatohepatitis and fibrosis using histology as standard in non-alcoholic fatty liver disease. Seventy-one patients with suspected non-alcoholic fatty liver disease were recruited within 1 month of liver biopsy. Magnetic resonance data were used to define the liver inflammation and fibrosis score (LIF 0-4). Biopsies were assessed for steatosis, lobular inflammation, ballooning and fibrosis and classified as non-alcoholic steatohepatitis or simple steatosis, and mild or significant (Activity ≥2 and/or Fibrosis ≥2 as defined by the Fatty Liver Inhibition of Progression consortium) non-alcoholic fatty liver disease. Transient elastography was also performed. Magnetic resonance success rate was 95% vs 59% for transient elastography (P<.0001). Fibrosis stage on biopsy correlated with liver inflammation and fibrosis (r s =.51, P<.0001). The area under the receiver operating curve using liver inflammation and fibrosis for the diagnosis of cirrhosis was 0.85. Liver inflammation and fibrosis score for ballooning grades 0, 1 and 2 was 1.2, 2.7 and 3.5 respectively (P<.05) with an area under the receiver operating characteristic curve of 0.83 for the diagnosis of ballooning. Patients with steatosis had lower liver inflammation and fibrosis (1.3) compared to patients with non-alcoholic steatohepatitis (3.0) (P<.0001); area under the receiver operating characteristic curve for the diagnosis of non-alcoholic steatohepatitis was 0.80. Liver inflammation and fibrosis scores for patients with mild and significant non-alcoholic fatty liver disease were 1.2 and 2.9 respectively (P<.0001). The area under the receiver operating characteristic curve of liver inflammation and fibrosis for the diagnosis of significant non-alcoholic fatty liver disease was 0.89. Multiparametric magnetic resonance is a promising technique with good diagnostic accuracy for non-alcoholic fatty liver disease histological parameters, and can potentially identify patients with non-alcoholic steatohepatitis and cirrhosis. © 2017 The Authors Liver International Published by John Wiley & Sons Ltd.

  7. Application of the combined FibroMeter vibration-controlled transient elastography algorithm in Chinese patients with non-alcoholic fatty liver disease.

    PubMed

    Loong, Thomson Chi-Wang; Wei, Jeremy Lok; Leung, Jonathan Chung-Fai; Wong, Grace Lai-Hung; Shu, Sally She-Ting; Chim, Angel Mei-Ling; Chan, Anthony Wing-Hung; Choi, Paul Cheung-Lung; Tse, Yee-Kit; Chan, Henry Lik-Yuen; Wong, Vincent Wai-Sun

    2017-07-01

    The FibroMeter vibration-controlled transient elastography (FM VCTE) is a new formula combining the serum test FM and liver stiffness measurement (LSM) by VCTE. We tested the accuracy and utility of FM VCTE for fibrosis staging in patients with non-alcoholic fatty liver disease (NAFLD). Two hundred fifteen NAFLD patients with LSM, FM NAFLD, FM VCTE, and other serum tests (aspartate aminotransferase-to-platelet ratio index, fibrosis-4 index, BARD score, NAFLD fibrosis score, and aspartate aminotransferase-to-alanine aminotransferase ratio) performed 1 day before liver biopsy were evaluated. Sixty-nine (32.1%) and 43 (20.0%) patients had F2-4 and F3-4, respectively. LSM had higher diagnostic accuracy (area under receiver-operating characteristics curves [AUROC] 0.851 for F2-4, 0.940 for F3-4; Obuchowski index 0.937 ± 0.007) than all evaluated serum tests, while FM NAFLD was the most accurate serum test (AUROC 0.775 and 0.774; Obuchowski index 0.891 ± 0.013). FM VCTE had similar accuracy to LSM (AUROC 0.855 and 0.901; Obuchowski index 0.927 ± 0.009). LSM had excellent negative predictive values of 92.4% and 99.2% to exclude F2-4 and F3-4, but the positive predictive values (PPV) were only 71.4% and 61.0%, respectively. In patients with high LSM, the use of FM VCTE improved the PPV from 71.4% to 84.4% for F2-4 and from 61.0% to 88.9% for F3-4. Liver biopsy could be spared in around 50-65% of patients. Liver stiffness measurement alone can confidently exclude significant and advanced fibrosis in NAFLD patients. Using FM VCTE in patients with high liver stiffness can increase the positive predictive value to rule in F2-4 and F3-4. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Prevalence and Profile of Fibrosis in Diabetic Patients with Non-alcoholic Fatty Liver Disease and the Associated Factors.

    PubMed

    Prasetya, Ignatius Bima; Hasan, Irsan; Wisnu, Wismandari; Rumende, Cleopas Martin

    2017-04-01

    the risk of Non-Alcoholic Fatty Liver Disease (NAFLD) is increasing in patients with type-2 diabetes. Prevalence and factors related to the increased risk of NAFLD in diabetic patients in Indonesia has never been studied before. Data regarding the profile of fibrosis in the population has also been unknown. This study aimed to identify the difference on the profile of diabetic patients with and without NAFLD as well as the degree of fibrosis. the study was conducted using a cross-sectional method in type-2 diabetic patients who were treated at the outpatient clinic of endocrinology and metabolic division in Cipto Mangunkusumo Hospital. Sampling was done consecutively. Collected data comprised of age, duration of diabetes, body mass index (BMI), waist circumference, HDL, triglyceride, and HbA1C levels. Abdominal ultrasonography was conducted for all patients to determine the presence of NAFLD. Patients with NAFLD were subsequently underwent transient elastography in order to assess their degree of liver fibrosis. Chi-square or Fisher's-Exact tests were used for bivariate analysis and logistic regression was used for multivariate analysis. as many as 186 patients were analyzed in the study and 84 patients (45.2%) were demonstrated to have NAFLD. Transient elastography examinations were carried out in 68 patients and 17 patients (25.0%) were found with severe fibrosis. Univariate analysis showed significant differences on BMI (PR=1.878; 95%CI= 1.296-2.721; p<0.001) and waist circumference (PR=2.368; 95%CI= 1.117-5.017; p=0.018) between patients with and without NAFLD. However, the multivariate test showed that BMI was the only factor that had a significance difference between both groups (OR=2.989; 95%CI=1.625-5.499; p<0.001). prevalence of NAFLD among type-2 diabetic patients in Cipto Mangunkusumo Hospital has reached 45.2% and 25.0% among them had severe fibrosis. BMI is the only factor found to be associated with the occurrence of NAFLD.

  9. Liver stiffness measurement by transient elastography predicts late posthepatectomy outcomes in patients undergoing resection for hepatocellular carcinoma.

    PubMed

    Rajakannu, Muthukumarassamy; Cherqui, Daniel; Ciacio, Oriana; Golse, Nicolas; Pittau, Gabriella; Allard, Marc Antoine; Antonini, Teresa Maria; Coilly, Audrey; Sa Cunha, Antonio; Castaing, Denis; Samuel, Didier; Guettier, Catherine; Adam, René; Vibert, Eric

    2017-10-01

    Postoperative hepatic decompensation is a serious complication of liver resection in patients undergoing hepatectomy for hepatocellular carcinoma. Liver fibrosis and clinical significant portal hypertension are well-known risk factors for hepatic decompensation. Liver stiffness measurement is a noninvasive method of evaluating hepatic venous pressure gradient and functional hepatic reserve by estimating hepatic fibrosis. Effectiveness of liver stiffness measurement in predicting persistent postoperative hepatic decompensation has not been investigated. Consecutive patients with resectable hepatocellular carcinoma were recruited prospectively and liver stiffness measurement of nontumoral liver was measured using FibroScan. Hepatic venous pressure gradient was measured intraoperatively by direct puncture of portal vein and inferior vena cava. Hepatic venous pressure gradient ≥10 mm Hg was defined as clinically significant portal hypertension. Primary outcome was persistent hepatic decompensation defined as the presence of at least one of the following: unresolved ascites, jaundice, and/or encephalopathy >3 months after hepatectomy. One hundred and six hepatectomies, including 22 right hepatectomy (20.8%), 3 central hepatectomy (2.8%), 12 left hepatectomy (11.3%), 11 bisegmentectomy (10.4%), 30 unisegmentectomy (28.3%), and 28 partial hepatectomy (26.4%) were performed in patients for hepatocellular carcinoma (84 men and 22 women with median age of 67.5 years; median model for end-stage liver disease score of 8). Ninety-day mortality was 4.7%. Nine patients (8.5%) developed postoperative hepatic decompensation. Multivariate logistic regression bootstrapped at 1,000 identified liver stiffness measurement (P = .001) as the only preoperative predictor of postoperative hepatic decompensation. Area under receiver operating characteristic curve for liver stiffness measurement and hepatic venous pressure gradient was 0.81 (95% confidence interval, 0.506-0.907) and 0.71 (95% confidence interval, 0.646-0.917), respectively. Liver stiffness measurement ≥22 kPa had 42.9% sensitivity and 92.6% specificity and hepatic venous pressure gradient ≥10 mm Hg had 28.6% sensitivity and 96.3% specificity. In selected patients undergoing liver resection for hepatocellular carcinoma, transient elastography is an easy and effective test to predict persistent hepatic decompensation preoperatively. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Serum S100 calcium binding protein A4 improves the diagnostic accuracy of transient elastography for assessing liver fibrosis in hepatitis B.

    PubMed

    Yan, Li-Bo; Zhang, Qing-Bo; Zhu, Xia; He, Min; Tang, Hong

    2018-02-01

    The diagnostic performance of Fibroscan might be improved when combined with other serum fibrosis related markers. Previous study has demonstrated that S100A4 expression is associated with liver fibrosis in humans with hepatitis. This study aimed to clarify diagnostic accuracy of serum S100A4 levels for significant liver fibrosis in patients with chronic hepatitis B (CHB), and develop a combined algorithm of liver stiffness measurement (LSM) and S100A4 to predict significant liver fibrosis in CHB. One hundred and seventy-five CHB patients who had performed liver biopsy were consecutively included. We evaluated serum S100A4 levels, LSM values and other clinically-approved fibrosis scores. Serum S100A4 level was higher in CHB patients with significant fibrosis, compared to those without [199.58 (33.31-1971.96) vs. 107.15 (2.10-1038.94), P<0.001]. Using receiver-operating characteristic (ROC) analyses, the area under the curves (AUC), sensitivity, specificity and accuracy of S100A4 were found to be 0.749, 62.7%, 75.9% and 0.70 for significant fibrosis (≥Stage 2), respectively. Although not superior to LSM, these results were better than the fibrosis index based on the 4 factor (FIB-4) and the aspartate aminotransferase-to-platelet ratio index (APRI) for significant fibrosis detection. An algorithm consisting of S100A4 and LSM was derived. The AUC, sensitivity, specificity and accuracy of model based on serum S100A4 level and LSM were 0.866, 86.6%, 77.8% and 0.79 for significant fibrosis detection, superior to those based on LSM alone (0.834, 76.1%, 80.7% and 0.76, P=0.041). Serum S100A4 level was identified as a fibrosis marker of liver fibrosis in patients with CHB. Combining serum S100A4 with LSM improved the accuracy of transient elastography for hepatitis B significant fibrosis detection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. A Freehand Ultrasound Elastography System with Tracking for In-vivo Applications

    PubMed Central

    Foroughi, Pezhman; Kang, Hyun-Jae; Carnegie, Daniel A.; van Vledder, Mark G.; Choti, Michael A.; Hager, Gregory D.; Boctor, Emad M.

    2012-01-01

    Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions combined with a fast and robust displacement estimation technique greatly improves in-vivo elastography results. We also use tracking information and image quality measure to fuse multiple images with similar strain that are taken roughly from the same location to obtain a high quality elastography image. Finally, we show that tracking information can be used to give the user partial control over the rate of compression. Our methods are tested on tissue mimicking phantom and experiments have been conducted on intra-operative data acquired during animal and human experiments involving liver ablation. Our results suggest that in challenging clinical conditions, our proposed method produces reliable strain images and eliminates the need for a manual search through the ultrasound data in order to find RF pairs suitable for elastography. PMID:23257351

  13. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  14. Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues

    PubMed Central

    Kim, Woong; Ferguson, Virginia L.; Borden, Mark; Neu, Corey P.

    2016-01-01

    The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5–100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity—inherent in many soft tissues—are often not fully described and therefore require further advancements and future developments. PMID:26790865

  15. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  16. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.

    PubMed

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  17. Transient Torque Technique for Viscosity and Electrical Conductivity Determination of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.

  18. Noninvasive assessment of hepatic sinusoidal obstructive syndrome using acoustic radiation force impulse elastography imaging: A proof-of-concept study in rat models.

    PubMed

    Park, So Hyun; Lee, Seung Soo; Sung, Ji-Youn; Na, Kiyong; Kim, Hyoung Jung; Kim, So Yeon; Park, Beom Jin; Byun, Jae Ho

    2018-05-01

    To determine the feasibility of acoustic radiation force impulse (ARFI) elastography in the evaluation of hepatic sinusoidal obstruction syndrome (SOS) in rat models. Rat SOS models of various severities were created by monocrotaline gavage (n = 40) or by intraperitoneal injection of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) (n = 16). Liver shear-wave velocity (SWV) was measured using ARFI elastography. Liver samples were analysed for the SOS score, steatosis, lobular inflammation and fibrosis. The liver SWV was significantly elevated in the SOS models (1.29-2.24 m/s) compared with that of the matched control rats (1.01-1.09; p≤.09; veFor seven FOLFOX-treated rats which were longitudinally followed-up, the liver SWV significantly increased at 7 weeks (1.32±0.13 m/s) compared with the baseline (1.08±0.1 m/s, p=.015) and then significantly declined after a 2-week, treatment-free period (1.15±0.13 m/s; p=.048). Multivariate analysis revealed that the SOS score (p<.001) and lobular inflammation (p=.044) were independently correlated with the liver SWV. Liver SWV is elevated in SOS in proportion to the degree of sinusoidal injury and lobular inflammation in rat SOS models. ARFI elastography has potential as an examination for diagnosis, severity assessment and follow-up of SOS. • Liver SWV using ARFI elastography was significantly elevated in SOS rat. • Sinusoidal injury and lobular inflammation grades had correlation with liver SWV. • ARFI elastography has potential for diagnosis, severity assessment, and follow-up of SOS.

  19. Usefulness of elastography in predicting the outcome of Foley catheter labour induction.

    PubMed

    Wozniak, Slawomir; Czuczwar, Piotr; Szkodziak, Piotr; Paszkowski, Tomasz

    2015-06-01

    Incorrect selection of women for labour induction may increase the risk of caesarean section and other postpartum and neonatal complications. It has been recently shown that elastography of the uterine cervix holds the potential to predict the outcome of pharmacological labour induction. There are no data on the usefulness of elastography in predicting the outcome of mechanical induction of labour. To assess the usefulness of elastographic cervical assessment in predicting the success of Foley catheter labour induction. This prospective observational study included 39 pregnant women at term with an unfavourable cervix (Bishop score ≤ 6) suitable for Foley catheter labour induction. Before labour induction the following data were recorded: Bishop score, cervical length (measured by ultrasound) and the stiffness of cervical internal os, canal and external os assessed by elastography (elastography index - EI). Statistical relationships between pre-interventional assessment of the cervix and outcome of Foley catheter labour induction (successful induction, time to delivery and route of delivery) were analysed. EI's of internal cervical os and cervical canal were significantly lower (softer) in women with successful labour induction and vaginal delivery, while EI's of the external cervical os, Bishop score and cervix length were not significantly different. Time to vaginal delivery was significantly correlated with the EI's of internal cervical os, cervical canal and Bishop score, but not with EI's of the external cervical os and cervix length. Elastography has the potential to predict the outcome of Foley catheter labour induction. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  20. Acoustic radiation force impulse tissue characterization of the anterior talofibular ligament: A promising non-invasive approach in ankle imaging.

    PubMed

    Hotfiel, Thilo; Heiss, Rafael; Janka, Rolf; Forst, Raimund; Raithel, Martine; Lutter, Christoph; Gelse, Kolja; Pachowsky, Milena; Golditz, Tobias

    2018-06-09

    The anterior talofibular ligament (ATFL) is the most frequently injured ligament during inversion strains of the ankle. The purpose of this study was to evaluate the feasibility of acoustic radiation force impulse (ARFI) elastography and to determine the in vivo mechanical properties of the ATFL in healthy athletes. Fifty-one healthy athletes (32 female, 28 male; 29 ±2 years) were recruited from the medical and sports faculty. ARFI values, represented as shear wave velocities (SWV) as well as conventional ultrasound were obtained for the ATFL in neutral ankle position. A clinical assessment was performed in which the American Orthopaedic Foot & Ankle Society (AOFAS) Ankle-Hindfoot Score and the functional ankle ability measure (FAAM) were collected. Interobserver and intraobserver reliability (repeated sessions and repeated days) were assessed using an intra class correlation coefficient (ICC) and typical error (TE) calculation in absolute (TE) and relative units as coefficient of the variation (CV). SWV values of the ATFL had an average velocity of 1.79±0.34 m/s for all participants, with an average of 1.72±0.36 m/s for females and 1.85±0.31 m/s for males. The interobserver and intraobserver reliability revealed an ICC of 0.902 and 0.933 (TE of 0.67 (CV: 5.2 % and 0.51 m/s (CV: 3.83 %), respectively. FAAM and AOFAS revealed the best possible scores. ARFI seems to be a valuable diagnostic modality and represents a promising imaging marker for the assessment and monitoring of ankle ligaments in the context of acute and chronic ankle instabilities; ARFI could also be used to investigate loading or sport dependent adaptions.

  1. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis

    PubMed Central

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-01-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke. PMID:21673716

  2. Defect levels of semi-insulating CdMnTe:In crystals

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.

    2011-06-01

    Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.

  3. In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scaffold buckling.

    PubMed

    Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J

    2017-11-07

    Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    NASA Astrophysics Data System (ADS)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  5. Shear wave induced resonance elastography of spherical masses with polarized torsional waves.

    PubMed

    Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-26

    Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  6. Elastographic techniques of thyroid gland: current status.

    PubMed

    Andrioli, Massimiliano; Persani, Luca

    2014-08-01

    Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.

  7. A novel shape similarity based elastography system for prostate cancer assessment

    NASA Astrophysics Data System (ADS)

    Wang, Haisu; Mousavi, Seyed Reza; Samani, Abbas

    2012-03-01

    Prostate cancer is the second common cancer among men worldwide and remains the second leading cancer-related cause of death in mature men. The disease can be cured if it is detected at early stage. This implies that prostate cancer detection at early stage is very critical for desirable treatment outcome. Conventional techniques of prostate cancer screening and detection, such as Digital Rectal Examination (DRE), Prostate-Specific Antigen (PSA) and Trans Rectal Ultra-Sonography (TRUS), are known to have low sensitivity and specificity. Elastography is an imaging technique that uses tissue stiffness as contrast mechanism. As the association between the degree of prostate tissue stiffness alteration and its pathology is well established, elastography can potentially detect prostate cancer with a high degree of sensitivity and specificity. In this paper, we present a novel elastography technique which, unlike other elastography techniques, does not require displacement data acquisition system. This technique requires the prostate's pre-compression and postcompression transrectal ultrasound images. The conceptual foundation of reconstructing the prostate's normal and pathological tissues elastic moduli is to determine these moduli such that the similarity between calculated and observed shape features of the post compression prostate image is maximized. Results indicate that this technique is highly accurate and robust.

  8. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  9. Fibrosis assessment in chronic hepatitis C--is the liver biopsy still necessary? The pathologist point of view.

    PubMed

    Moroşan, Eugenia; Mihailovici, Maria-Sultana

    2014-01-01

    The aim of this study was to compare the histological stage of fibrosis determined by liver biopsy with the stage of fibrosis assessed by Fibroscan, to analyze the correspondences and inconsistencies between obtained values and to discuss the role of the microscopic exam, from the pathologist point of view. The study group consisted of 185 patients diagnosed with chronic hepatitis. Serological tests diagnosed chronic hepatitis C in 183 patients, and chronic hepatitis B and C for 2 patients. The patients were evaluated to determine the stage of fibrosis using two methods: liver biopsy and elastography (Fibroscan). Based on the pathologic evaluation, 124 cases were diagnosed as moderate chronic hepatitis (score 6-8), and the remaining 60 cases as severe hepatitis (score 9-12). Comparison of data from examination of liver biopsy with that obtained by Fibroscan examination revealed overlapping and divergent aspects. The fibrosis stage established through liver biopsy did not always coincide with the one assigned by liver stiffness measurement, particularly for intermediate stages F2 and F3. The best overlap was noted for F0-F1 and F4 stages, which indicates the evident ability of transient elastography to separate patients with minimal or no fibrosis from patients with extensive fibrosis. Our data concurs with the literature, which confirms presence of differences between Fibroscan and biopsy. From the point of view of the pathologist, liver biopsy still remains a valuable instrument, offering a relevant image of liver changes--as it is regarded more rather a selective than routine technique.

  10. The common PNPLA3 variant p.I148M is associated with liver fat contents as quantified by controlled attenuation parameter (CAP).

    PubMed

    Arslanow, Anita; Stokes, Caroline S; Weber, Susanne N; Grünhage, Frank; Lammert, Frank; Krawczyk, Marcin

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is becoming the most prevalent liver disorder. The PNPLA3 (adiponutrin) variant p.I148M has been identified as common genetic modifier of NAFLD. Our aim was to assess the relationships between genetic risk and non-invasively measured liver fat content. Hepatic steatosis was quantified by transient elastography, using the controlled attenuation parameter (CAP) in 174 patients with chronic liver diseases (50% women, age 18-77 years). In addition, a cohort of 174 gender-matched healthy controls (50% women, age 32-77 years) was recruited. The PNPLA3 mutation as well as the novel NAFLD-predisposing genetic variant (TM6SF2 p.E167K) were genotyped with allele-specific probes. The PNPLA3 genotype correlated significantly (P = 0.001) with hepatic CAP measurements. The p.148M risk allele increased the odds of developing liver steatosis (OR = 2.39, P = 0.023). In multivariate models, BMI and PNPLA3 mutation were both independently associated with CAP values (P < 0.001 and P = 0.007, respectively). Carriers of the TM6SF2 risk allele presented with increased aminotransferase activities (ALT: P = 0.007, AST: P = 0.004), but the presence of this variant did not affect CAP values. The PNPLA3 p.I148M variant represents the most important prosteatotic genetic risk factor. NAFLD carriers of this variant should be followed up carefully, with elastography and CAP being ideally suited for this purpose. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A novel breast software phantom for biomechanical modeling of elastography.

    PubMed

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were found within the phantom while errors were elevated (around 10-30 KPa) at tumor and lobule boundaries. From our FEM analysis, the breast phantom generated a superior CTE in both 2D and in 3D over the block phantom. It also showed differences in CTE values and strain contrast for deep and shallow tumors and showed significant change in CTE when 3D modeling was used. These changes were not significant in the block phantom. Both phantoms, however, showed worsened CTE values for increased input tumor-background modulus contrast. Block phantoms serve as a starting tool but a next level phantom, like the proposed breast phantom, will serve as a valuable intermediate for elastography simulation before clinical testing. Further, given the CTE metrics for the breast phantom are superior to the block phantom, and vary for tumor shape, location, and stiffness, these phantoms would enhance the study of elastography contrast. Further, the use of 2D phantoms with plane strain approximations overestimates the CTE value when compared to the true CTE achieved with 3D models. Thus, the use of 3D phantoms, like the breast phantom, with no approximations, will assist in more accurate estimation of modulus, especially valuable for 3D elastography systems.

  12. Point defects in CdTe xSe 1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  13. Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner

    2003-01-01

    The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.

  14. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Ji; Li, Faxin, E-mail: lifaxin@pku.edu.cn

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which themore » sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.« less

  15. Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto's thyroiditis.

    PubMed

    Liu, Bo-Ji; Xu, Hui-Xiong; Zhang, Yi-Feng; Xu, Jun-Mei; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Guo, Le-Hang; Xu, Xiao-Hong; Qu, Shen

    2015-03-01

    The purpose of the study was to explore the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in differential diagnosis between benign and malignant thyroid nodules in patients with coexistent Hashimoto's thyroiditis (HT). A total of 141 pathological proven nodules in 141 HT patients (7 males and 134 females, mean age 50.1 years, range 23-75 years) received conventional ultrasound (US), elasticity imaging (EI) and ARFI elastography, including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ), before surgery. Shear wave velocity (SWV) and SWV ratio were measured for each nodule on VTQ. The US, EI and ARFI elastography features were compared between benign and malignant nodules in HT patients. Receiver operating characteristic curve (ROC) analyses and area under curve (AUC) were performed to assess the diagnostic performance. Pathologically, 70 nodules were benign and 71 nodules were malignant. Significant differences were found between benign and malignant nodules in HT patients for EI (EI score) and ARFI (VTI grade and SWV) (all P value <0.05). The AUCs for EI, VTI, SWV and SWV ratio were 0.68 [95% confidence interval (CI): 0.59-0.77], 0.90 (95% CI: 0.84-0.95), 0.77 (95%CI: 0.70-0.85) and 0.74 (95%CI: 0.66-0.82), respectively. The cut-off points were EI score ≥3, VTI grade ≥4, SWV ≥2.58 m/s and SWV ratio ≥1.03, respectively. In conclusion, ARFI elastography is useful for differentiation between benign and malignant thyroid nodules in HT patients. The diagnostic performance of ARFI elastography is better than EI.

  16. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  17. Quantitative photoacoustic elastography of Young's modulus in humans

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Gong, Lei; Wang, Lihong V.

    2017-03-01

    Elastography can noninvasively map the elasticity distribution of biological tissue, which is often altered in pathological states. In this work, we report quantitative photoacoustic elastography (QPAE), capable of measuring Young's modulus of human tissue in vivo. By combining photoacoustic elastography with a stress sensor having known stress-strain behavior, QPAE can simultaneously measure strain and stress, from which Young's modulus is calculated. We first applied QPAE to quantify the Young's modulus of tissue-mimicking agar phantoms with different concentrations. The measured values fitted well with both the empirical expectations based on the agar concentrations and those measured in independent standard compression tests. We then demonstrated the feasibility of QPAE by measuring the Young's modulus of human skeletal muscle in vivo. The data showed a linear relationship between muscle stiffness and loading. The results proved that QPAE can noninvasively quantify the absolute elasticity of biological tissue, thus enabling longitudinal imaging of tissue elasticity. QPAE can be exploited for both preclinical biomechanics studies and clinical applications.

  18. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    PubMed

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3.

    PubMed

    Singh, Swati; Mun, Hyeona; Lee, Sanghoon; Kim, Sung Wng; Baik, Seunghyun

    2017-09-01

    The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm -3 ; average: 0.04 W mm -3 ) using n-type single-crystalline Bi 2 Te 3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow.

    PubMed

    Kawasaki, Masahiro; Uno, Yutaka; Mori, Jumpei; Kobata, Kenji; Kitajo, Keiichi

    2014-01-01

    Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.

  1. Femtosecond optical characterization and applications in cadmium(manganese) telluride diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Daozhi

    This thesis is devoted to the optical characterization of Cd(Mn)Te single crystals. I present the studies of free-carrier dynamics and generation and detection of coherent acoustic phonons (CAPS) using time-resolved femtosecond pump-probe spectroscopy. The giant Faraday effect and ultrafast responsivity of Cd(Mn)Te to sub-picosecond electromagnetic transients are also demonstrated and discussed in detail. The first, few-picosecond-long electronic process after the initial optical excitation exhibits very distinct characteristic dependence on the excitation condition, and in case of Cd(Mn)Te, it has been attributed to the collective effects of band filling, band renormalization, and two-photon absorption. A closed-form, analytic expression for the differential reflectivity induced by the CAPs is derived based on the propagating-strain-pulse model and it accounts very well for our experimental observations. The accurate values of the Mn concentration and longitudinal sound velocity nu s in Cd(Mn)Te were obtained by fitting the data of the refractive index dependence on the probe wavelength to the Schubert model. In Cd 0.91Mn0.09Te, nus was found to be 3.6x103 m/s. Our comparison studies from the one-color and two-color experiments reveal that the intrinsic phonon lifetime in Cd(Mn)Te was at least on the order of nanoseconds, and the observed exponential damping of the CAP oscillations was due to the finite absorption depth of the probe light. Optically-induced electronic stress has been demonstrated to be the main generation mechanism of CAPs. We also present the giant Faraday effect in the Cd(Mn)Te and the spectra of the Verdet constant, which is mainly due to the exchange interaction between the Mn ions and band electrons. The spectral characteristics of the Verdet constant in Cd(Mn)Te exhibit very unique features compared to that in pure semiconductors. In our time-resolved sampling experiments at the room temperature, the response of the Cd(Mn)Te, particularly with low Mn concentrations, to the sub-picosecond electromagnetic pulses has been demonstrated for the first time and studied in detail. The physical origin of the ultrafast responsivity is shown to be the electro-optic (Pockels) effect, simultaneously excluding the magneto-optical (Faraday) effect due to the Mn-ion spin dynamics. The discrepancy between the absence of the low-frequency Pockels effect and the ultrafast sampling results, suggests that in Cd(Mn)Te crystals at low frequencies, the electric field component of the external electromagnetic transients is screened by the free carriers (holes). At very high (THz) frequencies, tested by our sampling experiment, Mn spins are too slow to respond and we observe the very large Pockels effect in Cd(Mn)Te crystals.

  2. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  3. Endoscopic ultrasound: Elastographic lymph node evaluation.

    PubMed

    Dietrich, Christoph F; Jenssen, Christian; Arcidiacono, Paolo G; Cui, Xin-Wu; Giovannini, Marc; Hocke, Michael; Iglesias-Garcia, Julio; Saftoiu, Adrian; Sun, Siyu; Chiorean, Liliana

    2015-01-01

    Different imaging techniques can bring different information which will contribute to the final diagnosis and further management of the patients. Even from the time of Hippocrates, palpation has been used in order to detect and characterize a body mass. The so-called virtual palpation has now become a reality due to elastography, which is a recently developed technique. Elastography has already been proving its added value as a complementary imaging method, helpful to better characterize and differentiate between benign and malignant masses. The current applications of elastography in lymph nodes (LNs) assessment by endoscopic ultrasonography will be further discussed in this paper, with a review of the literature and future perspectives.

  4. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    PubMed

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. [Renal elastography].

    PubMed

    Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael

    2016-04-01

    Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  6. Differences in liver stiffness values obtained with new ultrasound elastography machines and Fibroscan: A comparative study.

    PubMed

    Piscaglia, Fabio; Salvatore, Veronica; Mulazzani, Lorenzo; Cantisani, Vito; Colecchia, Antonio; Di Donato, Roberto; Felicani, Cristina; Ferrarini, Alessia; Gamal, Nesrine; Grasso, Valentina; Marasco, Giovanni; Mazzotta, Elena; Ravaioli, Federico; Ruggieri, Giacomo; Serio, Ilaria; Sitouok Nkamgho, Joules Fabrice; Serra, Carla; Festi, Davide; Schiavone, Cosima; Bolondi, Luigi

    2017-07-01

    Whether Fibroscan thresholds can be immediately adopted for none, some or all other shear wave elastography techniques has not been tested. The aim of the present study was to test the concordance of the findings obtained from 7 of the most recent ultrasound elastography machines with respect to Fibroscan. Sixteen hepatitis C virus-related patients with fibrosis ≥2 and having reliable results at Fibroscan were investigated in two intercostal spaces using 7 different elastography machines. Coefficients of both precision (an index of data dispersion) and accuracy (an index of bias correction factors expressing different magnitudes of changes in comparison to the reference) were calculated. Median stiffness values differed among the different machines as did coefficients of both precision (range 0.54-0.72) and accuracy (range 0.28-0.87). When the average of the measurements of two intercostal spaces was considered, coefficients of precision significantly increased with all machines (range 0.72-0.90) whereas of accuracy improved more scatteredly and by a smaller degree (range 0.40-0.99). The present results showed only moderate concordance of the majority of elastography machines with the Fibroscan results, preventing the possibility of the immediate universal adoption of Fibroscan thresholds for defining liver fibrosis staging for all new machines. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  7. Investigation of the acute plantar fasciitis with contrast-enhanced ultrasound and shear wave elastography - first results.

    PubMed

    Putz, Franz Josef; Hautmann, Matthias G; Banas, Miriam C; Jung, Ernst Michael

    2017-01-01

    The plantar fasciitis is a common disease with a high prevalence in public and a frequent cause of heel pain. In our pilot study, we wanted to characterise the feasibility of shear-wave elastography and contrast-enhanced ultrasound (CEUS) in the assessment of the plantar fasciitis. 23 cases of painful heels were examined by B-Mode ultrasound, Power Doppler (PD), shear wave elastography and contrast-enhanced ultrasound before anti-inflammatory radiation. Time-intensity-curves were analysed by the integrated software. The results for area-under-the-curve (AUC), peak, time-to-peak (TTP) and mean-transit-time (MTT) were compared between the plantar fascia and the surrounding tissue. All cases showed thickening of the plantar fascia, in most cases with interstitial oedema (87.0%). Shear wave elastography showed inhomogeneous stiffness of the plantar fascia. 83.3% of cases showed a visible hyperperfusion in CEUS at the proximal plantar fascia in comparison to the surrounding tissue. This hyperperfusion could also be found in 75.0% of cases with no signs of vascularisation in PD. AUC (p = 0.0005) and peak (p = 0.037) were significantely higher in the plantar fascia than in the surrounding tissue. CEUS and shear wave elastography are new diagnostic tools in the assessment of plantar fasciitis and can provide quantitative parameters for monitoring therapy.

  8. Accuracy of localization of prostate lesions using manual palpation and ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Kut, Carmen; Schneider, Caitlin; Carter-Monroe, Naima; Su, Li-Ming; Boctor, Emad; Taylor, Russell

    2009-02-01

    Purpose: To compare the accuracy of detecting tumor location and size in the prostate using both manual palpation and ultrasound elastography (UE). Methods: Tumors in the prostate were simulated using both synthetic and ex vivo tissue phantoms. 25 participants were asked to provide the presence, size and depth of these simulated lesions using manual palpation and UE. Ultrasound images were captured using a laparoscopic ultrasound probe, fitted with a Gore-Tetrad transducer with frequency of 7.5 MHz and a RF capture depth of 4-5 cm. A MATLAB GUI application was employed to process the RF data for ex vivo phantoms, and to generate UE images using a cross-correlation algorithm. Ultrasonix software was used to provide real time elastography during laparoscopic palpation of the synthetic phantoms. Statistical analyses were performed based on a two-tailed, student t-test with α = 0.05. Results: UE displays both a higher accuracy and specificity in tumor detection (sensitivity = 84%, specificity = 74%). Tumor diameters and depths are better estimated using ultrasound elastography when compared with manual palpation. Conclusions: Our results indicate that UE has strong potential in assisting surgeons to intra-operatively evaluate the tumor depth and size. We have also demonstrated that ultrasound elastography can be implemented in a laparoscopic environment, in which manual palpation would not be feasible. With further work, this application can provide accurate and clinically relevant information for surgeons during prostate resection.

  9. Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.

    2016-10-01

    We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 < X ≤ -7 RE and |Y| < 15 RE (GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of 6.0. However, in many PS intervals Tp/Te varies over a wide range from a few units to several tens of units. In 86 PS intervals the Tp/Te decreases below 3.5. Generally, the decreases of Tp/Te are due to some increase of Te while Tp either decreases or remains unchanged. In the majority of these intervals the Tp/Te drops are observed during magnetotail dipolarizations. A superposed epoch analysis applied to these events shows that the minimum value of Tp/Te is observed after the dipolarization onset during the "turbulent phase" of dipolarization, when a number of transient BZ pulses are reduced, but the value of BZ is still large and an intensification of wave activity is observed. The Tp/Te drops, and associated increases of Te often coincide either with bursts of broadband electrostatic emissions, which may include electron cyclotron harmonics, or with broadband electromagnetic emission in a frequency range from proton plasma frequency (fpp) up to the electron gyrofrequency (fce). These findings show that the wave activity developing in the current sheet after dipolarization onset may play a role in the additional electron heating and the associated Tp/Te decrease.

  10. Literature and best practices scan : Vehicle Inspection and Maintenance (I/M) Programs

    DOT National Transportation Integrated Search

    2002-06-01

    The state of Wisconsin operates one of the nation's most effective inspection/maintenance (I/M) programs. In Wisconsin's I/M program, vehicles registered in the Milwaukee metropolitan area are subjected to a transient emission test using the IM240 te...

  11. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promisingmore » non-contact, real-time, and high-resolution optical coherence elastography.« less

  12. Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT)☆

    PubMed Central

    Jaeger, Michael; Bamber, Jeffrey C.; Frenz, Martin

    2013-01-01

    This paper investigates a novel method which allows clutter elimination in deep optoacoustic imaging. Clutter significantly limits imaging depth in clinical optoacoustic imaging, when irradiation optics and ultrasound detector are integrated in a handheld probe for flexible imaging of the human body. Strong optoacoustic transients generated at the irradiation site obscure weak signals from deep inside the tissue, either directly by propagating towards the probe, or via acoustic scattering. In this study we demonstrate that signals of interest can be distinguished from clutter by tagging them at the place of origin with localised tissue vibration induced by the acoustic radiation force in a focused ultrasonic beam. We show phantom results where this technique allowed almost full clutter elimination and thus strongly improved contrast for deep imaging. Localised vibration tagging by means of acoustic radiation force is especially promising for integration into ultrasound systems that already have implemented radiation force elastography. PMID:25302147

  13. Pediatric Non-alcoholic Fatty Liver Disease: Current Thinking.

    PubMed

    Nobili, Valerio; Socha, Piotr

    2017-10-31

    Non-alcoholic fatty liver disease (NAFLD), an increasingly prevalent paediatric disorder is diagnosed and managed by both paediatric gastroenterologists / hepatologists but also frequently by the general paediatrician. This paper updates recent advances in diagnostic and therapeutic approach which may be applied to everyday practice. Diagnosis of NAFLD takes into account the risk factor profile and is a diagnosis of exclusion. Techniques such as transient elastography and specific biomarkers aimed at improving diagnosis and monitoring of NAFLD need further validation in the paediatric population. Defining the risk to develop cirrhosis seems to be of primary importance already in childhood and a combination of genetic, clinical and environmental factors can help in monitoring and making decisions on therapy. Weight reduction therapy should be the aim of treatment approach but the compliance is poor and pharmacological treatment would be helpful- DHA, some probiotics, vitamin E are to be considered but evidence is not sufficient to recommend widespread use.

  14. Analysis of Thermal Power Generation Capacity for a Skutterudite-Based Thermoelectric Functional Structure

    NASA Astrophysics Data System (ADS)

    Sun, Yajing; Chen, Gang; Bai, Guanghui; Yang, Xuqiu; Li, Peng; Zhai, Pengcheng

    2017-05-01

    Due to military or other requirements for hypersonic aircraft, the energy supply devices with the advantages of small size and light weight are urgently needed. Compared with the traditional energy supply method, the skutterudite-based thermoelectric (TE) functional structure is expected to generate electrical energy with a smaller structural space in the hypersonic aircraft. This paper mainly focuses on the responded thermal and electrical characteristics of the skutterudite-based TE functional structure (TEFS) under strong heat flux loads. We conduct TE simulations on the transient model of the TEFS with consideration of the heat flux loads and thermal radiation in the hot end and the cooling effect of the phase change material (PCM) in the cold end. We investigate several influential factors on the power generation capacity, such as the phase transition temperature of the PCM, the heat flux loads, the thickness of the TE materials and the thermal conductivity of the frame materials. The results show that better power generation capacity can be achieved with thicker TE materials, lower phase transition temperature and suitable thermal conductivity of the frame materials.

  15. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  16. Electron heating and Tp/Te variations during magnetic dipolarizations

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena; Kronberg, Elena; Daly, Patrick; Ganushkina, Natalia; Lavraud, Benoit; Sauvaud, Jean-Andre; Zelenyi, Lev

    2017-04-01

    The proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail is studied by using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19

  17. Long-Term and Short-Term Evolutionary Impacts of Transposable Elements on Drosophila

    PubMed Central

    Lee, Yuh Chwen G.; Langley, Charles H.

    2012-01-01

    Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host–TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host–pathogen coevolution. PMID:22997235

  18. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  19. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan

    PubMed Central

    Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor

    2015-01-01

    AIM: To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. METHODS: Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. RESULTS: The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver diseases (P < 0.03). The results also revealed a strong correlation between fibrosis stage and LS values (P < 0.01) when etiology of fibrosis was not taken into account. CONCLUSION: Reduced expression of miR-122 in advanced fibrosis and its correlation with fibrosis stage and LS values seem to be characteristic of hepatic fibrosis of various etiologies. PMID:26167081

  20. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan.

    PubMed

    Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor

    2015-07-07

    To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver diseases (P < 0.03). The results also revealed a strong correlation between fibrosis stage and LS values (P < 0.01) when etiology of fibrosis was not taken into account. Reduced expression of miR-122 in advanced fibrosis and its correlation with fibrosis stage and LS values seem to be characteristic of hepatic fibrosis of various etiologies.

  1. Advanced liver fibrosis by transient elastography, fibrosis 4, and alanine aminotransferase/platelet ratio index among Asian hepatitis C with and without human immunodeficiency virus infection: role of vitamin D levels.

    PubMed

    Avihingsanon, Anchalee; Jitmitraparp, Salyavit; Tangkijvanich, Pisit; Ramautarsing, Reshmie A; Apornpong, Tanakorn; Jirajariyavej, Supunee; Putcharoen, Opass; Treeprasertsuk, Sombat; Akkarathamrongsin, Srunthron; Poovorawan, Yong; Matthews, Gail V; Lange, Joep M A; Ruxrungtham, Kiat

    2014-09-01

    Vitamin D insufficiency plays an important role in liver fibrosis in hepatitis C virus (HCV)-infected patients. We assessed liver fibrosis by transient elastography and 25 hydroxy vitamin D [25(OH)D] status in HCV-infected patients, with (HIV/HCV) or without HIV co-infection (HCV) from Thailand. Fibrosis stage was defined as mild (< 7.1 kPa); moderate (7.2-9.4 kPa); severe (9.5-14 kPa), and cirrhosis (> 14 kPa). Hypovitaminosis D was defined as 25(OH)D < 30 ng/mL. Logistic regression analyses were used to assess predictors for significant fibrosis. Serum 25(OH) D levels, HCV genotypes (GT), interleukin-28B (IL28B) and HCV-RNA were assessed. A total of 331 HCV and 130 HIV/HCV patients were enrolled (70% male, 35% people who inject drugs [PWIDs]). HCV GT distribution was as follows: GT3 47%, GT1 34%, GT6 17%. IL-28B CC genotype (rs12979860) were found in 88% of HIV/HCV and 85% of HCV. In HCV, liver fibrosis was mild in 56.5%; moderate in 18.4%; severe in 12.4%; and cirrhosis in 12.7%. In HIV/HCV, these figures were 30.6%, 27.8%, 17.6%, and 24.1%, respectively. Patients with significant fibrosis were more often male, older, with HIV infection, hypovitaminosis D, and less likely to be infected with GT6. Factors associated with significant fibrosis by multivariate analysis were HIV infection (adjusted odd ratio [95% confidential interval]: 2.67, 1.20-5.93), P = 0.016, Fib-4 score > 1.45 (6.30, 2.70-14.74), P < 0.001, and hypovitaminosis D (2.48, 1.09-5.67), P = 0.031. GT 6 was less likely to have advanced liver fibrosis (0.17, 0.05-0.65), P = 0.01. HIV infection, Fib-4 score > 1.45, and hypovitaminosis D are strong and independent predictors for the presence of advanced fibrosis in our HCV-infected patients. These data highlight the urgent need of HCV treatment and vitamin D supplement in resource-limited settings. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  2. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  3. Acoustic radiation force impulse elastography: comparison and combination with other noninvasive tests for the diagnosis of compensated liver cirrhosis.

    PubMed

    Pfeifer, Lukas; Adler, Werner; Zopf, Steffen; Siebler, Jürgen; Wildner, Dane; Goertz, Ruediger S; Schellhaas, Barbara; Neurath, Markus F; Strobel, Deike

    2017-05-01

    The aim of this study was to compare acoustic radiation force impulse (ARFI) elastography with other noninvasive tests and to develop a new score for the assessment of liver fibrosis/cirrhosis. B-mode ultrasound (including high-frequency liver surface evaluation), routine blood tests, ARFI quantification, and mini-laparoscopic liver evaluation were obtained in compensated patients scheduled for mini-laparoscopic biopsy. Our new cirrhosis score (CS) for the assessment of liver cirrhosis, based on a linear combination of ARFI, platelet (PLT), liver surface, and prothrombin index (PI), was calculated by linear discriminant analysis. Its performance was compared with ARFI-elastography, APRI, FIB-4, alanine aminotransferase (ALT)/aspartate aminotransferase (AST)-ratio, PLT, and PI. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. In total, 171 patients, of whom 38 had compensated cirrhosis, were included. The CS was significantly better for the diagnosis of cirrhosis compared with ARFI (P=0.028), APRI (P=0.012), PLTs (P=0.013), PI (P=0.025), and ALT/AST ratio (P=0.001), but not the FIB-4 score (P=0.207), with an area under the receiver operating characteristic curve of 0.92 [95% confidence interval (CI): 0.87-0.97], 0.86 (95% CI:0.79-0.93), 0.80 (95% CI: 0.72-0.87), 0.79 (95% CI: 0.7-0.87), 0.81 (95% CI: 0.73-0.89), 0.72 (95% CI:0.64-0.81), and 0.86 (95% CI: 0.8-0.93), respectively. Sensitivity, specificity, positive predictive value, and negative predictive value for CS were 87%, 86%, 63%, and 96%, respectively. The FIB-4 score was significantly superior to the APRI score (P=0.041) and the ALT/AST ratio (P=0.011), with no significant difference from ARFI elastography (P=0.88) for the diagnosis of cirrhosis. Combining ARFI elastography with other noninvasive tests that are used routinely in the workup of patients with suspected liver disease can improve diagnostic accuracy for compensated liver cirrhosis as compared with ARFI elastography alone. The FIB-4 score showed an overall comparable diagnostic accuracy to ARFI-elastography for compensated cirrhosis.

  4. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter

    PubMed Central

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-01-01

    OBJECTIVES: Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. METHODS: In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical–chemical assays. RESULTS: The median age was 56 years (25–78 years); 51.7% were women and median body mass index was 31.9 kg/m2 (22.4–44.8 kg/m2). After 14 days, a significant CAP reduction (14.0% P<0.001) was observed from 295 dB/m (216–400 dB/m) to 266 dB/m (100–353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). CONCLUSIONS: This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover. PMID:27311064

  5. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter.

    PubMed

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-06-16

    Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical-chemical assays. The median age was 56 years (25-78 years); 51.7% were women and median body mass index was 31.9 kg/m(2) (22.4-44.8 kg/m(2)). After 14 days, a significant CAP reduction (14.0%; P<0.001) was observed from 295 dB/m (216-400 dB/m) to 266 dB/m (100-353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover.

  6. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  7. Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.

    2008-09-01

    We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.

  8. Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.

    PubMed

    Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng

    2018-06-06

    Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis.

    PubMed

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-10-01

    Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules.

  10. Value of the Strain Ratio on Ultrasonic Elastography for Differentiation of Benign and Malignant Soft Tissue Tumors.

    PubMed

    Hahn, Seok; Lee, Young Han; Lee, Seung Hyun; Suh, Jin-Suck

    2017-01-01

    The purpose of this study was to evaluate whether the strain ratio provides additional value to conventional visual elasticity scores in the differentiation of benign and malignant soft tissue tumors by ultrasonic elastography. The Institutional Review Board approved the protocol of this retrospective review. Seventy-three patients who underwent elastography and had a soft tissue mass pathologically confirmed by ultrasound-guided core biopsy or surgical excision were enrolled from April 2012 through October 2014. On elastography, elasticity scores were determined with a 5-point visual scale, and the strain ratio to adjacent soft tissue at the same depth was calculated. Tumors were divided into benign and malignant groups according to the pathologic diagnoses. Elasticity scores and strain ratios were compared between benign and malignant groups, and diagnostic performance was evaluated by receiver operating characteristic curves. Of the 73 patients, 40 had benign tumors, and 33 had malignant tumors. Strain ratios (P = .003) and elasticity scores (P = .048) were significantly different between pathologic results. The areas under the receiver operating characteristic curves were 0.700 (95% confidence interval, 0.581-0.802) for the strain ratio and 0.623 (95% confidence interval, 0.515-0.746) for elastography. The strain ratios of malignant soft tissue tumors were lower than those of benign tumors and showed better diagnostic performance than did elasticity scores. The strain ratio can be used as a diagnostic indicator to predict the malignant potential of soft tissue tumors. © 2016 by the American Institute of Ultrasound in Medicine.

  11. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules

    PubMed Central

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-01-01

    Abstract Background: Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Methods: Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Results: Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). Conclusion: The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules. PMID:29068996

  12. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study.

    PubMed

    Shin, Hyun Joo; Kim, Myung-Joon; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2016-10-01

    To investigate consistency in shear wave velocities (SWVs) on ultrasound elastography using different machines, transducers and acquisition depths. The SWVs were measured using an elasticity phantom with a Young's modulus of 16.9 kPa, with three recently introduced ultrasound elastography machines (A, B and C from different vendors) and two transducers (low and high frequencies) at four depths (2, 3, 4 and 5 cm). Mean SWVs from 15 measurements and coefficient of variations (CVs) were compared between three machines, two transducers and four acquisition depths. The SWVs using the high frequency transducer were not acquired at 5 cm depth in machine B, and a high frequency transducer was not available in machine C. The mean SWVs in the three machines were different (p ≤ 0.002). The CVs were 0-0.09 in three machines. The mean SWVs between the two transducers were different (p < 0.001) except at 4 and 5 cm depths in machine A. The SWVs were affected by the acquisition depths in all conditions (p < 0.001). There is considerable difference in SWVs on ultrasound elastography depending on different machines, transducers and acquisition depths. Caution is needed when using the cutoff values of SWVs in different conditions. • The shear wave velocities (SWVs) are different between different ultrasound elastography machines • The SWVs are also different between different transducers and acquisition depths • Caution is needed when using the cutoff SWVs measured under different conditions.

  13. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  14. Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography

    PubMed Central

    Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M

    2014-01-01

    Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929

  15. Comparison of Two Different Ultrasound Devices Using Strain Elastography Technology in the Diagnosis of Breast Lesions Related to the Histologic Results.

    PubMed

    Farrokh, André; Schaefer, Fritz; Degenhardt, Friedrich; Maass, Nicolai

    2018-05-01

    This study was conducted to provide evidence that elastograms of two different devices and different manufacturers using the same technical approach provide the same diagnoses. A total of 110 breast lesions were prospectively analysed by two experts in ultrasound, using the strain elastography function from two different manufacturers (Hitachi HI-RTE, Hitachi Medical Systems, Wiesbaden, Germany; and Siemens eSie Touch, Siemens Medical Systems, Erlangen, Germany). Results were compared with the histopathologic results. Applying the Bowker test of symmetry, no statistically significant difference between the two elastography functions of these two devices was found (p = 0.120). The Cohen's kappa of k = 0.591 showed moderate strength of agreement between the two elastograms. The two examiners yielded moderate strength of agreement analysing the elastograms (Hitachi HI-RTE, k = 0.478; Siemens eSie Touch, k = 0.441). In conclusion, evidence is provided that elastograms of the same lesion generated by two different ultrasound devices equipped with a strain elastography function do not significantly differ. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Accuracy of real-time shear wave elastography in the assessment of normal liver tissue in the guinea pig (cavia porcellus).

    PubMed

    Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P

    2017-03-28

    Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.

  17. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses.

    PubMed

    Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki

    2012-10-01

    We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.

  18. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  19. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  20. Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Henry, Ross

    2007-01-01

    The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.

  1. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    NASA Astrophysics Data System (ADS)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  2. Effectiveness of the Benign and Malignant Diagnosis of Mediastinal and Hilar Lymph Nodes by Endobronchial Ultrasound Elastography.

    PubMed

    Huang, Haidong; Huang, Zhiang; Wang, Qin; Wang, Xinan; Dong, Yuchao; Zhang, Wei; Zarogoulidis, Paul; Man, Yan-Gao; Schmidt, Wolfgang Hohenforst; Bai, Chong

    2017-01-01

    Background and Objectives: Endobronchial ultrasound elastography is a new technique for describing the stiffness of tissue during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). The aims of this study were to investigate the diagnostic value of Endobronchial ultrasound (EBUS) elastography for distinguishing the difference between benign and malignant lymph nodes among mediastinal and hilar lymph node. Materials and Methods: From June 2015 to August 2015, 47 patients confirmed of mediastinal and hilar lymph node enlargement through examination of Computed tomography (CT) were enrolled, and a total of 78 lymph nodes were evaluated by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). EBUS-guided elastography of lymph nodes was performed prior to EBUS-TBNA. A convex probe EBUS was used with a new EBUS processor to assess elastographic patterns that were classified based on color distribution as follows: Type 1, predominantly non-blue (green, yellow and red); Type 2, part blue, part non-blue (green, yellow and red); Type 3, predominantly blue. Pathological determination of malignant or benign lymph nodes was used as the gold standard for this study. The elastographic patterns were compared with the final pathologic results from EBUS-TBNA. Results: On pathological evaluation of the lymph nodes, 45 were benign and 33 were malignant. The lymph nodes that were classified as Type 1 on endobronchial ultrasound elastography were benign in 26/27 (96.3%) and malignant in 1/27 (3.7%); for Type 2 lymph nodes, 15/20 (75.0%) were benign and 5/20 (25.0%) were malignant; Type 3 lymph nodes were benign in 4/31 (12.9%) and malignant in 27/31 (87.1%). In classifying Type 1 as 'benign' and Type 3 as 'malignant,' the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy rates were 96.43%, 86.67%, 87.10%, 96.30%, 91.38%, respectively. Conclusion: EBUS elastography of mediastinal and hilar lymph nodes is a noninvasive technique that can be performed reliably and may be helpful in the prediction of benign and malignant lymph nodes among mediastinal and hilar lymph node during EBUS-TBNA.

  3. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.« less

  4. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements

    PubMed Central

    Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H.; Bird, David M.; Blaxter, Mark L.; Lunt, David H.

    2016-01-01

    Abstract Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host’s genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes. PMID:27566762

  5. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  6. Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.

    2004-01-01

    Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.

  7. Density, Electrical Conductivity and Viscosity of Hg(sub 0.8)Cd(sub 0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.

  8. Producibility improvements suggested by a validated process model of seeded CdZnTe vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Larson, David J., Jr.; Casagrande, Louis G.; Di Marzio, Don; Levy, Alan; Carlson, Frederick M.; Lee, Taipao; Black, David R.; Wu, Jun; Dudley, Michael

    1994-07-01

    We have successfully validated theoretical models of seeded vertical Bridgman-Stockbarger CdZnTe crystal growth and post-solidification processing, using in-situ thermal monitoring and innovative material characterization techniques. The models predict the thermal gradients, interface shape, fluid flow and solute redistribution during solidification, as well as the distributions of accumulated excess stress that causes defect generation and redistribution. Data from the furnace and ampoule wall have validated predictions from the thermal model. Results are compared to predictions of the thermal and thermo-solutal models. We explain the measured initial, change-of-rate, and terminal compositional transients as well as the macrosegregation. Macro and micro-defect distributions have been imaged on CdZnTe wafers from 40 mm diameter boules. Superposition of topographic defect images and predicted excess stress patterns suggests the origin of some frequently encountered defects, particularly on a macro scale, to result from the applied and accumulated stress fields and the anisotropic nature of the CdZnTe crystal. Implications of these findings with respect to producibility are discussed.

  9. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  10. Age-related changes in pancreatic elasticity: When should we be concerned about their effect on strain elastography?

    PubMed

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Sugimoto, Hiroyuki; Hayashi, Daijuro; Kuwahara, Takamichi; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Hashimoto, Senju; Goto, Hidemi

    2016-07-01

    Ultrasound strain elastography is one of the useful methods for evaluating pancreatic lesions. During aging, several pancreatic parenchymal changes occur that may interfere with the interpretation of the ultrasound images. We studied age-related changes in pancreatic elasticity using transabdominal ultrasound strain elastography in subjects without known pancreatic disease. This study was conducted at Nagoya University Hospital, which is an academic medical center, and included 102 subjects (66 women and 39 men) aged 20-85years (mean 58.6±17.5) who underwent transabdominal ultrasonography for screening and follow-up for non-pancreatic diseases. Strain elastography of the pancreas was performed, and the results were subjected to quantitative strain histogram analysis. The correlations of age with four elastographic parameters (Mean, Standard deviation, Skewness, and Kurtosis) and other findings, including hyperechoic pancreas, hyperechoic liver, and diabetes, were evaluated. There was a significant correlation between increasing age and elastographic parameters such as the Mean (P=0.004), Skewness (P=0.007), and Kurtosis (P=0.03), and these differences became significant after the age of 40. The prevalence of hyperechoic pancreas increased with age (P<0.001), and the Means were lower in those with hyperechoic pancreas (P=0.004) and a higher body mass index (BMI, P=0.008). No significant correlations with diabetes, hyperechoic liver, or elastographic parameters were demonstrated. Strain elastography demonstrated elastographic changes in the pancreas with aging that included a decreasing Mean and increasing Skewness and Kurtosis after the age of 40. The prevalence of pancreatic hyperechogenicity increased, and the pancreatic hyperechogenicity was significantly negatively correlated with the Mean. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Investigation into the visual perceptive ability of anaesthetists during ultrasound-guided interscalene and femoral blocks conducted on soft embalmed cadavers: a randomised single-blind study.

    PubMed

    Mustafa, A; Seeley, J; Munirama, S; Columb, M; McKendrick, M; Schwab, A; Corner, G; Eisma, R; Mcleod, G

    2018-04-01

    Errors may occur during regional anaesthesia whilst searching for nerves, needle tips, and test doses. Poor visual search impacts on decision making, clinical intervention, and patient safety. We conducted a randomised single-blind study in a single university hospital. Twenty trainees and two consultants examined the paired B-mode and fused B-mode and elastography video recordings of 24 interscalene and 24 femoral blocks conducted on two soft embalmed cadavers. Perineural injection was randomised equally to 0.25, 0.5, and 1.0 ml volumes. Tissue displacement perceived on both imaging modalities was defined as 'target' or 'distractor'. Our primary objective was to test the anaesthetists' perception of the number and proportion of targets and distractors on B-mode and fused elastography videos collected during femoral and sciatic nerve block on soft embalmed cadavers. Our secondary objectives were to determine the differences between novices and experts, and between test-dose volumes, and to measure the area and brightness of spread and strain patterns. All anaesthetists recognised perineural spread using 0.25 ml volumes. Distractor patterns were recognised in 133 (12%) of B-mode and in 403 (38%) of fused B-mode and elastography patterns; P<0.001. With elastography, novice recognition improved from 12 to 37% (P<0.001), and consultant recognition increased from 24 to 53%; P<0.001. Distractor recognition improved from 8 to 31% using 0.25 ml volumes (P<0.001), and from 15 to 45% using 1 ml volumes (P<0.001). Visual search improved with fusion elastography, increased volume, and consultants. A need exists to investigate image search strategies. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  12. The potential of high intensity focused ultrasound (HIFU) combine phase-sensitive optical coherence tomography (PhS-OCT) for diseases diagnosis, treatment and monitoring

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong

    2018-02-01

    HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.

  13. Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions.

    PubMed

    Park, Chang Suk; Kim, Sung Hun; Jung, Na Young; Choi, Jae Jung; Kang, Bong Joo; Jung, Hyun Seouk

    2015-03-01

    Elastographpy is a newly developed noninvasive imaging technique that uses ultrasound (US) to evaluate tissue stiffness. The interpretation of the same elastographic images may be variable according to reviewers. Because breast lesions are usually reported according to American College of Radiology Breast Imaging and Data System (ACR BI-RADS) lexicons and final category, we tried to compare observer variability between lexicons and final categorization of US BI-RADS and the elasticity score of US elastography. From April 2009 to February 2010, 1356 breast lesions in 1330 patients underwent ultrasound-guided core biopsy. Among them, 63 breast lesions in 55 patients (mean age, 45.7 years; range, 21-79 years) underwent both conventional ultrasound and elastography and were included in this study. Two radiologists independently performed conventional ultrasound and elastography, and another three observers reviewed conventional ultrasound images and elastography videos. Observers independently recorded the elasticity score for a 5-point scoring system proposed by Itoh et al., BI-RADS lexicons and final category using ultrasound BI-RADS. The histopathologic results were obtained and used as the reference standard. Interobserver variability was evaluated. Of the 63 lesions, 42 (66.7 %) were benign, and 21 (33.3 %) were malignant. The highest value of concordance among all variables was achieved for the elasticity score (k = 0.59), followed by shape (k = 0.54), final category (k = 0.48), posterior acoustic features (k = 0.44), echogenecity and orientation (k = 0.43). The least concordances were margin (k = 0.26), lesion boundary (k = 0.29) and calcification (k = 0.3). Elasticity score showed a higher level of interobserver agreement for the diagnosis of breast lesions than BI-RADS lexicons and final category.

  14. Fontan Circulation in Adult Patients: Acoustic Radiation Force Impulse Elastography as a Useful Tool for Liver Assessment.

    PubMed

    Melero-Ferrer, Josep Lluís; Osa-Sáez, Ana; Buendía-Fuentes, Francisco; Ballesta-Cuñat, Antonio; Flors, Lucía; Rodríguez-Serrano, María; Calvillo-Batllés, Pilar; Arnau-Vives, Miguel-Ángel; Palencia-Pérez, Miguel A; Rueda-Soriano, Joaquín

    2014-07-01

    The development of liver fibrosis and cirrhosis due to long-standing liver congestion is known to occur in adult patients with Fontan circulation. Hepatic elastography has shown to be a useful tool for the noninvasive assessment and staging of liver fibrosis in chronic liver diseases, although the utility of this technique in Fontan patients remains to be adequately studied. Twenty-one patients with Fontan circulation underwent an abdominal ultrasound and an acoustic radiation force impulse (ARFI) elastography. In order to compare the results from this group, a cohort of 14 healthy controls and another group containing 17 patients with cirrhosis were included. The association between the velocity values measured with elastography and clinical and analytical parameters were also studied. Mean shear waves propagation velocity in liver tissue in the Fontan group was 1.86 ± 0.5 m/s, with 76% of patients over the cirrhosis threshold (1.55 m/s). The control group had a mean velocity of 1.09 ± 0.06 m/s, while the cirrhotic group obtained 2.71 ± 0.51 m/s. Seven patients with Fontan circulation had increased liver enzymes. Liver ultrasound showed evidence of chronic liver disease in six patients. Velocity values obtained in the presence or absence of analytical or liver ultrasound abnormalities showed significant differences in the univariate analysis (P = .04 and P = .03 respectively). In conclusion, ARFI elastography showed increased wave propagation velocity values in the Fontan population suggesting increased liver stiffness which could be related to advanced fibrosis. A statistically significant association between ARFI values and the presence of analytical and ultrasound abnormalities has been demonstrated. © The Author(s) 2014.

  15. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis.

    PubMed

    Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao

    2015-12-01

    The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Five-dimensional ultrasound system for soft tissue visualization.

    PubMed

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  17. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis.

    PubMed

    Acar, S; Millar, E; Mitkova, M; Mitkov, V

    2016-11-01

    The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. The following values of Young's modulus were found in subgroup A (adenomyosis): Emean - 72.7 (22.6-274.2) kPa (median, 5-95th percentiles), Emax - 94.8 (29.3-300.0) kPa, SD - 9.9 (2.6-26.3) kPa; in subgroup B (non adenomyosis) - 28.3 (12.7-59.5) kPa, 33.6 (16.0-80.8) kPa, 3.0 (1.4-15.6) kPa; in the control group - 24.4 (17.9-32.4) kPa, 29.8 (21.6-40.8) kPa, 2.3 (1.3-6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis.

  18. Shear-wave elastography of the testis in the healthy man - determination of standard values.

    PubMed

    Trottmann, M; Marcon, J; D'Anastasi, M; Bruce, M F; Stief, C G; Reiser, M F; Buchner, A; Clevert, D A

    2016-01-01

    Real-time shear-wave elastography (SWE) is a newly developed technique for the sonographic quantification of tissue elasticity, which already is used in the assessment of breast and thyroid lesions. Due to limited overlying tissue, the testes are ideally suited for assessment using shear wave elastography. To our knowledge, no published data exist on real-time SWE of the testes. Sixty six male volunteers (mean age 51.86±18.82, range 20-86) with no known testicular pathology underwent normal B-mode sonography and multi-frame shear-wave elastography of both testes using the Aixplorer ® ultrasound system (SuperSonic Imagine, Aix en Provence, France). Three measurements were performed for each testis; one in the upper pole, in the middle portion and in the lower pole respectively. The results were statistically evaluated using multivariate analysis. Mean shear-wave velocity values were similar in the inferior and superior part of the testicle (1.15 m/s) and were significantly lower in the centre (0.90 m/s). These values were age-independent. Testicular stiffness was significantly lower in the upper pole than in the rest of the testis with increasing volume (p = 0.007). Real-time shear-wave elastography proved to be feasible in the assessment of testicular stiffness. It is important to consider the measurement region as standard values differ between the centre and the testicular periphery. Further studies with more subjects may be required to define the normal range of values for each age group. Useful clinical applications could include the diagnostic work-up of patients with scrotal masses or male infertility.

  19. [The diagnostic value of ultrasonic elastography and ultrasonography comprehensive score in cervical lesions].

    PubMed

    Lu, R; Xiao, Y

    2017-07-18

    Objective: To evaluate the clinical value of ultrasonic elastography and ultrasonography comprehensive scoring method in the diagnosis of cervical lesions. Methods: A total of 116 patients were selected from the Department of Gynecology of the first hospital affiliated with Central South University from March 2014 to September 2015.All of the lesions were preoperatively examined by Doppler Ultrasound and elastography.The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape.All these ultrasonic parameters were quantified, added, and arrived at ultrasonography comprehensive scores.To use surgical pathology as the gold standard, the sensitivity, specificity, accuracy of Doppler Ultrasound, elasticity score and strain ratio methods and ultrasonography comprehensive scoring method were comparatively analyzed. Results: (1) The sensitivity, specificity, and accuracy of Doppler Ultrasound in diagnosing cervical lesions were 82.89% (63/76), 85.0% (34/40), and 83.62% (97/116), respectively.(2) The sensitivity, specificity, and accuracy of the elasticity score method were 77.63% (59/76), 82.5% (33/40), and 79.31% (92/116), respectively; the sensitivity, specificity, and accuracy of the strain ratio measure method were 84.21% (64/76), 87.5% (35/40), and 85.34% (99/116), respectively.(3) The sensitivity, specificity, and accuracy of ultrasonography comprehensive scoring method were 90.79% (69/76), 92.5% (37/40), and 91.38% (106/116), respectively. Conclusion: (1) It was obvious that ultrasonic elastography had certain diagnostic value in cervical lesions. Strain ratio measurement can be more objective than elasticity score method.(2) The combined application of ultrasonography comprehensive scoring method, ultrasonic elastography and conventional sonography was more accurate than single parameter.

  20. Time Harmonic Elastography Reveals Sensitivity of Liver Stiffness to Water Ingestion.

    PubMed

    Ipek-Ugay, Selcan; Tzschätzsch, Heiko; Hudert, Christian; Marticorena Garcia, Stephan Rodrigo; Fischer, Thomas; Braun, Jürgen; Althoff, Christian; Sack, Ingolf

    2016-06-01

    The aim of the study was to test the sensitivity of liver stiffness (LS) measured by time harmonic elastography in large tissue windows to water uptake and post-prandial effects. Each subject gave written informed consent to participate in this institutional review board-approved prospective study. LS was measured by time harmonic elastography in 10 healthy volunteers pre- and post-prandially, as well as before, directly after and 2 h after drinking water. The LS-time function during water intake was measured in 14 scans over 3 h in five volunteers. LS increased by 10% (p = 0.0015) post-prandially and by 11% (p = 0.0024) after pure water ingestion, and decreased to normal values after 2 h. LS was lower after overnight fasting than after 2-h fasting (3%, p = 0.04). Over the time course, LS increased to post-water peak values 15 min after drinking 0.25 L water and remained unaffected by further ingestion of water. In conclusion, our study indicates that LS measured by time harmonic elastography represents an effective-medium property sensitive to physiologic changes in vascular load of the liver. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.

    PubMed

    Arani, Arvin; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer. Copyright © 2010 Wiley-Liss, Inc.

  2. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  3. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  4. Nonalcoholic Fatty Liver Disease: Noninvasive Methods of Diagnosing Hepatic Steatosis

    PubMed Central

    AlShaalan, Rasha; Aljiffry, Murad; Al-Busafi, Said; Metrakos, Peter; Hassanain, Mazen

    2015-01-01

    Hepatic steatosis is the buildup of lipids within hepatocytes. It is the simplest stage in nonalcoholic fatty liver disease (NAFLD). It occurs in approximately 30% of the general population and as much as 90% of the obese population in the United States. It may progress to nonalcoholic steatohepatitis, which is a state of hepatocellular inflammation and damage in response to the accumulated fat. Liver biopsy remains the gold standard tool to diagnose and stage NAFLD. However, it comes with the risk of complications ranging from simple pain to life-threatening bleeding. It is also associated with sampling error. For these reasons, a variety of noninvasive radiological markers, including ultrasound, computed tomography, magnetic resonance spectroscopy, and the controlled attenuation parameter using transient elastography and Xenon-133 scan have been proposed to increase our ability to diagnose NAFLD, hence avoiding liver biopsy. The aim of this review is to discuss the utility and accuracy of using available noninvasive diagnostic modalities for fatty liver in NAFLD. PMID:25843191

  5. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  6. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  7. Magnetic Resonance Elastography Demonstrating Low Brain Stiffness in a Patient with Low-Pressure Hydrocephalus: Case Report.

    PubMed

    Olivero, William C; Wszalek, Tracey; Wang, Huan; Farahvar, Arash; Rieth, Sandra M; Johnson, Curtis L

    2016-01-01

    The authors describe the case of a 19-year-old female with shunted aqueductal stenosis who presented with low-pressure hydrocephalus that responded to negative pressure drainage. A magnetic resonance elastography scan performed 3 weeks later demonstrated very low brain tissue stiffness (high brain tissue compliance). An analysis of the importance of this finding in understanding this rare condition is discussed. © 2016 S. Karger AG, Basel.

  8. Development of an Automated Modality-Independent Elastographic Image Analysis System for Tumor Screening

    DTIC Science & Technology

    2006-02-01

    further develop modality-independent elastography as a system that is able to reproducibly detect regions of increased stiffness within the breast based...tested on a tissue-like polymer phantom. elastography , breast cancer screening, image processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...is a map of the breast (or other tissue of interest) that reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the

  9. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications

    PubMed Central

    Pepin, Kay M.; Ehman, Richard L.; McGee, Kiaran P.

    2015-01-01

    Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944

  10. Improved measurement of vibration amplitude in dynamic optical coherence elastography

    PubMed Central

    Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.

    2012-01-01

    Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565

  11. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE PAGES

    Gul, R.; Roy, U. N.; Camarda, G. S.; ...

    2017-03-28

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  12. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; Camarda, G. S.

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  13. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1984-07-01

    double layer heterojunction (DLHJ) devices. There are however many complications on this once we consider implanted junctions, LWIR devices or even the...It is not possible from this measurement to discriminate between real interface states and charge nonuniformities . Admittance spectroscopy (discussed...earlier) and deep level transient spectroscopy (DLTS) are not usually affected by these nonuniformities due to their observation of a speci- fic

  14. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  15. Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman

    2018-03-01

    With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.

  16. Study of barrier height and trap centers of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contacts by current-voltage (I-V) characteristics and deep level transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yapeng; Fu, Li, E-mail: fuli@nwpu.edu.cn; Sun, Jie

    2015-02-28

    The temperature-dependent electrical characteristics of the Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact have been studied at the temperature range of 140 K–315 K. Based on the thermionic emission theory, the ideality factor and Schottky barrier height were calculated to decrease and increase from 3.18 to 1.88 and 0.39 eV to 0.5 eV, respectively, when the temperature rose from 140 K to 315 K. This behavior was interpreted by the lateral inhomogeneities of Schottky barrier height at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} contact, which was shown by the plot of zero-bias barrier heights Φ{sub bo} versus q/2kT. Meanwhile, it was found that the Schottky barriermore » height with a Gaussian distribution was 0.67 eV and the standard deviation σ{sub 0} was about 0.092 eV, indicating that the uneven distribution of barrier height at the interface region. In addition, the mean value of Φ{sup ¯}{sub b0} and modified Richardson constant was determined to be 0.723 eV and 62.8 A/cm{sup 2}K{sup 2} from the slope and intercept of the ln(I{sub o}/T{sup 2}) – (qσ{sub 0}{sup 2}/2k{sup 2}T{sup 2}) versus q/kT plot, respectively. Finally, two electron trap centers were observed at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact by means of deep level transient spectroscopy.« less

  17. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  18. Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Aglyamov, Salavat R.; Liu, Chih-Hao; Han, Zhaolong; Singh, Manmohan; Larin, Kirill V.

    2017-02-01

    Many ocular diseases such as glaucoma and uveitis can lead to the elevation of intraocular pressure (IOP). Previous research implies a link between elevated IOP and lens disease. However, the relationship between IOP elevation and biomechanical properties of the crystalline lens has not been directly studied yet. In this work, we investigated the biomechanical properties of porcine lens as a function of IOP by acoustic radiation force optical coherence elastography.

  19. A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by Bridgman and traveling heater methods

    NASA Astrophysics Data System (ADS)

    Gul, R.; Roy, U. N.; Camarda, G. S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R. B.

    2017-03-01

    In this paper, the properties of point defects in Cd1-xZnxTe1-ySey (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the VCd- concentration. In Travelling Heater Method (THM) and Bridgman Method (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of VCd- and two additional traps (attributed to Tei- and TeCd++ appearing at around Ev + 0.26 eV and Ec - 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.

  20. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  1. The use of real-time elastography in the assessment of gallbladder polyps: preliminary observations.

    PubMed

    Teber, Mehmet Akif; Tan, Sinan; Dönmez, Uğur; İpek, Ali; Uçar, Ali Erkan; Yıldırım, Halil; Aslan, Ahmet; Arslan, Halil

    2014-12-01

    Gallbladder polyps often have a benign nature. Current guidelines suggest surgical removal of polyps greater than 10 mm. However, the accuracy of the size criteria is limited because neoplasia can be found in gallbladder polyps less than 10 mm. The aim of this study was to evaluate the feasibility of real time elastography for gallbladder polyps and to demonstrate the elasticity properties of the polyps. Fifty-three polypoid lesions of the gallbladder were prospectively examined with real-time elastography. Of these patients, 52 had a diagnosis of benign gallbladder polyps and one patient was accepted as a gallbladder carcinoma due to its clinical and radiological findings. B-mode and real-time elastographic images were simultaneously presented as a two-panel image, and the elastogram was displayed in a color scale that ranged from red (greatest strain, softest component), to green (average strain, intermediate component), to blue (no strain, hardest component). The mean size for benign gallbladder polyps was 7.2 +/- 3 mm (range, 5-21 mm). All benign gallbladder polyps on consecutive real-time elastographic images appeared as having a high-strain elastographic pattern. Only one patient who was accepted with gallbladder carcinoma had a gallbladder polyp with low elasticity properties. Our study showed that real time elastography of gallbladder polyps is feasible. This novel approach may be useful for the characterization of polypoid lesions of the gallbladder.

  2. An Investigation of the Immediate Effect of Static Stretching on the Morphology and Stiffness of Achilles Tendon in Dominant and Non-Dominant Legs

    PubMed Central

    Chiu, Tsz-chun Roxy; Ngo, Hiu-ching; Lau, Lai-wa; Leung, King-wah; Lo, Man-him; Yu, Ho-fai; Ying, Michael

    2016-01-01

    Aims This study was undertaken to investigate the immediate effect of static stretching on normal Achilles tendon morphology and stiffness, and the different effect on dominant and non-dominant legs; and to evaluate inter-operator and intra-operator reliability of using shear-wave elastography in measuring Achilles tendon stiffness. Methods 20 healthy subjects (13 males, 7 females) were included in the study. Thickness, cross-sectional area and stiffness of Achilles tendons in both legs were measured before and after 5-min static stretching using grey-scale ultrasound and shear-wave elastography. Inter-operator and intra-operator reliability of tendon stiffness measurements of six operators were evaluated. Results Result showed that there was no significant change in the thickness and cross-sectional area of Achilles tendon after static stretching in both dominant and non-dominant legs (p > 0.05). Tendon stiffness showed a significant increase in non-dominant leg (p < 0.05) but not in dominant leg (p > 0.05). The inter-operator reliability of shear-wave elastography measurements was 0.749 and the intra-operator reliability ranged from 0.751 to 0.941. Conclusion Shear-wave elastography is a useful and non-invasive imaging tool to assess the immediate stiffness change of Achilles tendon in response to static stretching with high intra-operator and inter-operator reliability. PMID:27120097

  3. External vibration multi-directional ultrasound shearwave elastography (EVMUSE): application in liver fibrosis staging.

    PubMed

    Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao

    2014-11-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.

  4. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification.

    PubMed

    Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A

    2012-07-10

    The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy.

  5. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification

    PubMed Central

    Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A

    2012-01-01

    Background: The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. Methods: One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. Results: For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Conclusion: Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy. PMID:22691969

  6. External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging

    PubMed Central

    Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.

    2014-01-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066

  7. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.

  8. Dopant incorporation in Al0.9Ga0.1As0.06Sb0.94 grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Patra, Saroj Kumar; Tran, Thanh-Nam; Vines, Lasse; Kolevatov, Ilia; Monakhov, Edouard; Fimland, Bjørn-Ove

    2017-04-01

    Incorporation of beryllium (Be) and tellurium (Te) dopants in epitaxially grown Al0.9Ga0.1As0.06Sb0.94 layers was investigated. Carrier concentrations and mobilities of the doped layers were obtained from room temperature Hall effect measurements, and dopant densities from secondary ion mass spectrometry depth profiling. An undoped Al0.3Ga0.7As cap layer and side wall passivation were used to reduce oxidation and improve accuracy in Hall effect measurements. The measurements on Be-doped samples revealed high doping efficiency and the carrier concentration varied linearly with dopant density up to the highest Be dopant density of 2.9 × 1019 cm-3, whereas for Te doped samples the doping efficiency was in general low and the carrier concentration saturated for Te-dopant densities above 8.0 × 1018 cm-3. The low doping efficiency in Te-doped Al0.9Ga0.1As0.06Sb0.94 layer was studied by deep-level transient spectroscopy, revealing existence of deep trap levels and related DX-centers which explains the low doping efficiency.

  9. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pousset, J.; Farella, I.; Cola, A., E-mail: adriano.cola@le.imm.cnr.it

    2016-03-14

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron andmore » hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.« less

  10. Surface acceptor states in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2018-04-01

    A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.

  11. Application of Modified Spin-Echo–based Sequences for Hepatic MR Elastography: Evaluation, Comparison with the Conventional Gradient-Echo Sequence, and Preliminary Clinical Experience

    PubMed Central

    Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.

    2017-01-01

    Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543

  12. Dynamic Elastography in Diagnostics of Liver Fibrosis in Patients After Liver Transplantation Due to Cirrhosis in the Course of Hepatitis C.

    PubMed

    Mikołajczyk-Korniak, N; Tronina, O; Ślubowska, K; Perkowska-Ptasińska, A; Pacholczyk, M; Bączkowska, T; Durlik, M

    2016-06-01

    Assessment of the dynamics and degree of liver fibrosis in patients after liver transplantation is a basic element in the process of determining transplant survival prognosis. It allows planning and early initiation of prophylaxis or treatment, which translates into increased chances of preventing cirrhosis and of long-term optimal function of the graft. The aim of this study was to compare the results of biopsy and dynamic elastography in diagnostics of transplanted liver fibrosis, as well as determination of the stiffness cut-off point for assessment of significant fibrosis. The study included 36 patients who had undergone liver transplantation due to cirrhosis in the course of hepatitis C virus (HVC) infection. Fibrosis was assessed in bioptates according to the METAVIR score (F0-F4). Elastography was performed using FibroScan; receiver operating characteristic curve analysis was used to identify the cut-off point for significant fibrosis (≥F2). The median stiffness in kPa for the whole group F0-F4 was 6.3 (range 3.4-29.9); for ≥F2 it was 6.9 (3.4-29.9), whereas for F0-F1 it was 4.4 (3.5-8.0). It was demonstrated that the value of 4.7 kPa in elastography is a statistically significant cut-off point for differentiation between the groups F0-F1 and F2-F4 (sensitivity: 93%, specificity: 57%, positive predictive value: 90%, negative predictive value: 66%), area under the receiver operating characteristic curve: 0.746 (95% confidence interval: 0.53-0.95, P < .05). Elastography is a promising tool for noninvasive assessment of significant liver fibrosis in patients after transplantation due to cirrhosis in the course of hepatitis C; it allows reduction in the number of biopsies performed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis

    PubMed Central

    Millar, E; Mitkova, M; Mitkov, V

    2016-01-01

    Background The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. Methods One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. Results The following values of Young’s modulus were found in subgroup A (adenomyosis): Emean – 72.7 (22.6–274.2) kPa (median, 5–95th percentiles), Emax – 94.8 (29.3–300.0) kPa, SD – 9.9 (2.6–26.3) kPa; in subgroup B (non adenomyosis) – 28.3 (12.7–59.5) kPa, 33.6 (16.0–80.8) kPa, 3.0 (1.4–15.6) kPa; in the control group – 24.4 (17.9–32.4) kPa, 29.8 (21.6–40.8) kPa, 2.3 (1.3–6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). Conclusion This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis. PMID:27847535

  14. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions.

    PubMed

    Carrara, Silvia; Di Leo, Milena; Grizzi, Fabio; Correale, Loredana; Rahal, Daoud; Anderloni, Andrea; Auriemma, Francesco; Fugazza, Alessandro; Preatoni, Paoletta; Maselli, Roberta; Hassan, Cesare; Finati, Elena; Mangiavillano, Benedetto; Repici, Alessandro

    2018-06-01

    EUS elastography is useful in characterizing solid pancreatic lesions (SPLs), and fractal analysis-based technology has been used to evaluate geometric complexity in oncology. The aim of this study was to evaluate EUS elastography (strain ratio) and fractal analysis for the characterization of SPLs. Consecutive patients with SPLs were prospectively enrolled between December 2015 and February 2017. Elastographic evaluation included parenchymal strain ratio (pSR) and wall strain ratio (wSR) and was performed with a new compact US processor. Elastographic images were analyzed using a computer program to determine the 3-dimensional histogram fractal dimension. A composite cytology/histology/clinical reference standard was used to assess sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve. Overall, 102 SPLs from 100 patients were studied. At final diagnosis, 69 (68%) were malignant and 33 benign. At elastography, both pSR and wSR appeared to be significantly higher in malignant as compared with benign SPLs (pSR, 24.5 vs 6.4 [P < .001]; wSR, 56.6 vs 15.3 [P < .001]). When the best cut-off levels of pSR and wSR at 9.10 and 16.2, respectively, were used, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve were 88.4%, 78.8%, 89.7%, 76.9%, and 86.7% and 91.3%, 69.7%, 86.5%, 80%, and 85.7%, respectively. Fractal analysis showed a significant statistical difference (P = .0087) between the mean surface fractal dimension of malignant lesions (D = 2.66 ± .01) versus neuroendocrine tumor (D = 2.73 ± .03) and a statistical difference for all 3 channels red, green, and blue (P < .0001). EUS elastography with pSR and fractal-based analysis are useful in characterizing SPLs. (Clinical trial registration number: NCT02855151.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. WE-E-9A-01: Ultrasound Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement and imaging can contribute to diagnosis of breast and prostate cancer, staging of liver fibrosis, age estimation of deep veinous fhrombosis, confirmation of thermal lesions in the liver after RF ablation.« less

  16. Real-Time Palpation Imaging for Improved Detection and Discrimination of Breast Abnormalities

    DTIC Science & Technology

    2005-07-01

    contrasts are also in the range of elastic contrasts in terms of shear storage moduli for 85 Hz shear waves in in vivo MR breast elastography (Sinkus et al... elastography ) may aid the differentiation of benign and malignant solid breast masses .(4-19) This research is based on the fact that benign and malignant...on 445 breast masses of which 42 were discarded based on our exclusion criteria leaving 403 (157 malignant-39.0%; 246 benign-61.0%) lesions as

  17. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.

    PubMed

    Jiao, Shuang; Shen, Qing; Mora-Seró, Iván; Wang, Jin; Pan, Zhenxiao; Zhao, Ke; Kuga, Yuki; Zhong, Xinhua; Bisquert, Juan

    2015-01-27

    Even though previously reported CdTe/CdSe type-II core/shell QD sensitizers possess intrinsic superior optoelectronic properties (such as wide absorption range, fast charge separation, and slow charge recombination) in serving as light absorbers, the efficiency of the resultant solar cell is still limited by the relatively low photovoltage. To further enhance photovoltage and cell efficiency accordingly, ZnTe/CdSe type-II core/shell QDs with much larger conduction band (CB) offset in comparison with that of CdTe/CdSe (1.22 eV vs 0.27 eV) are adopted as sensitizers in the construction of quantum dot sensitized solar cells (QDSCs). The augment of band offset produces an increase of the charge accumulation across the QD/TiO2 interface under illumination and induces stronger dipole effects, therefore bringing forward an upward shift of the TiO2 CB edge after sensitization and resulting in enhancement of the photovoltage of the resultant cell devices. The variation of relative chemical capacitance, Cμ, between ZnTe/CdSe and reference CdTe/CdSe cells extracted from impedance spectroscopy (IS) characterization under dark and illumination conditions clearly demonstrates that, under light irradiation conditions, the sensitization of ZnTe/CdSe QDs upshifts the CB edge of TiO2 by the level of ∼ 50 mV related to that in the reference cell and results in the enhancement of V(oc) of the corresponding cell devices. In addition, charge extraction measurements have also confirmed the photovoltage enhancement in the ZnTe/CdSe cell related to reference CdTe/CdSe cell. Furthermore, transient grating (TG) measurements have revealed a faster electron injection rate for the ZnTe/CdSe-based QDSCs in comparison with the CdSe cells. The resultant ZnTe/CdSe QD-based QDSCs exhibit a champion power conversion efficiency of 7.17% and a certified efficiency of 6.82% under AM 1.5 G full one sun illumination, which is, as far as we know, one of the highest efficiencies for liquid-junction QDSCs.

  18. Optical coherence elastography in ophthalmology

    NASA Astrophysics Data System (ADS)

    Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-12-01

    Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.

  19. Cardiac elastography: detecting pathological changes in myocardium tissues

    NASA Astrophysics Data System (ADS)

    Konofagou, Elisa E.; Harrigan, Timothy; Solomon, Scott

    2003-05-01

    Estimation of the mechanical properties of the cardiac muscle has been shown to play a crucial role in the detection of cardiovascular disease. Elastography was recently shown feasible on RF cardiac data in vivo. In this paper, the role of elastography in the detection of ischemia/infarct is explored with simulations and in vivo experiments. In finite-element simulations of a portion of the cardiac muscle containing an infarcted region, the cardiac cycle was simulated with successive compressive and tensile strains ranging between -30% and 20%. The incremental elastic modulus was also mapped uisng adaptive methods. We then demonstrated this technique utilizing envelope-detected sonographic data (Hewlett-Packard Sonos 5500) in a patient with a known myocardial infarction. In cine-loop and M-Mode elastograms from both normal and infarcted regions in simulations and experiments, the infarcted region was identifed by the up to one order of magnitude lower incremental axial displacements and strains, and higher modulus. Information on motion, deformation and mechanical property should constitute a unique tool for noninvasive cardiac diagnosis.

  20. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    PubMed

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  1. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  2. Acoustic radiation force optical coherence elastography using vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao (.; Ma, Teng; Li, Rui; Qi, Wenjuan; Zhu, Jiang; He, Youmin; Shung, K. K.; Zhou, Qifa; Chen, Zhongping

    2015-03-01

    High-resolution elasticity mapping of tissue biomechanical properties is crucial in early detection of many diseases. We report a method of acoustic radiation force optical coherence elastography (ARF-OCE) based on the methods of vibroacoustography, which uses a dual-ring ultrasonic transducer in order to excite a highly localized 3-D field. The single element transducer introduced previously in our ARF imaging has low depth resolution because the ARF is difficult to discriminate along the entire ultrasound propagation path. The novel dual-ring approach takes advantage of two overlapping acoustic fields and a few-hundred-Hertz difference in the signal frequencies of the two unmodulated confocal ring transducers in order to confine the acoustic stress field within a smaller volume. This frequency difference is the resulting "beating" frequency of the system. The frequency modulation of the transducers has been validated by comparing the dual ring ARF-OCE measurement to that of the single ring using a homogeneous silicone phantom. We have compared and analyzed the phantom resonance frequency to show the feasibility of our approach. We also show phantom images of the ARF-OCE based vibro-acoustography method and map out its acoustic stress region. We concluded that the dual-ring transducer is able to better localize the excitation to a smaller region to induce a focused force, which allows for highly selective excitation of small regions. The beat-frequency elastography method has great potential to achieve high-resolution elastography for ophthalmology and cardiovascular applications.

  3. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor.

    PubMed

    Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane

    2016-12-01

    Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Extensor indicis proprius tendon transfer using shear wave elastography.

    PubMed

    Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S

    2017-06-01

    The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.

  5. 3D Myocardial Elastography In Vivo.

    PubMed

    Papadacci, Clement; Bunting, Ethan A; Wan, Elaine Y; Nauleau, Pierre; Konofagou, Elisa E

    2017-02-01

    Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.

  6. Quantitative assessment of the mechanical properties of prostate tissue with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Ling, Yuting; Li, Chunhui; Zhou, Kanheng; Guan, Guangying; Lang, Stephen; McGloin, David; Nabi, Ghulam; Huang, Zhihong

    2018-02-01

    Prostate cancer (PCa) is a heterogeneous disease with multifocal origin. In current clinical care, the Gleason scoring system is the well-established diagnosis by microscopic evaluation of the tissue from trans-rectal ultrasound (TRUS) guided biopsies. Nevertheless, the sensitivity and specificity in detecting PCa can range from 40 to 50% for conventional TRUS B-mode imaging. Tissue elasticity is associated with the disease progression and elastography technique has recently shown promise in aiding PCa diagnosis. However, many cancer foci in the prostate gland has very small size less than 1 mm and those detected by medical elastography were larger than 2 mm. Hereby, we introduce optical coherence elastography (OCE) to quantify the prostate stiffness with high resolution in the magnitude of 10 µm. Following our feasibility study of 10 patients reported previously, we recruited 60 more patients undergoing 12-core TRUS guided biopsies for suspected PCa with a total of 720 biopsies. The stiffness of cancer tissue was approximately 57.63% higher than that of benign ones. Using histology as reference standard and cut-off threshold of 600kPa, the data analysis showed sensitivity and specificity of 89.6% and 99.8% respectively. The method also demonstrated potential in characterising different grades of PCa based on the change of tissue morphology and quantitative mechanical properties. In conclusion, quantitative OCE can be a reliable technique to identify PCa lesion and differentiate indolent from aggressive cancer.

  7. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  8. Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.

    PubMed

    Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping

    2013-01-01

    A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Audio frequency in vivo optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  10. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  11. Dynamic measurement of local displacements within curing resin-based dental composite using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.

    2016-04-01

    This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.

  12. High transport efficiency of nanoparticles through a total-consumption sample introduction system and its beneficial application for particle size evaluation in single-particle ICP-MS.

    PubMed

    Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Fujii, Shin-Ichiro; Takatsu, Akiko; Inagaki, Kazumi; Fujimoto, Toshiyuki

    2017-02-01

    In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.

  13. WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasse, K; Neylon, J; Low, D

    2016-06-15

    Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were appliedmore » as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.« less

  14. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    PubMed

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance elastography as a whole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.

    PubMed

    Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo

    2018-05-01

    Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).

  16. Real-Time Elastography Visualization and Histopathological Characterization of Rabbit Atherosclerotic Carotid Arteries.

    PubMed

    Wang, ZhenZhen; Liu, NaNa; Zhang, LiFeng; Li, XiaoYing; Han, XueSong; Peng, YanQing; Dang, MeiZheng; Sun, LiTao; Tian, JiaWei

    2016-01-01

    To evaluate the feasibility of non-invasive vascular real-time elastography imaging (RTE) in visualizing the composition of rabbit carotid atherosclerotic plaque as determined by histopathology, a rabbit model of accelerated carotid atherosclerosis was used. Thirty rabbits were randomly divided into two groups of 15 rabbits each. The first group was fed a cholesterol-rich diet and received balloon-induced injury the left common carotid artery endothelium, whereas the second group only received a cholesterol-rich diet. The rabbits were all examined in vivo with HITACHI non-invasive vascular real-time elastography (Hi-RTE) at baseline and 12 wk, and results from the elastography were compared with American Heart Association histologic classifications. Hi-RTE and the American Heart Association histologic classifications had good agreement, with weighted Cohen's kappa (95% confidence internal) of 0.785 (0.649-0.920). Strains of segmented plaques that were stained in different colors were statistically different (p < 0.0001). The sensitivity and specificity of elastograms for detecting a lipid core were 95.5% and 61.5%, respectively, and the area under the receiver operating characteristic curve was 0.789, with a 95% confidence interval of 0.679 to 0.876. This study is the first to indicate the feasibility of utilizing Hi-RTE in visualizing normal and atherosclerotic rabbit carotid arteries non-invasively. This affordable and reliable method can be widely applied in research of both animal and human peripheral artery atherosclerosis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Ultrasound Elastography of the Neonatal Brain: Preliminary Study.

    PubMed

    Kim, Hyun Gi; Park, Moon Sung; Lee, Jung-Dong; Park, Seon Young

    2017-07-01

    To determine the ultrasound elasticity of the brain in neonates METHODS: Strain elastography was performed in 21 healthy neonates (mean gestational age [GA], 34 weeks; range, 28-40 weeks). Elastographic scores were assigned to the following structures on a 5-point color scale (1-5): ventricle, periventricular white matter, caudate, subcortical, cortical gray matter, and subdural space. Three elastographic images were evaluated in each patient, and median elastographic scores were calculated. The scores were compared between regions and were correlated with the corrected GA. Interobserver agreements for assignment of elastographic scores were analyzed. The ventricle and subdural space showed an elasticity score of 1 in all patients. The cortical gray matter (median, 3.0; first-third quartiles, 2.33-3.33) showed higher elasticity compared to the periventricular white mater (4.0; 3.00-4.00; P < .001), caudate (4.3; 3.67-4.67; P < .001), and subcortical white matter (4.0; 4.00-4.00; P < .001). The caudate showed lower elasticity compared to periventricular white matter (P = .004). The periventricular white matter showed higher elasticity compared to subcortical white matter (P = .009). There was a positive trend between the corrected GA and cortical gray matter elastographic score (γ = 0.376; P = .093). Interobserver agreement was moderate to almost perfect (κ = 0.53-0.89). Neonatal intracranial regions showed different elasticity, which could be accessed by strain elastography. These normal findings should prompt future studies investigating the use of ultrasound elastography in the neonatal brain. © 2017 by the American Institute of Ultrasound in Medicine.

  18. Quantitative US Elastography Can Be Used to Quantify Mechanical and Histologic Tendon Healing in a Rabbit Model of Achilles Tendon Transection.

    PubMed

    Yamamoto, Yohei; Yamaguchi, Satoshi; Sasho, Takahisa; Fukawa, Taisuke; Akatsu, Yorikazu; Akagi, Ryuichiro; Yamaguchi, Tadashi; Takahashi, Kenji; Nagashima, Kengo; Takahashi, Kazuhisa

    2017-05-01

    Purpose To determine the time-dependent change in strain ratios (SRs) at the healing site of an Achilles tendon rupture in a rabbit model of tendon transection and to assess the correlation between SRs and the mechanical and histologic properties of the healing tissue. Materials and Methods Experimental methods were approved by the institutional animal care and use committee. The Achilles tendons of 24 New Zealand white rabbits (48 limbs) were surgically transected. The SRs of Achilles tendons were calculated by using compression-based quantitative ultrasonographic elastography measurements obtained 2, 4, 8, and 12 weeks after transection. After in vivo elastography, the left Achilles tendon was harvested for mechanical testing of ultimate load, ultimate stress, elastic modulus, and linear stiffness, and the right tendons were harvested for tissue histologic analysis with the Bonar scale. Time-dependent changes in SRs, mechanical parameters, and Bonar scale scores were evaluated by using repeated-measures analysis of variance. The correlation between SRs and each measured variable was evaluated by using the Spearman rank correlation coefficient. Results Mean SRs and Bonar scale values decreased as a function of time after transection, whereas mechanical parameters increased (P < .001). SR correlated with ultimate stress (ρ = 0.68, P <.001,) elastic modulus (ρ = 0.74, P <.001), and the Bonar scale (ρ = 0.87, P <.001). Conclusion Quantitative elastography could be a useful method with which to evaluate mechanical and histologic properties of the healing tendon. © RSNA, 2017 Online supplemental material is available for this article.

  19. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.

    2012-01-01

    Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063

  20. [Proposal for the systematization of the elastographic study of mammary lesions through ultrasound scan].

    PubMed

    Fleury, Eduardo de Faria Castro; Fleury, Jose Carlos Vendramini; Oliveira, Vilmar Marques de; Rinaldi, Jose Francisco; Piato, Sebastiao; Roveda Junior, Decio

    2009-01-01

    Proposal of systematization for the elastographic study in the ultrasound routine. Evaluation was made of 308 patients forwarded to the breast intervention service in the CTC-Genesis from May 1, 2007 to March 1, 2008 to perform percutaneous breast biopsy. Prior to the percutaneous biopsy, an ultrasound study and an elastography were performed. Lesions were primarily analyzed and classified according to the Bi-Rads lexicon criteria by the conventional ultrasound scan (B mode). The elastography was then performed and analyzed in accordance with the systematization proposed by the authors, using images obtained during compression and after decompression of the area of interest. Lesions were classified following the system developed by the authors using a four-point scale, where scores (1) and (2) were considered benign, score (3) probably benign and score (4) suspicion of malignancy. Results obtained by the two methods were compared with the histological results using the areas within the ROC (receiver operator curves) curves. The area within the curve for elastography was of 0.952 with a confidence interval between 0.910 and 0.966, error of 0.023, and of 0.867 with a confidence interval between 0.823 and 0.903, error of 0.0333 for the ultrasound. When the areas were compared, a difference between the curves of 0.026 was observed, which was statistically significant. This work shows the systematization of the elastographic study using information obtained during compression and after decompression of the ultrasound scan sample, thus showing that elastography might enhance the assessment of risk of malignancy for lesions characterized by the ultrasound.

  1. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study

    PubMed Central

    Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki

    2017-01-01

    Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657

  2. Comparison of strain and acoustic radiation force impulse elastography of breast lesions by qualitative evaluation.

    PubMed

    Zhao, Qing; Wang, Xiao-Lei; Sun, Jia-Wei; Jiang, Zhao-Peng; Tao, Lin; Zhou, Xian-Li

    2018-04-13

    To compare the diagnostic performance of conventional strain elastography (CSE) and acoustic radiation force impulse (ARFI) induced SE for qualitative assessment of breast lesions and evaluate the additional value of the two techniques combined with Breast Imaging Reporting and Data System (BI-RADS) respectively for the differentiation of benign and malignant breast lesions. In a cohort of 110 women, the conventional ultrasound (US) features and the elasticity scores of CSE and ARFI induced SE were recorded. The diagnostic performances of BI-RADS, elastography and BI-RADS plus elastography were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Pathologically, there were forty-eight malignant and sixty-two benign breast lesions in the final analysis. The AUCs for CSE and ARFI induced SE are similar (CSE, 0.807; ARFI induced SE, 0.846; p > 0.05), however, the specificity of the latter method was significantly higher than that of CSE (83.9% vs. 58.1%, p = 0.004) in differentiating breast lesions. The accuracy and specificity of BI-RADS plus ARFI induced SE (84.5%, 80.6%, respectively) were significantly higher than BI-RADS alone (73.6%, 54.8%, respectively) and BI-RADS plus conventional SE (72.7%, 56.5%, respectively), respectively (p < 0.05) without loss of sensitivity. Our study showed that BI-RADS plus ARFI induced SE had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone or BI-RADS plus CSE.

  3. Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less

  4. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  5. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching.

    PubMed

    Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa

    2015-09-01

    Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.

    PubMed

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew

    2016-12-23

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  7. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  8. Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load.

    PubMed

    McCredie, Alexandra J; Stride, Eleanor; Saffari, Nader

    2009-01-01

    Articular cartilage is an important load bearing surface in joints. Prone to damage and with limited self-repair ability, it is of interest to tissue engineers. Tissue implant design requires full mechanical characterisation of healthy native tissue. A layered organisation of reinforcing collagen fibrils exists in healthy articular cartilage and is believed to be important for correct tissue function. However, the effect of this on the local depth-dependent elasticity is poorly characterised. In this study, quasi-static ultrasound elastography is used both to compare the depth-dependent elastic properties of cartilage structures with two different fibril arrangements and to monitor changes in the elastic properties of engineered samples during development. Results show global and local elastic properties of the native tissues and highlight the differences caused by fibril architecture. At increasing culture periods, results from the engineered tissue demonstrate an increase in elastic stiffness and the time taken to reach equilibrium under a quasi-static displacement. The study suggests suitability of ultrasound elastography for design and monitoring engineered articular cartilage.

  9. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    PubMed Central

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew

    2016-01-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea. PMID:28008920

  10. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-12-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  11. Ab Initio Infrared and Raman Spectra.

    DTIC Science & Technology

    1982-08-01

    equilibrium and non -equilibrium systems. It b pointed out that a similar ab !ni- te QFC molecular dynamic approach could be used to compute other types of...applied to -2- equilibrium and non -equilibrium system. It is pointed out that a similar oh im- ib QFCT molecular dynamic approach could be used to...desire to be able to experimentally identify and understand transient species or states (such as those existing during the course of chemical

  12. Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol

    PubMed Central

    Keil, Kimberly P.; Abler, Lisa L.; Altmann, Helene M.; Wang, Zunyi; Wang, Peiqing; Ricke, William A.; Bjorling, Dale E.

    2015-01-01

    Aging men are susceptible to developing lower urinary tract symptoms, but the underlying etiology is unknown and the influence of dietary and environmental factors on them is unclear. We tested whether a folic acid-enriched diet changed urinary tract physiology and biology in control male mice and male mice with urinary dysfunction induced by exogenous testosterone and estradiol (T+E2), which mimics changing hormone levels in aging humans. T+E2 treatment increased mouse urine output, time between voiding events, and bladder capacity and compliance. Consumption of a folic acid-enriched diet moderated these changes without decreasing prostate wet weight or threshold voiding pressure. One potential mechanism for these changes involves water balance. T+E2 treatment increases plasma concentrations of anti-diuretic hormone, which is offset at least in part by a folic acid-enriched diet. Another potential mechanism involves neural control of micturition. The folic acid-enriched diet, fed to T+E2-treated mice, increased voiding frequency in response to intravesicular capsaicin infusion and increased mRNA abundance of the capsaicin-sensitive cation channel transient receptor potential vanilloid subfamily member 1 (Trpv1) in L6 and S1 dorsal root ganglia (DRG) neurons. T+E2 treatment and a folic acid-enriched diet also modified DNA methylation, which is capable of altering gene expression. We found the enriched diet increased global DNA methylation in dorsal and ventral prostate and L6 and S1 DRG. Our results are consistent with folic acid acting to slow or reverse T+E2-mediated alteration in urinary function in part by normalizing water balance and enhancing or preserving afferent neuronal function. PMID:25855514

  13. Impacts of northern Tibetan Plateau on East Asian summer rainfall via modulating midlatitude transient eddies

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Shi, Ning; Zhang, Leying; Ma, Jing

    2017-08-01

    Roles of the Tibetan Plateau (TP) in forming and changing the seasonal Asian climate system have been widely explored. However, little is known about modulation effects of the TP on extratropical transient eddies (TEs) and subsequent synoptic responses of the East Asian rainfall. In this study, the Community Atmosphere Model version 5.1 coupled with a slab ocean model is employed to highlight the important role of the TP in regulating the upper-tropospheric transient wave train. Comparison between sensitivity experiments with and without the TP shows that the northern TP excites a strong anomalous anticyclone, which shifts the upper-level East Asian westerly jet northward and helps transfer barotropic and baroclinic energy from the mean flow to the synoptic TE flow. The transient wave train is primarily shifted northward by northern TP and is forced to propagate southeastward along the eastern flank of the TP until reaching eastern China. Before the strengthening of monsoonal southerlies, the TP-modulated transient wave train cools the troposphere, which decreases the static stability over northern China. Meanwhile, the associated anomalous warm advection induces ascending motion, leading to excessive rainfall by releasing unstable energy as the southerly strengthens. Due to the southeastward propagation of the wave train, anomalous heavy rainfall subsequently appears over eastern China from north to south, which increases day-to-day rainfall variation in this region. Additionally, occurrence of this upper-tropospheric transient wave train associated with low-level southerly peak is substantially increased by northern TP.

  14. PbSnTe:In compound: Electron capture levels, galvanomagnetic properties, and THz sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, D. V., E-mail: miracle4348@gmail.com; Klimov, A. E.; Shumsky, V. N.

    A model of the Pb{sub 1–x}Sn{sub x}Te:In compound, based on concepts of the theory of disordered systems is considered. The temperature dependences of the Fermi-level position and carrier concentration are calculated depending on the indium doping level and are compared with experimental data. The transient current–voltage characteristics are calculated in the mode of injection from the contact and current limitation by space charge at various voltage-variation rates. The data obtained are compared with the experiments. It is demonstrated that the shape of the characteristics is controlled by the parameters of electron capture at localized states. Photocurrent relaxation in a magneticmore » field is studied, and the mechanism of such relaxation is discussed under the assumption of the magnetic freezing of carriers.« less

  15. Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achterberg, A.; Duvoort, M. R.; Heise, J.

    2006-12-01

    On 27 December 2004, a giant {gamma} flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: 0.05(0.5) TeV{sup -1} m{sup -2} s{sup -1} for {gamma}=-1.47 (-2) in the gamma flux and 0.4(6.1) TeV{sup -1} m{sup -2} s{sup -1} for {gamma}=-1.47 (-2) in the high-energy neutrino flux.

  16. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    NASA Astrophysics Data System (ADS)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; La Haye, R. J.; Bañón Navarro, A.; McKee, G. R.

    2017-06-01

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to interaction with Edge Localized Modes (ELMs) is reported for the first time. This work shows that perturbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n = 2/1 islands (m/n being the poloidal/toroidal mode numbers). In synchronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability due to modified pressure gradient (∇p) and perturbed bootstrap current (δjBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations ( n ˜ ) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n ˜ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measurements suggest that n ˜ accelerates NTM recovery after an ELM crash via accelerating the relaxation of ∇p at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing ∇p and therefore restoring δjBS at the O-point. The key physics of the relationship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-β tokamak plasmas.

  17. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  18. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE PAGES

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.; ...

    2017-06-08

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  19. MR elastography of the liver at 3.0 T in diagnosing liver fibrosis grades; preliminary clinical experience.

    PubMed

    Yoshimitsu, Kengo; Mitsufuji, Toshimichi; Shinagawa, Yoshinobu; Fujimitsu, Ritsuko; Morita, Ayako; Urakawa, Hiroshi; Hayashi, Hiroyuki; Takano, Koichi

    2016-03-01

    To clarify the usefulness of 3.0-T MR elastography (MRE) in diagnosing the histological grades of liver fibrosis using preliminary clinical data. Between November 2012 and March 2014, MRE was applied to all patients who underwent liver MR study at a 3.0-T clinical unit. Among them, those who had pathological evaluation of liver tissue within 3 months from MR examinations were retrospectively recruited, and the liver stiffness measured by MRE was correlated with histological results. Institutional review board approved this study, waiving informed consent. There were 70 patients who met the inclusion criteria. Liver stiffness showed significant correlation with the pathological grades of liver fibrosis (rho = 0.89, p < 0.0001, Spearman's rank correlation). Areas under the receiver operating characteristic curve were 0.93, 0.95, 0.99 and 0.95 for fibrosis score greater than or equal to F1, F2, F3 and F4, with cut-off values of 3.13, 3.85, 4.28 and 5.38 kPa, respectively. Multivariate analysis suggested that grades of necroinflammation also affected liver stiffness, but to a significantly lesser degree as compared to fibrosis. 3.0-T clinical MRE was suggested to be sufficiently useful in assessing the grades of liver fibrosis. MR elastography may help clinicians assess patients with chronic liver diseases. Usefulness of 3.0-T MR elastography has rarely been reported. Measured liver stiffness correlated well with the histological grades of liver fibrosis. Measured liver stiffness was also affected by necroinflammation, but to a lesser degree. 3.0-T MRE could be a non-invasive alternative to liver biopsy.

  20. Placental elastography in a murine intrauterine growth restriction model.

    PubMed

    Quibel, T; Deloison, B; Chammings, F; Chalouhi, G E; Siauve, N; Alison, M; Bessières, B; Gennisson, J L; Clément, O; Salomon, L J

    2015-11-01

    To compare placental elasticity in normal versus intrauterine growth restriction (IUGR) murine pregnancies using shear wave elastography (SWE). Intrauterine growth restriction was created by ligation of the left uterine artery of Sprague-Dawley rats on E17. Ultrasonography (US) and elastography were performed 2 days later on exteriorized horns after laparotomy. Biparietal diameter (BPD) and abdominal diameter (AD) were measured and compared in each horn. Placental elasticity of each placenta was compared in the right and left horns, respectively, using the Young's modulus, which increases with increasing stiffness of the tissue. Two hundred seventeen feto-placental units from 18 rats were included. Fetuses in the left ligated horn had smaller biometric measurements than those in the right horn (6.7 vs 7.2 mm, p < 0.001, and 9.2 vs 11.2 mm, p < 0.001 for BPD and AD, respectively). Mean fetal weight was lower in the pups from the left than the right horn (1.65 vs 2.11 g; p < 0.001). Mean (SD) Young's modulus was higher for placentas from the left than the right horn (11.7 ± 1.5 kPa vs 8.01 ± 3.8 kPa, respectively; p < 0.001), indicating increased stiffness in placentas from the left than the right horn. There was an inverse relationship between fetal weight and placental elasticity (r = 0.42; p < 0.001). Shear wave elastography may be used to provide quantitative elasticity measurements of the placenta. In our model, placentas from IUGR fetuses demonstrated greater stiffness, which correlated with the degree of fetal growth restriction. © 2015 John Wiley & Sons, Ltd.

  1. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674

  2. The importance of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of acute pancreatitis.

    PubMed

    Kaya, Muhsin; Değirmenci, Serdar; Göya, Cemil; Tuncel, Elif Tuba; Uçmak, Feyzullah; Kaplan, Mehmet Ali

    2018-05-01

    Acute pancreatitis (AP) is characterized by acute inflammation of the pancreas and it has a highly variable clinical course. The aim of our study was to evaluate the value of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of AP. Consecutive patients with a diagnosis of AP (patients group) and healthy subject (control group) were prospectively enrolled to the study. Demographic features and clinical, laboratory, and radiological data were recorded. Virtual Touch Tissue Quantification (VTQ) was used to implement ARFI elastography. The tissue elasticity is proportional to the square of the wave velocity (SWV). A total of 108 patients (age, 57±1.8 y) and 79 healthy subjects (age, 53.6±1.81 y) were included in the study. There were 100 (92.5%) edematous and 8 (7.4%) necrotizing AP. The mean SWV was significantly higher in the patient group than in the control group (2.43±0.08 vs. 1.27±0.025 m/s, p < 0.001). There was not significant difference between patient and control group regarding age and gender. SWV cutoff value of 1.63 m/s was associated with 100% sensitivity and 98% specificity for the diagnosis of AP. There was not significant difference between patients with and without complications and patients with edematous and necrotizing AP regarding mean SWV value. There was also not significant correlation between mean SWV value and age, mean length of hospital stay, and mean amylase level. ARFI elastography may be a feasible method for the diagnosis of AP, but it has no value for the prediction of clinical course of AP.

  3. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  4. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.

    PubMed

    Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin

    2011-05-01

    The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.

  5. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures.

    PubMed

    Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P

    2012-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . Copyright © 2011 Wiley-Liss, Inc.

  6. Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.

    PubMed

    Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik

    2018-01-01

    to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.

  7. Real-time shear wave elastography may predict autoimmune thyroid disease.

    PubMed

    Vlad, Mihaela; Golu, Ioana; Bota, Simona; Vlad, Adrian; Timar, Bogdan; Timar, Romulus; Sporea, Ioan

    2015-05-01

    To evaluate and compare the values of the elasticity index as measured by shear wave elastography in healthy subjects and in patients with autoimmune thyroid disease, in order to establish if this investigation can predict the occurrence of autoimmune thyroid disease. A total of 104 cases were included in the study group: 91 women (87.5%), out of which 52 (50%) with autoimmune thyroid disease diagnosed by specific tests and 52 (50%) healthy volunteers, matched for age and gender. For all the subjects, three measurements were performed on each thyroid lobe and a mean value was calculated. The data were expressed in kPa. The investigation was performed with an Aixplorer system (SuperSonic Imagine, France), using a linear high-resolution 15-4 MHz transducer. The mean value for the elasticity index was similar in the right and the left thyroid lobes, both in normal subjects and in patients with autoimmune thyroid disease: 19.6 ± 6.6 vs. 19.5 ± 6.8 kPa, p = 0.92, and 26.6 ± 10.0 vs. 25.8 ± 11.7 kPa, p = 0.71, respectively. This parameter was significantly higher in patients with autoimmune thyroid disease than in controls (p < 0.001). For a cut-off value of 22.3 kPa, which resulted in the highest sum of sensitivity and specificity, the elasticity index assessed by shear wave elastography had a sensitivity of 59.6% and a specificity of 76.9% (AUROC = 0.71; p < 0.001) for predicting the presence of autoimmune thyroid disease. Quantitative elasticity index measured by shear wave elastography was significantly higher in autoimmune thyroid disease than in normal thyroid parenchyma and may predict the presence of autoimmune thyroid disease.

  8. Revisiting the Cramér Rao Lower Bound for Elastography: Predicting the Performance of Axial, Lateral and Polar Strain Elastograms.

    PubMed

    Verma, Prashant; Doyley, Marvin M

    2017-09-01

    We derived the Cramér Rao lower bound for 2-D estimators employed in quasi-static elastography. To illustrate the theory, we modeled the 2-D point spread function as a sinc-modulated sine pulse in the axial direction and as a sinc function in the lateral direction. We compared theoretical predictions of the variance incurred in displacements and strains when quasi-static elastography was performed under varying conditions (different scanning methods, different configuration of conventional linear array imaging and different-size kernels) with those measured from simulated or experimentally acquired data. We performed studies to illustrate the application of the derived expressions when performing vascular elastography with plane wave and compounded plane wave imaging. Standard deviations in lateral displacements were an order higher than those in axial. Additionally, the derived expressions predicted that peak performance should occur when 2% strain is applied, the same order of magnitude as observed in simulations (1%) and experiments (1%-2%). We assessed how different configurations of conventional linear array imaging (number of active reception and transmission elements) influenced the quality of axial and lateral strain elastograms. The theoretical expressions predicted that 2-D echo tracking should be performed with wide kernels, but the length of the kernels should be selected using knowledge of the magnitude of the applied strain: specifically, longer kernels for small strains (<5%) and shorter kernels for larger strains. Although the general trends of theoretical predictions and experimental observations were similar, biases incurred during beamforming and subsample displacement estimation produced noticeable differences. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance.

    PubMed

    Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Bo, Xiao-Wan; Li, Xiao-Long; Wu, Rong; Xu, Jun-Mei; Zhang, Yi-Feng; Zhang, Kun

    2016-09-01

    To evaluate the diagnostic performance of a new method of combined two-dimensional shear wave elastography (i.e. virtual touch imaging quantification, VTIQ) and ultrasound (US) Breast Imaging Reporting and Data System (BI-RADS) in the differential diagnosis of breast lesions. From September 2014 to December 2014, 276 patients with 296 pathologically proven breast lesions were enrolled in this study. The conventional US images were interpreted by two independent readers. The diagnosis performances of BI-RADS and combined BI-RADS and VTIQ were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Observer consistency was also evaluated. Pathologically, 212 breast lesions were benign and 84 were malignant. Compared with BI-RADS alone, the AUROCs and specificities of the combined method for both readers increased significantly (AUROC: 0.862 vs. 0.693 in reader 1, 0.861 vs. 0.730 in reader 2; specificity: 91.5 % vs. 38.7 % in reader 1, 94.8 % vs. 47.2 % in reader 2; all P < .05). The Kappa value between the two readers for BI-RADS assessment was 0.614, and 0.796 for the combined method. The combined VTIQ and BI-RADS had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone. • Combination of conventional ultrasound and elastography distinguishes breast cancers more effectively. • Combination of conventional ultrasound and elastography increases observer consistency. • BI-RADS weights more than the 2D-SWE with an increase in malignancy probability.

  10. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions.

    PubMed

    Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne

    2014-05-01

    To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4.

    PubMed

    Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Han, Kyung Hwa; Kim, Jeong-Ah

    2013-10-01

    To evaluate the diagnostic performance of shear-wave elastography (SWE) for breast cancer and to determine whether the integration of SWE into BI-RADS with subcategories of category 4 improves the diagnostic performance. A total of 389 breast masses (malignant 120, benign 269) in 324 women who underwent SWE before ultrasound-guided core biopsy or surgery were included. The qualitative SWE feature was assessed using a four-colour overlay pattern. Quantitative elasticity values including the lesion-to-fat elasticity ratio (Eratio) were measured. Diagnostic performance of B-mode ultrasound, SWE, or their combined studies was compared using the area under the ROC curve (AUC). AUC of Eratio (0.952) was the highest among elasticity values (mean, maximum, and minimum elasticity, 0.949, 0.939, and 0.928; P = 0.04) and AUC of colour pattern was 0.947. AUC of combined studies was significantly higher than for a single study (P < 0.0001). When adding SWE to category 4 lesions, lesions were dichotomised according to % of malignancy: 2.1 % vs. 43.2 % (category 4a) and 0 % vs. 100 % (category 4b) for Eratio and 2.4 % vs. 25.8 % (category 4a) for colour pattern (P < 0.05). Shear-wave elastography showed a good diagnostic performance. Adding SWE features to BI-RADS improved the diagnostic performance and may be helpful to stratify category 4 lesions. • Quantitative and qualitative shear-wave elastography provides further diagnostic information during breast ultrasound. • The elasticity ratio (E ratio ) showed the best diagnostic performance in SWE. • E ratio and four-colour overlay pattern significantly differed between benign and malignant lesions. • SWE features allowed further stratification of BI-RADS category 4 lesions.

  12. Real time elastography - a non-invasive diagnostic method of small hepatocellular carcinoma in cirrhosis.

    PubMed

    Gheorghe, Liana; Iacob, Speranta; Iacob, Razvan; Dumbrava, Mona; Becheanu, Gabriel; Herlea, Vlad; Gheorghe, Cristian; Lupescu, Ioana; Popescu, Irinel

    2009-12-01

    Small nodules (under 3 cm) detected on ultrasound (US) in cirrhotics represent the most challenging category for noninvasive diagnosis of hepatocellular carcinoma (HCC). To evaluate real-time sonoelastography as a noninvasive tool for the diagnosis of small HCC nodules in cirrhotic patients. 42 cirrhotic patients with 58 nodules (1-3 cm) were evaluated with real-time elastography (Hitachi EUB-6500); the mean intensity of colors red, blue, green were measured using a semi-quantitative method. Analysis of histograms for each color of the sonoelastography images was performed for quantifying the elasticity of nodule tissue in comparison with the cirrhotic liver tissue. AUROC curves were constructed to define the best cut-off points to distinguish malignant features of the nodules. Univariate and multivariate logistic regression analysis was performed. 595 sonoelastography images from 42 patients (25 men; 17 women) were analyzed. The mean age was 56.4 +/- 0.7 years and 69% patients were in Child-Pugh class A, 19% class B, 11% class C. For the mean intensity of green color AUROC=0.81, a cut-off value under 108.7 being diagnostic for HCC with a Sp=91.1%, Se=50%, PPV=92.1%, NPV=47.1%. Mean intensity of blue color proved to be an excellent diagnostic tool for HCC (AUROC=0.94); for a cut-off value greater than 128.9, Sp=92.2%, Se=78.9%, PPV=95.4%, NPV=68%. Independent predictive factors of HCC for a small nodule in cirrhotic patients were: blue color over 128.9 at sonoelastography and hypervascular appearance at Doppler US. US elastography is a promising method for the non-invasive diagnosis of early HCC. Blue color at elastography and hypervascular aspects are independent predictors of HCC.

  13. One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Guo, Da

    Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

  14. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  15. Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; Johansen, Niloufer J.; Curatolo, Andrea; Sampson, David D.; Ganss, Ruth; Kennedy, Brendan F.

    2017-04-01

    We have developed a high-resolution optical coherence elastography system capable of estimating Young's modulus in tissue volumes with an isotropic resolution of 15 μm over a 1 mm lateral field of view and a 100 μm axial depth of field. We demonstrate our technique on healthy and hypertensive, freshly excised and intact mouse aortas. Our technique has the capacity to delineate the individual mechanics of elastic lamellae and vascular smooth muscle. Further, we observe global and regional vascular stiffening in hypertensive aortas, and note the presence of local micro-mechanical signatures, characteristic of fibrous and lipid-rich regions.

  16. Breast magnetic resonance elastography: a review of clinical work and future perspectives.

    PubMed

    Bohte, A E; Nelissen, J L; Runge, J H; Holub, O; Lambert, S A; de Graaf, L; Kolkman, S; van der Meij, S; Stoker, J; Strijkers, G J; Nederveen, A J; Sinkus, R

    2018-05-30

    This review on magnetic resonance elastography (MRE) of the breast provides an overview of available literature and describes current developments in the field of breast MRE, including new transducer technology for data acquisition and multi-frequency-derived power-law behaviour of tissue. Moreover, we discuss the future potential of breast MRE, which goes beyond its original application as an additional tool in differentiating benign from malignant breast lesions. These areas of ongoing and future research include MRE for pre-operative tumour delineation, staging, monitoring and predicting response to treatment, as well as prediction of the metastatic potential of primary tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Brain palpation from physiological vibrations using MRI.

    PubMed

    Zorgani, Ali; Souchon, Rémi; Dinh, Au-Hoang; Chapelon, Jean-Yves; Ménager, Jean-Michel; Lounis, Samir; Rouvière, Olivier; Catheline, Stefan

    2015-10-20

    We present a magnetic resonance elastography approach for tissue characterization that is inspired by seismic noise correlation and time reversal. The idea consists of extracting the elasticity from the natural shear waves in living tissues that are caused by cardiac motion, blood pulsatility, and any muscle activity. In contrast to other magnetic resonance elastography techniques, this noise-based approach is, thus, passive and broadband and does not need any synchronization with sources. The experimental demonstration is conducted in a calibrated phantom and in vivo in the brain of two healthy volunteers. Potential applications of this "brain palpation" approach for characterizing brain anomalies and diseases are foreseen.

  18. Shear-wave elastography in breast ultrasonography: the state of the art

    PubMed Central

    2017-01-01

    Shear-wave elastography (SWE) is a recently developed ultrasound technique that can visualize and measure tissue elasticity. In breast ultrasonography, SWE has been shown to be useful for differentiating benign breast lesions from malignant breast lesions, and it has been suggested that SWE enhances the diagnostic performance of ultrasonography, potentially improving the specificity of conventional ultrasonography using the Breast Imaging Reporting and Data System criteria. More recently, not only has SWE been proven useful for the diagnosis of breast cancer, but has also been shown to provide valuable information that can be used as a preoperative predictor of the prognosis or response to chemotherapy. PMID:28513127

  19. Review of MR Elastography Applications and Recent Developments

    PubMed Central

    Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2012-01-01

    The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications. PMID:22987755

  20. Maximizing the endosonography: The role of contrast harmonics, elastography and confocal endomicroscopy.

    PubMed

    Seicean, Andrada; Mosteanu, Ofelia; Seicean, Radu

    2017-01-07

    New technologies in endoscopic ultrasound (EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration (EUS-FNA) diagnostic rate. This paper reviews the principle, indications, main literature results, limitations and future expectations for each of the methods presented. Contrast-enhanced harmonic EUS uses a low mechanical index and highlights slow-flow vascularization. This technique is useful for differentiating solid and cystic pancreatic lesions and assessing biliary neoplasms, submucosal neoplasms and lymph nodes. It is also useful for the discrimination of pancreatic masses based on their qualitative patterns; however, the quantitative assessment needs to be improved. The detection of small solid lesions is better, and the EUS-FNA guidance needs further research. The differentiation of cystic lesions of the pancreas and the identification of the associated malignancy features represent the main indications. Elastography is used to assess tissue hardness based on the measurement of elasticity. Despite its low negative predictive value, elastography might rule out the diagnosis of malignancy for pancreatic masses. Needle confocal laser endomicroscopy offers useful information about cystic lesions of the pancreas and is still under evaluation for use with solid pancreatic lesions of lymph nodes.

  1. Magnetomotive optical coherence elastography for relating lung structure and function in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.

    2010-02-01

    Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.

  2. Automatic Generation of Boundary Conditions Using Demons Nonrigid Image Registration for Use in 3-D Modality-Independent Elastography

    PubMed Central

    Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.

    2013-01-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002

  3. Automatic generation of boundary conditions using demons nonrigid image registration for use in 3-D modality-independent elastography.

    PubMed

    Pheiffer, Thomas S; Ou, Jao J; Ong, Rowena E; Miga, Michael I

    2011-09-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  4. Real-time elastography in the evaluation of diffuse thyroid disease: a study based on elastography histogram parameters.

    PubMed

    Yoon, Jung Hyun; Yoo, Jaeheung; Kim, Eun-Kyung; Moon, Hee Jung; Lee, Hye Sun; Seo, Jae Young; Park, Hye Young; Park, Woon-Ju; Kwak, Jin Young

    2014-09-01

    The purpose of this study was to evaluate the diagnostic performance of quantitative histogram parameters using real-time tissue elastography (RTE) in the diagnosis of patients with diffuse thyroid disease. One hundred and sixteen patients (mean age, 43.7 ± 10.97 y) who had undergone pre-operative staging ultrasonography and RTE were included. For each patient, 11 parameters were obtained from RTE images, from which the "elastic index" was calculated. Diagnostic performance of the elastic index and that of the 11 parameters on RTE were calculated and compared. Of the 116 patients, 31 had diffuse thyroid disease and 85 had normal thyroid parenchyma. Area under the receiver operating characteristic curve (A(z)) of MEAN (average relative value) elasticity was high (0.737), without significant differences from other elasticity values. Diagnostic performance of the elastic index was higher than the MEAN, A(z) = 0.753, without significance (p = 0.802). In conclusion, RTE using the elastic index was found to have good diagnostic performance and may be useful in the diagnosis and management of patients with diffuse thyroid disease. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Application of Eshelby's Solution to Elastography for Diagnosis of Breast Cancer.

    PubMed

    Shin, Bonghun; Gopaul, Darindra; Fienberg, Samantha; Kwon, Hyock Ju

    2016-03-01

    Eshelby's solution is the analytical method that can derive the elastic field within and around an ellipsoidal inclusion embedded in a matrix. Since breast tumor can be regarded as an elastic inclusion with different elastic properties from those of surrounding matrix when the deformation is small, we applied Eshelby's solution to predict the stress and strain fields in the breast containing a suspicious lesion. The results were used to investigate the effectiveness of strain ratio (SR) from elastography in representing modulus ratio (MR) that may be the meaningful indicator of the malignancy of the lesion. This study showed that SR significantly underestimates MR and is varied with the shape and the modulus of the lesion. Based on the results from Eshelby's solution and finite element analysis (FEA), we proposed a surface regression model as a polynomial function that can predict the MR of the lesion to the matrix. The model has been applied to gelatin-based phantoms and clinical ultrasound images of human breasts containing different types of lesions. The results suggest the potential of the proposed method to improve the diagnostic performance of breast cancer using elastography. © The Author(s) 2015.

  6. Preliminary Comparison of Multi-scale and Multi-model Direct Inversion Algorithms for 3T MR Elastography.

    PubMed

    Yoshimitsu, Kengo; Shinagawa, Yoshinobu; Mitsufuji, Toshimichi; Mutoh, Emi; Urakawa, Hiroshi; Sakamoto, Keiko; Fujimitsu, Ritsuko; Takano, Koichi

    2017-01-10

    To elucidate whether any differences are present in the stiffness map obtained with a multiscale direct inversion algorithm (MSDI) vs that with a multimodel direct inversion algorithm (MMDI), both qualitatively and quantitatively. The MR elastography (MRE) data of 37 consecutive patients who underwent liver MR elastography between September and October 2014 were retrospectively analyzed by using both MSDI and MMDI. Two radiologists qualitatively assessed the stiffness maps for the image quality in consensus, and the measured liver stiffness and measurable areas were quantitatively compared between MSDI and MMDI. MMDI provided a stiffness map of better image quality, with comparable or slightly less artifacts. Measurable areas by MMDI (43.7 ± 17.8 cm 2 ) was larger than that by MSDI (37.5 ± 14.7 cm 2 ) (P < 0.05). Liver stiffness measured by MMDI (4.51 ± 2.32 kPa) was slightly (7%), but significantly less than that by MSDI (4.86 ± 2.44 kPa) (P < 0.05). MMDI can provide stiffness map of better image quality, and slightly lower stiffness values as compared to MSDI at 3T MRE, which radiologists should be aware of.

  7. Is real-time elastography helpful to differentiate acute from subacute deep venous thrombosis? A preliminary study.

    PubMed

    Aslan, Ahmet; Barutca, Hakan; Ayaz, Ercan; Aslan, Mine; Kocaaslan, Cemal; Inan, Ibrahim; Sahin, Sinan; Yıkılmaz, Ali

    2018-02-01

    To detect and characterize changes in stiffness of thrombus in patients with acute and subacute deep venous thrombosis (DVT) by using real-time elastography (RTE). Fifty-eight patients with acute or subacute DVT were prospectively evaluated by B-mode sonography (US), color Doppler US (CDUS), and RTE. Two radiologists evaluated the thrombus echogenicity, compressibility, and recanalization of the affected vein, and thrombus stiffness in consensus. The thrombi were classified into 3 groups as soft, intermediate, and hard on RTE images. The final study group consisted of 30 patients with acute DVT, among whom 10 were women (33%), and 19 patients with subacute DVT, among whom 6 were women (32%). The presence of hypoechoic thrombus, incompressible vein, and absence of recanalization on US and CDUS were significantly associated with acute DVT (P < .001 for all variables). The differences in elasticity pattern of the thrombi between acute and subacute DVT were not significant (P = .202). Venous thrombus hardens with age; however, elastography pattern on RTE, in its present form, may not be able to differentiate acute DVT from subacute DVT. © 2017 Wiley Periodicals, Inc.

  8. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  9. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    PubMed

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  10. High-resolution analysis of the mechanical behavior of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  11. Diagnosis of hyperfunctional thyroid nodules: impact of US-elastography.

    PubMed

    Ruhlmann, M; Stebner, V; Görges, R; Farahati, J; Simon, D; Bockisch, A; Rosenbaum-Krumme, S; Nagarajah, J

    2014-01-01

    Several studies described the ultrasound based real-time elastography (USE) having a high sensitivity, specificity and negative predictive value in the diagnosis of suspicious thyroid nodules. Recently published studies called these results into question. Until now the usefulness of USE in the diagnosis of scintigraphically hyperfunctional thyroid nodules is not examined. This study included 135 hyperfunctional thyroid nodules of 102 consecutive patients. The following attributes of the nodules were analyzed: stiffness with the USE using scores of Rago or Asteria and ultrasound criteria using TIRADS. 94 of the examined thyroid nodules (70%) were rated as hard (suspicious for malignancy) and 41 nodules (30%) as soft (not suspicious) with a specificity of 30%. The scoring systems of Rago and Asteria showed no significant difference. Applying the TIRADS criteria 44 nodules (33%) have a higher risk for malignancy (33 nodules TIRADS 4a, 11 nodules TIRADS 4b). Combining USE and TIRADS 32 nodules (24%) are categorized as suspicious (intersection of hard nodules that are categorized as TIRADS 4a or 4b). Ultrasound based real-time elastography cannot identify scintigraphically hyperfunctional thyroid nodules as benign nodules reliably. Its accuracy in the assessment of at least "hot" thyroid nodules is to be questioned.

  12. [IMPORTANCE OF SHEAR WAVE ELASTOGRAPHY OF LIVERS IN PRACTICALLY HEALTHY PREGNANT WOMEN].

    PubMed

    Sariyeva, E; Salahova, S; Bayramov, N

    2017-01-01

    Pulse-wave elastography (SWE) that is one of the mostly used methods in the recent years holds important place in assessment of liver fibrosis. However there is no exact information on the results of liver elastography in healthy pregnant women in the world literature. The aim of the study was to investigate theSWE parameters of liver elastography in practically healthy pregnant women. The subject of the research was 50 practically healthy pregnant women within 18-45 years old (mean age 27.7±0.7). The pregnant women with genital and extragenital diseases were not included to the research. The research work was executed in the II Department of Obstetrics and Gynecology of Azerbaijan Medical University. SWE of liver in pregnant women was conducted in the I Department of Surgical Diseases of Azerbaijan Medical University through Supersonic Aixplorer Multi Wave device presented by the Scientific Development Foundation under the President of the Azerbaijan Republic. The obtained tissue hardness indicators are assessed under METAVIR scale. The results of the research showed that the measures of liver in practically healthy pregnant women are normal, edges flat, its echogenicity mainly normal, echostructure of its parenchyma homogenous, hardness was F0-F1 (normal) under METAVIR scale, fibrosis not observed. The obtained results were processed by variational (power average, percentile distribution) and correlation (ρ-Spearman) analyzes using the statistical package SPSS-20. A statistical study of the distribution of liver density in healthy women showed that the average density was 4,43±0,01 with 95% confidence interval (4,23 - 4,63). The histogram of distribution of liver density in practically healthy women belongs to the family of normal distributions with coefficients of variation coefficient (16.3%), asymmetry (-0.861±0.337) and excess (-0.068±0.662). Correlation analysis in healthy women did not reveal a reliable relationship between age and liver density (ρ=0.082, p=0.571), but a significant inverse correlation was found between the body mass index (BMI) and liver density (ρ=-0.317; p=0.025). Easy application, non-invasiveness, maximum exactness within the real time, repeatedly application of procedure and no risk to fetus by Shear Wave elastography of liver allow applying this method in pregnant women. Study of liver elasticity in pregnant women allows assessing the grades of hepatic fibrosis and differentiating liver disease.

  13. Ultrasound, elastography, and fluorodeoxyglucose positron emission tomography/computed tomography imaging in Riedel's thyroiditis: report of two cases.

    PubMed

    Slman, Rouba; Monpeyssen, Hervé; Desarnaud, Serge; Haroche, Julien; Fediaevsky, Laurence Du Pasquier; Fabrice, Menegaux; Seret-Begue, Dominique; Amoura, Zahir; Aurengo, André; Leenhardt, Laurence

    2011-07-01

    Riedel's thyroiditis (RT) is a rare disease characterized by a chronic inflammatory lesion of the thyroid gland with invasion by a dense fibrosis. Publications of the imaging features of RT are scarce. To our knowledge, ultrasound elastography (USE) findings have not been previously reported. Therefore, we describe two patients with RT who were imaged with ultrasonography (US), USE, and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). Two women were referred for a large, hard goiter with compressive symptoms (dyspnea and dysphagia); in one patient, the goiter was associated with retroperitoneal fibrosis. In both cases, RT was confirmed by surgical biopsy with pathological examination. Thyroid US imaging was performed with a US scan and a 10-13 MHz linear transducer. The hardness of the tissues was analyzed using transient USE (ShearWave, Aixplorer-SuperSonic Imagine). PET/CT scanning was performed with a Philips Gemini GXL camera (GE Medical Systems). In the first patient, US examination revealed a compressive multinodular goiter with large solid hypoechoic and poorly vascularized areas adjacent to the nodules. The predominant right nodule was hypoechoic with irregular margins. The second patient had a hypoechoic goiter with large bilateral hypoechoic areas. In both cases, an unusual feature was observed: the presence of tissue surrounding the primitive carotid artery, associated with thrombi of the internal jugular vein. Further, USE showed heterogeneity in the stiffness values of the thyroid parenchyma varying between 21 kPa and 281 kPa. FDG-PET/CT imaging showed uptake foci in the thyroid gland. In both cases, US showed a decrease in the thyroid gland volume and the disappearance of encasement of the neck vasculature in response to corticosteroid treatment. In contrast, the FDG-PET/CT features remained unchanged. US features, such as vascular encasement and improvement under corticosteroid treatment, seem to be specific to this rare disease. For the first time, USE documents the hardness of RT tissues. Apart from the FDG-PET/CT findings that merit further investigation, US and USE prove useful tools in the assessment of such a rare disease.

  14. Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device.

    PubMed

    Stulak, John M; Lee, Dustin; Haft, Jonathon W; Romano, Matthew A; Cowger, Jennifer A; Park, Soon J; Aaronson, Keith D; Pagani, Francis D

    2014-01-01

    Modern left ventricular assist devices (LVAD) require anti-coagulation (AC) with warfarin and anti-platelet therapy to prevent thromboembolic complications in patients. Gastrointestinal bleeding (GI) is a significant adverse event in these patients and treatment typically requires reduction or elimination of AC or anti-platelet therapy. It is not known whether alterations in AC to treat GI bleeding influence subsequent risk of thromboembolic (TE) events during LVAD support. Between July 2003 and September 2011, 389 patients (308 male) underwent implantation of a continuous-flow LVAD at the University of Michigan Health System and the Mayo Clinic. Median age at implant was 60 years (range 18 to 79 years). Outcomes were analyzed for the association of GI bleeding events and subsequent TE events, defined as stroke, transient ischemic attack, hemolysis or suspected or confirmed pump thrombosis. Median survival was 10 months (maximum 7.2 years, total 439 patient-years). TE events occurring within the first 30 days were not counted. Overall survival and freedom from an outcome event were assessed using the Kaplan-Meier method. Associations between GI bleeding and subsequent TE events and survival impact were analyzed as time-dependent covariates. One hundred ninety-nine GI bleeding episodes occurred in 116 of 389 patients (30%) for an event rate of 0.45 GI bleed/patient-year of support. One hundred thirty-eight TE events occurred in 97 of 389 patients (25%) for an event rate of 0.31 TE event/patient-year of support. Median time from LVAD implant to first GI bleed was 5 months (range 1 to 116 months) and to first TE event was 6 months (range 1 to 29 months). For patients who had a TE event after GI bleed, the median interval was 5 months (range 0.5 to 25 months). TE events were 7.4-fold more likely in patients who had a prior GI bleed (range 4.9- to 11.1-fold) (p < 0.001); however, neither the presence of GI bleeding (0.7 to 1.2) nor a TE event (0.8 to 2.0) portended a lower overall survival. Patients who had GI bleeding were at significantly higher risk for a subsequent TE event. Although the exact cause of this relationship is unknown, it suggests that a reduction in anti-coagulation and anti-platelet management to treat GI bleeds may contribute to this risk. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Adavanced RTG and thermoelectric materials study

    NASA Technical Reports Server (NTRS)

    Eggers, P. E.

    1971-01-01

    A comprehensive, generalized two-dimensional RTG analysis computer program was developed. This program is capable of analyzing any specified RTG design under a wide range of transient as well as steady-state operating conditions. The feasibility of a new concept for the design of segmented (or single-phase) thermoelectric couples was demonstrated. A SiGe-PbTe segmented couple involving pressure contacted junctions at the intermediate- and hot-junction temperatures was successfully encapsulated in a hermetically sealed bellows enclosure. This bellows-encapsulated couple was operated between a hot- and cold-junction temperature of 1200 K and 450 K, respectively, with a measured energy conversion efficiency of 7.6 + or - .5 per cent. An experimental study of selected sublimation barrier schemes revealed that a significant reduction in the sublimation rate of p-type PbTe could be achieved by using multiple layers of SiO2 fibers. A comparison of the barrier effectiveness is given for three different barrier designs.

  16. Thermal characterization of QSH crashes in RFX-mod

    NASA Astrophysics Data System (ADS)

    Fassina, Alessandro; Gobbin, Marco; Franz, Paolo; Marrelli, Lionello; Ruzzon, Alberto

    2012-10-01

    QSH (Quasi Single Helicity) states have gained a growing interest in RFP research since they show improved confinement and transport features with respect to standard discharges. However, ITBs associated with QSH states can be obtained only in a transient way, and in general with a shorter lifetime with respect to that of the QSH phase [1]. In this work the analysis has essentially the purpose of confirming, with TS data, the Te dynamics seen with the double filter, multichord SXR spectrometer in [1]: TS data allow a better spatial definition of temperature profile and a more reliable description of plasma edge. Te profile features in rising and crashing phases are determined via ensemble averaging, possible precursors of thermal crashes are identified, while q(r) behavior is studied identifying the thermal structures associated with rational surfaces. [4pt] [1] Ruzzon et al, 39th EPS Conference, P2.023

  17. Large thermoelectric figure of merit in graphene layered devices at low temperature

    NASA Astrophysics Data System (ADS)

    Olaya, Daniel; Hurtado-Morales, Mikel; Gómez, Daniel; Alejandro Castañeda-Uribe, Octavio; Juang, Zhen-Yu; Hernández, Yenny

    2018-01-01

    Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values (0.81  <  ZT  <  2.45) that are directly related with the topography, surface potential, capacitance gradient and resistance of the devices at the nanoscale.

  18. Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Lauenstein, Jean-Marie; Sullivan, William III; Beck, Jeff; Hubbs, John E.

    2018-01-01

    We report the results from proton and gamma ray radiation testing of HgCdTe avalanche photodiode (APD) arrays developed by Leonardo DRS for space lidar detectors. We tested these devices with both approximately 60 MeV protons and gamma rays, with and without the read out integrated circuit (ROIC). We also measured the transient responses with the device fully powered and with the APD gain from unity to greater than 1000. The detectors produced a large current impulse in response to each proton hit but the response completely recovered within 1 microsecond. The devices started to have persistent damage at a proton fluence of 7e10 protons/cm2, equivalent to 10 krad(Si) total ionization dose. The dark current became much higher after the device was warmed to room temperature and cooled to 80K again, but it completely annealed after baking at 85 C for several hours. These results showed the HgCdTe APD arrays are suitable for use in space lidar for typical Earth orbiting and planetary missions provided that provisions are made to heat the detector chip to 85 C for several hours after radiation damage becomes evident that system performance is impacted.

  19. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1994-01-18

    time fat rfVWh ifl~ttUktOnS. watching e..,ing| galai• fld t gatlwnq and maintaningn~ te data needed. an cems~l~lzn andI reuiewing 1h cOllection Of...noise on the passive via are derived. The coupling responses in the frequency domain and crosstalk waveforms in the time domain for some multilayered...source, developed across the module-backplane connector. The finite-difference time -domain (FD-TD) technique, which is based on the discretization of

  20. Non-invasive assessment of liver fibrosis

    PubMed Central

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K.

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

Top