Sample records for transient lateral dislocation

  1. Clinics in diagnostic imaging (163). Transient lateral patellar dislocation with trochlear dysplasia

    PubMed Central

    Zhang, Junwei; Lee, Chin Hwee

    2015-01-01

    A 14-year-old girl presented with left knee pain and swelling after an injury. Magnetic resonance (MR) imaging showed a transient lateral patellar dislocation with patellar osteochondral fracture, medial patellofemoral ligament tear and underlying femoral trochlear dysplasia. Open reduction and internal fixation of the osteochondral fracture, plication of the medial patellar retinaculum and lateral release were performed. As lateral patellar dislocation is often clinically unsuspected, an understanding of its characteristic imaging features is important in making the diagnosis. Knowledge of the various predisposing factors for patellar instability may also influence the choice of surgical management. We also discuss signs of acute injury and chronic instability observed on MR imaging, and the imaging features of anatomical variants that predispose an individual to lateral patellar dislocation. Treatment options and postsurgical imaging appearances are also briefly described. PMID:26512145

  2. Descending genicular artery injury following transient lateral patellar dislocation.

    PubMed

    Silvestri, Andrea; Regis, Dario; Trivellin, Giacomo; Piccoli, Marco; Spina, Mauro; Magnan, Bruno; Sandri, Andrea

    2018-06-01

    Transient lateral patellar dislocation (TLPD) is a common lesion in young adults. Vascular injury as a complication of TLPD has not been previously described. We report a case of descending genicular artery (DGA) injury after TLPD. Immediate angiography demonstrated rupture of DGA. Embolization was performed with sudden interruption of bleeding. DGA injury should be considered as a complication after TLPD and prompt diagnosis and intervention are required. We propose selective embolization as a safe and effective procedure to stop bleeding.

  3. Study of recombination characteristics in MOCVD grown GaN epi-layers on Si

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Dobrovolskas, D.; Malinauskas, T.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Rumbauskas, V.; Simoen, E.; Zhao, M.

    2017-12-01

    The radiative and non-radiative recombination carrier decay lifetimes in GaN epi-layers grown by metal-organic chemical vapour deposition technology on Si substrates were measured by contactless techniques of time-resolved photoluminescence and microwave-probed transients of photoconductivity. The lifetime variations were obtained to be dependent on growth regimes. These variations have been related to varied densities of edge dislocations associated with growth temperature. It has been also revealed that the lateral carrier lifetime and photoluminescence intensity distribution is determined by the formation of dislocation clusters dependent on the growth conditions. For low excitation level, the asymptotic component within the excess carrier decay transients is attributed to carrier trapping and anomalous diffusion through random-walk processes within dislocation cluster regions and barriers at dislocation cores. The two-componential decay process at high excitation conditions, where excess carriers may suppress barriers, proceeds through a nonlinear recombination, where band-to-band transitions determine the nonlinearity of the process, while the asymptotic component is ascribed to the impact of D-A pair PL within the long-wavelength wing of the UV-PL band.

  4. [New varieties of lateral metatarsophalangeal dislocations of the great toe].

    PubMed

    Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I

    2001-04-01

    We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament rupture. We propose another additional classification with pure lateral dislocation (type III) and dorso-lateral dislocation (type IL or IIL+), which are related to the formerly described variants.

  5. Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel J.

    2018-02-01

    Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.

  6. Neglected locked vertical patellar dislocation

    PubMed Central

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  7. Patellofemoral Arthritis After Lateral Patellar Dislocation: A Matched Population-Based Analysis.

    PubMed

    Sanders, Thomas L; Pareek, Ayoosh; Johnson, Nicholas R; Stuart, Michael J; Dahm, Diane L; Krych, Aaron J

    2017-04-01

    The rate of patellofemoral arthritis after lateral patellar dislocation is unknown. Purpose/Hypothesis: The purpose of this study was to compare the risk of patellofemoral arthritis and knee arthroplasty between patients who experienced a lateral patellar dislocation and matched individuals without a patellar dislocation. Additionally, factors predictive of arthritis after patellar dislocation were examined. The hypothesis was that the rate of arthritis is likely higher among patients who experience a patellar dislocation compared with those who do not. Cohort study; Level of evidence, 3. In this study, 609 patients who had a first-time lateral patellar dislocation between 1990 and 2010 were compared with an age- and sex-matched cohort of patients who did not have a patellar dislocation. Medical records were reviewed to collect information related to the initial injury, recurrent dislocation, treatment, and progression to clinically significant patellofemoral arthritis (defined as symptoms with degenerative changes on patellar sunrise radiographs). Factors associated with arthritis (age, sex, recurrence, osteochondral injury, trochlear dysplasia) were examined. At a mean follow-up of 12.3 ± 6.5 years from initial dislocation, 58 patients (9.5%) in the dislocation cohort were diagnosed with patellofemoral arthritis, corresponding to a cumulative incidence of arthritis of 1.2% at 5 years, 2.7% at 10 years, 8.1% at 15 years, 14.8% at 20 years, and 48.9% at 25 years. In the control cohort, 8 patients (1.3%) were diagnosed with arthritis, corresponding to a cumulative incidence of arthritis of 0% at 5 years, 0% at 10 years, 1.3% at 15 years, 2.9% at 20 years, and 8.3% at 25 years. Therefore, patients who experienced a lateral patellar dislocation had a significantly higher risk of developing arthritis (hazard ratio [HR], 7.8; 95% CI, 3.9-17.6; P < .001) than individuals without a patellar dislocation. However, the risk of knee arthroplasty was similar between groups (HR, 2.8; 95% CI, 0.6-19.7; P = .2). Recurrent patellar dislocations (HR, 4.5; 95% CI, 1.6-12.6), osteochondral injury (HR, 11.3; 95% CI, 5.0-26.6), and trochlear dysplasia (HR, 3.6; 95% CI, 1.3-10.0) were associated with arthritis after patellar dislocation. Patellar dislocation is a significant risk factor for patellofemoral arthritis, as nearly half of patients have symptoms and radiographic changes consistent with arthritis at 25 years after lateral patellar dislocation. Osteochondral injury, recurrent patellar instability, and trochlear dysplasia are associated with the development of arthritis.

  8. Two Patients with Osteochondral Injury of the Weight-Bearing Portion of the Lateral Femoral Condyle Associated with Lateral Dislocation of the Patella

    PubMed Central

    Inoue, Hiroaki; Atsumi, Satoru; Ichimaru, Shohei; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2014-01-01

    Complications of patellar dislocation include osteochondral injury of the lateral femoral condyle and patella. Most cases of osteochondral injury occur in the anterior region, which is the non-weight-bearing portion of the lateral femoral condyle. We describe two patients with osteochondral injury of the weight-bearing surface of the lateral femoral condyle associated with lateral dislocation of the patella. The patients were 18- and 11-year-old females. Osteochondral injury occurred on the weight-bearing surface distal to the lateral femoral condyle. The presence of a free osteochondral fragment and osteochondral injury of the lateral femoral condyle was confirmed on MRI and reconstruction CT scan. Treatment consisted of osteochondral fragment fixation or microfracture, as well as patellar stabilization. Osteochondral injury was present in the weight-bearing portion of the lateral femoral condyle in both patients, suggesting that the injury was caused by friction between the patella and lateral femoral condyle when the patella was dislocated or reduced at about 90° flexion of the knee joint. These findings indicate that patellar dislocation may occur and osteochondral injury may extend to the weight-bearing portion of the femur even in deep flexion, when the patella is stabilized on the bones of the femoral groove. PMID:25506015

  9. Avulsion fracture of an ossified pes anserinus tendon post-lateral patellar dislocation.

    PubMed

    Albtoush, Omar M; Taib, Abtehag A; Horger, Marius; Springer, Fabian

    2018-05-01

    The pes anserinus is a common tendon comprising the tendinous insertions of the sartorius, gracilis, and semitendinosus muscles. It inserts at the anteromedial aspect of the tibia and plays a significant role in stabilization of the medial side of the knee joint. The current article presents a case with recurrent lateral patellar dislocations causing chronic stress along the medial knee stabilizers and consecutive enthesophyte formation at the insertion of the pes anserinus tendon that showed a transverse fracture upon a subsequent incident of traumatic lateral patellar dislocation. Avulsion injuries of the pes anserinus tendon are rarely encountered, and to our knowledge, association with recurrent lateral patellar dislocations has not been described before.

  10. An Atypical Variant of Superolateral Dislocation of the Mandibular Condyle: A Case Report.

    PubMed

    Malik, Kapil; Debnath, Subhas C; Adhyapok, Apurba K; Hazarika, Kriti

    2017-10-01

    Dislocation of the mandibular condyle from the glenoid fossa can occur in anterior, posterior, lateral, and superior directions. Posterior, lateral, and superior dislocations are rare. Superolateral dislocation is seldom encountered in clinical practice. It is generally associated with fracture of the anterior or contralateral side of the mandible. The occurrence of superolateral dislocation of the condyle hooked above the zygomatic arch with an associated fracture of the medial pole of the condyle is rare and has been reported only once in the literature. This report describes another case in which the patient had superolateral dislocation of the mandibular condyle with a fractured medial pole without any associated fracture of the anterior or contralateral side of the mandible. The condyle was hooked laterally above the zygomatic arch. Open reduction of the dislocated condyle was performed and a good outcome was obtained. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Lateral Movement of Screw Dislocations During Homoepitaxial Growth and Devices Yielded Therefrom Free of the Detrimental Effects of Screw Dislocations

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2004-01-01

    The present invention is related to a method that enables and improves wide bandgap homoepitaxial layers to be grown on axis single crystal substrates, particularly SiC. The lateral positions of the screw dislocations in epitaxial layers are predetermined instead of random, which allows devices to be reproducibly patterned to avoid performance degrading crystal defects normally created by screw dislocations.

  12. Lateral patellar dislocation: mechanism of disease, radiographic presentation, and management.

    PubMed

    Abramov, Michael; Stock, Harlan

    2013-04-01

    Lateral patellar dislocation is a common injury occurring in young active adults. The mechanism is that of twisting injury to the knee on a planted foot with valgus stress. Several predisposing factors, including femoral trochlear dysplasia, patella alta, and lateralization of the tibial tuberosity, contribute to patellar instability and lateral patellar dislocation. Magnetic resonance (MR) imaging of the knee is the modality of choice to evaluate underlying bone contusion patterns, associated soft-tissue injuries, and additional complex ligamentous and osteochondral injuries, many of which are not apparent on conventional radiographs.

  13. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1992-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  14. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1991-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  15. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, E.A. Jr.; Ast, D.G.

    1992-10-20

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.

  16. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less

  17. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study.

    PubMed

    Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Burks, Robert T; Tashjian, Robert Z

    2012-09-01

    Lateral offset center of rotation (COR) reduces the incidence of scapular notching and potentially increases external rotation range of motion (ROM) after reverse total shoulder arthroplasty (rTSA). The purpose of this study was to determine the biomechanical effects of changing COR on abduction and external rotation ROM, deltoid abduction force, and joint stability. A biomechanical shoulder simulator tested cadaveric shoulders before and after rTSA. Spacers shifted the COR laterally from baseline rTSA by 5, 10, and 15 mm. Outcome measures of resting abduction and external rotation ROM, and abduction and dislocation (lateral and anterior) forces were recorded. Resting abduction increased 20° vs native shoulders and was unaffected by COR lateralization. External rotation decreased after rTSA and was unaffected by COR lateralization. The deltoid force required for abduction significantly decreased 25% from native to baseline rTSA. COR lateralization progressively eliminated this mechanical advantage. Lateral dislocation required significantly less force than anterior dislocation after rTSA, and both dislocation forces increased with lateralization of the COR. COR lateralization had no influence on ROM (adduction or external rotation) but significantly increased abduction and dislocation forces. This suggests the lower incidence of scapular notching may not be related to the amount of adduction deficit after lateral offset rTSA but may arise from limited impingement of the humeral component on the lateral scapula due to a change in joint geometry. Lateralization provides the benefit of increased joint stability, but at the cost of increasing deltoid abduction forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  19. Supersonic Dislocation Bursts in Silicon

    PubMed Central

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-01-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746

  20. Supersonic Dislocation Bursts in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  1. Web Growth Used to Confine Screw Dislocations to Predetermined Lateral Positions in 4H-SiC Epilayers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Beheim, Glenn M.

    2004-01-01

    Silicon-carbide- (SiC-) based power devices could enable substantial aerospace electronics benefits over today's silicon-based electronics. However, present-day SiC wafers contain electrically harmful dislocations (including micropipes) that are unpredictably distributed in high densities across all commercial 4H- and 6H-SiC wafers. The NASA Glenn Research Center recently demonstrated a crystal growth process that moves SiC wafer dislocations to predetermined lateral positions in epitaxial layers so that they can be reproducibly avoided during subsequent SiC electronic device fabrication. The process starts by reactive ion etching mesa patterns with enclosed trench regions into commercial on-axis (0001) 4H- or 6H-SiC substrates. An example of a pregrowth mesa geometry with six enclosed triangular-shaped trench regions is shown. After the etch mask is stripped, homoepitaxial growth is carried out in pure stepflow conditions that enable thin cantilevers to grow laterally from the tops of mesas whose pregrowth top surfaces are not threaded by substrate screw dislocations. The image in the bottom figure shows the postgrowth structure that forms after the lateral cantilevers expand to coalesce and completely roof over each of the six triangular trench regions. Atomic force microscope (AFM) measurements of the roof revealed that three elementary screw dislocation growth spirals, each shown in the AFM insets of the bottom image on the previous page, formed in the film roof at three respective points of cantilever film coalescence. The image above shows the structure following an etch in molten potassium hydroxide (KOH) that produced surface etch pits at the dislocation defects. The larger KOH etch pits--S1, S2, and S3--shown in this image correspond to screw dislocations relocated to the final points of cantilever coalescence. The smaller KOH etch pits are consistent with epilayer threading edge dislocations from the pregrowth substrate mesa (P1, P3, and P4) and a final cantilever coalescence point (P2). No defects (i.e., no etch pits) are observed in other cantilevered portions of the film surface. On the basis of the principle of dislocation Burgers vector conservation, we hypothesize that all vertically propagating substrate dislocations in an enclosed trench region become combined into a single dislocation in the webbed film roof at the point of final roof coalescence. The point of final roof coalescence, and therefore the lateral location of a webbed roof dislocation, can be designed into the pregrowth mesa pattern. Screw dislocations with predetermined lateral positions can then be used to provide the new growth steps necessary for growing a 4H/6H-SiC epilayer with a lower dislocation density than the substrate. Devices fabricated on top of such films can be positioned to avoid the preplaced dislocations.

  2. [Significance of lateral release in the therapy of patellar chondromalacia].

    PubMed

    Krüger, T; Göbel, F; Huschenbett, A; Hein, W

    2002-10-01

    A retrospective study was performed in 26 patients who underwent an operation for femoro-patellar pain due to a patellar chondromalacia with or without minor patellar dislocation/lateral pressure syndrome. The average age of the patients was 28.5 (15-39) years. 22 of the 26 patients revealed minor chondral damages of the stages 1 and 2 according to Outerbridge. In 12 patients ("lavage" group), an arthroscopic joint debridement only was carried out, while an additional open, lateral retinaculum release was made in 14 patients ("lateral release" group). The patella's distance of dislocation according to Hepp was reduced on an average of 3.0 (0-7) mm (p = 0.0019). The results of Bentley's score obtained during the follow-up interval on an average of 30.1 (9 to 60) months were almost identical for both groups. "Good" and "very good" results were achieved in the "lavage" group (83.3 %) and "lateral release" group (78.6 % of the patients). Lateral release should be used in cases of patellar decentration between 5 and 10 mm and adequate pain symptoms. The post-operative distance of dislocation should be less than 5 mm. Under such conditions and with minor chondral damage, a combined approach by using an arthroscopic joint debridement and open lateral release is promising to treat a patellar dislocation/lateral pressure syndrome.

  3. Facial nerve injuries associated with the retromandibular transparotid approach for reduction and fixation of mandibular condyle fractures.

    PubMed

    Shi, Dan; Patil, Pavan Manohar; Gupta, Ritika

    2015-04-01

    To document facial nerve (FN) injuries after surgical treatment of mandibular condylar fractures using the retromandibular transparotid approach and to identify risk factors associated with these injuries. A retrospective study of patients surgically treated for mandibular condylar fractures using the retromandibular transparotid approach over seven years was conducted. The primary study variable was the postoperative change in FN function after fracture fixation. Risk factors were categorized as demographic, anatomic, experience of the operator, fracture displacement/dislocation and number of miniplates placed at the fracture site. Appropriate statistics were computed. Ninety patients with 102 fractures were analysed. Thirty two fractures (31%) were located in the condylar neck and 70 fractures (69%) were subcondylar (located below the sigmoid notch). The condylar segment was undisplaced in twelve cases (12%), displaced medially in thirty five (34%), laterally displaced in thirty (29%) and dislocated in 25 (24.5%). In 18 fractures (18%), postoperative examination revealed various degrees of damage to the FN. All nerve injuries recovered completely in 8-24 weeks. In a multivariate model, condylar neck fractures, fracture dislocation and operator inexperience were associated with a statistically significant risk of postoperative deterioration of FN function (P ≤ 0.05). The majority of facial nerve injuries after surgical treatment of condylar fractures by the retromandibular transparotid approach are transient in nature. Condylar neck fractures, fracture dislocation and operator inexperience were associated with an increased risk for FN injury. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    NASA Astrophysics Data System (ADS)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  5. A Dislocation Model of Seismic Wave Attenuation and Micro-creep in the Earth: Harold Jeffreys and the Rheology of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Karato, S.

    A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.

  6. Stress and Microstructure Evolution during Transient Creep of Olivine at 1000 and 1200 °C

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Demouchy, S. A.; Mainprice, D.; Barou, F.; Cordier, P.

    2017-12-01

    As the major constituent of Earth's upper mantle, olivine largely determines its physical properties. In the past, deformation experiments were usually run until steady state or to a common value of finite strain. Additionally, few studies were performed on polycrystalline aggregates at low to intermediate temperatures (<1100 °C). For the first time, we study the mechanical response and correlated microstructure as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-5s-1 and under 300 MPa of confining pressure. Sample volumes are large with > 1.2 cm3. Finite strains range from 0.1 to 8.6 % and corresponding differential stresses range from 71 to 1073 MPa. Deformed samples were characterized by high resolution electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 0.05 µm were aquired for the first time without introducing artifacts. The grain size ranges from 1.8 to 2.3 µm, with no significant change in between samples. Likewise, the texture and texture strength (J- and BA-index), grain shape and aspect ratio, density of geometrically necessary dislocations, grain orientation spread, subgrain boundary spacing and misorientation do not change significantly as a function of finite strain or temperature. The dislocation distribution is highly heterogeneous, with some grains remaining dislocation free. TEM shows grain boundaries acting as low activity sites for dislocation nucleation. Even during early mechanical steady state, plasticity seems not to affect grains in unfavorable orientations. We find no confirmation of dislocation entanglements or increasing dislocation densities being the reason for strain hardening during transient creep. This suggests other, yet not understood, mechanisms affecting the strength of deformed olivine. Futhermore, we will map disclinations (rotational topological defects) to estimate their contribution to the transient deformation regime.

  7. What Components Comprise the Measurement of the Tibial Tuberosity-Trochlear Groove Distance in a Patellar Dislocation Population?

    PubMed

    Tensho, Keiji; Akaoka, Yusuke; Shimodaira, Hiroki; Takanashi, Seiji; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2015-09-02

    The tibial tuberosity-trochlear groove distance is used as an indicator for medial tibial tubercle transfer; however, to our knowledge, no studies have verified whether this distance is strongly affected by tubercle lateralization at the proximal part of the tibia. We hypothesized that the tibial tuberosity-trochlear groove distance is mainly affected by tibial tubercle lateralization at the proximal part of the tibia. Forty-four patients with a history of patellar dislocation and forty-four age and sex-matched controls were analyzed with use of computed tomography. The tibial tuberosity-trochlear groove distance, tibial tubercle lateralization, trochlear groove medialization, and knee rotation were measured and were compared between the patellar dislocation group and the control group. The association between the tibial tuberosity-trochlear groove distance and three other parameters was calculated with use of the Pearson correlation coefficient and partial correlation analysis. There were significant differences in the tibial tuberosity-trochlear groove distance (p < 0.001) and knee rotation (p < 0.001), but there was no difference in the tibial tubercle lateralization (p = 0.13) and trochlear groove medialization (p = 0.08) between the patellar dislocation group and the control group. The tibial tuberosity-trochlear groove distance had no linear correlation with tubercle lateralization (r = 0.21) or groove medialization (r = -0.15); however, knee rotation had a good positive correlation in the patellar dislocation group (r = 0.62). After adjusting for the remaining parameters, knee rotation strongly correlated with the tibial tuberosity-trochlear groove distance (r = 0.69, p < 0.001), whereas tubercle lateralization showed moderate significant correlations in the patellar dislocation group (r = 0.42; p = 0.005). Because the tibial tuberosity-trochlear groove distance is affected more by knee rotation than by tubercle malposition, its use as an indicator for tibial tubercle transfer may not be appropriate. Surgical decisions of tibial tubercle transfer should be made after the careful analysis of several underlying factors of patellar dislocation. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  8. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.W.

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less

  9. Polarity Control and Growth of Lateral Polarity Structures in AlN

    DTIC Science & Technology

    2013-05-10

    domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman 1. REPORT DATE (DD-MM...polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge...dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of

  10. Phenomenological model for transient deformation based on state variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M S; Cho, C W; Alexopoulos, P

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known,more » tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.« less

  11. Re-examination of the Present Stress State of the Atera Fault, Central Japan, Based on the Calibrated Crustal Stress Data of Hydraulic Fracturing Test by Measuring the Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Mizoguchi, K.; Fukuyama, E.; Omura, K.

    2008-12-01

    To infer the activity and physical state of intraplate faults in Japan, we re-examined the crustal stress with the hydraulic fracturing test by measuring the tensile strength of rocks. The tensile strength was measured by fracturing hollow cylindrical rock samples (inner and outer radius are 25.0-25.2 mm and 55.1-101.5 mm, respectively, length is 137.0-140.1 mm) which were obtained close to the in situ stress measurement locations by pressurizing the inner hole of the sample. Confining pressure is not applied to the samples in this test. To check the reliability and accuracy of this test, we conducted similar experiments with the standard rock sample (Inada granite) whose physical property is well known. Then, we measured the tensile strength of all available core samples including the Atera fault (at Ueno, Fukuoka, and Hatajiri), the Atotsugawa fault, and the Nojima fault (at Hirabayashi, Iwaya and Kabutoyama), in central Japan, which had been obtained by the National Research Institute for Earth Science and Disaster Prevention (NIED) by the stress measurement with the hydraulic fracturing method. The measured tensile strength data reveals that the in situ re- opening pressure, which is one of the parameters needed for the determination of the maximum in situ horizontal stress, was obviously biased. We re-estimated the re-opening pressure using the measured tensile strength and the in situ breakdown pressure, and re-calculated the in situ stress around the Atera fault. Although the past dislocation of the Atera fault has been considered to be left lateral from the geographical features around the fault, the re-estimated stress suggests that the present dislocation of the Atera fault is right lateral. And the shear stress decreases from the fault. The right lateral dislocation is also supported by the present-day horizontal crustal deformation observed by the triangular and GPS surveys by Geographical Survey Institute in Japan. Therefore, the dislocation direction of the Atera fault seems to change from left lateral to right lateral some time ago. The amount of accumulated right lateral dislocation estimated from the stress data with the dislocation model by Okada (1992) is 2.2-2.6 m. Because the current slip rate from the GPS survey is 2.1-2.3 mm/yr, the accumulation period of the dislocation becomes 960-1240 years if the slip rate is stable. This estimation suggests that during the last 1586 Tensho earthquake the Atera fault dislocated right laterally.

  12. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  13. Homoepitaxial "Web Growth" of SiC to Terminate C-Axis Screw Dislocations and Enlarge Step-Free Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew; Spry, David; Beheim, Glenn M.; Benavage, Emye; Abel, Phillip; Vetter, William M.; Dudley, Michael

    2001-01-01

    Homoepitaxial CVD growth of thin lateral cantilevers emanating from the edges of mesa patterns dry-etched into on-axis commercial 4H-SiC substrates prior to growth is reported. Cantilevers on the order of a micrometer thick extending tens of micrometers from the edge of a mesa have been grown. The termination of vertically propagating screw dislocations, including a micropipe, that are overgrown by the cantilevers has been demonstrated, in large part because the crystal structure of the cantilevers is established laterally from the mesa sidewalls. This technique could help reduce performance-degrading dislocations in SiC electrical devices.

  14. Ulnar Rotation Osteotomy for Congenital Radial Head Dislocation.

    PubMed

    Liu, Ruiyu; Miao, Wusheng; Mu, Mingchao; Wu, Ge; Qu, Jining; Wu, Yongtao

    2015-09-01

    To evaluate an ulnar rotation osteotomy for congenital anterior dislocation of the radial head. Nine patients (5 boys and 4 girls aged 6 to 13 years) with congenital anterior dislocation of the radial head were treated with ulnar rotation osteotomy. Magnetic resonance imaging of the elbow showed the proximal radioulnar joint on the anterior-lateral side of the ulna rather than on the lateral side in patients with congenital anterior dislocation of the radial head. On the basis of this finding, we performed an osteotomy on the ulna and laterally rotated the proximal radioulnar joint achieving radial head reduction and restoring the anatomical relationship between the radial head and the capitellum. Clinical and radiographical evaluation of the elbow was performed before surgery and at postoperative follow-up. All patients were followed for 13 to 45 months after surgery. Elbow radiography showed that the radiocapitellar joint was reduced in all patients at the last follow-up visit and that the carrying angle was decreased relative to that in the preoperative condition. Elbow stability and the range of elbow flexion motion were improved at the last follow-up. We did not observe ulnar osteotomy site nonunion or elbow osteoarthritis in these patients. Furthermore, radial head dislocation did not recur. At early follow-up, ulnar rotation osteotomy was a safe and effective method for the treatment of congenital anterior dislocation of the radial head. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. The Position of the Patella and Extensor Mechanism Affects Intraoperative Compartmental Loads During Total Knee Arthroplasty: A Pilot Study Using Intraoperative Sensing to Guide Soft Tissue Balance.

    PubMed

    Schnaser, Erik; Lee, Yuo-yu; Boettner, Friedrich; Gonzalez Della Valle, Alejandro

    2015-08-01

    The achievement of a well-balanced total knee arthroplasty is necessary for long-term success. We hypothesize that the dislocation of the patella during surgery affects the distribution of loads in the medial and lateral compartments. Intraoperative load sensors were used to record medial and lateral compartment loads in 56 well-balanced TKAs. Loads were recorded in full extension, relaxed extension, at 45 and 90° of flexion at full gravity-assisted flexion, with the patella in four different positions: dislocated (everted and not), located, and located and secured with two retinacular sutures. The loads in the lateral compartment in flexion were higher with a dislocated patella than with a located patella (P<0.001). A lateralized extensor mechanism artificially increases in the lateral compartment loads in flexion during TKA surgery. Instruments that allow intraoperative soft tissue balance with the patella in a physiologic position are more likely to replicate postoperative compartment loads. II (prospective comparative study). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. [Current status and expectations in the surgical treatment of recurrent lateral patellar dislocation].

    PubMed

    Zhao, Zhi-Dong; Li, Peng-Cui; Wei, Xiao-Chun

    2017-11-25

    Up to now, surgical treatment of recurrent lateral patellar dislocation mainly includes: medial patellofemoral ligament reconstruction, tibial tubercle osteotomy, trochleoplasty, lateral retinacular release, derotation osteotomy and so on . Clinical reports show that: the use of a single or combined with several methods have achieved ideal short to mid-term clinical outcomes. However, there is no consolidate criterion concerning the choices of different kinds of surgical ways for the treatment of individual recurrent lateral patellar dislocation. Meanwhile, with the wide use of MPFL reconstruction and other surgical options, there are more and more complications and failures that are worthy and necessary for us to pay attention to, even though its high success rate. The aim of this article is to make a systematic review of the application status of different surgical methods, collecting the positive results we have achieved, illuminating application keys of surgical techniques, guiding patient-specific therapy more precisely. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.

  17. Quantitative stress radiography of the patella and evaluation of patellar laxity before and after lateral release for recurrent dislocation patella.

    PubMed

    Niimoto, Takuya; Deie, Masataka; Adachi, Nobuo; Usman, Muhammad Andry; Ochi, Mitsuo

    2014-10-01

    The aims of the present controlled clinical study were to (1) compare patella laxity determined in the outpatient clinic with that in anaesthetized patients and (2) evaluate patella laxity before and after lateral release. The study evaluated data on 33 knees from 33 patients (average age 19.7 years) between 2007 and 2011. All patients were diagnosed with recurrent dislocation of the patella. Patellar stability was evaluated in each patient thrice: patellas were first imaged in the outpatient clinic prior to surgery at 45° knee flexion with 20 N stress from the medial to lateral side and from the lateral to medial side; then, at the time of surgery, patella stress images were obtained in the same manner before and after the lateral release procedure. Radiological assessments were performed using the medial stress shift ratio (MSSR) and lateral stress shift ratio (LSSR). There were no significant differences in the LSSR and MSSR before surgery (outpatient data) and in anaesthetized patients before the lateral release procedure. Furthermore, there was no significant difference in MSSR at the time of surgery before and after the lateral release procedure. However, LSSR increased significantly after the lateral release procedure. The results of the present study suggest that quantitative patella stress radiography in the outpatient clinic is useful when it comes to investigating laxity of the patella, and that lateral release significantly increases lateral, but not medial, laxity in patients with recurrent patellar dislocation. IV.

  18. GaN microrod sidewall epitaxial lateral overgrowth on a close-packed microrod template

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoling; Zhang, Jincheng; Xiao, Ming; Zhang, Jinfeng; Hao, Yue

    2018-05-01

    We demonstrate a GaN growth method using microrod sidewall epitaxial lateral overgrowth (MSELO) on a close-packed microrod template by a nonlithographic technique. The density and distribution of threading dislocations were determined by the density and distribution of microrods and the nucleation model. MSELO exhibited two different nucleation models determined by the direction and degree of substrate misorientation and the sidewall curvature: one-sidewall and three-sidewall nucleation, predicting the dislocation density values. As a result, the threading dislocation density was markedly decreased from 2 × 109 to 5 × 107 cm‑2 with a small coalescence thickness of ∼2 µm for the close-packed 3000 nm microrod sample.

  19. Movement of basal plane dislocations in GaN during electron beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, E. B.; National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049; Vergeles, P. S.

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can bemore » moved by irradiation and only until they meet the latter pinning sites.« less

  20. Transient luminescence induced by electrical refilling of charge carrier traps of dislocation network at hydrophilically bonded Si wafers interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, Anton; Vyvenko, Oleg

    2014-02-21

    Dislocation network (DN) at hydrophilically bonded Si wafers interface is placed in space charge region (SCR) of a Schottky diode at a depth of about 150 nm from Schottky electrode for simultaneous investigation of its electrical and luminescent properties. Our recently proposed pulsed traps refilling enhanced luminescence (Pulsed-TREL) technique based on the effect of transient luminescence induced by refilling of charge carrier traps with electrical pulses is further developed and used as a tool to establish DN energy levels responsible for D1 band of dislocation-related luminescence in Si (DRL). In present work we do theoretical analysis and simulation of trapsmore » refilling kinetics dependence on refilling pulse magnitude (Vp) in two levels model: shallow and deep. The influence of initial charge state of deep level on shallow level occupation-Vp dependence is discussed. Characteristic features predicted by simulations are used for Pulsed-TREL experimental results interpretation. We conclude that only shallow (∼0.1 eV from conduction and valence band) energetic levels in the band gap participate in D1 DRL.« less

  1. Treatment of peroneal tendon dislocation and coexisting medial and lateral ligamentous laxity in the ankle joint.

    PubMed

    Ziai, Pejman; Sabeti-Aschraf, Manuel; Fehske, Kai; Dlaska, Constantin E; Funovics, Philipp; Wenzel, Florian; Graf, Alexandra; Buchhorn, Tomas

    2011-06-01

    Acute dislocation of the peroneal tendon is caused by massive combined flexion-torsion trauma supported by preexisting ligamentous laxity of the ankle joint. This study aimed to investigate the clinical outcome of combined treatment of peroneal tendon dislocation and lateral and medial ligamentous laxity. Between 2005 and 2007, forty-two patients with peroneal tendon dislocation and coexisting ligamentous laxity were treated. The superior extensor retinaculum was reconstructed using anchor technique and periosteal flap repair, whereas the preexisting ligamentous laxity with regard to the extensor inferior retinaculum was addressed using anchor reconstruction. All patients underwent arthroscopy prior to surgery. Thirty-eight of a total of 42 patients (aged 17-31) completed the 24-month follow-up. Clinical and arthroscopic examination was accomplished consistently by always the same two surgeons. Postoperative follow-up comprised clinical evaluation after 3, 6, 12 and 24 months. Clinical results showed a significant (P<0.0001) increase in the AOFAS-Hindfoot Score as an often used but not validated outcome measure, as well as a significant decrease in the Visual Analogue Scale and in the internal and external rotation, after 3 months. The clinical outcome was confirmed at the 6-, 12- and 24-months measuring points. No dislocation of the peroneal tendon recurred within the 24-month follow-up. Subjective patient satisfaction was stated as high. Combined treatment of peroneal tendon dislocation and coexisting lateral and medial ligamentous laxity in the ankle joint following arthroscopy results in good clinical outcome and high patient satisfaction. Case series, Level IV.

  2. Recombination properties of dislocations in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  3. Isolated dorsal dislocation of the tarsal naviculum

    PubMed Central

    Hamdi, Kaziz; Hazem, Ben Ghozlen; Yadh, Zitoun; Faouzi, Abid

    2015-01-01

    Isolated dislocation of the tarsal naviculum is an unusual injury, scarcely reported in the literature. The naviculum is surrounded by the rigid bony and ligamentous support hence fracture dislocation is more common than isolated dislocation. The mechanism and treatment options remain unclear. In this case report, we describe a 31 year old man who sustained an isolated dorsal dislocation of the left tarsal naviculum, without fracture, when he was involved in a motor vehicle collision. The reported mechanism of the dislocation is a hyper plantar flexion force applied to the midfoot, resulting in a transient disruption of the ligamentous support of the naviculum bone, with dorsal displacement of the bone. The patient was treated with open reduction and Krischner-wire fixation of the navicular after the failure of closed reduction. The wires were removed after 6 weeks postoperatively. Physiotherapy for stiffness and midfoot pain was recommended for 2 months. At 6 months postoperatively, limping, midfoot pain and weakness were reported, no X-ray abnormalities were found. The patient returned to his obvious activities with a normal range of motion. PMID:26806978

  4. Treatment of recurrent patellar dislocation via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament.

    PubMed

    Li, Li; Wang, Hongbo; He, Yun; Si, Yu; Zhou, Hongyu; Wang, Xin

    2018-06-01

    Recurrent patellar dislocations were treated via knee arthroscopy combined with C-arm fluoroscopy, and reconstruction of the medial patellofemoral ligaments. Between October 2013 and March 2017, 52 cases of recurrent patellar dislocation [27 males and 25 females; age, 16-47 years (mean, 21.90 years)] were treated. Arthroscopic exploration was performed and patellofemoral joint cartilage injuries were repaired. It was subsequently determined whether it was necessary to release the lateral patellofemoral support belt. Pre-operative measurements were used to decide whether tibial tubercle osteotomy was required. Medial patellofemoral ligaments were reconstructed using autologous semitendinosus tendons. Smith and Nephew model 3.5 line anchors were used to double-anchor the medial patellofemoral margin. On the femoral side, the medial patellofemoral ligament was fixed using 7-cm, absorbable, interfacial compression screws. All cases were followed for 1-40 months (average, 21 months). The Q angle, tibial tuberosity trochlear groove distance, Insall-Salvati index, patellofemoral angle, lateral patellofemoral angle and lateral shift were evaluated on X-Ray images using the picture archiving and communication system. Subjective International Knee Documentation Committee (IKDC) knee joint functional scores and Lysholm scores were recorded. Post-operative fear was absent, and no patellar re-dislocation or re-fracture was noted during follow-up. At the end of follow-up, the patellofemoral angle (0.22±4.23°), lateral patellofemoral angle (3.44±1.30°), and lateral shift (0.36+0.14°) differed significantly from the pre-operative values (all, P<0.05). Furthermore, IKDC and Lysholm scores (87.84+3.74 and 87.48+3.35, respectively) differed significantly from the pre-operative values (both, P<0.05). These findings suggest that, in the short term, recurrent patellar dislocation treatment via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament was effective.

  5. Total knee arthroplasty in a pseudoachondroplastic dwarfism patient with bilateral patellar dislocation.

    PubMed

    Oh, Kwang-Jun; Yoon, Jung-Ro; Yang, Jae-Hyuk

    2013-01-01

    Late presentation of congenital patellar dislocation with advanced osteoarthritis is rare. This article presents a case of a 59-year-old man with underlying pseudoachondroplastic dwarfism. Advanced osteoarthritis due to bilateral neglected congenital patellar dislocation was treated with total knee arthroplasty without patella relocation surgery. Two years later, the patient had an improvement in Knee Society scores, painless function, and stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Confinement of Screw Dislocations to Predetermined Lateral Positions in (0001) 4H-SiC Epilayers Using Homoepitaxial Web Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, Andrew J.; Trunek, Andrew J.; Powell, J. Anthony; Beheim, Glenn M.

    2002-01-01

    This paper reports initial demonstration of a cantilevered homoepitaxial growth process that places screw dislocations at predetermined lateral positions in on-axis 4H-SiC mesa epilayers. Thin cantilevers were grown extending toward the interior of hollow pre-growth mesa shapes etched into an on-axis 4H-SiC wafer, eventually completely coalescing to form roofed cavities. Each completely coalesced cavity exhibited either: 1) a screw dislocation growth spiral located exactly where final cantilever coalescence occurred, or 2) no growth spiral. The fact that growth spirals are not observed at any other position except the central coalescence point suggests that substrate screw dislocations, initially surrounded by the hollow portion of the pre-growth mesa shape, are relocated to the final coalescence point of the webbed epilayer roof. Molten potassium hydroxide etch studies revealed that properly grown webbed cantilevers exhibited no etch pits, confirming the superior crystal quality of the cantilevers.

  7. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.

  8. Intraoperative dislocation of the trial bipolar cup into the pelvis during bipolar hip arthroplasty - A case report.

    PubMed

    Miyake, Takahito; Kanda, Akio; Morohashi, Itaru; Obayashi, Osamu; Mogami, Atsuhiko; Kaneko, Kazuo

    2017-06-01

    Bipolar hip arthroplasty is a good option for treating femoral neck fractures, although some contraindications have been indicated. We report a case of intraoperative dislocation of the trial bipolar cup into the pelvis during bipolar hip arthroplasty. A 74-year-old woman underwent bipolar hip arthroplasty for a femoral neck fracture (AO31-B2). She was placed in a lateral decubitus position, and a direct lateral approach was used. During intraoperative trial reduction, the trial bipolar cup became disengaged and dislocated into the anterior space of hip joint. Several attempts to retrieve it failed. The permanent femoral component was inserted, and the wound was closed. The patient was repositioned supine to allow an ilioinguinal approach, and the component was easily removed. She had an uneventful, good recovery. Several cases of intraoperative dislocation of the femoral trial head during total hip arthroplasty have been reported, this is the first report of dislocation of a bipolar trial cup. A previous report described difficulty retrieving a trial cup. We easily removed our trial cup using another approach. It is vital to plan systematically for this frustrating complication.

  9. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  10. Bilateral spontaneous crystalline lens dislocation to the anterior chamber: a case report.

    PubMed

    Jovanović, Milos

    2013-01-01

    There are various reasons for the lens dislocation. Spontaneous dislocation of a clear lens is extremely rare, especially its dislocation to the anterior chamber. The author presents a case of spontaneous clear lens dislocation to the anterior chamber in both eyes in a patient without the history of any trauma. Dislocation occurred spontaneously, first in the left eye, along with a sudden decrease of vision. The ophthalmologist found a clear lens in the anterior chamber, without any sign of an elevated intraocular pressure, as should have been expected. The dislocated lens was removed surgically (intracapsular extraction) with the preventive basal iridectomy. Two years later, the same happened in the right eye: clear lens moved spontaneously to the anterior chamber, with a decrease of vision, but again without any rise of intraocular pressure and/or any pain. Intracapsular extraction of the lens with basal iridectomy was done again. The presented case demonstrates that spontaneous dislocation of the transparent lens to the eye anterior chamber can occur in both eyes at different time intervals. We suggest the removal of dislocated lens in the anterior chamber by the intracapsular extraction.

  11. Lateral idiopathic subluxation of the radial head. Case report.

    PubMed

    Lancaster, S; Horowitz, M

    1987-01-01

    Idiopathic subluxation of the radial head (ISRH) is a rare entity that is separate from congenital dislocations of the radial head, both symptomatically and radiographically. ISRH causes pain and restriction of rotation. A dome-shaped radial head, a hypertrophied ulna, and a hypoplastic capitellum are not present in ISRH, as they are in a congenital dislocation of the radial head (CDRH). A true lateral ISRH is used as an example to demonstrate these differences. Remodeling of the radial head may preserve motion in the joint surface deformed by growth along abnormal planes of motion.

  12. Biomechanical study of four kinds of percutaneous screw fixation in two types of unilateral sacroiliac joint dislocation: a finite element analysis.

    PubMed

    Zhang, Lihai; Peng, Ye; Du, Chengfei; Tang, Peifu

    2014-12-01

    To compare the biomechanical stability of four different kinds of percutaneous screw fixation in two types of unilateral sacroiliac joint dislocation. Finite element models of unstable Tile type B and type C pelvic ring injuries were created in this study. Modelling was based on fixation with a single S1 screw (S1-1), single S2 screw (S2-1), two S1 screws (S1-2) and a combination of a single S1 and a single S2 screw (S1–S2). The biomechanical test of two types of pelvic instability (rotational or vertical) with four types of percutaneous fixation were compared. Displacement, flexion and lateral bend (in bilateral stance) were recorded and analyzed. Maximal inferior translation (displacement) was found in the S2-1 group in type B and C dislocations which were 1.58 mm and 1.90 mm, respectively. Maximal flexion was found in the S2-1 group in type B and C dislocations which were 1.55° and 1.95°, respectively. The results show that the flexion from most significant angulation to least is S2-1, S1-1, S1-2, and S1–S2 in type B and C dislocations. All the fixations have minimal lateral bend. Our findings suggest single screw S1 fixation should be adequate fixation for a type B dislocation. For type C dislocations, one might consider a two screw construct (S1–S2) to give added biomechanical stability if clinically indicated.

  13. Neurological complications of the reduction of cervical spine dislocations.

    PubMed

    Mahale, Y J; Silver, J R; Henderson, N J

    1993-05-01

    We have studied the case records of 16 patients with dislocations of the cervical spine who deteriorated neurologically during or after reduction. The dislocations were reduced by skull traction in four patients, by manipulation in four and by operation in seven. This complication was not related to age, sex, mechanism of injury, or the level and the type of dislocation. Fourteen patients made substantial recoveries, one made a partial recovery and one patient remained totally paralysed and died three months later. The causes and prevention of spinal-cord damage at this stage of management are discussed, and the early use of MRI or CT myelography is recommended.

  14. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L M; Lassila, D H

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain ofmore » 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.« less

  15. Atlanto-occipital dislocation: Case report and discussion.

    PubMed

    Asfaw, Tehetena; Chow, Bernard; Frederiksen, Ryan A

    2011-01-01

    Traumatic atlanto-occipital dislocation is an uncommon injury that frequently results in either a fatal outcome or severe neurologic deficit. This diagnosis must be considered for any patients who may have had cervical spine damage after high trauma, even in the absence of neurologic signs, as there have been reports of cases without neurologic impairment. In addition to radiographic examination, including lateral cervical radiographs, supplemental imaging with CT or MRI may be required to confirm diagnosis in equivocal cases, and to help in evaluation of bone and nervous structures. Moreover, these modalities allow measurement of the magnitude of dislocation and aid in classification of type of dislocation, which helps guide management. A systematic approach to evaluating the cranio-cervical relationship is critical to identifying atlanto-occipital dislocation. This case report presents and discusses imaging findings that will assist in the diagnosis of atlanto-occipital dislocation.

  16. Subtalar dislocation without associated fractures: Case report and review of literature

    PubMed Central

    Giannoulis, Dionisios; Papadopoulos, Dimitrios V; Lykissas, Marios G; Koulouvaris, Panagiotis; Gkiatas, Ioannis; Mavrodontidis, Alexandros

    2015-01-01

    Isolated subtalar dislocations are unusual injuries due to the inherent instability of the talus. Subtalar dislocations are frequently associated with fractures of the malleoli, the talus, the calcaneus or the fifth metatarsal. Four types of subtalar dislocation have been described according to the direction of the foot in relation to the talus: medial, lateral posterior and anterior. It has been shown that some of these dislocations may spontaneously reduce. A rare case of a 36-year-old male patient who sustained a closed medial subtalar dislocation without any associated fractures of the ankle is reported. The patient suffered a pure closed medial subtalar dislocation that is hardly reported in the literature. Six months after injury the patient did not report any pain, had a satisfactory range of motion, and no signs of residual instability or early posttraumatic osteoarthritis. The traumatic mechanism, the treatment options, and the importance of a stable and prompt closed reduction and early mobilization are discussed. PMID:25893182

  17. Posterior tibial tendon displacement behind the tibia and its interposition in an irreducible isolated ankle dislocation: a case report and literature review

    PubMed Central

    ORTOLANI, ALESSANDRO; BEVONI, ROBERTO; RUSSO, ALESSANDRO; MARCACCI, MAURILIO; GIROLAMI, MAURO

    2016-01-01

    Isolated posteromedial ankle dislocation is a rare condition thanks to the highly congruent anatomical configuration of the ankle mortise, in which the medial and lateral malleoli greatly reduce the rotational movement of the talus, and the strength of the ligaments higher than the malleoli affords protection against fractures. However, other factors, like medial malleolus hypoplasia, laxity of the ligaments, peroneal muscle weakness and previous ankle sprains, could predispose to pure dislocation. In the absence of such factors, only a complex high-energy trauma, with a rotational component, can lead to this event. Irreducibility of an ankle dislocation, which is rarely encountered, can be due to soft tissue interposition. Dislocation of the posterior tibial tendon can be the cause of an irreducible talar dislocation; interposition of this tendon, found to have slid posteriorly to the distal tibia and then passed through the tibioperoneal syndesmosis, is reported in just a few cases of ankle fracture-dislocation. PMID:27900312

  18. Cellular dislocations patterns in monolike silicon: Influence of stress, time under stress and impurity doping

    NASA Astrophysics Data System (ADS)

    Oliveira, V. A.; Rocha, M.; Lantreibecq, A.; Tsoutsouva, M. G.; Tran-Thi, T. N.; Baruchel, J.; Camel, D.

    2018-05-01

    Besides the well-known local sub-grain boundaries (SGBs) defects, monolike Si ingots grown by Directional Solidification present distributed background cellular dislocation structures. In the present work, the influence of stress level, time under stress, and doping by O and Ge, on the formation of dislocation cells in monolike silicon, is analysed. This is achieved by performing a comparative study of the dislocation structures respectively obtained during crystallisation of pilot scale monolike ingots on Czochralski (CZ) and monolike seeds, during annealing of Float Zone (FZ), CZ, and 1 × 1020 at/cm3 Ge-doped CZ (GCZ) samples, and during 4-point bending of FZ and GCZ samples at 1300 °C under resolved stresses of 0.3, 0.7 and 1.9 MPa during 1-20 h. Synchrotron X-ray White-beam Topography and Rocking Curve Imaging (RCI) are applied to visualize the dislocation arrangements and to quantify the spatial distribution of the associated lattice distortions. Annealed samples and samples bent under 0.3 MPa present dislocation structures corresponding to transient creep stages where dislocations generated from surface defects are propagating and multiplying in the bulk. The addition of the hardening element Ge is found to block the propagation of dislocations from these surface sources during the annealing test, and to retard dislocation multiplication during bending under 0.3 MPa. On the opposite, cellular structures corresponding to the final stationary creep stage are obtained both in the non-molten seeds and grown part of monolike ingots and in samples bent under 0.7 and 1.9 MPa. A comparative discussion is made of the dynamics of formation of these final dislocation structures during deformation at high temperature and monolike growth.

  19. Elbow dislocation with intra-articular fracture: the results of operative treatment without repair of the medial collateral ligament.

    PubMed

    Forthman, Christopher; Henket, Marjolijn; Ring, David C

    2007-10-01

    To determine the effectiveness of a protocol for the treatment of fracture-dislocations of the elbow based on the concept that, if dislocation of the elbow with associated fractures can be made to resemble a simple elbow dislocation by repairing or reconstructing the fractured structures, repair of the medial collateral ligament (MCL) will not be necessary. Over a 5-year period, a single surgeon operated on 34 patients with a posterior dislocation of the elbow associated with one or more intra-articular fractures. The mean age of these 19 men and 15 women was 48 years. Associated fractures included the capitellum, trochlea, and lateral epicondyle in 3 patients; the olecranon in 1 patient; and the radial head in 30 patients (with concomitant fracture of the coronoid process-the so-called "terrible triad" of the elbow-in 22 patients, and concomitant fracture of the coronoid and olecranon in 1 patient). Operative treatment consisted of open reduction internal fixation (ORIF) or prosthetic replacement of all fractures and reattachment of the origin of the lateral collateral ligament (LCL) complex to the lateral epicondyle. The MCL was not repaired. Two patients (1 with a terrible triad injury and 1 with fracture of the capitellum and trochlea) had postoperative instability related to noncompliance, had reconstructive procedures, and were considered failures. An average of 32 months after injury, the remaining 32 patients regained an average of 120 degrees ulnohumeral motion and 142 degrees forearm rotation. Twenty-five of 34 patients (74%) had good or excellent results according to the system of Broberg and Morrey. Patients with terrible triad injuries had an average of 117 degrees ulnohumeral motion and 137 degrees forearm rotation, and 17 of 22 patients (77%) had good or excellent results. MCL repair is unnecessary in the treatment of dislocation of the elbow with associated intra-articular fractures, provided that the articular fractures and the LCL are repaired or reconstructed.

  20. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  1. Traumatic anterior dislocation of the crystalline lens and its surgical management.

    PubMed

    Srećković, Sunčica; Janićijević Petrović, Mirjana; Jovanović, Svetlana; Paunović, Svetlana; Sarenac, Tatjana

    2012-02-01

    This paper reports a case of a 57-year old female who had sustained a blunt ocular trauma resulting in anterior dislocation of the crystalline lens and acute painful visual loss in the left eye. The patient was managed with anterior chamber intracapsular phacoemulsification through a small anterior capsulotomy, pars plana vitrectomy, and surgical iridotomy. Aphakia was corrected by a contact lens. Two months after the surgery, the best corrected visual acuity was 0.9 in the left eye. The vision and retina remained stable in her follow-up examination 1 year later. Anterior dislocation of the crystalline lens can cause severe complications so that dislocated lens should be removed immediately.

  2. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

  3. Dislocation of the proximal tibiofibular joint, do not miss it

    PubMed Central

    van Wulfften Palthe, Alexander FY; Musters, Linda; Sonnega, Remko JA; van der Sluijs, Hans A

    2015-01-01

    We present a case of a 45-year-old woman with a right proximal tibiofibular dislocation she sustained after a fall during roller skating. Anteroposterior and lateral radiographs confirmed the diagnosis; there were no other injuries. The dislocation was reduced by direct manipulation after intra-articular infiltration, in our emergency department. The patient was treated with a long, non-weight bearing leg cast for 1 week. After 4 weeks, she had no pain and a full range of motion of the knee. PMID:26628303

  4. An isolated dorso-medial dislocation of navicular bone: A case report.

    PubMed

    Singh, Varun Kumar; Kashyap, Abhishek; Vargaonkar, Gauresh; Kumar, Ramesh

    2015-03-01

    An isolated dislocation of tarsal navicular is extremely rare injury. Usually it is associated with fracture of navicular itself or other tarsal bones of foot along with disruption of medial or lateral column of foot. Mechanism of injury is complex but usually a severe abduction force is required to produce such injury in a planter flexed foot. A 30 year old male presented with isolated navicular dislocation. Management required open reduction and fixation with k-wires. These injuries have specific complications including avascular necrosis of navicular and post-traumatic arthritis.

  5. Transmission electron microscopy of a refractory inclusion from the Allende meteorite - Anatomy of a pyroxene

    NASA Astrophysics Data System (ADS)

    Doukhan, N.; Doukhan, J. C.; Poirier, J. P.

    1991-06-01

    A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionaly observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.

  6. Stress evolution and associated microstructure during transient creep of olivine at 1000-1200 °C

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Demouchy, S.; Mainprice, D.; Barou, F.; Cordier, P.

    2018-05-01

    We study the mechanical response and correlated microstructure of axial deformed fine-grained olivine aggregates as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-6 s-1 to 10-5 s-1 and at confining pressure of 300 MPa. Sample volumes are around 1.2 cm3. Finite strains range from 0.1 to 8.6% and corresponding maximal (final) differential stresses range from 80 to 1073 MPa for deformation at 1000 °C and from 71 to 322 MPa for deformation at 1200 °C. At 1200 °C, samples approach steady state deformation after about 8% of strain. At 1000 °C, significant strain hardening leads to stresses exceeding the confining pressure by a factor of 3.5 with brittle deformation after 3% of strain. Deformed samples were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 50 nm were acquired without introducing analytical artifacts for the first time. The grain size of deformed samples ranges from 2.1 to 2.6 μm. Despite clear strain hardening, texture or microstructure do not change as a function of stress or finite strain. This observation is supported by a constant texture strength (J-index) and symmetry (BA-index), constant grain shape and aspect ratio, constant density of geometrically necessary dislocations, grain orientation spread, and constant subgrain boundary spacing and misorientation in between samples. TEM shows that all samples exhibit unambiguous dislocation activity but with a highly heterogeneous dislocation distribution. Olivine grains display evidence of [1 0 0] and [0 0 1] slip activity, but there is no evidence of interaction between the dislocations from the different slip systems. Several observations of grain boundaries acting as dislocation sources have been found. We find no confirmation of increasing dislocation densities as the cause for strain hardening during transient creep. This suggests other, yet not fully understood mechanisms affecting the strength of deformed olivine. These mechanisms could possibly involve grain boundaries. Such mechanisms are relevant for the deformation of uppermost mantle rocks, where the Si diffusion rate is too slow and dislocation glide must be accommodated in another way to fulfill the von Mises criterion.

  7. Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L.; Lassila, D.H.

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase aftermore » compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.« less

  8. The 'respect rather than resect' principle in mitral valve repair: the lateral dislocation of the P2 technique.

    PubMed

    Zanobini, Marco; Ricciardi, Gabriella; Mammana, Francesco Liborio; Kassem, Samer; Poggio, Paolo; Di Minno, Alessandro; Cavallotti, L; Saccocci, Matteo

    2017-09-01

    Leaflet resection represents the reference standard for surgical treatment of mitral valve (MV) regurgitation. New approaches recently proposed place emphasis on respecting, rather than resecting, the leaflet tissue to avoid the drawbacks of the 'resection' approach. The lateral dislocation of mid portion of mitral posterior leaflet (P2) technique for MV repair is a nonresectional technique in which the prolapsed P2 segment is sutured to normal P1 segment. Our study evaluates the effectiveness of this technique. We performed the procedure on seven patients. Once ring annular sutures were placed, the prolapsed P2 segment was dislocated toward the normal P1 segment with a rotation of 90° and without any resection. If present, residual clefts between P2 and P3 segments were closed. Once the absence of residual mitral regurgitation is confirmed by saline pressure test, ring annuloplasty was completed. The valve was evaluated using transesophageal echocardiography in the operating room and by transthoracic echocardiography before discharge. At the last follow-up visit, transthoracic echocardiography revealed no mitral regurgitation and normal TRANSVALVULAR gradients. The lateral dislocation of P2 is an easily fine-tuned technique for isolated P2 prolapse, with the advantage of short aortic cross-clamp and cardiopulmonary bypass times. We think it might be very favorable in older and frail patients. Long-term follow-up is necessary to assess the durability of this technique.

  9. The microstructure of laterally seeded silicon-on-oxide

    NASA Astrophysics Data System (ADS)

    Pinizzotto, R. F.; Lam, H. W.; Vaandrager, B. L.

    1982-03-01

    The production of large scale integrated circuits in thin silicon films on insulating substrates is currently of much interest in the electronics industry. One of the most promising techniques of forming this composite structure is by lateral seeding. We have used optical microscopy and transmission electron microscopy to characterize the microstructure of silicon-on-oxide formed by scanning CW laser induced lateral epitaxy. The primary defects are dislocations. Dislocation rearrangement leads to the formation of both small angle boundaries (stable, regular dislocation arrays) and grain boundaries. The grains were found to be misoriented to the <100> direction perpendicular to the film plane by ≤ 4° and to the <100> directions in the plane of the film by ≤ 2°. Internal reflection twins are a common defect. Microtwinning was found to occur at the vertical step caused by the substrate-oxide interface if the substrate to oxide step height was > 120 nm. The microstructure is continuous across successive scan lines. Microstructural defects are found to initiate at the same topographical location in different oxide pads. We propose that this is due to the meeting of two crystallization growth fronts. The liquid silicon between the fronts causes large stresses in this area because of the 9% volume increase during solidification. The defects observed in the bulk may form by a similar mechanism or by dislocation generation at substrate-oxide interface irregularities. The models predict that slower growth leads to improved material quality. This has been observed experimentally.

  10. Intra-articular injuries of the elbow: pitfalls of diagnosis and treatment.

    PubMed Central

    Fowles, J. V.; Rizkallah, R.

    1976-01-01

    Poor results in treating fractures and dislocations about the elbow may be avoided if the surgeon is aware of the possible injuries, examines good radiographs of both elbows, and treats the injury promptly and appropriately. A displaced fracture of the lateral or medial condyle of the humerus should be suspected if there is a flake fracture of the adjoining metaphysis; open reduction and internal fixation give better results than closed reduction. A shear fracture of the capitulum humeri can only be seen on a lateral radiograph; excision of the fragment, followed by mobilization, is sufficient for a good functional result. Dislocation of the elbow in a child may avulse the medial epicondyle, which sometimes lodges in the joint; it is essential to recognize this and remove the fragment without delay to avoid early degenerative arthritis. An apparently isolated fracture of the ulna should alert the surgeon to the possibility of a dislocation of the radial head; the dislocation and the fracture must be reduced and stabilized to conserve elbow function. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:943224

  11. A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Chen, Youping; Xiong, Liming

    2014-12-28

    We present a molecular dynamics study of grain boundary (GB) resistance to dislocation-mediated slip transfer and phonon-mediated heat transfer in nanocrystalline silicon bicrystal. Three most stable 〈110〉 tilt GBs in silicon are investigated. Under mechanical loading, the nucleation and growth of hexagonal-shaped shuffle dislocation loops are reproduced. The resistances of different GBs to slip transfer are quantified through their constitutive responses. Results show that the Σ3 coherent twin boundary (CTB) in silicon exhibits significantly higher resistance to dislocation motion than the Σ9 GB in glide symmetry and the Σ19 GB in mirror symmetry. The distinct GB strengths are explained bymore » the atomistic details of the dislocation-GB interaction. Under thermal loading, based on a thermostat-induced heat pulse model, the resistances of the GBs to transient heat conduction in ballistic-diffusive regime are characterized. In contrast to the trend found in the dislocation-GB interaction in bicrystal models with different GBs, the resistances of the same three GBs to heat transfer are strikingly different. The strongest dislocation barrier Σ3 CTB is almost transparent to heat conduction, while the dislocation-permeable Σ9 and Σ19 GBs exhibit larger resistance to heat transfer. In addition, simulation results suggest that the GB thermal resistance not only depends on the GB energy but also on the detailed atomic structure along the GBs.« less

  12. Primary ankle arthrodesis for neglected open Weber B ankle fracture dislocation.

    PubMed

    Thomason, Katherine; Ramesh, Ashwanth; McGoldrick, Niall; Cove, Richard; Walsh, James C; Stephens, Michael M

    2014-01-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. REHABILITATION FOLLOWING KNEE DISLOCATION WITH LATERAL SIDE INJURY: IMPLEMENTATION OF THE KNEE SYMMETRY MODEL

    PubMed Central

    Jenkins, Walter; Urch, Scott E.; Shelbourne, K. Donald

    2010-01-01

    Rehabilitation following lateral side knee ligament repair or reconstruction has traditionally utilized a conservative approach. An article outlining a new concept in rehabilitation following ACL reconstruction called the Knee Symmetry Model was recently published13. The Knee Symmetry Model can also be applied to rehabilitation of other knee pathologies including a knee dislocation with a lateral side injury. This Clinical Commentary describes the rehabilitation procedures used with patients who underwent surgery to repair lateral side ligaments, based upon the Knee Symmetry Model. These procedures were used previously to rehabilitate a group of patients with lateral side ligament repair as reported by Shelbourne et al10. Outcome data and subjective knee scores for these patients were recorded via the International Knee Documentation Committee (IKDC) guidelines and modified Noyes survey scores and are summarized in this paper, as previously published. Rehabilitation following lateral side knee ligament repair using guidelines based upon the Knee Symmetry Model appears to provide patients with excellent long-term stability, normal ROM and strength, and a high level of function. PMID:21589671

  14. [Anterior dislocation of the popliteus tendon].

    PubMed

    Martinez Molina, Oscar

    2009-01-01

    Review the most relevant aspects of the posterolateral corner anatomy of the knee, based on the analysis of papers that throughout the years have made important contributions to the knowledge of these structures. Last et al rejected the idea that the popliteal tendon is an isolated structure, suggesting rather that its variants are closely linked to other anatomical structures. The studies by Tria et al contributed the features of the tendon as it attaches to the lateral condyle, just to mention a couple of examples. This is the case of a 48 year-old female patient with a knee injury caused by an external rotation mechanism. Clinical features included pain, a protruding sensation in the lateral aspect of the knee, and voluntary pseudoblocking resulting from external rotation maneuvers. Knee arthroscopy was performed and dislocation of the popliteal tendon anterior to the lateral condyle was diagnosed, besides a longitudinal tear. The tendon was repositioned, radiofrequency was applied to both the tendon and the popliteal hiatus, and the former was kept in place with a plaster cast worn for 6 weeks. Even though the isolated tear or avulsion of the tendon has already been reported, the dislocation or instability of the popliteal tendon as it relates to the lateral femoral condyle has apparently not been approached yet. As we did in this case, other authors have also confirmed the diagnosis arthroscopically, Naver in 1985, Rose in 1988, and Burstein in 1990.

  15. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  16. Severe valgus deformity of the knee with permanent patellar dislocation associated with melorheostosis: a case report and review of the literature.

    PubMed

    Kitta, Yuki; Niki, Yasuo; Udagawa, Kazuhiko; Enomoto, Hiroyuki; Toyama, Yoshiaki; Suda, Yasunori

    2014-03-01

    We present a case of an 8-year-old boy diagnosed with melorheostosis who was suffering from severe genu valgum, permanent dislocation of the patella, knee flexion contracture and leg length shortening. Soft tissue contracture of the limb and subsequent joint deformities were reported to represent clinical manifestations of pediatric melorheostosis. As the epiphyseal plate had not closed, patellar reduction was achieved by soft tissue surgical stabilization, including lateral retinacular release, medial retinaculum plication, and transfer of the lateral half of the patellar tendon. At 4 years postoperatively, as a result of improved limb alignment and knee flexion contracture, the leg length shortening has improved, and the patient does not limp and participates in sports activities. Surgical intervention should be performed as early as possible, because genu valgum and external rotation of the tibia may deteriorate with age, rendering the patellar dislocation irreversible in patients with melorheostosis before epiphyseal closure. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dislocation reduction in heteroepitaxial Ge on Si using SiO{sub 2} lined etch pits and epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonhardt, Darin; Han, Sang M.

    2011-09-12

    We report a technique that significantly reduces threading dislocations in Ge on Si heteroepitaxy. Germanium is first grown on Si and etched to produce pits in the surface where threading dislocations terminate. Further processing leaves a layer of SiO{sub 2} only within etch pits. Subsequent selective epitaxial Ge growth results in coalescence above the SiO{sub 2}. The SiO{sub 2} blocks the threading dislocations from propagating into the upper Ge epilayer. With annealed Ge films grown on Si, the said method reduces the defect density from 2.6 x 10{sup 8} to 1.7 x 10{sup 6} cm{sup -2}, potentially making the layermore » suitable for electronic and photovoltaic devices.« less

  18. Talocrural Dislocation With Associated Weber Type C Fibular Fracture in a Collegiate Football Player: A Case Report

    PubMed Central

    Ricci, R Daniel; Cerullo, James; Blanc, Robert O; McMahon, Patrick J; Buoncritiani, Anthony M; Stone, David A; Fu, Freddie H

    2008-01-01

    Objective: To present the case of a talocrural dislocation with a Weber type C fibular fracture in a National Collegiate Athletic Association Division I football athlete. Background: The athlete, while attempting to make a tackle during a game, collided with an opponent, who in turn stepped on the lateral aspect of the athlete's ankle, resulting in forced ankle eversion and external rotation. On-field evaluation showed a laterally displaced talocrural dislocation. Immediate reduction was performed in the athletic training room to maintain skin integrity. Post-reduction radiographs revealed a Weber type C fibular fracture and increased medial joint clear space. A below-knee, fiberglass splint was applied to stabilize the ankle joint complex. Differential Diagnosis: Subtalar dislocation, Maisonneuve fracture, malleolar fracture, deltoid ligament rupture, syndesmosis disruption. Treatment: The sports medicine staff immediately splinted and transported the athlete to the athletic training room to reduce the dislocation. The athlete then underwent an open reduction and internal fixation procedure to stabilize the injury: 2 syndesmosis screws and a fibular plate were placed to keep the ankle joint in an anatomically reduced position. With the guidance of the athletic training staff, the athlete underwent an accelerated physical rehabilitation protocol in an effort to return to sport as quickly and safely as possible. Uniqueness: Most talocrural dislocations and associated Weber type C fibular fractures are due to motor vehicle accidents or falls. We are the first to describe this injury in a Division I football player and to present a general rehabilitation protocol for a high-level athlete. Conclusions: Sports medicine practitioners must recognize that this injury can occur in the athletic environment. Prompt reduction, early surgical intervention, sufficient resources, and an accelerated rehabilitation protocol all contributed to a successful outcome in the patient. PMID:18523569

  19. Transient Deformation of Stable Continental Lithosphere by the 2011 M9.0 Tohoku-Oki Megatrust

    NASA Astrophysics Data System (ADS)

    Hong, T. K.; Chi, D.

    2015-12-01

    The Korean Peninsula was dislocated laterally by 1-6cm after the 11 March 2011 M9.0 Tohoku-Oki megathrust at a distance of ~1300 km. These lateral displacements produced apparent tensional stresses of 1-7 kPa in the crust of the peninsula, perturbing the medium. Temporal variation of seismic velocities is investigated to assess the lithospheric responses to the megatrust. The Green's function over inter-station paths are retrieved from ambient noises recorded at broadband seismic stations that are densely deployed over the peninsula. The ambient noises are bandpass-filtered between 0.03 and 0.08 Hz, and spectral whitening and one-bit normalization are applied. The fundamental-mode Rayleigh waves are retrieved by stacking the cross-correlation functions of 10-days-long ambient noises from 2010 to 2015. The traveltime changes of Rayleigh waves with respect to the reference traveltimes are calculated by comparing the stacked cross-correlation functions. The reference Rayleigh waves are calculated by stacking the cross-correlation functions for 4 to 6 months before the megathrust. The traveltime changes are normalized by the inter-station distances. Abrupt traveltime delays are observed right after the megathrust, which are particularly strong along paths subparallel to the great-circle direction to the megathrust. The peak traveltime delay reaches 0.028 s/km, which corresponds to shear velocity decrease of 8.9 %. The traveltime delays are weak along the paths deviated from the great-circle directions. The observation suggests that the transient tension stress field caused longitudinal lithospheric perturbation with preferential mineral orientation and fluid migration, decreasing the seismic velocities. The traveltime delays were recovered with rates of 0.000025 to 0.000059 s/km per day, completing the recovery in several hundred days after the megathrust.

  20. III-V compound semiconductor material characterization of microstructures and nanostructures on various optoelectronic devices with analytical transmission electron microscopy and high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Analytical Transmission Electron Microscopy (TEM) and High Resolution Electron Microscopy have been carried out to characterize microstructures and nanostructures in various III-V compound semiconductor devices by metalorganic chemical vapor deposition (MOCVD). The low-defect GaN nonplanar templates by lateral epitaxial overgrowth (LEO) has a trapezoidal cross-section with smooth (0001) and {112¯2} facets. Penetration of threading dislocations (TDs) beyond mask windows is observed in ordinary LEO substrates. In two-step LEO substrates, where TDs are engineered to bend 90° in the TD bending layer after the first LEO step, only perfect a-type dislocations with Burgers vector b = 1/3 <112¯0> are generated in the upper Post-bending layer with a density of ˜8 x 107cm-2. The demonstrated 3-dimensional dislocation spatial distribution in the LEO nonplanar substrate substantiates the dislocation reaction mechanism. Al0.07GaN/GaN superlattice can further decrease dislocations. InGaN QW thickness enhancement on top of GaN nonplanar templates has been verified to influence the optoelectronic properties significantly. Dense arrays of hexagonally ordered MOCVD-grown (In)(Ga)As nano-QDs by block copolymer nanolithography & selective area growth (SAG), approximately 20nm in diameter and 40nm apart with a density of 1011/cm 2, are perfect crystals by TEM. V-shaped defects and worse InAs growth uniformity have been observed in multiple layers of vertically coupled self-assembled InAs nanostructure arrays on strain-modulated GaAs substrates. TEM shows a smooth coalesced GaN surface with a thickness as thin as ˜200nm after Nano-LEO and a defect reduction of 70%-75%. The (In)GaAs 20 nm twist bonded compliant substrates have almost no compliant effect and higher dislocation density, but the 10nm compliant substrates are on the contrary. A 60nm oxygen-infiltrated crystallized transition layer is observed between the amorphous oxidized layer and the crystallized unoxidized aperture in Al xGa1-xAs wet lateral oxidation, potentially influencing the current confinement characteristic of the sub-micron oxide aperture. Almost no dislocation is aroused by the wet lateral oxidation of In0.52Al 0.48As in the InP microresonator waveguides. XTEM was performed to compare InP SAG regions with 10˜50mum masks, which shows the performance deterioration of laser threshold current densities in the case of 50mum mask results from high density of dislocations induced from the highly strained QW structures caused by the high enhancements.

  1. Defect analysis of the LED structure deposited on the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng

    2018-04-01

    Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.

  2. Surgical treatment for old subaxial cervical dislocation with bilateral locked facets in a 3-year-old girl: A case report.

    PubMed

    Li, Cheng; Li, Lei; Duan, Jingzhu; Zhang, Lijun; Liu, Zhenjiang

    2018-05-01

    This study aimed to describe the case of a 3-year-old girl with old bilateral facet dislocation on cervical vertebrae 6 and 7, who had spinal cord transection, received surgical treatment, and achieved a relative satisfactory therapeutic effect. A 3-year-old girl was urgently transferred to the hospital after a car accident. DIAGNOSES:: she was diagnosed with splenic rupture, intracranial hemorrhage, cervical dislocation, spinal transection, and Monteggia fracture of the left upper limb. The girl underwent emergency splenectomy and was transferred to the intensive care unit of the hospital 15 days later. One-stage anterior-posterior approach surgery (anterior discectomy, posterior laminectomy, and pedicle screw fixation) was performed when the patient stabilized after 45-day symptomatic treatment. The operation was uneventful. The reduction of lower cervical dislocation was satisfactory, with sufficient spinal cord decompression. The internal fixation position was good, and the spinal sequence was well restored. The girl was discharged 2 weeks later after the operation and followed up for 2 years. The major nerve function of both upper limbs was recovered, with no obvious retardation of the growth of immature spine. A satisfactory therapeutic effect was achieved for a pediatric old subaxial cervical dislocation with bilateral locked facets using anterior discectomy, posterior laminectomy, and pedicle screw fixation. The posterior pedicle screw fixation provided a good three-dimensional stability of the spine, with reduced risk and complications caused by anterior internal fixation. The growth of immature spine was not obviously affected during the 2-year follow-up.

  3. Mid-term results of lateral unicondylar mobile bearing knee arthroplasty: a multicentre study of 363 cases.

    PubMed

    Walker, T; Zahn, N; Bruckner, T; Streit, M R; Mohr, G; Aldinger, P R; Clarius, M; Gotterbarm, T

    2018-01-01

    The aim of this independent multicentre study was to assess the mid-term results of mobile bearing unicondylar knee arthroplasty (UKA) for isolated lateral osteoarthritis of the knee joint. We retrospectively evaluated 363 consecutive, lateral UKAs (346 patients) performed using the Oxford domed lateral prosthesis undertaken in three high-volume knee arthroplasty centres between 2006 and 2014. Mean age of the patients at surgery was 65 years (36 to 88) with a mean final follow-up of 37 months (12 to 93) RESULTS: A total of 36 (10.5%) patients underwent revision surgery, giving a survival rate of 90.1% at three years (95% confidence intervals (CI) 86.1 to 93.1; number at risk: 155) and 85.0% at five years (95% CI 77.9 to 89.9; number at risk: 43). Dislocation of the mobile bearing occurred in 18 patients (5.6%) at three years (95% CI 1.0 to 16.4; number at risk: 154) and in 20 patients (8.5%) at five years (95% CI 1.0 to 27.0; number at risk: 42). There were no significant differences in the dislocation rate between the participating centres or the surgeons. We were not able to identify an effect of each surgeon's learning curve on the dislocation rate of the mobile bearing. The clinical outcome in patients without revision surgery at final follow-up was good to excellent, with a mean Oxford knee score of 40.3 (95% CI 39.4 to 41.2), a mean Tegner activity score of 3.2 (95% CI 3.1 to 3.3) and a mean University of California, Los Angeles score of 5.7 (95% CI 5.5 to 5.9). Our data, which consists of a high number of patients treated with mobile bearing UKA in the lateral compartment, indicates a high revision rate of 15% at five years with dislocation of the mobile bearing being the main reason for implant failure. Despite the good functional and clinical results and the high patient satisfaction in our study group, we therefore discontinued using mobile-bearing lateral UKA in favour of a fixed-bearing component. Cite this article: Bone Joint J 2018;100-B:42-9. ©2018 The British Editorial Society of Bone & Joint Surgery.

  4. Radiographic comparison of surgical hip dislocation and hip arthroscopy for treatment of cam deformity in femoroacetabular impingement.

    PubMed

    Bedi, Asheesh; Zaltz, Ira; De La Torre, Katrina; Kelly, Bryan T

    2011-07-01

    Whether open or arthroscopic techniques are employed, the goal of femoroacetabular impingement (FAI) surgery is to achieve impingement-free range of motion. While arthroscopic approaches have improved and gained popularity, an objective evaluation of the surgical correction achieved with this approach compared with open surgery remains to be defined in the literature. This study was undertaken to compare the efficacy of arthroscopic osteoplasty and open surgical dislocation in treating FAI dysmorphology in a consecutive series of patients. Cohort study; Level of evidence, 3. Surgical treatment was performed in 60 male patients under 40 years of age for symptomatic FAI refractory to nonoperative management. Patients were matched (not randomized) to treatment groups: 30 patients (15 left and 15 right hips) underwent arthroscopic cam and/or rim osteoplasty with labral debridement and/or refixation by an arthroscopic surgeon; and 30 (14 left and 16 right hips) underwent open surgical dislocation, cam and/or rim osteoplasty, and labral debridement or refixation by a hip preservation surgeon. Anteroposterior (AP) pelvis and extended-neck (Dunn) lateral radiographs were obtained and the depth of resection and arc of resection were measured by assessment of anterior femoral head-neck offset, AP and lateral α angle, and β angle on preoperative and postoperative radiographs. In the arthroscopic group, the extended-neck lateral α angle was reduced by a mean of 17.2° (28.3%, P < .05), AP α angle was reduced by a mean of 12.6° (16.8%), anterior head-neck offset improved 5.0 mm (111%, P < .05), and β angle increased by a mean of 23.1°. In the open dislocation group, the extended-neck lateral α angle was reduced by a mean of 21.2° (30.7%, P < .05), AP α angle was reduced by a mean of 20.1° (25.7%), anterior head-neck offset improved 6.56 mm (108%, P < .05), and β angle increased by a mean of 18.35°. Arthroscopic osteoplasty can restore head-neck offset and achieve similar depth, arc, and proximal-distal resection with comparable efficacy to open surgical dislocation for anterior and anterosuperior cam and focal rim impingement deformity. The open technique, however, may allow greater correction of posterosuperior loss of femoral offset and may be favorable for FAI patterns that demonstrate considerable proximal femoral deformity on AP radiographs.

  5. Effect of deltoid tension and humeral version in reverse total shoulder arthroplasty: a biomechanical study.

    PubMed

    Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T

    2012-04-01

    No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. Transient Postseismic Relaxation With Burger's Body Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; O'Connell, R. J.

    2002-12-01

    Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.

  7. Epitaxial strain relaxation by provoking edge dislocation dipoles

    NASA Astrophysics Data System (ADS)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  8. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    NASA Astrophysics Data System (ADS)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  9. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  10. Delayed presentation of a cervical spine fracture dislocation with posterior ligamentous disruption in a gymnast.

    PubMed

    Momaya, Amit; Rozzelle, Curtis; Davis, Kenny; Estes, Reed

    2014-06-01

    Cervical spine injuries are uncommon but potentially devastating athletic injuries. We report a case of a girl gymnast who presented with a cervical spine fracture dislocation with posterior ligamentous disruption several days after injury. To our knowledge, this type of presentation with such severity of injury in a gymnast has not been reported in the literature. The patient was performing a double front tuck flip and sustained a hyperflexion, axial-loading injury. She experienced mild transient numbness in her bilateral upper and lower extremities lasting for about 5 minutes, after which it resolved. The patient was neurologically intact during her clinic visit, but she endorsed significant midline cervical tenderness. Plain radiographs and computed tomography imaging of the cervical spine revealed a C2-C3 fracture dislocation. She underwent posterior open reduction followed by C2-C3 facet arthrodesis and internal fixation. This case highlights the importance of very careful evaluations of neck injuries and the maintenance of high suspicion for significant underlying pathology.

  11. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  12. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  13. EXTRA-ARTICULAR FRACTURE OF THE MEDIAL END OF THE CLAVICLE ASSOCIATED WITH TYPE IV ACROMIOCLAVICULAR DISLOCATION: CAAE REPORT

    PubMed Central

    Correa, Mário Chaves; Gonçalves, Lucas Braga Jacques; Vilela, Jose Carlos Souza; Leonel, Igor Lima; Costa, Lincoln Paiva; de Andrade, Ronaldo Percopi

    2015-01-01

    Fractures of the clavicle and acromioclavicular dislocations are very common injuries when they occur separately. The combination of an acromioclavicular dislocation and a fracture of the lateral third of the clavicle is not rare. However, there are very few reported cases of acromioclavicular dislocations associated with fractures of the middle third of the clavicle; those associated with fractures of the medial third are even rarer. We report the case of an adult male who suffered an acromioclavicular dislocation (type IV) associated with a displaced extra-articular fracture of the medial end of the clavicle (Almann group 3) in a cycling accident. The patient was treated during the acute phase with open reduction and internal fixation of the two lesions. At the clinical evaluation 12 months after the surgery, the patient was asymptomatic, with full active and passive mobility, and normal strength and endurance of the shoulder girdle. Radiographs and a three-dimensional CT scan showed persistent posterosuperior subluxation of the acromioclavicular joint and anatomical consolidation of the clavicular fracture. PMID:27027060

  14. EXTRA-ARTICULAR FRACTURE OF THE MEDIAL END OF THE CLAVICLE ASSOCIATED WITH TYPE IV ACROMIOCLAVICULAR DISLOCATION: CAAE REPORT.

    PubMed

    Correa, Mário Chaves; Gonçalves, Lucas Braga Jacques; Vilela, Jose Carlos Souza; Leonel, Igor Lima; Costa, Lincoln Paiva; de Andrade, Ronaldo Percopi

    2011-01-01

    Fractures of the clavicle and acromioclavicular dislocations are very common injuries when they occur separately. The combination of an acromioclavicular dislocation and a fracture of the lateral third of the clavicle is not rare. However, there are very few reported cases of acromioclavicular dislocations associated with fractures of the middle third of the clavicle; those associated with fractures of the medial third are even rarer. We report the case of an adult male who suffered an acromioclavicular dislocation (type IV) associated with a displaced extra-articular fracture of the medial end of the clavicle (Almann group 3) in a cycling accident. The patient was treated during the acute phase with open reduction and internal fixation of the two lesions. At the clinical evaluation 12 months after the surgery, the patient was asymptomatic, with full active and passive mobility, and normal strength and endurance of the shoulder girdle. Radiographs and a three-dimensional CT scan showed persistent posterosuperior subluxation of the acromioclavicular joint and anatomical consolidation of the clavicular fracture.

  15. An update on surgical approaches in hip arthoplasty: lateral versus posterior approach.

    PubMed

    Mukka, Sebastian S; Sayed-Noor, Arkan S

    2014-10-02

    In this update we searched the literature about the outcome of the lateral versus posterior approach in hip arthoplasty for osteoarthritis (OA) and femoral neck fracture (FNF) patients. The available evidence shows that the use of posterior approach in OA patients is associated with lower mortality and better functional outcome while the use of lateral approach in FNF patients gives lower dislocation rate. We recommend therefore the use of posterior approach in OA patients and lateral approach in FNF patients.

  16. Recent Results from Epitaxial Growth on Step Free 4H-SiC Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Bassim, Nabil D.; Mastro, Michael A.; Twigg, Mark E.; Holm, Ronald T.; hide

    2006-01-01

    This paper updates recent progress made in growth, characterization, and understanding of high quality homoepitaxial and heteroepitaxial films grown on step-free 4H-SiC mesas. First, we report initial achievement of step-free 4H-SiC surfaces with carbon-face surface polarity. Next, we will describe further observations of how step-free 4H-SiC thin lateral cantilever evolution is significantly impacted by crystal faceting behavior that imposes non-uniform film thickness on cantilever undersides. Finally, recent investigations of in-plane lattice constant mismatch strain relief mechanisms observed for heteroepitaxial growth of 3C-SiC as well as 2H-AlN/GaN heterofilms on step-free 4H-SiC mesas will be reviewed. In both cases, the complete elimination of atomic heterointerface steps on the mesa structure enables uniquely well-ordered misfit dislocation arrays to form near the heterointerfaces with remarkable lack of dislocations threading vertically into the heteroepilayers. In the case of 3C-SiC heterofilms, it has been proposed that dislocation half-loops nucleate at mesa edges and glide laterally along the step-free 3C/4H interfaces. In contrast, 3C-SiC and 2H-AlN/GaN heterofilms grown on 4H-SiC mesas with steps exhibit highly disordered interface misfit dislocation structure coupled with 100X greater density of dislocations threading through the thickness of the heteroepilayers. These results indicate that the presence of steps at the heteroepitaxial interface (i.e., on the initial heteroepitaxial nucleation surface) plays a highly important role in the defect structure, quality, and relaxation mechanisms of single-crystal heteroepitaxial films.

  17. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  18. Manubriosternal dislocation with spinal fracture: A rare cause for delayed haemothorax.

    PubMed

    Kothari, Manish; Saini, Pramod; Shethna, Sunny; Dalvie, Samir

    2015-01-01

    Type 2 manubriosternal dislocations with concomitant spinal fracture are rare and may be associated with thoracic visceral injuries. The complication of delayed haemothorax has not been reported yet. We report a case of a young male who suffered manubriosternal dislocation with chance type thoracic spine fracture due to fall of a tree branch over his back. The haemothorax presented late on day three. The possible injury mechanism is discussed along with review of literature. We conclude that a lateral chest radiograph is indicated in spinal fracture patients complaining of midsternal pain. Computerized axial tomography scan of chest with contrast is indicated to rule out visceral injuries and a chest radiograph should be repeated before the patient is discharged to look for delayed haemothorax.

  19. The 180° spin of meniscal bearing in unicompartmental knee arthroplasty.

    PubMed

    Lee, Su Chan; Hwang, Seung Hyun; Nam, Chang Hyun; Ryu, Seung Ryol; Ahn, Hye Sun

    2017-01-01

    Mobile-bearing Oxford medial unicompartmental knee arthroplasty (UKA) has been widely used and has produced good results in the treatment of medial compartmental osteoarthritis. But it is associated with the potential risk of meniscal bearing dislocation. Symptoms caused by most meniscal bearing dislocations include acute pain, knee swelling, and locking. We report two unusual cases of meniscal bearing spinning of 180° without remarkable symptoms, which would have been easily missed if we had not watched carefully. Therefore, if there is sudden locking, pain, swelling, or a slight locking history, the possibility of meniscal bearing spin out as well as meniscal bearing dislocation should be considered and the direction of meniscal bearing markers should be confirmed, especially on lateral radiographs.

  20. Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich; Thao, Dinh Nhu

    2016-06-07

    We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on themore » alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.« less

  1. Hip arthroscopy using the lateral approach.

    PubMed

    Glick, J M

    1988-01-01

    The benefits of hip arthroscopy are apparent. It produces little postoperative morbidity and can be performed on an outpatient basis. The prompt recovery from the operation is also beneficial, particularly for elderly patients. Distraction of the hip by traction on a fracture table is necessary. Suggested indications for this procedure include synovectomy and synovial biopsy; removal of loose bodies; removal of debris after a closed reduction of a fracture-dislocation; evaluation and treatment of osteochondritis dissecans; evaluation for arthroplasty; and unresolved hip pain. Whether the lateral approach is useful in the following situations is yet to be explored: (1) Evaluation of pediatric conditions such as Legg-Perthes disease and congenital dislocated hip; (2) treatment of localized infection; (3) removal of entrapped methylmethacrylate in total hip replacement; and (4) reducing and fixating an acetabular fracture (M. Brennan, oral communication, April 6, 1987). Arthroscopy of the hip joint by the lateral approach is a valuable addition to the evaluation and treatment of hip disorders.

  2. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  3. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain heterogeneities. The dependence of the anelastic behaviour on the initial stress, combined with the lack of subgrain boundaries, suggest that the anelastic behaviour is controlled by local interactions between dislocations, rather than resistance imposed by the lattice or subgrain boundaries.

  4. Observations of Screw Dislocation Driven Growth and Faceting During CVD Homoepitaxy on 4H-SiC On-Axis Mesa Arrays

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.

    2009-01-01

    Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.

  5. Length-dependent mechanical properties of gold nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-12-01

    The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.

  6. Radiographic Shape of Foot With Second Metatarsophalangeal Joint Dislocation Associated With Hallux Valgus.

    PubMed

    Kokubo, Tetsuro; Hashimoto, Takeshi; Suda, Yasunori; Waseda, Akeo; Ikezawa, Hiroko

    2017-12-01

    Second metatarsophalangeal (MTP) joint dislocation is associated with hallux valgus, and the treatment of complete dislocation can be difficult. The purpose of this study was to radiographically clarify the characteristic foot shape in the presence of second MTP joint dislocation. Weight-bearing foot radiographs of the 268 patients (358 feet) with hallux valgus were examined. They were divided into 2 groups: those with second MTP joint dislocation (study group = 179 feet) and those without dislocation (control group = 179 feet). Parameters measured included the hallux valgus angle (HVA), first-second intermetatarsal angle (IMA), second MTP joint angle, hallux interphalangeal angle (IPA), second metatarsal protrusion distance (MPD), metatarsus adductus angle (MAA), and the second metatarsal declination angle (2MDA). Furthermore, the dislocation group was divided into 3 subgroups according to second toe deviation direction: group M (medial type), group N (neutral type), and group L (lateral type). The IPA and the 2MDA were significantly greater in the study group than in the control group. By multiple comparison analysis, the IMA was greatest in group M and smallest in group L. The IPA was smaller and 2MDA greater in group N than in group L. The HVA and MAA in group L were greatest, and MPD in group L was smallest. The patients with second MTP joint dislocation associated with hallux valgus had greater hallux interphalangeal joint varus and a second metatarsal more inclined than with hallux valgus alone. The second toe deviated in a different direction according to the foot shape. Level III, retrospective comparative study.

  7. Repeated posterior dislocation of total hip arthroplasty after spinal corrective long fusion with pelvic fixation.

    PubMed

    Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro

    2017-05-01

    Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.

  8. Tendoscopic Double-Row Suture Bridge Peroneal Retinaculum Repair for Recurrent Dislocation of Peroneal Tendons in the Ankle.

    PubMed

    Nishimura, Akinobu; Nakazora, Shigeto; Ito, Naoya; Fukuda, Aki; Kato, Ko; Sudo, Akihiro

    2016-06-01

    Traumatic dislocation of peroneal tendons in the ankle is an uncommon lesion that mainly affects young adults. Unfortunately, most cases lead to recurrent dislocation of the peroneal tendons of the ankle (RPTD). Therefore, most cases need operative treatment. One of the most common operative procedures is superior peroneal retinaculum (SPR) repair. Recently, surgery for RPTD has been achieved with less invasive arthroscopic procedures. In this article, tendoscopic surgery for RPTD using a double-row suture bridge technique is introduced. This technique consists of debridement of the lateral aspect of the fibula under an intrasheath pseudo-cavity, suture anchor insertion into the fibular ridge, and reattachment of the SPR to the fibula using a knotless anchor screwed into the lateral aspect of the fibula. This technique mimics the double-row suture bridge technique for rotator cuff tear repair. The double-row suture bridge technique requires more surgical steps than the single-row technique, but it provides a wider bone-SPR contact surface and tighter fixation than the single-row technique. This procedure is an attractive option because it is less invasive and has achieved results similar to open procedures.

  9. Comment on ``Dynamic Peierls-Nabarro equations for elastically isotropic crystals''

    NASA Astrophysics Data System (ADS)

    Markenscoff, Xanthippi

    2011-02-01

    The paper by Pellegrini [Phys. Rev. BPRBMDO0031-899X10.1103/PhysRevB.81.024101 81, 024101 (2010)] introduces additional “distributional terms” to the displacement of the static field of a dislocation and claims that they are needed so that Weertman's equation for the steady-state motion of the Peierls-Nabarro dislocation be recovered. He also claims that the [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution for a moving screw is wrong, a statement with which I disagree. The same [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution is also obtained and used by the eminent dislocation scientists Al’shitz and Indenbom in Al’shitz [Sov. Phys. JETP 33, 1240 (1971)] that the author ignores. A key reference in the formulation of the problem as a 3D inclusion with eigenstrain is Willis [J. Mech. Phys. SolidsJMPSA80022-509610.1016/0022-5096(65)90038-4 13, 377 (1965)] who showed that, in the transient fields, the static Eshelby equivalence of dislocations to inclusions (with eigenstrain) does not hold, but only at long times when they tend to the static ones. In this Comment the author provides the fundamental physics of the behavior of a moving Volterra dislocation in nonuniform motion by showing how the singular fields near the moving core are obtained from “first principles” (without solving for the full fields). The limit to the steady-state motion of a Peierls-Nabarro dislocation is also shown how to be obtained from first principles from the Volterra one by taking the appropriate limit, without the need of the additional distributional terms that Pellegrini introduces.

  10. Patterns of postural deformity in non-ambulant people with cerebral palsy: what is the relationship between the direction of scoliosis, direction of pelvic obliquity, direction of windswept hip deformity and side of hip dislocation?

    PubMed

    Porter, David; Michael, Shona; Kirkwood, Craig

    2007-12-01

    To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/ dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Cross-sectional observational study. Posture management services in three centres in the UK. Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. A total of 747 participants were included in the study, aged 6-80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P<0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P=0.007), hips subluxed on the left (P=0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P=0.03) were observed. The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed.

  11. Patterns of postural deformity in non-ambulant people with cerebral palsy: what is the relationship between the direction of scoliosis, direction of pelvic obliquity, direction of windswept hip deformity and side of hip dislocation?

    PubMed Central

    Michael, Shona; Kirkwood, Craig

    2008-01-01

    Objective: To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Design: Cross-sectional observational study. Setting: Posture management services in three centres in the UK. Subjects: Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Main measures: Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. Results: A total of 747 participants were included in the study, aged 6–80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P < 0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P = 0.007), hips subluxed on the left (P = 0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P = 0.03) were observed. Conclusions: The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed. PMID:18042604

  12. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  13. Geodynamics in a Thin Shell

    NASA Astrophysics Data System (ADS)

    King, S. D.; Robertson, S.

    2018-05-01

    At the pressure and temperature regime of Mercury's silicate interior, olivine deforms by dislocation creep (power law rheology). This allows Mercury to maintain a dynamic interior much later in time than earlier estimates using Newtonian rheology.

  14. Lateral patellar retinaculum reconstruction for medial patellar instability following lateral retinacular release: a case report.

    PubMed

    Udagawa, Kazuhiko; Niki, Yasuo; Matsumoto, Hiroaki; Matsumoto, Hideo; Enomoto, Hiroyuki; Toyama, Yoshiaki; Suda, Yasunori

    2014-01-01

    Lateral retinacular release is still being performed in patients with recurrent patellar dislocation as an additional procedure with distal realignment or medial patellofemoral ligament (MPFL) reconstruction. However, consensus remains lacking regarding suitable indications for lateral retinacular release. A 20-year-old woman presented with patellar instability in both medial and lateral directions after undergoing lateral retinacular release with MPFL reconstruction. She displayed inherent systemic joint laxity meeting all seven Carter-Wilkinson criteria. Simultaneous MPFL revision and lateral retinaculum reconstruction successfully improved patellar instability in both directions. This case provides an example of iatrogenic medial patellar instability after failed lateral retinacular release. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Condylar Joint Fusion and Stabilization (by Screws and Plates) in Nontraumatic Atlanto-Occipital Dislocation: Technical Report of 2 Cases.

    PubMed

    Chowdhury, Forhad H; Haque, Mohammod Raziul; Alam, Sarwar Murshed; Khaled Chowdhury, S M Noman; Khan, Shamsul Islam; Goel, Atul

    2017-11-01

    Nontraumatic spontaneous atlanto-occipital dislocation (AOD) is rare. In this report, we discuss the technical steps of condylar joint fusion and stabilization (by screws and plates) in nontraumatic AOD. To the best of our knowledge, it is the first report of such techniques. A young girl and a young man with progressive quadriparesis due to nontraumatic spontaneous atlanto-occipital dislocation were managed by microsurgical reduction, fusion, and stabilization of the joint by occipital condylar and C1 lateral mass screw and plate fixation after mobilization of vertebral artery. In both cases, condylar joints fixation and fusion were done successfully. Condylar joint stabilization and fusion may be a good or alternative option for AOD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Injuries of the acromioclavicular joint].

    PubMed

    Meeder, P J; Dannöhl, C

    1988-07-01

    The injuries of the acromio-clavicular joint require a differentiated diagnosis and treatment. The classification of the acromio-clavicular dislocations from grade I to grade III according to Tossy is proved. The diagnosis of a complete acromio-clavicular dislocation (Tossy III) is an indication for a surgical repair. Many and different methods are reported in the literature. 178 patients with a fresh acromio-clavicular dislocation (Typ Tossy II and III) were treated at the BG-Unfallklinik Tübingen from 1970 to 1987 by suturing the ligaments, inserting pins across the joint and tension wire bending. In old cases with Tossy III dislocation of the acromio-clavicular joint an oblique osteotomy combined with the reduction of the clavicle is recommended as a method of choice. The results of these procedures and there possible intra- and postoperative complications are reported. The incision along the clavicle quite often gives scar problems. Therefore the advantages of an arched incision across the acromio-clavicular joint is pointed out. Because of there biomechanical relationship fractures in the lateral third of the clavicle are similar to dislocations of the acromio-clavicular joint. The classification of these fractures according to Jäger, Buschle and Breitner allows a differentiated management of these lesions.

  17. 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.

    PubMed

    Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O

    2017-11-08

    Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.

  18. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.

  19. [Intramedullary nailing in diaphyseal clavicle fractures using minimally invasive percutaneous reduction].

    PubMed

    Müller, M; Freude, T; Stöckle, U; Kraus, T M

    2017-02-01

    Closed reduction and intramedullary nailing is common in diaphyseal clavicle fractures. The aim of this report is to demonstrate a surgical method with minimally invasive percutaneous reduction in cases where closed reduction fails. The procedure is associated with good cosmetic results. Percutaneous reduction using two reduction forceps enables intramedullary nailing without an open procedure. Open, multifragmented or non-dislocated fractures, oblique fractures due to postoperative dislocation or shortening risk, fracture having potential to become compound fractures, neurovascular complications, pseudoarthroses. The patient is in beach-chair position. After an incision, the nail is entered from medial, two reduction forceps are mounted percutaneously at the lateral and medial fragment. After reduction the nail is pushed forward into the lateral fragment. Thereby, the fracture hematoma is not disturbed for the most part. Early functional rehabilitation with maximal abduction and anteversion of 90° for 6 weeks. Anatomic reduction can be achieved with mild cosmetic impairment.

  20. Rare cause of knee pain after martial arts demonstration: a case report.

    PubMed

    Armstrong, Marc B; Thurber, Jalil

    2013-04-01

    Patellar dislocations are a commonly treated injury in the Emergency Department (ED), with a majority of cases involving lateral subluxation of the patella outside of the joint space. Intra-condylar dislocations of the patella are rare. Of the two types of axis rotation, vertical and horizontal, the vertical occurs five times less frequently. These injuries most often undergo open reduction or, at best, closed reduction under general anesthesia. To remind Emergency Physicians to consider this injury in any patient with severe knee pain and limited mobility, even with a history that is lacking significant trauma. We present a case of intra-condylar patellar dislocation with vertical axis rotation. This injury is no longer primarily attributed to the young and, barring fracture, closed reduction in the ED should be considered. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty

    PubMed Central

    Zijlstra, Wierd P; De Hartog, Bas; Van Steenbergen, Liza N; Scheurs, B Willem; Nelissen, Rob G H H

    2017-01-01

    Background and purpose Recurrent dislocation is the commonest cause of early revision of a total hip arthropasty (THA). We examined the effect of femoral head size and surgical approach on revision rate for dislocation, and for other reasons, after total hip arthroplasty (THA). Patients and methods We analyzed data on 166,231 primary THAs and 3,754 subsequent revision THAs performed between 2007 and 2015, registered in the Dutch Arthroplasty Register (LROI). Revision rate for dislocation, and for all other causes, were calculated by competing-risk analysis at 6-year follow-up. Multivariable Cox proportional hazard regression ratios (HRs) were used for comparisons. Results Posterolateral approach was associated with higher dislocation revision risk (HR =1) than straight lateral, anterolateral, and anterior approaches (HR =0.5–0.6). However, the risk of revision for all other reasons (especially stem loosening) was higher with anterior and anterolateral approaches (HR =1.2) and lowest with posterolateral approach (HR =1). For all approaches, 32-mm heads reduced the risk of revision for dislocation compared to 22- to 28-mm heads (HR =1 and 1.6, respectively), while the risk of revision for other causes remained unchanged. 36-mm heads increasingly reduced the risk of revision for dislocation but only with the posterolateral approach (HR =0.6), while the risk of revision for other reasons was unchanged. With the anterior approach, 36-mm heads increased the risk of revision for other reasons (HR =1.5). Interpretation Compared to the posterolateral approach, direct anterior and anterolateral approaches reduce the risk of revision for dislocation, but at the cost of more stem revisions and other revisions. For all approaches, there is benefit in using 32-mm heads instead of 22- to 28-mm heads. For the posterolateral approach, 36-mm heads can safely further reduce the risk of revision for dislocation. PMID:28440704

  2. Treatment of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures.

    PubMed

    Xu, Xiaofeng; Shi, Jun; Xu, Bing; Dai, Jiewen; Zhang, Shilei

    2015-03-01

    To evaluate the treatment methods of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures (MSF&DICF) and to compare the effect of different treatment methods of condylar fractures. Twenty-eight patients with MSF&DICF were included in this study. Twenty-two sites were treated by open reduction, and all the medial condylar fragments were fixed with titanium screws; whereas the other 22 sites underwent close treatment. The surgical effect between these 2 groups was compared based on clinical examination and radiographic examination results. Seventeen of 22 condyle fractures were repositioned in the surgery group, whereas 4 of 22 condyle fractures were repositioned in the close treatment group. Statistical difference was observed between these 2 groups (P < 0.01). Functional outcomes of the patients treated in the surgical treatment group also were better than those in the close treatment group. The dislocated intracapsular condyle fractures should be treated by surgical reduction with the maintenance of the attachment of lateral pterygoid muscle, which is beneficial to repositioning the dislocated condyle to its original physiological position, to closure of the mandibular lingual gap, to restore the mandibular width.

  3. A new surgical technique for traumatic dislocation of posterior tibial tendon with avulsion fracture of medial malleolus.

    PubMed

    Jeong, Soon-Taek; Hwang, Sun-Chul; Kim, Dong-Hee; Nam, Dae-Cheol

    2015-01-01

    We introduce a case of traumatic dislocation of the posterior tibial tendon with avulsion fracture of the medial malleolus in a 52-year-old female patient who was treated surgically with periosteal flap and suture anchor fixation. Based in the posteromedial ridge of the distal tibia, a quadrilateral periosteal flap was created and folded over the tendon, followed by fixation on the lateral aspect of the groove by use of multiple suture anchors. Clinical and radiological findings 25 months postoperatively showed well-preserved function of the ankle joint with stable tendon gliding.

  4. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.

  5. Osteochondral Autograft from the Ipsilateral Femoral Head by Surgical Dislocation for Treatment of Femoral Head Fracture Dislocation: A Case Report.

    PubMed

    Won, Yougun; Lee, Gi Soo; Kim, Sang Bum; Kim, Sun Joong; Yang, Kyu Hyun

    2016-11-01

    As anatomical reduction of the articular surface of femoral head fractures and restoration of damaged cartilage are essential for good long-term results, many treatment options have been suggested, including fixation of the fracture using various surgical exposures and implants, as well as arthroscopic irrigation and debridement, bone marrow stimulating techniques, osteochondral allograft, autograft, and autogenous chondrocyte implantation. We report a case of osteochondral autograft harvested from its own femoral articular surface through surgical hip dislocation. The osteochondral graft was harvested from the inferior non-weight-bearing articular surface and grafted to the osteochondral defect. One year later, the clinical and radiological results were good, without the collapse of the femoral head or arthritic change. This procedure introduced in our case is considered convenient and able to lessen surgical time without morbidity of the donor site associated with the harvest.

  6. Probing the limits of metal plasticity with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.

  7. Results of Operative and Nonoperative Treatment of Rockwood Types III and V Acromioclavicular Joint Dislocation

    PubMed Central

    Joukainen, Antti; Kröger, Heikki; Niemitukia, Lea; Mäkelä, E. Antero; Väätäinen, Urho

    2014-01-01

    Background: The optimal treatment of acute, complete dislocation of the acromioclavicular joint (ACJ) is still unresolved. Purpose: To determine the difference between operative and nonoperative treatment in acute Rockwood types III and V ACJ dislocation. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In the operative treatment group, the ACJ was reduced and fixed with 2 transarticular Kirschner wires and ACJ ligament suturing. The Kirschner wires were extracted after 6 weeks. Nonoperatively treated patients received a reduction splint for 4 weeks. At the 18- to 20-year follow-up, the Constant, University of California at Los Angeles Shoulder Rating Scale (UCLA), Larsen, and Simple Shoulder Test (SST) scores were obtained, and clinical and radiographic examinations of both shoulders were performed. Results: Twenty-five of 35 potential patients were examined at the 18- to 20-year follow-up. There were 11 patients with Rockwood type III and 14 with type V dislocations. Delayed surgical treatment for ACJ was used in 2 patients during follow-up: 1 in the operatively treated group and 1 in the nonoperatively treated group. Clinically, ACJs were statistically significantly less prominent or unstable in the operative group than in the nonoperative group (normal/prominent/unstable: 9/4/3 and 0/6/3, respectively; P = .02) and in the operative type III (P = .03) but not type V dislocation groups. In operatively and nonoperatively treated patients, the mean Constant scores were 83 and 85, UCLA scores 25 and 27, Larsen scores 11 and 11, and SST scores 11 and 12 at follow-up, respectively. There were no statistically significant differences in type III and type V dislocations. In the radiographic analysis, the ACJ was wider in the nonoperative than the operative group (8.3 vs 3.4 mm; P = .004), and in the type V dislocations (nonoperative vs operative: 8.5 vs 2.4 mm; P = .007). There was no statistically significant difference between study groups in the elevation of the lateral end of the clavicle. Both groups showed equal levels of radiologic signs of ACJ osteoarthritis and calcification of the coracoclavicular ligaments. Conclusion: Nonoperative treatment was shown to produce more prominent or unstable and radiographically wider ACJs than was operative treatment, but clinical results were equally good in the study groups at 18- to 20-year follow-up. Both treatment methods showed statistically significant radiographic elevations of the lateral clavicle when compared with a noninjured ACJ. PMID:26535287

  8. Homoepitaxial and Heteroepitaxial Growth on Step-Free SiC Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony

    2004-01-01

    This article describes the initial discovery and development of new approaches to SiC homoepitaxial and heteroepitaxial growth. These approaches are based upon the previously unanticipated ability to effectively supress two-dimensional nucleation of 3C-SiC on large basal plane terraces that form between growth steps when epitaxy is carried out on 4H- and 6H-SiC nearly on-axis substrates. After subdividing the growth surface into mesa regions, pure stepflow homoeptixay with no terrace nucleation was then used to grow all existing surface steps off the edges of screw-dislocation-free mesas, leaving behind perfectly on-axis (0001) basal plane mesa surfaces completely free of atomic-scale steps. Step-free mesa surfaces as large as 0.4 mm x 0.4 mm were experimentally realized, with the yield and size of step-free mesas being initally limited by substrate screw dislocations. Continued epitaxial growth following step-free surface formation leads to the formation of thin lateral cantilevers that extend the step-free surface area from the top edge of the mesa sidewalls. By selecting a proper pre-growth mesa shape and crystallographic orientation, the rate of cantilever growth can be greatly enhanced in a web growth process that has been used to (1) enlarge step-free surface areas and (2) overgrow and laterally relocate micropipes and screw dislocations. A new growth process, named step-free surface heteroepitaxy, has been developed to achieve 3C-SiC films on 4H- and 6H-SiC substrate mesas completely free of double positioning boundary and stacking fault defects. The process is based upon the controlled terrace nucleation and lateral expansion of a single island of 3C-SiC across a step-free mesa surface. Experimental results indicate that substrateepilayer lattice mismatch is at least partially relieved parallel to the interface without dislocations that undesirably thread through the thickness of the epilayer. These results should enable realization of improved SiC homojunction and heterojunction devices. In addition, these experiments offer important insights into the nature of polytypism during SiC crystal growth.

  9. Lateral traction

    MedlinePlus

    ... treat or reduce any joint dislocation or bone fracture by applying tension to the leg or arm with weights and pulleys to realign the bone. For example, it may be used to help line up a broken bone while it heals. Traction as a treatment involves the amount of ...

  10. Conductive connection induced speed-up of localized-surface-plasmon dynamics

    NASA Astrophysics Data System (ADS)

    Cun, Peng; Wang, Meng; Huang, Cuiying; Huang, Pei; He, Xinkui; Wei, Zhiyi; Zhang, Xinping

    2018-01-01

    Conductive connection of localized surface plasmons (LSPs) was achieved by depositing a layer of continuous gold film onto the top surface of a matrix of randomly distributed gold nanoparticles (AuNPs) that were originally isolated on a glass substrate. Ultrafast spectroscopic response of such plasmonic nanostructures was investigated by femtosecond pump-probe detection technique. The transient-absorption data showed large redshift and broadening of the resonance spectrum of the conductively connected AuNPs with respect to the isolated ones. Such effects led to modulation on the evolution dynamics of LSPs in a transient transition spectral band. Making use of the temporal and spectral dislocation between the edges of transition band, we achieved much increased speed of the plasmonic optical switching effect.

  11. The influence of tyre transient side force properties on vehicle lateral acceleration for a time-varying vertical force

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshimichi

    2018-05-01

    The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.

  12. Superolateral dislocation of the intact mandibular condyle associated with panfacial fracture: a case report and literature review.

    PubMed

    Amaral, Márcio Bruno; Bueno, Sebastião Cristian; Silva, Alice Araújo Ferreira; Mesquita, Ricardo Alves

    2011-06-01

    Superolateral dislocation of the intact mandibular condyle (SDIMC) is rare. This case report focuses on a 15-year-old teenager who was involved in a motor vehicle accident as well a literature review regarding the SDIMC. Clinical examination demonstrated a diffuse edema in the midfacial area and a left lateral deflection of the mandible, including an open bite and a crepitation in the symphyseal region. Three-dimensional computed tomography scans were taken, which presented a superolateral dislocation of the left mandibular condyle as well as panfacial fracture. The patient was set in intermaxillary fixation for 2 weeks and underwent subsequent active jaw physiotherapy, the evaluation of which presented satisfactory results. This case study also presents a literature review, which demonstrated 21 well-documented cases of SDIMC. The patients' mean age was of 29 years. The male gender proved to be more prevalent, with road traffic collisions representing the most common form of accident. Type II, with unilateral dislocation, proved to be the most common. The mean reduction time was 7 days. The open methods were the most commonly used reduction methods. Mandible fracture was associated with dislocation in 82% of the cases, with other facial fractures appearing in only 23% of the cases. Patient follow up presented satisfactory results in 59% of the cases. © 2011 John Wiley & Sons A/S.

  13. Defect sensitive etching of hexagonal boron nitride single crystals

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  14. Experience of the posterior lip augmentation device in a regional hip arthroplasty unit as a treatment for recurrent dislocation.

    PubMed

    Hoggett, L; Cross, C; Helm, T

    2017-12-01

    Dislocation after total hip arthroplasty (THA) remains a significant complication of the procedure and is the third leading cause for revision THA. One technique for treatment of this complication is the use of the posterior lip augmentation device (PLAD). We describe our experience using the PLAD including complication rates. A retrospective review of 55 PLADs (54 patients) was carried out following identification from electronic theatre records. Basic patient demographics, operative records and radiographs were collected and reviewed and data was analysed using Microsoft Excel. Failure of the PLAD was defined as further operative intervention after PLAD insertion and included: dislocation, implant breakage, infection and revision of the THA for loosening of either component. 55 PLADs were implanted in 54 patients with an average age of 77 years. There was a significant preponderance of females and a variety of surgical approaches had been used for the original hip replacement, including trochanteric osteotomy, posterior and antero-lateral. 9 (16%) patients had recurrent dislocations,1 (2%) failed secondary to screw breakage, 3 (5%) had and infection requiring intervention and 2 (4%) underwent further revision for aseptic loosening of the femoral component. The overall failure rate was 25% with 14 patients requiring intervention post PLAD. Our results are inferior to other published results and indicate that the PLAD should be used with caution for recurrent dislocations of the Charnley hip replacement.

  15. Clinical course of acute laryngeal trauma and associated effects on phonation.

    PubMed

    Brosch, S; Johannsen, H S

    1999-01-01

    We report the clinical course of blunt laryngeal trauma in three young patients. All three patients underwent several phoniatric examinations as well as indirect microlaryngoscopy and microstroboscopy. The follow-up period ranged from three to eight months. In the first case, there was isolated haemorrhage of the left vocal fold; in the second, dislocation of the arytenoid cartilage with formation of an adhesion in the area of the anterior commissure; and, in the third, non-dislocated fracture of the thyroid cartilage with development of haematoma in the right hemilarynx and transient vocal fold paralysis. One patient required surgical treatment; however, repositioning of the arytenoid cartilage, attempted seven weeks following the injury, proved unsuccessful. In conclusion, all three patients showed significant limitation of vocal fold vibration many months after trauma which was unrelated to the extent of resulting tissue damage. In all three cases, patients developed secondary posttraumatic functional dysphonia requiring treatment.

  16. Effects of surgical intervention on trochlear remodeling in pediatric patients with recurrent patella dislocation cases.

    PubMed

    Sugimoto, Dai; Christino, Melissa A; Micheli, Lyle J

    2016-07-01

    Patella instability is often encountered among physically active pediatric athletes, and surgical intervention is useful in cases with recurrent patella dislocations, chronic instability, and abnormal alignment. Several surgical procedures have been used for patella-realignment and stabilization, but the effects of surgical intervention on bony trochlear remodeling in skeletally immature patients have not been well studied. We thus present two cases of pediatric recurrent patella dislocations that showed trochlear remodeling following patella-realignment surgery. The first case describes an 11-year-old female treated with a Roux-Golthwait procedure and the second case highlights a 12-year-old male treated with lateral release and medial capsular reefing. The Merchant technique, a radiographic criterion that was designed to evaluate patella alignment in relation to the femoral trochlea groove, including sulcus and congruence angles was used to measure postoperative bony development. Both pediatric patients showed successful outcomes following surgical interventions for chronic patella instability. Using the Merchant technique, both patients showed improved congruence and sulcus angles postoperatively. Patella realignment in skeletally immature patients may be beneficial for promoting trochlear remodeling and deepening of the trochlear groove, which may help protect against future dislocation or subluxation events. Level IV, case report.

  17. Spontaneous displacement of olecranon fracture through geode salvaged by elbow replacement.

    PubMed

    Jaiswal, Anuj; Thakur, Raman; Relwani, Jaikumar; Ogufere, Wallace

    2010-04-01

    We present a case of pathological fracture of olecranon through a giant geode. Fracture was initially undisplaced and was treated conservatively. It later progressed to a transolecranon dislocation as a result of a pseudarthrosis at the fracture site. The patient presented 4 years later when she developed symptoms of ulnar nerve palsy. She was treated by a total elbow arthroplasty with ulnar nerve transposition. The current report highlights this unusual case and reviews the relevant literature.

  18. Bearing Dislocation and Progression of Osteoarthritis After Mobile-bearing Unicompartmental Knee Arthroplasty Vary Between Asian and Western Patients: A Meta-analysis.

    PubMed

    Ro, Kyung-Han; Heo, Jae-Won; Lee, Dae-Hee

    2018-05-01

    Implant survivorship is reported to be lower and complications, particularly bearing dislocation, are reported to be more frequent in Asian than in Western patients with medial knee osteoarthritis (OA) undergoing Oxford® Phase III unicompartmental knee arthroplasty (UKA). To date, however, these complications have not been compared between these groups of patients. The purpose of this study was to perform a meta-analysis comparing the standardized incidence rates of (1) all-cause reoperation; (2) reoperation related to bearing dislocation; and (3) reoperation related to progression of lateral compartment arthritis in Asian and Western patients with medial knee OA who underwent Oxford Phase III UKA. We searched MEDLINE® (January 1, 1976, to May 31, 2017), EMBASE® (January 1, 1985, to May 31, 2017), and the Cochrane Library (January 1, 1987, to May 31, 2017) for studies that reported complications of Oxford Phase III UKAs. Studies were included if they reported reoperation rates attributable to bearing dislocation and/or progression of lateral knee OA after surgery with this implant. Twenty-seven studies were included in this systematic review and 16 studies with followups > 5 years were included in the meta-analysis. These rates were converted to standardized incidence rate (that is, reoperations per 100 observed component years) based on mean followup and number of involved knees in each study. After applying prespecified inclusion and exclusion criteria, the studies were categorized into two groups, Asian and Western, based on hospital location. Twenty-five studies, containing 3152 Asian patients and 5455 Western patients, were evaluated. Study quality was assessed by the modified Coleman Methodology score (MCMS). Although all studies were Level IV, their mean MCMS score was 66.92 (SD, 8.7; 95% confidence interval [CI], 63.5-70.3), indicating fair quality. Because the heterogeneity of all subgroup meta-analyses was high, a random-effects model was used with estimations using the restricted maximum likelihood method. There was no difference in the proportion of Asian patients versus Western patients undergoing reoperation for any cause calculated as 100 component observed years (1.022 of 3152 Asian patients; 95% CI, 0.810-1.235 versus 1.300 of 5455 Western patients; 95% CI, 1.067-1.534; odds ratio, 0.7839; 95% CI, 0.5323-1.1545; p = 0.178). The mean reoperation rate attributable to bearing dislocation per 100 observed years was higher in Asian than in Western patients (0.525; 95% CI, 0.407-0.643 versus 0.141; 95% CI, 0.116-0.166; odds ratio, 3.7378; 95% CI, 1.694-8.248; p = 0.001) Conversely, the mean reoperation rate attributable to lateral knee OA per 100 observed years was lower in Asian than in Western patients (0.093; 95% CI, 0.070-0.115 versus 0.298; 95% CI, 0.217-0.379; odds ratio, 0.3114; 95% CI, 0.0986-0.9840; p < 0.001). Although total reoperation rates did not differ in the two populations, reoperation for bearing dislocation was more likely to occur in Asian than in Western patients, whereas reoperation for lateral knee OA progression was more likely to occur in Western than in Asian patients after Oxford Phase III UKA. Although possible explanations for these findings may be hypothesized, additional randomized, prospective comparative studies are needed. However, better survival outcomes after UKA may require consideration of ethnicity and lifestyle choices in addition to traditional surgical technique and perioperative care. Level III, therapeutic study.

  19. Radiology of adolescent slipped capital femoral epiphysis: measurement of epiphyseal angles and diagnosis.

    PubMed

    Gekeler, Jörg

    2007-10-01

    AIMS OF DIAGNOSTIC RADIOGRAPHY: Visualization of the proximal femur in two clearly defined projections. Radiologic and morphological diagnosis of slipped capital femoral epiphysis. Evaluation of the stability of the femoral epiphysis: chronic slippage or acute interruption of continuity between the femoral epiphysis and the femoral neck metaphysis. Radiometric measurement of the spatial deformity of the femoral epiphysis. Measurement of the projected epiphyseal angle on the radiograph as the basis for possible conversion into anatomically correct angles at the proximal femur. Preoperative planning of therapeutic surgical procedures. Idiopathic hip pain in the growing child or adolescent. Referred pain to the knee or thigh. Unusual gait pattern with external rotation deformity of the leg, limping that favors one leg or limping due to leg length discrepancy. Abnormal sonography, CT or MRI findings. Eventful history including minor injury or genuine trauma. Symptoms and uncommon physical constitution: obesity, exceptional longitudinal growth of the extremities, and absence of secondary sex characteristics. Indications for Radiographic Imaging of the Hip Joint in Two Planes None. Standard positioning of the patient or the affected extremity. First standard radiograph: proximal femur in anteroposterior projection. Position of the leg with the patella directed anteriorly. Contraction of the external rotators at the hip joint is compensated by elevation of the hip until the leg is in the neutral position. Second standard radiograph: axial view of the proximal femur in anteroposterior projection. Leg flexed to 90 degrees at the hip and in 45 degrees abduction. Thigh position parallel to the longitudinal axis of the table (zero rotation). Early signs of incipient or imminent femoral epiphyseolysis: --Disintegration, widening and blurred margins of the epiphyseal plate. --Increasing loss of height of the femoral epiphysis due to incipient dislocation. --The tangent to the lateral femoral neck intersects only slightly with the femoral head or runs tangential to the epiphysis. --Important second radiograph in axial projection: incipient slippage is seen early here. Comparison with the contralateral side. Chronic slipped capital femoral epiphysis in adolescents: --Advanced epiphyseal dislocation visible in both planes. The tangent to the lateral femoral neck no longer intersects with the dislocated femoral epiphysis. In some cases, varus deformity of the femoral neck and periosteal elevation at the borders of the medial femoral neck. --Epiphyseal dislocation even more apparent in the axial view. Acute slipped capital femoral epiphysis in adolescents: --Complete interruption of continuity between epiphysis and metaphysis. --Widened gap between epiphysis and metaphysis. --Cystic irregularities of the metaphysis. --In most cases, substantial dislocation between epiphysis and metaphysis. --"Acute on chronic slip": specific type of acute epiphyseal dislocation subsequent to chronic epiphyseolysis. In addition to signs of acute separation, secondary symptoms of chronic epiphyseolysis such as femoral neck arcuation and spur formation at the head-neck junction. --Dynamic fluoroscopy may be indicated to confirm acute dislocation. Defined axes are marked on the radiograph: anatomic axis of the femur, femoral neck axis, and so-called epiphyseal axis (perpendicular to the base of the epiphysis). Measurement of the projected epiphysis-diaphysis angle (ED' angle) on the anteroposterior radiograph and the projected epiphyseal torsion angle (ET' angle) on the axial radiograph. For slight to moderate slippage, the difference between the epiphyseal dislocation angle obtained from the radiographs (as projected in two planes) compared with the anatomic, i.e., real dislocation angle at the proximal femur is generally relatively minor. Conversion of the projected angle to the real angle is not essential in these cases (if in doubt, see Table 1). For more severe dislocations, the differences between the projected and real angles are far more apparent. Table 1 facilitates conversion of the epiphyseal dislocation angles taken from the radiograph into anatomically correct dislocation angles at the proximal femur. Conversion to real angles, especially for preoperative planning of complex corrective surgery, is indicated for more severe deformities of the femoral epiphysis. Conversion into real (anatomic) angles is indicated for exact prognostic evaluation of prearthrotic deformities.

  20. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms

    PubMed Central

    Chen, Kinon; Liu, Jie; Assinck, Peggy; Bhatnagar, Tim; Streijger, Femke; Zhu, Qingan; Dvorak, Marcel F.; Kwon, Brian K.; Tetzlaff, Wolfram

    2016-01-01

    Abstract The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI. PMID:26671448

  1. Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Shengchang; Kong, Man

    2014-01-28

    The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less

  2. Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton; Vyvenko, Oleg

    2018-03-01

    Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.

  3. The reverse Segond fracture: not associated with knee dislocation and rarely with posterior cruciate ligament tear.

    PubMed

    Peltola, Erno K; Lindahl, Jan; Koskinen, Seppo K

    2014-06-01

    The aims of this study were to assess the incidence of reverse Segond fracture, to examine the associated ligamentous injuries, and to examine how often reverse Segond fracture coexists with a knee dislocation. At a level 1 trauma center, an 11-year period of emergency department multidetector-row computed tomography (MDCT) examinations for knee trauma was evaluated for reverse Segond and Segond fractures. Surgical findings served as the reference standard for intra-articular injuries. The hospital discharge register was searched for the diagnosis of knee dislocation from August 2000 through the end of August 2011. A total of 1,553 knee MDCT examinations were evaluated. Ten patients with a reverse Segond fracture were found, comprising 0.64 % of emergency room acute knee trauma MDCT examinations. Seven patients who had a reverse Segond fracture were operated: Three had an avulsion fracture of the anterior cruciate ligament, one had an avulsion fracture of posterior cruciate ligament, two had a lateral meniscal tear, and two had a medial collateral ligament tear. The ratio of reverse Segond fractures to Segond fractures was 1:4. None of the 71 knee dislocation patients had a reverse Segond fracture. Reverse Segond fracture is a rare finding even in a level 1 trauma center. Cruciate ligament injuries appear to be associated with avulsion fracture, but every patient does not have PCL injury, as previously reported. Our results do not support the association of knee dislocation with reverse Segond fracture.

  4. Medial patellofemoral ligament reconstruction with a divergent patellar transverse 2-tunnel technique.

    PubMed

    Panni, Alfredo Schiavone; Alam, Mahbub; Cerciello, Simone; Vasso, Michele; Maffulli, Nicola

    2011-12-01

    The medial patellofemoral ligament (MPFL) is the primary passive restraint to lateral patellar dislocation and there is increasing awareness of its role in recurrent lateral patellar instability. This study was conducted to prospectively analyze the functional results of a modified MPFL reconstruction technique in recurrent patellar dislocation. Case series; Level of evidence, 4. Forty-eight patients (51 knees) with at least 3 episodes of lateral patellar dislocation who had been treated with a 6-month rehabilitation protocol were included in this study. All patients practiced sports regularly. Reconstruction was with a semitendinosus tendon using a divergent 2-tunnel technique. Outcome was evaluated with the Kujala, Larsen, modified Lysholm, and Fulkerson outcome scores. Patient satisfaction with range of motion, pain, and sporting activities was also assessed. Three patients were lost at the final follow-up, giving a follow-up rate of 94%. The mean follow-up was 33 months. There was no patella dislocation postoperatively. The mean Kujala score improved significantly (P < .01) from 56.7 ± 17.7 (2 × standard deviation) preoperatively to 86.8 ± 14.4 postoperatively. The mean Larsen score improved significantly (P < .01) from 12.4 ± 3.2 to 17.1 ± 2.7. The mean Fulkerson score improved significantly (P < .01) from 59.2 ± 21.8 to 90.1 ± 14. The mean modified Lysholm score improved significantly (P < .01) from 57.6 ± 19.6 to 88.1 ± 16.2. Sixty-four percent of patients returned to the same type of sport at the same level, 16% reduced the level or type of sport for reasons unrelated to the surgery, while 20% reduced the level of sport or changed it for reasons related to surgery. Eighty-seven percent were either satisfied or very satisfied with the pain relief achieved. The patellar tilt decreased significantly from a preoperative mean of 11.1° to 8.9° at the last follow-up (P = .02). The mean preoperative Insall-Salvati ratio of 1.1 decreased to 1.06, although the change was not significant (P = .1). The results of modified MPFL reconstructions are encouraging, with minimal risks of redislocation and an overall patient satisfaction rate of over 80%. These early and medium-term results are comparable with those of other MPFL reconstruction techniques reported in the literature.

  5. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Treesearch

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  6. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... straighten and immobilize the spine to allow bone grafts to unite and fuse the vertebrae together. The device is used primarily in the treatment of scoliosis (a lateral curvature of the spine), but it also may be used in the treatment of fracture or dislocation of the spine, grades 3 and 4 of spondylolisthesis...

  7. 21 CFR 888.3050 - Spinal interlaminal fixation orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... straighten and immobilize the spine to allow bone grafts to unite and fuse the vertebrae together. The device is used primarily in the treatment of scoliosis (a lateral curvature of the spine), but it also may be used in the treatment of fracture or dislocation of the spine, grades 3 and 4 of spondylolisthesis...

  8. Divacancy-hydrogen complexes in dislocation-free high-purity germanium. [Annealing, Hall effect, steady-state concentration energy dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haller, E.E.; Hubbard, G.S.; Hansen, W.L.

    1976-09-01

    A defect center with a single acceptor level at E/sub v/ + 0.08 eV appears in H/sub 2/-grown dislocation-free high-purity germanium. Its concentration changes reversibly upon annealing up to 650 K. By means of Hall-effect and conductivity measurements over a large temperature range the temperature dependence of the steady-state concentration between 450 and 720 K as well as the transients following changes in temperature were determined. The observed acceptor level is attributed to the divacancy-hydrogen complex V/sub 2/H. The complex reacts with hydrogen, dissolved in the Ge lattice or stored in traps, according to V/sub 2/H + H reversible V/submore » 2/H/sub 2/. An energy level associated with the divacancy-dihydrogen complex was not observed. These results are in good agreement with the idea that hydrogen in germanium forms a ''very deep donor'' (i.e., the energy level lies inside the valence band).« less

  9. Stress and efficiency studies in EFG

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.

  10. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  11. In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel

    DOE PAGES

    Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan; ...

    2017-05-17

    Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less

  12. In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan

    Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less

  13. Diamond heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  14. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    NASA Astrophysics Data System (ADS)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-10-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules.

  15. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  16. Successful treatment of a patient after sudden loss of the disc in a Björk-Shiley convexo-concave mitral prosthesis.

    PubMed

    Scalia, D; Giacomin, A; Da Col, U; Valfre, C

    1987-10-01

    The patient's survival after minor strut fracture and migration of a Björk-Shiley mitral prosthetic disc is presented. The operation was carried out in two stages: first emergency replacement of the mitral prosthesis and, later, elective removal of the dislocated disc.

  17. What are the risk factors for dislocation in primary total hip arthroplasty? A multicenter case-control study of 128 unstable and 438 stable hips.

    PubMed

    Fessy, M H; Putman, S; Viste, A; Isida, R; Ramdane, N; Ferreira, A; Leglise, A; Rubens-Duval, B; Bonin, N; Bonnomet, F; Combes, A; Boisgard, S; Mainard, D; Leclercq, S; Migaud, H

    2017-09-01

    Dislocation after total hip arthroplasty (THA) is a leading reason for surgical revision. The risk factors for dislocation are controversial, particularly those related to the patient and to the surgical procedure itself. The differences in opinion on the impact of these factors stem from the fact they are often evaluated using retrospective studies or in limited patient populations. This led us to carry out a prospective case-control study on a large population to determine: 1) the risk factors for dislocation after THA, 2) the features of these dislocations, and 3) the contribution of patient-related factors and surgery-related factors. Risk factors for dislocation related to the patient and procedure can be identified using a large case-control study. A multicenter, prospective case-control study was performed between January 1 and December 31, 2013. Four patients with stable THAs were matched to each patient with a dislocated THA. This led to 566 primary THA cases being included: 128 unstable, 438 stable. The primary matching factors were sex, age, initial diagnosis, surgical approach, implantation date and type of implants (bearing size, standard or dual-mobility cup). The patients with unstable THAs were 67±12 [37-73]years old on average; there were 61 women (48%) and 67 men (52%). Hip osteoarthritis (OA) was the main reason for the THA procedure in 71% (91/128) of the unstable group. The dislocation was posterior in 84 cases and anterior in 44 cases. The dislocation occurred within 3 months of the primary surgery in 48 cases (38%), 3 to 12 months after in 23 cases (18%), 1 to 5years after in 20 cases (16%), 5 to 10years after in 17 cases (13%) and more than 10years later in 20 cases. The dislocation recurred within 6 months of the initial dislocation in 23 of the 128 cases (18%). The risk factors for instability were a high ASA score with an odds ratio (OR) of 1.93 (95% CI: 1.4-2.6), neurological disability (cognitive, motor or psychiatric disorders) with an OR of 3.9 (95% CI: 2.15-7.1), history of spinal disease (lumbar stenosis, spinal fusion, discectomy, scoliosis and injury sequelae) with an OR of 1.89 (95% CI: 1.0-3.6), unrepaired joint capsule (all approaches) with an OR of 4.1 (95% CI: 2.3-7.37), unrepaired joint capsule (posterior approach) with an OR of 6.0 (95% CI: 2.2-15.9), and cup inclination outside Lewinnek's safe zone (30°-50°) with OR of 2.4 (95% CI: 1.4-4.0). This large comparative study isolated important patient-related factors for dislocation that surgeons must be aware of. We also found evidence that implanting the cup in 30° to 50° inclination has a major impact on preventing dislocation. Level III; case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  19. Acute traumatic open posterolateral dislocation of the ankle without tearing of the tibiofibular syndesmosis ligaments: a case report.

    PubMed

    Demiralp, Bahtiyar; Komurcu, Mahmut; Ozturk, Cagatay; Ozturan, Kutay; Tasatan, Ersin; Erler, Kaan

    2008-01-01

    Pure open dislocation of the ankle, or dislocation not accompanied by rupture of the tibiofibular syndesmosis ligaments or fractures of the malleoli or of the posterior border of the tibia, is an extremely rare injury. A 62-year-old man injured his right ankle in a motor vehicle accident. Besides posterolateral ankle dislocation, there was a 7-cm transverse skin cut on the medial malleolus, and the distal end of the tibia was exposed. After reduction, we made a 2- to 2.5-cm longitudinal incision on the lateral malleolus; the distal fibular fracture was exposed. Two Kirschner wires were placed intramedullary in a retrograde manner, and the fracture was stabilized. The deltoid ligament and the medial capsule were repaired. The tibiofibular syndesmosis ligaments were intact. At the end of postoperative year 1, right ankle joint range of motion had a limit of approximately 5 degrees in dorsiflexion, 10 degrees in plantarflexion, 5 degrees in inversion, and 0 degrees in eversion. The joint appeared normal on radiographs, with no signs of osteoarthritis or calcification. The best result can be obtained with early reduction, debridement, medial capsule and deltoid ligament restoration, and early rehabilitation. Clinical and radiographic features at long-term follow-up also confirm good mobility of the ankle without degenerative change or mechanical instability.

  20. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  1. Demographics and Injuries Associated With Knee Dislocation: A Prospective Review of 303 Patients

    PubMed Central

    Moatshe, Gilbert; Dornan, Grant J.; Løken, Sverre; Ludvigsen, Tom C.; LaPrade, Robert F.; Engebretsen, Lars

    2017-01-01

    Background: Information on the incidence, injury mechanisms, ligament injury patterns, and associated injuries of knee dislocations is lacking in the literature. There is a need to characterize ligament injury patterns and associated injuries in knee dislocations to avoid missing common associated diagnoses and to plan surgical treatment. Purpose: To evaluate patient demographics, ligament injury patterns and associated injury patterns, and associated injuries in patients with knee dislocation. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 303 patients with knee dislocations treated at a single level 1 trauma center were followed prospectively. Injury mechanism; ligament injury patterns; associated neurovascular, meniscal, and cartilage injuries; and surgical complications were recorded. The Schenck knee dislocation classification was used to classify the ligament injury patterns. Results: The mean age at injury was 37.8 ± 15.3 years. Of the 303 patients included, 65% were male and 35% were female. There was an equal distribution of high-energy and low-energy injuries. Injury to 3 major ligaments was the most common, with Schenck classification type KD III-M constituting 52.4% of the injuries and KD III-L comprising 28.1%. Meniscal injuries and cartilage injuries occurred in 37.3% and 28.3% of patients, respectively. Patients with acute injuries had significantly lower odds of a cartilage injury than those with chronic injuries (odds ratio [OR], 0.28; 95% CI, 0.15-0.50; P < .001). Peroneal nerve injuries were recorded in 19.2% of patients (10.9% partial and 8.3% complete deficit), while vascular injuries were recorded in 5%. The odds of having a common peroneal nerve injury were 42 times greater (P < .001) among those with posterolateral corner injury (KD III-L) than those without. The odds for popliteal artery injury were 9 times greater (P = .001) among those with KD III-L injuries than other ligament injury types. Conclusion: Medial-sided bicruciate injuries were the most common injury pattern in knee dislocations. Cartilage injuries were common in chronically treated patients. There was a significant risk of peroneal nerve injury with lateral-sided injuries. PMID:28589159

  2. Multiple methods of surgical treatment combined with primary IOL implantation on traumatic lens subluxation/dislocation in patients with secondary glaucoma

    PubMed Central

    Wang, Rui; Bi, Chun-Chao; Lei, Chun-Ling; Sun, Wen-Tao; Wang, Shan-Shan; Dong, Xiao-Juan

    2014-01-01

    AIM To describe clinical findings and complications from cases of traumatic lens subluxation/dislocation in patients with secondary glaucoma, and discuss the multiple treating methods of operation combined with primary intraocular lens (IOL) implantation. METHODS Non-comparative retrospective observational case series. Participants: 30 cases (30 eyes) of lens subluxation/dislocation in patients with secondary glaucoma were investigated which accepted the surgical treatment by author in the Ophthalmology of Xi'an No.4 Hospital from 2007 to 2011. According to the different situations of lens subluxation/dislocation, various surgical procedures were performed such as crystalline lens phacoemulsification, crystalline lens phacoemulsification combined anterior vitrectomy, intracapsular cataract extraction combined anterior vitrectomy, lensectomy combined anterior vitrectomy though peripheral transparent cornea incision, pars plana lensectomy combined pars plana vitrectomy, and intravitreal cavity crystalline lens phacofragmentation combined pars plana vitrectomy. And whether to implement trabeculectomy depended on the different situations of secondary glaucoma. The posterior chamber intraocular lenses (PC-IOLs) were implanted in the capsular-bag or trassclerally sutured in the sulus decided by whether the capsular were present. Main outcome measures: visual acuity, intraocular pressure, the situation of intraocular lens and complications after the operations. RESULTS The follow-up time was 11-36mo (21.4±7.13). Postoperative visual acuity of all eyes were improved; 28 cases maintained IOP below 21 mm Hg; 2 cases had slightly IOL subluxation, 4 cases had slightly tilted lens optical area; 1 case had postoperative choroidal detachment; 4 cases had postoperative corneal edema more than 1wk, but eventually recovered transparent; 2 cases had mild postoperative vitreous hemorrhage, and absorbed 4wk later. There was no postoperative retinal detachment, IOL dislocation, and endophthalmitis. CONCLUSION To take early treatment of traumatic lens subluxation/dislocation in patients with secondary glaucoma by individual surgical plan based on the different eye conditions would be safe and effective, which can effectively control the intraocular pressure and restore some vision. PMID:24790868

  3. Corneal toxicity after Ozurdex(®) migration into anterior chamber.

    PubMed

    Bernal, L; Estévez, B

    2016-06-01

    To describe a case of corneal toxicity after migration of a dexamethasone implant into the anterior chamber. A 62-year-old man with aphakia and a history of vitrectomy received a dexamethasone implant for a refractory Irvine-Gass syndrome. Thirty days later, the implant migrated into the anterior chamber causing endothelial contact with secondary corneal oedema that justified the removal of the implant without resolution of the oedema. Clinical tolerability to dislocated implant is poor in cases with pre-existing corneal oedema, and because of this, it must be removed early. In cases of aphakia and vitrectomy, the increased risk of Ozurdex(®) dislocation justifies performing a prior endothelial count. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  4. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  5. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  6. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  7. Transient hypothyroidism in the newborn: to treat or not to treat

    PubMed Central

    Kanike, Neelakanta; Davis, Ajuah

    2017-01-01

    Transient congenital hypothyroidism (CH) refers to a temporary deficiency of thyroid hormone identified after birth, with low thyroxine (T4) and elevated thyrotropin (TSH), which later recovers to improved thyroxine production, typically in first few months of infancy. Approximately 17% to 40% of children diagnosed with CH by newborn screening (NBS) programs were later determined to have transient hypothyroidism. Causes of transient CH are prematurity, iodine deficiency, maternal thyrotropin receptor blocking antibodies, maternal intake of anti-thyroid drugs, maternal or neonatal iodine exposure, loss of function mutations and hepatic hemangiomas. The classic clinical symptoms and signs of CH are usually absent immediately after birth in vast majority of infants due to temporary protection from maternal thyroxine. NBS has been largely successful in preventing intellectual disability by early detection of CH by performing thyroid function tests in infants with abnormal screening results. In this review we present the evidence for decision making regarding treatment vs. withholding treatment in infants with transient CH and present a rational approach to identifying transient CH based on American Academy of Pediatrics (AAP) recommendation. PMID:29184815

  8. Minimally Invasive Repair of Pectus Excavatum Without Bar Stabilizers Using Endo Close.

    PubMed

    Pio, Luca; Carlucci, Marcello; Leonelli, Lorenzo; Erminio, Giovanni; Mattioli, Girolamo; Torre, Michele

    2016-02-01

    Since the introduction of the Nuss technique for pectus excavatum (PE) repair, stabilization of the bar has been a matter of debate and a crucial point for the outcome, as bar dislocation remains one of the most frequent complications. Several techniques have been described, most of them including the use of a metal stabilizer, which, however, can increase morbidity and be difficult to remove. Our study compares bar stabilization techniques in two groups of patients, respectively, with and without the metal stabilizer. A retrospective study on patients affected by PE and treated by the Nuss technique from January 2012 to June 2013 at our institution was performed in order to evaluate the efficacy of metal stabilizers. Group 1 included patients who did not have the metal stabilizer inserted; stabilization was achieved with multiple (at least four) bilateral pericostal Endo Close™ (Auto Suture, US Surgical; Tyco Healthcare Group, Norwalk, CT) sutures. Group 2 included patients who had a metal stabilizer placed because pericostal sutures could not be used bilaterally. We compared the two groups in terms of bar dislocation rate, surgical operative time, and other complications. Statistical analysis was performed with the Mann-Whitney U test and Fisher's exact test. Fifty-seven patients were included in the study: 37 in Group 1 and 20 in Group 2. Two patients from Group 2 had a bar dislocation. Statistical analysis showed no difference between the two groups in dislocation rate or other complications. In our experience, the placement of a metal stabilizer did not reduce the rate of bar dislocation. Bar stabilization by the pericostal Endo Close suture technique appears to have no increase in morbidity or migration compared with the metal lateral stabilizer technique.

  9. Preservation of the articular capsule and short lateral rotator in direct anterior approach to total hip arthroplasty.

    PubMed

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko; Morohashi, Itaru

    2018-03-09

    In total hip arthroplasty via a direct anterior approach, the femur must be elevated at the time of femoral implant placement. For adequate elevation, division of the posterior soft tissues is necessary. However, if we damage and separate the posterior muscle tissue, we lose the benefits of the intermuscular approach. Furthermore, damage to the posterior soft tissue can result in posterior dislocation. We investigate that protecting the posterior soft tissue increases the joint stability in the early postoperative period and results in a lower dislocation rate. We evaluated muscle strength recovery by measuring the maximum width of the internal obturator muscle on CT images (GE-Healthcare Discovery CT 750HD). We compared the maximum width of the muscle belly preoperatively versus 10 days and 6 months postoperatively. As clinical evaluations, we also investigated the range of motion of the hip joint, hip joint function based on the Japanese Orthopaedic Association hip score (JOA score), and the dislocation rate 6 months after surgery. The width of the internal obturator muscle increased significantly from 15.1 ± 3.1 mm before surgery to 16.4 ± 2.8 mm 6 months after surgery. The JOA score improved significantly from 50.8 ± 15.1 points to 95.6 ± 7.6 points. No dislocations occurred in this study. We cut only the posterosuperior articular capsule and protected the internal obturator muscle to preserve muscle strength. We repaired the entire posterosuperior and anterior articular capsule. These treatments increase joint stability in the early postoperative period, thus reducing the dislocation rate. Therapeutic, Level IV.

  10. Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions

    USGS Publications Warehouse

    Masterlark, Timothy

    2003-01-01

    Dislocation models can simulate static deformation caused by slip along a fault. These models usually take the form of a dislocation embedded in a homogeneous, isotropic, Poisson-solid half-space (HIPSHS). However, the widely accepted HIPSHS assumptions poorly approximate subduction zone systems of converging oceanic and continental crust. This study uses three-dimensional finite element models (FEMs) that allow for any combination (including none) of the HIPSHS assumptions to compute synthetic Green's functions for displacement. Using the 1995 Mw = 8.0 Jalisco-Colima, Mexico, subduction zone earthquake and associated measurements from a nearby GPS array as an example, FEM-generated synthetic Green's functions are combined with standard linear inverse methods to estimate dislocation distributions along the subduction interface. Loading a forward HIPSHS model with dislocation distributions, estimated from FEMs that sequentially relax the HIPSHS assumptions, yields the sensitivity of predicted displacements to each of the HIPSHS assumptions. For the subduction zone models tested and the specific field situation considered, sensitivities to the individual Poisson-solid, isotropy, and homogeneity assumptions can be substantially greater than GPS. measurement uncertainties. Forward modeling quantifies stress coupling between the Mw = 8.0 earthquake and a nearby Mw = 6.3 earthquake that occurred 63 days later. Coulomb stress changes predicted from static HIPSHS models cannot account for the 63-day lag time between events. Alternatively, an FEM that includes a poroelastic oceanic crust, which allows for postseismic pore fluid pressure recovery, can account for the lag time. The pore fluid pressure recovery rate puts an upper limit of 10-17 m2 on the bulk permeability of the oceanic crust. Copyright 2003 by the American Geophysical Union.

  11. Role of dislocations and carrier concentration in limiting the electron mobility of InN films grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; De, Arpan; Shivaprasad, S. M.

    2018-01-01

    We report the molecular beam epitaxy growth of device quality InN films on GaN epilayer and nano-wall network (NWN) templates deposited on c-sapphire by varying the film thickness up to 1 μm. The careful experiments are directed towards obtaining high mobility InN layers having a low band gap with improved crystal quality. The dislocation density is quantified by using high resolution X-ray diffraction rocking curve broadening values of symmetric and asymmetric reflections, respectively. We observe that the dislocation density of the InN films grown on GaN NWN is less than that of the films grown on the GaN epilayer. This is attributed to the nanoepitaxial lateral overlayer growth (ELOG) process, where the presence of voids at the interface of InN/GaN NWN prevents the propagation of dislocation lines into the InN epilayers, thereby causing less defects in the overgrown InN films. Thus, this new adaptation of the nano-ELOG growth process enables us to prepare InN layers with high electron mobility. The obtained electron mobility of 2121 cm2/Vs for 1 μm thick InN/GaN NWN is comparable with the literature values of similar thickness InN films. Furthermore, in order to understand the reasons that limit electron mobility, the charge neutrality condition is employed to study the variation of electron mobility as a function of dislocation density and carrier concentration. Overall, this study provides a route to attaining improved crystal quality and electronic properties of InN films.

  12. Estimation of automobile-driver describing function from highway tests using the double steering wheel

    NASA Technical Reports Server (NTRS)

    Delp, P.; Crossman, E. R. F. W.; Szostak, H.

    1972-01-01

    The automobile-driver describing function for lateral position control was estimated for three subjects from frequency response analysis of straight road test results. The measurement procedure employed an instrumented full size sedan with known steering response characteristics, and equipped with a lateral lane position measuring device based on video detection of white stripe lane markings. Forcing functions were inserted through a servo driven double steering wheel coupling the driver to the steering system proper. Random appearing, Gaussian, and transient time functions were used. The quasi-linear models fitted to the random appearing input frequency response characterized the driver as compensating for lateral position error in a proportional, derivative, and integral manner. Similar parameters were fitted to the Gabor transformed frequency response of the driver to transient functions. A fourth term corresponding to response to lateral acceleration was determined by matching the time response histories of the model to the experimental results. The time histories show evidence of pulse-like nonlinear behavior during extended response to step transients which appear as high frequency remnant power.

  13. Spatial and Financial Fixes and the Global Financial Crisis: Does Labour Have the Knowledge and Power to Meet the Challenge?

    ERIC Educational Resources Information Center

    Brown, Tony

    2013-01-01

    Five years after the global financial crisis, and trillions of dollars in stimulus spending later, the crisis not only remains unresolved, but risks entering a new deeper phase in southern Europe. The global turbulence, although experienced with differing degrees of intensity and dislocation around the world, manifests as high unemployment,…

  14. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    PubMed Central

    Chen, Jianyi; Li, Dongdong

    2018-01-01

    The advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width. PMID:29740600

  15. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  16. Rebound upbeat nystagmus after lateral gaze in episodic ataxia type 2.

    PubMed

    Kim, Hyo-Jung; Kim, Ji-Soo; Choi, Jae-Hwan; Shin, Jin-Hong; Choi, Kwang-Dong; Zee, David S

    2014-06-01

    Rebound nystagmus is a transient nystagmus that occurs on resuming the straight-ahead position after prolonged eccentric gaze. Even though rebound nystagmus is commonly associated with gaze-evoked nystagmus (GEN), development of rebound nystagmus in a different plane of gaze has not been described. We report a patient with episodic ataxia type 2 who showed transient upbeat nystagmus on resuming the straight-ahead position after sustained lateral gaze that had induced GEN and downbeat nystagmus. The rebound upbeat nystagmus may be ascribed to a shifting null in the vertical plane as a result of an adaptation to the downbeat nystagmus that developed during lateral gaze.

  17. Biomechanical properties of the atlantoaxial joint with naturally-occurring instability in a toy breed dog. A comparative descriptive cadaveric study.

    PubMed

    Forterre, F; Precht, C; Riedinger, B; Bürki, A

    2015-01-01

    The biomechanical properties of the atlanto-axial joint in a young Yorkshire Terrier dog with spontaneous atlantoaxial instability were compared to those of another young toy breed dog with a healthy atlantoaxial joint. The range-of-motion was increased in flexion and lateral bending in the unstable joint. In addition, lateral bending led to torsion and dorsal dislocation of the axis within the atlas. On gross examination, the dens ligaments were absent and a longitudinal tear of the tectorial membrane was observed. These findings suggest that both ventral and lateral flexion may lead to severe spinal cord compression, and that the tectorial membrane may play a protective role in some cases of atlantoaxial instability.

  18. [The Postero-Lateral Approach--An Alternative to Closed Anterior-Posterior Screw Fixation of a Dislocated Postero-Lateral Fragment of the Distal Tibia in Complex Ankle Fractures].

    PubMed

    von Rüden, C; Hackl, S; Woltmann, A; Friederichs, J; Bühren, V; Hierholzer, C

    2015-06-01

    The dislocated posterolateral fragment of the distal tibia is considered as a key fragment for the successful reduction of comminuted ankle fractures. The reduction of this fragment can either be achieved indirectly by joint reduction using the technique of closed anterior-posterior screw fixation, or directly using the open posterolateral approach followed by plate fixation. The aim of this study was to compare the outcome after stabilization of the dislocated posterolateral tibia fragment using either closed reduction and screw fixation, or open reduction and plate fixation via the posterolateral approach in complex ankle fractures. In a prospective study between 01/2010 and 12/2012, all mono-injured patients with closed ankle fractures and dislocated posterolateral tibia fragments were assessed 12 months after osteosynthesis. Parameters included: size of the posterolateral tibia fragment relative to the tibial joint surface (CT scan, in %) as an indicator of injury severity, unreduced area of tibial joint surface postoperatively, treatment outcome assessed by using the "Ankle Fracture Scoring System" (AFSS), as well as epidemiological data and duration of the initial hospital treatment. In 11 patients (10 female, 1 male; age 51.6 ± 2.6 years [mean ± SEM], size of tibia fragment 42.1 ± 2.5 %) the fragment fixation was performed using a posterolateral approach. Impaired postoperative wound healing occurred in 2 patients of this group. In the comparison group, 12 patients were treated using the technique of closed anterior-posterior screw fixation (10 female, 2 male; age 59.5 ± 6.7 years, size of tibia fragment 45.9 ± 1.5 %). One patient of this group suffered an incomplete lesion of the superficial peroneal nerve. Radiological evaluation of the joint surface using CT scan imaging demonstrated significantly less dislocation of the tibial joint surface following the open posterolateral approach (0.60 ± 0.20 mm) compared to the closed anterior-posterior screw fixation (1.03 ± 0.08 mm; p < 0.05). Assessment of the treatment outcome using the AFSS demonstrated a significantly higher score of 97.4 ± 6.4 in the group with a posterolateral approach compared to a score of 74.4 ± 12.1 (p < 0.05) in the group with an anterior-posterior screw fixation. In comparison to the anterior-posterior screw fixation, open reduction and fixation of the dislocated, posterolateral key fragment of the distal tibia using a posterolateral approach resulted in a more accurate fracture reduction and significantly better functional outcome 12 months after surgery. In addition, no increased rate of postoperative complications, or extended hospital stay was observed but there was less severe post-traumatic joint arthritis. The results of this study suggest that in complex ankle factures the open fixation of the dislocated posterolateral fragment is recommended as an alternative surgical procedure and may be beneficial for both clinical and radiological long-term outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  19. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  20. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  1. High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.

    PubMed

    He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao

    2017-12-13

    It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.

  2. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Golding, B.

    2016-02-02

    Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less

  3. Acromioclavicular joint reconstruction using the LockDown synthetic implant: a study with cadavers.

    PubMed

    Taranu, R; Rushton, P R P; Serrano-Pedraza, I; Holder, L; Wallace, W A; Candal-Couto, J J

    2015-12-01

    Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Crystalline lens dislocation secondary to bacterial endogenous endophthalmitis.

    PubMed

    Sangave, Amit; Komati, Rahul; Weinmann, Allison; Samuel, Linoj; Desai, Uday

    2017-09-01

    To present an unusual case of endogenous endophthalmitis secondary to Group A streptococcus (GAS) that resulted in dislocation of the crystalline lens. An immunocompetent 51-year-old man presented to the emergency room (ER) with upper respiratory infection (URI) symptoms and painful right eye. He was diagnosed with URI and viral conjunctivitis and discharged on oral azithromycin and polytrim eyedrops. He returned to the ER 30 h later with sepsis and findings consistent with endophthalmitis, including light perception only vision. Ophthalmology was consulted at this time and an emergent vitreous tap and injection was performed. Both blood and vitreous cultures grew an atypical non-hemolytic variant of GAS ( Streptococcus pyogenes ). The primary source of infection was presumed to be secondary to pharyngitis or cutaneous dissemination. Final vision in the affected eye was no light perception, likely from a combination of anterior segment scarring, posterior segment damage, and hypotony. Interestingly, head computed tomography (CT) at the initial ER presentation showed normal lens position, but repeat CT at re-presentation revealed posterior dislocation of the lens. Endophthalmitis secondary to GAS has been sparsely reported in the literature, and this case highlights a unique clinical presentation. We suspect that this atypical non-hemolytic strain may have evaded detection on initial pharyngeal cultures. Additionally, we hypothesize that GAS-mediated protease release resulted in breakdown of the zonular fibers and subsequent lens dislocation. Ophthalmologists should be aware of GAS and its devastating intraocular manifestations.

  5. Evaluation of outcome of corrective ulnar osteotomy with bone grafting and annular ligament reconstruction in neglected monteggia fracture dislocation in children.

    PubMed

    Datta, Tanmay; Chatterjee, Nd; Pal, Ananda Kisor; Das, Sunil Kumar

    2014-06-01

    Neglected Monteggia fracture dislocation in the paediatric age group constitutes significant disability in respect to pain, stiffness, deformity, neurological compromise and restriction of activities of daily living. A longitudinal prospective study was done on 21 children with old Monteggia fracture-dislocation which included 18 cases of Bado type I and 3 cases of Bado type III at the department of orthopaedics, IPGME&R,SSKM hospital, Kolkata, India between 2007 and 2012. All were treated by modified Hirayama corrective osteotomy of ulna with wedge bone grafting along with restoration of its length and reconstruction of annular ligament using Bell Tawse method and fixation of radial head with transcapitellar Kirschner wire. Average follow up period was 5.5 years. Results were evaluated on the basis of 100 point Mayo Elbow Performance Index, radiology and questionnaire. The mean postoperative increase in Mayo Elbow Performance Index score was 30 with average increase in the range of movement by 30o. In three cases, there was subluxation of radial head and in addition one had transient palsy of posterior interosseous nerve. Three cases showed distortion of the radial head which were insignificant functionally. Results of improvement in mean MEPI were analysed by chi-square test and was significant at 0 .01 level of significance. Study showed good results with modified Hirayama osteotomy with annular ligament reconstruction using Bell Tawse procedure which is a more biological option for restoration of elbow biomechanics.

  6. [Osteosynthesis and cup revision in periprosthetic acetabulum fractures using a Kocher-Langenbeck approach].

    PubMed

    Schwabe, P; Märdian, S; Perka, C; Schaser, K-D

    2016-04-01

    Reconstruction/stable fixation of the acetabular columns to create an adequate periacetabular requirement for the implantation of a revision cup. Displaced/nondisplaced fractures with involvement of the posterior column. Resulting instability of the cup in an adequate bone stock situation. Periprosthetic acetabulum fractures with inadequate bone stock. Extended periacetabular defects with loss of anchorage options. Isolated periprosthetic fractures of the anterior column. Septic loosening. Dorsal approach. Dislocation of hip. Mechanical testing of inlaying acetabular cup. With unstable cup situation explantation of the cup, fracture fixation of acetabulum with dorsal double plate osteosynthesis along the posterior column. Cup revision. Hip joint reposition. Early mobilization; partial weight bearing for 12 weeks. Thrombosis prophylaxis. Clinical and radiological follow-ups. Periprosthetic acetabular fracture in 17 patients with 9 fractures after primary total hip replacement (THR), 8 after revision THR. Fractures: 12 due to trauma, 5 spontaneously; 7 anterior column fractures, 5 transverse fractures, 4 posterior column fractures, 1 two column fracture after hemiendoprosthesis. 5 type 1 fractures and 12 type 2 fractures. Operatively treated cases (10/17) received 3 reinforcement ring, 2 pedestal cup, 1 standard revision cup, cup-1 cage construct, 1 ventral plate osteosynthesis, 1 dorsal plate osteosynthesis, and 1 dorsal plate osteosynthesis plus cup revision (10-month Harris Hip Score 78 points). Radiological follow-up for 10 patients: consolidation of fractures without dislocation and a fixed acetabular cup. No revision surgeries during follow-up; 2 hip dislocations, 1 transient sciatic nerve palsy.

  7. Influence of template properties and quantum well number on stimulated emission from Al0.7Ga0.3N/Al0.8Ga0.2N quantum wells

    NASA Astrophysics Data System (ADS)

    Jeschke, J.; Martens, M.; Hagedorn, S.; Knauer, A.; Mogilatenko, A.; Wenzel, H.; Zeimer, U.; Enslin, J.; Wernicke, T.; Kneissl, M.; Weyers, M.

    2018-03-01

    AlGaN multiple quantum well laser heterostructures for emission around 240 nm have been grown by metalorganic vapor phase epitaxy on epitaxially laterally overgrown (ELO) AlN/sapphire templates. The edge emitting laser structures showed optically pumped lasing with threshold power densities in the range of 2 MW cm-2. The offcut angle of the sapphire substrates as well as the number and the width of the quantum wells were varied while keeping the total thickness of the gain region constant. A larger offcut angle of 0.2° leads to step bunching on the surface as well as Ga accumulation at the steps, but also to an increased inclination of threading dislocations and coalescence boundaries resulting in a reduced dislocation density and thus a reduced laser threshold in comparison to lasers grown on ELO with an offcut of 0.1°. For low losses, samples with fewer QWs exhibited a lower lasing threshold due to a reduced transparency pump power density while for high losses, caused by a higher threading dislocation density, the quadruple quantum well was favorable due to its higher maximum gain.

  8. Screening for developmental dysplasia of the hip.

    PubMed

    Desprechins, B; Ernst, C; de Mey, J

    2007-01-01

    The reported prevalence of established dislocation the hip in an unscreened population varies from 0.7 to 1.6 / 1000 children in European and American white populations. In clinically screened populations neonatal hip instability is reported to occur in 3 to 30 / 1000 newborns while established congenital dislocation has a prevalence of 0.1- 4/1000 of which 1/1000 is judged to be in need for surgery. Early diagnosis of DDH is essential for successful treatment and later prognosis of the disorder. Combined procedure including evaluation of both hip morphology and hip stability is currently recommended. Opinions differ about the need for universal versus selective sonographic screening for diagnosis of DDH. Currently selective screening of those infants with recognised risk factors and those with abnormal physical examination would be cost-effective and the only practicable method for most countries.

  9. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    NASA Astrophysics Data System (ADS)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening behavior and evolution of crystallographic texture from a physical point of view. Therefore, we aim to develop a physics-based crystal plasticity model that can capture these effects as a function of grain orientations, microstructure parameters, and temperature. To achieve this goal, first, a new dilatational constitutive model is developed for simulating the deformation of non-compact geometries (foams or geometries with free surfaces) using the spectral method. The model has been used to mimic the void-growth behavior of a biaxially loaded plate with a circular inclusion. The results show that the proposed formulation provides a much better description of void-like behavior compared to the pure elastic behavior of voids. Using the developed dilatational framework, periodic boundary conditions arising from the spectral solver has been relaxed to study the tensile deformation behavior of dogbone-shaped Nb single crystals. Second, a dislocation density-based constitutive model with storage and recovery laws derived from Discrete Dislocation Dynamics (DDD) is implemented to model multi-stage strain hardening. The influence of pre-deformed dislocation content, dislocation interaction strengths and mean free path on stage II hardening is then simulated and compared with in-situ tensile experiments.

  10. [Traumatic knee dislocation with popliteal vascular disruption: retrospective study of 14 cases].

    PubMed

    Bonnevialle, P; Chaufour, X; Loustau, O; Mansat, P; Pidhorz, L; Mansat, M

    2006-12-01

    Complex femorotibial dislocation of the knee joint generally results from high-energy trauma caused by a traffic or a contact sport accident. Besides disruption of the cruciate ligaments, in 10-25% of patients present concomitant palsy of the common peroneal nerve and more rarely disruption of the popliteal artery. The purpose of this work was to assess outcome in a monocentric consecutive series of knee dislocations with ischemia due to disruption of the popliteal artery and to focus on specific aspects of management. This retrospective series included eleven men and three women, aged 18 to 74 years (mean 47 years). The right knee was injured in five and the left knee in six. Trauma resulted from a farm accident in six patients, fall from a high level in two, a traffic accident in three and a skiing accident (fall) in one. Two other patients with morbid obesity were fall victims. Nine patients had a single injury, two presented an associated serious head injury, one a severe chest injury, and one multiple trauma with coma, chest contusion, and abdominal lesions. One patient had a fracture of the distal femur with associated ischemia. Five knee dislocations were open with a popliteal wound for three and a posteromedial wound for two. Four patients presented total sciatic nerve palsy and nine palsy of the common peroneal nerve. The dislocation was documented in ten cases: lateral (n=1), anterior (n=4), posterior (n=5). For four patients, the dislocation had been reduced during pre-hospital care. Preoperative arteriography was available for eight patients and confirmed the disruption of the popliteal artery; the diagnosis was obvious in six other patients who were directed immediately to the operative theatre without pre-operative imaging. Revascularization was achieved with a upper popliteal-lower popliteal bypass using an inverted saphenous graft. The graft was harvested from the homolateral greater saphenous vein in eight patients and the contralateral vein in six. On average, limb revascularization was achieved after 10.07 hours ischemia. Intravenous heparin was instituted for 810 days followed by low-molecular-weight heparin. The dislocation was stabilized by a femorotibial fixator in nine patients and a cruropedious cast in five. An incision was made in the anterolateral and posterior leg compartments in twelve patients. A revision procedure was necessary on day one in one patient because of recurrent ischemia; a second bypass using an autologous venous graft was successful. One other 75-year-old patient also presented recurrent ischemia on day five; the bypass was reconstructed but the patient died from multiple injuries. Seven thin skin grafts were used to cover the aponeurotomy surfaces. Mean duration of the external fixator was 3.4 months. The five patients treated with a plaster case were immobilized for 2.7 months on average. Ligament repair was performed in three patients (one lateral reconstruction and one double reconstruction of the central pivot for the two others). A total prosthesis with a rotating hinge was implanted in two patients aged 67 and 74 years after removal of the external fixator at six and seven months. Failure of the ligament repair also led to arthroplasty in a third patient. Blood supply to the lower limb was successfully restored as proven by the renewed coloration of the teguments and-or presence of distal pulses in 13 patients. Transient acute renal failure required dialysis in one patient. Four patients developed pin track discharges and there was one case of septic arthritis of the knee joint which was cured after arthrotomy for wash-out and adapted antibiotics. Outcome was assessed a minimum 18 months follow-up (average 22 months) for the 13 survivors. The three sciatic palsies recovered partially at five and six months in the tibial territory but with persistent paralysis in the territory of the common peroneal nerve. The nine cases of common peroneal nerve palsy noted initially regressed completely or nearly completely in three patients, partially in three and remained unchanged in three. The results were assessed as a function of the final knee procedure: outcome was satisfactory for the patients with a total knee arthroplasty. Outcome of the three ligamentoplasties was good in one, fair in one, and a failure in one (revision arthroplasty). Patients treated by immobilization without a second surgical procedure complained of joint instability with a variable clinical impact; their knee retained active flexion greater than 90 degrees and complete extension. An analysis of the literature and the critical review of our clinical experience was conducted to propose a coherent therapeutic attitude for patients presenting this type of trauma. The prevalence of disruption of the popliteal vascular supply in patients with knee dislocation is between 4 and 20%. The rate is closely related to that of injury to nerves and soft tissue. Ischemia should be immediately suspected in all cases of knee dislocation. The pedious and tibial pulses must be carefully noted before and after reduction of the dislocation to determine whether or not there is an organic arterial lesion. If the pulses are absent initially, they should be expected to reappear strong, rapidly and permanently after reduction. Otherwise, arteriography should be performed. Dislocation stretches the artery between two points of relative anchorage in the adductor ring and the soleus arcade to the point of rupture. Repair requires a bypass between the upper popliteal artery and the tibioperoneal trunk using an inverted saphenous graft because the walls are torn over several centimeters. The traumatology and vascular surgical teams must work in concert from the beginning of the surgical work-up in order to establish a coherent operative strategy founded on primary reduction of the dislocation, installation of a fixator and then vascular repair and aponeurotomy incisions. It would be preferable to wait until the bypass is proven patent and wound healing is complete before proposing ligament repair. This should be done after a precise anatomic work-up to assess each ligament lesion. Bony avulsion or simple disinsertion can however be repaired in the emergency setting at the time of the bypass as well as any ligament rupture which is obvious and-or situated on the medial collateral approach. Secondarily, elements of the central pivot can be repaired in young patients with an important functional demand. Arthroplasty is not warranted except in the elderly patient. Dissection of the popliteal fossa or debridement of the wound enables a careful anatomic assessment of the nerve trunks. In the event of a peroneal nerve disruption, it is advisable to fix the nerve ends to avoid retraction. Beyond three months without clinical or electromyography recovery, surgical exploration is indicated. In the event more than 15 cm is lost, there is no hope for a successful graft. Complete knee dislocation is extremely rare. It can be caused by high-energy trauma associated with several ligament ruptures, particularly rupture of the central pivot observed in 10-25% of cases with common peroneal nerve palsy. Compression, contusion or disruption of the popliteal artery is very rarely caused by the displacement of the femur or the tibia. Limb survival may be compromised. Mandatory emergency restoration of blood supply will modify immediate and subsequent surgical strategies. There has not however been any study exclusively devoted to double joint and vascular involvement. Our objective was to present a critical retrospective analysis of a consecutive series of knee dislocations with ischemia due to disruption of the common popliteal artery treated in a single center and to describe the specific features of management strategies for a coherent diagnostic and therapeutic approach.

  11. Cantilever epitaxial process

    DOEpatents

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  12. Modified anterior-only reduction and fixation for traumatic cervical facet dislocation (AO type C injuries).

    PubMed

    Kanna, Rishi M; Shetty, Ajoy P; Rajasekaran, S

    2018-06-01

    Surgical reduction of uni and bi-facetal dislocations of the cervical spine (AO type C injuries) can be performed by posterior, anterior or combined approaches. Ease of access, low infection rates and less risks of neurological worsening has popularized anterior approach. However, the reduction of locked cervical facets can be intricate through anterior approach. We analyzed the safety, efficacy and outcomes at a minimum 1 year, of a novel anterior reduction technique for consecutively treated cervical facet dislocations. Patients with single level traumatic sub-axial cervical dislocation (n = 39) treated by this modified anterior technique were studied. The technique involved standard Smith-Robinson approach, discectomy beyond PLL, use of inter-laminar distracter to distract while Caspar pins were used as "joysticks" (either flexion-extension or lateral rotation moments are provided), to reduce the sub-luxed facets. Among 51 patients with cervical type C injury treated during the study period, 4 patients who had spontaneous reduction and 8 treated by planned global fusion were excluded. 39 patients of mean age 49.9 years were studied. The levels of injury included (C3-4 = 2, C4-5 = 5, C5-6 = 20, C6-7 = 12). 18 were bi-facetal and 21 were uni-facetal dislocation. One facet was fractured in 17 and both in 5 patients. 30% (n = 13) had a concomitant disc prolapse. The neurological status was as follows: 9 ASIA A, 9 ASIA C, 13 ASIA D and 8 ASIA E. All the patients were successfully reduced by this technique and fixed with anterior locking cervical locking plates. No supplemental posterior surgery was performed. 22 patients with incomplete deficit showed recovery. The mean follow-up was 14.3 months and there was no implant failure except one patient who had partial loss of the reduction. Patients with traumatic sub-axial cervical dislocation (AO type C injuries) can be safely and effectively reduced by this technique. Other advantages include minimal blood loss, less risks of infection, shorted fusion zone, good fusion rate and neurological recovery.

  13. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang

    2018-02-01

    Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

  14. Characterizing the role of the hippocampus during episodic simulation and encoding.

    PubMed

    Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L

    2017-12-01

    The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.

  15. The role of multislice spiral computed tomography in the diagnosis and management of acute facial trauma in patients with multiple injuries.

    PubMed

    Nemsadze, G; Urushadze, O

    2011-11-01

    Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.

  16. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  17. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE PAGES

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi; ...

    2018-03-23

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  18. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in Class II malocclusion : A long-term evaluation.

    PubMed

    Franchi, Lorenzo; Pavoni, Chiara; Faltin, Kurt; Bigliazzi, Renato; Gazzani, Francesca; Cozza, Paola

    2016-09-01

    The purpose of this work was to evaluate the long-term morphological mandibular changes induced by functional treatment of Class II malocclusion with mandibular retrusion. Forty patients (20 females, 20 males) with Class II malocclusion consecutively treated with either a Bionator or an Activator followed by fixed appliances were compared with a control group of 40 subjects (19 females, 21 males) with untreated Class II malocclusion. Lateral cephalograms were available at the start of treatment (T1, mean age 9.9 years), at the end of treatment with functional appliances (T2, mean age 12.2 years), and for long-term follow-up (T3, mean age 18.3 years). Mandibular shape changes were analyzed on lateral cephalograms of the subjects in both groups via thin-plate spline (TPS) analysis. Shape differences were statistically analyzed by conducting permutation tests on Goodall F statistics. In the long term, both the treated and control groups exhibited significant longitudinal mandibular shape changes characterized by upward and forward dislocation of point Co associated with a vertical extension in the gonial region and backward dislocation of point B. Functional appliances induced mandible's significant posterior morphogenetic rotation over the short term. The treated and control groups demonstrated similar mandibular shape over the long term.

  19. Defect reduction in GaN on dome-shaped patterned-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Su, Vin-Cent; Wu, Shang-Hsuan; Lin, Ray-Ming; Kuan, Chieh-Hsiung

    2018-02-01

    This paper demonstrates the behavior of defect reduction in un-doped GaN (u-GaN) grown on a commercial dome-shaped patterned-sapphire substrate (CDPSS). Residual strain inside the u-GaN grown on the CDPSS have been investigated as well. As verified by the experimentally measured data, the limited growth rate of the u-GaN on the sidewall of the CDPSS enhances the lateral growth of the GaN on the trench region while increasing the growth time. This subsequently contributes to improve the crystalline quality of the GaN on the CDPSS. The more prominent dislocations occur in the u-GaN epilayers on the CDPSS after reaching the summit of the accumulated strain inside the epilayers. Such prominent bent dislocations improve their blocking abilities, followed by the achievement of the better crystalline quality for the growth of the u-GaN on the CDPSS.

  20. Diagnosis and Characterization of Patellofemoral Instability: Review of Available Imaging Modalities.

    PubMed

    Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour

    2017-06-01

    Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.

  1. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  2. Surgical Approaches to the Proximal Interphalangeal Joint.

    PubMed

    Cheah, Andre Eu-Jin; Yao, Jeffrey

    2016-02-01

    The proximal interphalangeal (PIP) joint may be affected by many conditions such as arthropathy, fractures, dislocations, and malunions. Whereas some of these conditions may be treated nonsurgically, many require open surgical intervention. Open interventions include implant arthroplasty or arthrodesis for arthropathy, open reduction internal fixation, or hemi-hamate arthroplasty for dorsal fracture-dislocations. Volar plate arthroplasty and corrective osteotomy for malunion about the PIP joint are also surgeries that may be required. The traditional approach to the PIP joint has been dorsal, which damages the delicate extensor apparatus with subsequent development of an extensor lag. This has led surgeons to explore volar and lateral approaches to the PIP joint. In this article, we describe each of these surgical approaches, discuss their advantages and disadvantages, and provide some guidance on which approach to choose based on the surgery that is to be performed. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yao; National Institute for Materials Science, Tsukuba, Ibaraki 305-0044; Sun, Huabin

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, whichmore » influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.« less

  4. A combined technique for acromioclavicular reconstruction after acute dislocation - technical description and functional outcomes.

    PubMed

    Moura, Diogo Lino; Reis E Reis, Augusto; Ferreira, João; Capelão, Manuel; Braz Cardoso, José

    2018-01-01

    This study aims to describe the surgical approach to such injuries and to present the clinical and functional outcomes obtained in a cohort of patients. This is an observational retrospective study that included 153 patients with acute acromioclavicular joint dislocation, operated between 1999 and 2015. Clinical evaluation included the following outcomes: Constant functional scale, development of complications, time to return to previous work/sport activities, and satisfaction index. The contra-lateral (uninjured) shoulder was used as control in subjective outcomes. Radiological evaluation was performed in order to monitor signs of loss of reduction, degenerative joint changes, and coracoclavicular calcifications. The mean age was 29.20 ± 9.53 (16-71), with a large male predominance (91.5%). Follow-up lasted 55.41 ± 24.87 (12-108) months. The mean Constant score attained was 96.45 ± 4.00 (84-100) on operated shoulders and 98.28 ± 1.81 (93-100) on contralateral ones. Almost all patients (98.69%) were satisfied with the surgical results. Worse outcomes were observed in acromioclavicular joint dislocations of increasing grade (from type III to V, but worse for type IV), both concerning the Constant score and return to work or sport. The overall incidence of complications was considered low, with the most prevalent being Kirschner wire failure and isolated coracoclavicular ligament calcifications. The surgical technique described is an excellent option in the treatment of acute acromioclavicular joint dislocations of Rockwood grades III to V. This is corroborated by the excellent clinical and functional outcomes and the low rate of complications.

  5. The Neural Bases of Event Monitoring across Domains: a Simultaneous ERP-fMRI Study

    PubMed Central

    Tarantino, Vincenza; Mazzonetto, Ilaria; Formica, Silvia; Causin, Francesco; Vallesi, Antonino

    2017-01-01

    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, this transient component relies on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts. PMID:28785212

  6. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.« less

  7. Investigations of an Environmentally Induced Long Duration Hall Thruster Start Transient (PREPRINT)

    DTIC Science & Technology

    2006-02-06

    Hall thruster start transient is produced by exposure of the thruster to ambient laboratory atmosphere. This behavior was first observed during operation of a cluster of four 200 W BHT-200 Hall effect thrusters where large anode discharge fluctuations, visible as increased anode current and a diffuse plume structure, occurred in an apparently random manner. During operation of a single thruster, the start transient appears as a quickly rising and later smoothly decaying elevated anode current with a diffuse plume that persists for less than 500 seconds. The start transient

  8. Relationship between bony tunnel and knee function in patients after patellar dislocation triple surgeries—a CT-based study

    NASA Astrophysics Data System (ADS)

    Qin, Le; Li, Mei; Yao, Weiwu; Shen, Ji

    2017-01-01

    We aimed to assess the CT-based bony tunnel valuations and their correlation with knee function after patellar dislocation triple surgeries. A retrospective study was performed on 66 patients (70 knees) who underwent patellar dislocation triple surgeries. The surgery was MPFL reconstruction primarily, combined with lateral retinaculum release and tibial tubercle osteotomy. CT examinations were performed to determine the femoral tunnel position, along with the patellar and femoral tunnel width 3 days and more than 1 year after operation for follow-up. Functional evaluation based on Kujala and Lysholm scores was also implemented. We compared tunnel width of the first and last examinations and correlated femoral tunnel position of the last examination with knee function. At the last follow-up, femoral tunnel position in the anterior-posterior direction was moderately correlated with knee function. Femoral tunnel position in the proximal-distal direction was not associated with postoperative knee function. Patellar and femoral tunnel width increased significantly at the last follow-up. However, no significant functional difference was found between patients with and without femoral tunnel enlargement. Our results suggested that the tunnel malposition in anterior-posterior position based on CT was related to impaired knee function during the follow-ups.

  9. Influence of medial parapatellar nail insertion on alignment in proximal tibia fractures--special consideration of the fracture level.

    PubMed

    Weninger, Patrick; Tschabitscher, Manfred; Traxler, Hannes; Pfafl, Veronika; Hertz, Harald

    2010-04-01

    Although a lateral starting point for tibial nailing is recommended to avoid valgus misalignment, higher rates of intra-articular damage were described compared with a medial parapatellar approach. The aim of this anatomic study was to evaluate the fracture level allowing for a safe medial nail entry point without misalignment or dislocation of fragments. Thirty-two fresh-frozen cadaver lower extremities were used to create 1-cm osteotomies at four different levels (n = 8) from 2 cm to 8 cm below the tibial tuberosity. Nine-millimeter unreamed solid titanium tibial nails (Connex, I.T.S. Spectromed, Lassnitzhohe, Austria) were inserted from a medial parapatellar incision. Misalignment (degree) and dislocation of the distal fragment were measured in the frontal and sagittal plane. A medial parapatellar approach for tibial nail insertion mainly caused valgus and anterior bow misalignment and ventral and medial fragment displacement. Mean misalignment and fragment displacement did not exceed 0.5 degree if the osteotomy was performed 8 cm to 9 cm below the tibial tuberosity. According to the results of this study, a medial parapatellar approach can be performed without misalignment and fragment dislocation in proximal tibia fractures extending 8 cm or more below the tibial tuberosity.

  10. Femoroacetabular Impingement Is Associated With Sports-Related Posterior Hip Instability in Adolescents: A Matched-Cohort Study.

    PubMed

    Mayer, Stephanie W; Abdo, João Caetano Munhoz; Hill, Mary K; Kestel, Lauryn A; Pan, Zhaoxing; Novais, Eduardo N

    2016-09-01

    Femoroacetabular impingement (FAI) deformity has been associated with posterior hip instability in adult athletes. To determine if FAI deformity is associated with posterior hip instability in adolescents, the femoral head-neck junction or acetabular structure in a cohort of adolescent patients who sustained a low-energy, sports-related posterior hip dislocation was compared with that in a group of healthy age- and sex-matched controls with no history of hip injury or pain. Cross-sectional study; Level of evidence, 3. We identified 12 male patients (mean age, 13.9 years; range, 12-16 years) who sustained a sports-related posterior hip dislocation and underwent a computed tomography (CT) scan after closed reduction. For each patient, 3 age- and sex-matched healthy controls were identified. Femoral head-neck type was assessed by measurement of the alpha angle on the radially oriented CT images at the 12-, 1-, 2-, and 3-o'clock positions. Age, body mass index (BMI), alpha angle at each position, acetabular version, Tönnis angle, and lateral center-edge angle (LCEA) on the involved hip in the dislocation group were compared with those of the matched controls using a mixed-effects model. A logistic regression analysis using a generalized estimating equation was used to compare the percentage of subjects with cam-type FAI deformity (alpha angle >55°) in each group. The dislocation and control groups were similar in age distribution and BMI (P > .05). The mean alpha angles were statistically significantly higher in the dislocation group compared with the control group at the superior (46.3° ± 1.1° vs 42.7° ± 0.6°; P = .0213), superior-anterior (55.5° ± 1.9° vs 46.0° ± 1.3°; P = .0005), and anterior-superior (54.9° ± 1.5° vs 48.9° ± 1.0°; P = .0045) regions. Cam deformity was present in a larger proportion of patients in the dislocation group than in the control group (P < .0035). An alpha angle greater than 55° was present in 16.7% of the dislocation group and 0% of the control group at the 12-o'clock position (P = .1213), 41.7% versus 0% at the 1-o'clock position (P = .0034), 58% versus 6% at the 2-o'clock position (P = .0004), and 25% versus 2.8% at the 3-o'clock position (P = .0929). Acetabular anteversion was lower in the dislocation group (9.6° ± 1.4°) compared with the control group (15.1° ± 0.8°) (P = .0068). Mean acetabular LCEA was within a normal range in both groups. A significantly higher mean alpha angle from the superior to the anterior-superior regions of the femoral head-neck junction and lower acetabular version were found in adolescents who sustained low-energy, sports-related posterior hip dislocations. © 2016 The Author(s).

  11. [Exploratory study of 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation].

    PubMed

    Yin, Yiheng; Yu, Xinguang; Tong, Huaiyu; Xu, Tao; Wang, Peng; Qiao, Guangyu

    2015-10-06

    To investigate the clinical application value of the 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation. From January 2013 to September 2013, 10 patients with basilar invagination and atlantoaxial dislocation needing posterior fixation undertook 3D printing modes at the Department of Neurosurgery in PLA General Hospital. The 1:1 size models were established from skull base to C4 level with different colors between bone structures and vertebral arteries. The simulation of screw insertion was made to investigate the fixation plan and ideal entry point to avoid vertebral artery injury. After obtaining the individual screw insertion data in 3D printing modes, the according surgical operations were performed. The actual clinical results and virtual screw data in 3D printing mode were compared with each other. The 3D printing modes revealed that all the 10 patients had the dysplasia or occipitalized C1 posterior arch indicating C1 posterior arch screw implantation was not suitable. C1 lateral masses were chosen as the screws entry points. C2 screws were designed individually based on the 3D printing modes as follows: 3 patients with aberrant vertebral artery or narrow C2 pedicle less than 3.5 mm were not suitable for pedicle screw implantation. Among the 3 patients, 1 was fixed with C2 laminar screw, and 1 with C2-3 transarticular screw and 1 with C3 pedicle screw (also combined with congenital C2-3 vertebral fusion). Two patients with narrow C2 pedicle between 3.5 and 4mm were designed to choose pedicle screw fixation after 3D printing mode evaluation. One patient with C1 lateral mass vertically dislocated axis was planned with C1-2 transarticular screw fixation. All the other patients were planned with C2 pedicle screws. All the 10 patients had operation designed as the 3D printing modes schemes. The follow-up ranged from 12 to 18 months and all the patients recovered from the clinical symptoms and the bony fusion attained to 100%. 3D printing mode could provide thorough information of the bony structure abnormalities and route of vertebral artery. It is helpful for setting operation strategy and designing screw entry point and trajectory and avoiding vertebral artery and spinal cord injury and thus deserves generalization.

  12. Lateralization of the Tibial Tubercle in Recurrent Patellar Dislocation: Verification Using Multiple Methods to Evaluate the Tibial Tubercle.

    PubMed

    Tensho, Keiji; Shimodaira, Hiroki; Akaoka, Yusuke; Koyama, Suguru; Hatanaka, Daisuke; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2018-05-02

    The tibial tubercle deviation associated with recurrent patellar dislocation (RPD) has not been studied sufficiently. New methods of evaluation were used to verify the extent of tubercle deviation in a group with patellar dislocation compared with that in a control group, the frequency of patients who demonstrated a cutoff value indicating that tubercle transfer was warranted on the basis of the control group distribution, and the validity of these methods of evaluation for diagnosing RPD. Sixty-six patients with a history of patellar dislocation (single in 19 [SPD group] and recurrent in 47 [RPD group]) and 66 age and sex-matched controls were analyzed with the use of computed tomography (CT). The tibial tubercle-posterior cruciate ligament (TT-PCL) distance, TT-PCL ratio, and tibial tubercle lateralization (TTL) in the SPD and RPD groups were compared with those in the control group. Cutoff values to warrant 10 mm of transfer were based on either the minimum or -2SD (2 standard deviations below the mean) value in the control group, and the prevalences of patients in the RPD group with measurements above these cutoff values were calculated. The area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the measurements as predictors of RPD. The mean TT-PCL distance, TT-PCL ratio, and TTL were all significantly greater in the RPD group than in the control group. The numbers of patients in the RPD group who satisfied the cutoff criteria when they were based on the minimum TT-PCL distance, TT-PCL ratio, and TTL in the control group were 11 (23%), 7 (15%), and 6 (13%), respectively. When the cutoff values were based on the -2SD values in the control group, the numbers of patients were 8 (17%), 6 (13%), and 0, respectively. The AUC of the ROC curve for TT-PCL distance, TT-PCL ratio, and TTL was 0.66, 0.72, and 0.72, respectively. The extent of TTL in the RPD group was not substantial, and the percentages of patients for whom 10 mm of medial transfer was indicated were small. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  13. [CLINICAL OBSERVATION OF ONE-STAGE ARTHROSCOPIC RECONSTRUCTION AND STRICT IMMOBILIZATION FOR TREATMENT OF KNEE DISLOCATION].

    PubMed

    Mamatkerimulla; Xu Gang; Wang, Xin; Zhang, Yang; Jia, Yong; Huang, Tao; Xing, Shuxing

    2016-04-01

    To investigate the effectiveness of one-stage arthroscopic reconstruction and strict immobilization for 6 weeks for treatment of knee dislocation. Between August 2010 and May 2013, 22 cases (22 knees) of knee dislocation were treated with one-stage reconstruction and strict immobilization for 6 weeks. There were 15 males and 7 females, aged 21-54 years (mean, 31.5 years). The left knee and right knee were involved in 8 cases and 14 cases respectively. The disease causes were traffic accident in 12 cases, falling from height in 6 cases, and sports injury in 4 cases. The time between injury and operation was less than 2 weeks in 6 cases, 2-3 weeks in 10 cases, and more than 3 weeks in 6 cases. The results of anterior drawer test, posterior drawer test, and Lachman test were positive in all patients. The posterior displacement of the tibia was more than 10 mm. The results of valgus stress test and varus stress test were positive in 13 cases and 11 cases respectively. The preoperative knee range of motion was (58.2 ± 28.4)°, Lysholm score was 39.7 ± 4.6. All patients had anterior cruciate ligament rupture and posterior cruciate ligament rupture; combined injuries included medial collateral ligament rupture in 11 cases, lateral collateral ligament rupture in 9 cases, both medial and lateral collateral ligament rupture in 2 cases, femoral condylar avulsion fracture in 2 cases, and meniscus injury in 7 cases. No nerve or blood vessel injury was observed. All cases obtained primary healing of incision without infection. All the patients were followed up 12-48 months (mean, 27.8 months). At 12 months after operation, the results of the anterior drawer test, posterior drawer test, Lachman test, valgus stress test, and varus stress test were all negative; the knee range of motion increased was significantly to (121.3 ± 7.9)° (t = 30.061, P = 0.000); Lysholm score was 87.2 ± 6.1, showing significant difference when compared with preoperative score (t = 24.642, P = 0.000). A combination oathogopi osta ge reconstruction and strict immobilization for treatment of knee dislocation is a safe and effective method, good stability and joint function can be achieved.

  14. Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems

    NASA Astrophysics Data System (ADS)

    Sandwell, David; Smith-Konter, Bridget

    2018-05-01

    We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.

  15. Sporadic occurrence of completely lateralized vertex sharp transients of sleep is a normal phenomenon: a retrospective, blinded, case-control study.

    PubMed

    Brenton, J Nicholas; Mytinger, John R

    2015-04-01

    Vertex sharp transients (VSTs) of sleep often lateralize to the left or right frontocentral regions and can be mistaken as epileptiform. The aim of this study was to determine the prevalence of completely lateralized VSTs in pediatric-aged individuals and to assess their significance by comparing cohorts with and without epilepsy. The authors hypothesized that completely lateralized VSTs are normal and occur with similar frequencies in patients with and without epilepsy. The authors conducted a retrospective, blinded, case-control study comparing completely lateralized VSTs within a 5-minute EEG sleep epoch between cohorts of 100 patients with epilepsy and 100 age- and gender-matched controls. The number of patients with completely lateralized VSTs was not significantly different between cases (62%) and controls (65%) (P = 0.66). The median number of completely lateralized VSTs was small but not significantly different between cases (median 3) and controls (median 4) (P = 0.11). The presence of completely lateralized VSTs in cases (generalized vs. focal epilepsy) was not significantly different (P > 0.95). This is the first systematic study of the prevalence and significance of completely lateralized VSTs of sleep. This study provides class III evidence that completely lateralized VSTs, occurring in a sporadic fashion, are a normal phenomenon and should not be confused with epileptiform discharges.

  16. Defect levels of semi-insulating CdMnTe:In crystals

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.

    2011-06-01

    Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.

  17. Clinical Outcomes After the Nonoperative Management of Lateral Patellar Dislocations: A Systematic Review

    PubMed Central

    Moiz, Munim; Smith, Nick; Smith, Toby O.; Chawla, Amit; Thompson, Peter; Metcalfe, Andrew

    2018-01-01

    Background: The first-line treatment for patellar dislocations is often nonoperative and consists of physical therapy and immobilization techniques, with various adjuncts employed. However, the outcomes of nonoperative therapy are poorly described, and there is a lack of quality evidence to define the optimal intervention. Purpose: To perform a comprehensive review of the literature and assess the quality of studies presenting patient outcomes from nonoperative interventions for patellar dislocations. Study Design: Systematic review; Level of evidence, 4. Methods: The MEDLINE, AMED, Embase, CINAHL, Cochrane Library, PEDro, and SPORTDiscus electronic databases were searched through July 2017 by 3 independent reviewers. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Study quality was assessed using the CONSORT (Consolidated Standards for Reporting Trials) criteria for randomized controlled trials and the Newcastle-Ottawa Scale for cohort studies and case series. Results: A total of 25 studies met our inclusion criteria, including 12 randomized controlled trials, 7 cohort studies, and 6 case series, consisting of 1066 patients. Studies were grouped according to 4 broad categories of nonoperative interventions based on immobilization, weightbearing status, quadriceps exercise type, and alternative therapies. The most commonly used outcome measure was the Kujala score, and the pooled redislocation rate was 31%. Conclusion: This systematic review found that patient-reported outcomes consistently improved after all methods of treatment but did not return to normal. Redislocation rates were high and close to the redislocation rates reported in natural history studies. There is a lack of quality evidence to advocate the use of any particular nonoperative technique for the treatment of patellar dislocations. PMID:29942814

  18. Sphenoid dysplasia in neurofibromatosis type 1: a new technique for repair.

    PubMed

    Concezio, Di Rocco; Amir, Samii; Gianpiero, Tamburrini; Luca, Massimi; Mario, Giordano

    2017-06-01

    Sphenoid bone dysplasia in neurofibromatosis type 1 is characterized by progressive exophthalmos and facial disfiguration secondary to herniation of meningeal and cerebral structures. We describe a technique for reconstruction of the sphenoid defect apt at preventing or correcting the ocular globe dislocation. After placement of spinal cerebrospinal fluid drainage to reduce intracranial pressure, the temporal pole is posteriorly dislocated extradurally. The greater sphenoid wing defect is identified. A titanium mesh covered by lyophilized dura, modeled in a curved fashion, is interposed between the bone defect and the cerebro-meningeal structures with its convex surface over the retracted temporal pole. The particular configuration of the titanium mesh allows a self-maintaining position due to the pressure exerted by the brain over its convex central part with its lateral margins consequently pushed and self-anchored against the medial and lateral walls of the temporal fossa. Screw fixation is not needed. The technique utilized in four cases proved to be reliable at the long-term clinical and neuroradiological controls (6 to 19 years). Sphenoid bone dysplasia in NF1, resulting in proptosis and exophthalmos, is usually progressive. It can be surgically repaired using a curved titanium mesh with the convexity faced to the temporal pole that is in the opposite fashion from all the techniques previously introduced. When utilized early in life, the technique can prevent the occurrence of the orbital and facial disfiguration.

  19. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  20. Ankle instability.

    PubMed

    Ferran, Nicholas A; Oliva, Francesco; Maffulli, Nicola

    2009-06-01

    Acute ankle sprains are common, and if inadequately treated may result in chronic instability. Lateral ankle injuries are most common, with deltoid injuries rare and associated with ankle fractures/dislocation. Medial ankle instability is rare. Functional management of acute lateral ankle sprains is the treatment of choice, with acute ligament repair reserved for athletes. Chronic lateral ankle instability is initially managed conservatively, however, failure of rehabilitation is an indication for surgical management. Nonanatomic tenodesis reconstructions have poor long-term results, sacrifice peroneal tendons, and disrupt normal ankle and hindfoot biomechanics. Anatomic repair of the anterior talofibular and calcaneofibular ligaments is recommended when the quality of the ruptured ligaments permits. Anatomic reconstruction with autograft or allograft should be performed when ligaments are attenuated. The role of arthroscopic reconstruction is evolving. Ankle arthroscopy should be performed at the time of repair or reconstruction and should address any other intra-articular causes of pain.

  1. Patellofemoral anatomy and biomechanics: current concepts

    PubMed Central

    ZAFFAGNINI, STEFANO; DEJOUR, DAVID; GRASSI, ALBERTO; BONANZINGA, TOMMASO; MUCCIOLI, GIULIO MARIA MARCHEGGIANI; COLLE, FRANCESCA; RAGGI, FEDERICO; BENZI, ANDREA; MARCACCI, MAURILIO

    2013-01-01

    The patellofemoral joint, due to its particular bone anatomy and the numerous capsuloligamentous structures and muscles that act dynamically on the patella, is considered one of the most complex joints in the human body from the biomechanical point of view. The medial patellofemoral ligament (MPFL) has been demonstrated to contribute 60% of the force that opposes lateral displacement of the patella, and MPFL injury results in an approximately 50% reduction in the force needed to dislocate the patella laterally with the knee extended. For this reason, recent years have seen a growing interest in the study of this important anatomical structure, whose aponeurotic nature has thus been demonstrated. The MPFL acts as a restraint during motion, playing an active role under conditions of laterally applied stress, but an only marginal role during natural knee flexion. However, it remains extremely difficult to clearly define the anatomy of the MPFL and its relationships with other anatomical structures. PMID:25606512

  2. What do home videos tell us about early motor and socio-communicative behaviours in children with autistic features during the second year of life--An exploratory study.

    PubMed

    Zappella, Michele; Einspieler, Christa; Bartl-Pokorny, Katrin D; Krieber, Magdalena; Coleman, Mary; Bölte, Sven; Marschik, Peter B

    2015-10-01

    Little is known about the first half year of life of individuals later diagnosed with autism spectrum disorders (ASD). There is even a complete lack of observations on the first 6 months of life of individuals with transient autistic behaviours who improved in their socio-communicative functions in the pre-school age. To compare early development of individuals with transient autistic behaviours and those later diagnosed with ASD. Exploratory study; retrospective home video analysis. 18 males, videoed between birth and the age of 6 months (ten individuals later diagnosed with ASD; eight individuals who lost their autistic behaviours after the age of 3 and achieved age-adequate communicative abilities, albeit often accompanied by tics and attention deficit). The detailed video analysis focused on general movements (GMs), the concurrent motor repertoire, eye contact, responsive smiling, and pre-speech vocalisations. Abnormal GMs were observed more frequently in infants later diagnosed with ASD, whereas all but one infant with transient autistic behaviours had normal GMs (p<0.05). Eye contact and responsive smiling were inconspicuous for all individuals. Cooing was not observable in six individuals across both groups. GMs might be one of the markers which could assist the earlier identification of ASD. We recommend implementing the GM assessment in prospective studies on ASD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy

    DOE PAGES

    Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; ...

    2015-11-25

    Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match themore » polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.« less

  4. Post seismic deformation associated with the 1992 Mω=7.3 Landers earthquake, southern California

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.

    1997-01-01

    Following the 1992 Mω=7.3 Landers earthquake, a linear array of 10 geodetic monuments at roughly 5-km spacing was established across the Emerson fault segment of the Landers rupture. The array trends perpendicular to the local strike of the fault segment and extends about 30 km on either side of it. The array was surveyed by Global Positioning System 0.034, 0.048, 0.381, 1.27, 1.88, 2.60, and 3.42 years after the Landers earthquake to measure both the spatial and temporal character of the postearthquake relaxation. The temporal behavior is described roughly by a short-term (decay time 84±23 days) exponential relaxation superimposed upon an apparently linear trend. Because the linear trend represents motions much more rapid than the observed preseismic motions, we attribute that trend to a slower (decay time greater than 5 years) postseismic relaxation, the curvature of which cannot be resolved in the short run (3.4 years) of postseismic data. About 100 mm of right-lateral displacement and 50 mm of fault-normal displacement accumulated across the geodetic array in the 3.4-year interval covered by the postseismic surveys. Those displacements are attributed to postseismic, right-lateral slip in the depth interval 10 to 30 km on the downward extension of the rupture trace. The right-lateral slip amounted to about 1 m directly beneath the geodetic array, and the fault-normal displacement is apparently primarily a consequence of the curvature of the rupture. These conclusions are based upon dislocation models fit to the observed deformation. However, no dislocation model was found with rms residuals as small as the expected observational error.

  5. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Viola, Giulio; Menegon, Luca; Sørensen, Bjørn

    2015-04-01

    A coarse grained, statically crystallized quartz vein with a random CPO, embedded in a phyllonitic matrix, was studied by optical microscopy, SEM imaging and EBSD to gain insights into the processes of strain localization in quartz deformed under low greenschist facies conditions at the frictional-viscous transition. The vein is located in a high strain zone at the front of an imbricate stack of Caledonian age along the northwesternmost edge of the Repparfjord Tectonic Window in northern Norway. The vein was deformed within the Nussirjavrri Fault Zone (NFZ), an out-of-sequence thrust with a phyllonitic core characterized by a ramp-flat-ramp geometry, NNW plunging stretching lineations and top-to-the SSE thrusting kinematics. Deformation conditions are typical of the frictional-viscous transition. The phyllonitic core formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation, related to the development of a mesoscopic pervasive extensional crenulation cleavage, was accommodated within the vein initially by basal slip of suitably oriented quartz crystals, which produced e.g. undulose extinction, extinction bands and bulging grain boundaries. In the case of misoriented quartz crystals, however, glide-accommodated dislocation creep resulted soon inefficient and led to localized dislocation tangling and strain hardening. In response to 1) hardening, 2) progressive increase of fluid pressure within the actively deforming vein and 3) increasing competence contrast between the vein and the surrounding weak, foliated phyllonitic fault core, quartz crystals began to deform frictionally along specific lattice planes oriented optimally with respect to the imposed stress field. Microfaulting generated small volumes of gouge along intracrystalline microfractures. These fractures were rapidly sealed by nucleation of new grains as transiently over-pressured fluids flushed the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. They are relatively strain free and show a scattered CPO in resemblance with the host grain, although there is a slight synthetic rotation of the crystallographic axes. Due to the random initial orientation of the vein crystals, strain was thus accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly in a viscous fashion and experienced only minor to no fracturing. Instead, crystals misoriented for basal slip hardened and deformed by pervasive fracturing promoted by the fluid over-pressure and controlled by the orientation of crystallographic planes. Viscous deformation continued after the microfractures sealed, again increasing the fluid pressure. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  6. Transient lateral photovoltaic effect in synthetic single crystal diamond

    NASA Astrophysics Data System (ADS)

    Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.

    2017-10-01

    A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.

  7. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  8. Clinical, roentgenographic, and scintigraphic results after interruption of the superior lateral genicular artery during total knee arthroplasty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, M.A.; Keating, E.M.; Faris, P.M.

    1989-11-01

    Forty-eight patients treated by primary bilateral simultaneous total knee arthroplasty, in which one knee had a lateral release and the other did not, were evaluated clinically and roentgenographically from one to 12 years postoperatively. Thirty of these patients also had a technetium-99 bone scan. Mean clinical scores at the last follow-up examination were 90 for both groups. Roentgenographically, there were no subluxations, dislocations, or fractures in either group. There were two metal-backed patellae (one in each group) with signs of polyethylene wear and developed debris. Bone scans showed no difference between the two groups and no signs of osteonecrosis ofmore » the patella.« less

  9. Brain activity in the right-frontal pole and lateral occipital cortex predicts successful post-operatory outcome after surgery for anterior glenoumeral instability.

    PubMed

    Zanchi, Davide; Cunningham, Gregory; Lädermann, Alexandre; Ozturk, Mehmet; Hoffmeyer, Pierre; Haller, Sven

    2017-03-29

    Shoulder apprehension is more complex than a pure mechanical problem of the shoulder, creating a scar at the brain level that prevents the performance of specific movements. Surgery corrects for shoulder instability at the physical level, but a re-dislocation within the first year is rather common. Predicting which patient will be likely to have re-dislocation is therefore crucial. We hypothesized that the assessment of neural activity at baseline and follow-up is the key factor to predict the post-operatory outcome. 13 patients with shoulder apprehension (30.03 ± 7.64 years) underwent clinical and fMRI examination before and one year after surgery for shoulder dislocation contrasting apprehension cue videos and control videos. Data analyses included task-related general linear model (GLM) and correlations imaging results with clinical scores. Clinical examination showed decreased pain and increased shoulder functions for post-op vs. pre-op. Coherently, GLM results show decreased activation of the left pre-motor cortex for post-surgery vs. pre-surgery. Right-frontal pole and right-occipital cortex activity predicts good recovery of shoulder function measured by STT. Our findings demonstrate that beside physical changes, changes at the brain level also occur one year after surgery. In particular, decreased activity in pre-motor and orbito-frontal cortex is key factor for a successful post-operatory outcome.

  10. Nerve injury following shoulder dislocation: the emergency physician's perspective.

    PubMed

    Ameh, Victor; Crane, Steve

    2006-08-01

    We describe the case of a 57-year-old woman who presented to the emergency department with a right anterior shoulder dislocation following a fall onto the right shoulder and right upper arm. She also complained of numbness in the right forearm and dorsum of the right hand. The examination revealed a bruise to the upper aspect of the right arm resulting from the impact following the fall. The patient also had a right wrist drop and loss of sensation in the lateral border of the right forearm and on the dorsum of the right hand, suggesting a radial nerve injury. She also had altered sensation in the ulnar distribution of her right hand, suspicious of concomitant ulnar nerve injury. No loss of sensation in the distribution of the axillary nerve (regimental patch) was observed. These findings were carefully documented and the patient subsequently had the shoulder reduced under entonox and morphine. The neurological deficits remained unchanged. The patient was sent home from the emergency room with arrangements for orthopaedic and physiotherapy follow-up. After a 3-month period, she had clinical and electromyography evidence of persistent radial and ulnar nerve deficit. She continues to have physiotherapy. This case highlights the need for awareness of the potential for nerve damage following shoulder dislocation and also to ensure that appropriate follow-up plan is instituted on discharge from the emergency department.

  11. Modern dual-mobility cup implanted with an uncemented stem: about 100 cases with 12-year follow-up.

    PubMed

    Philippot, Remi; Meucci, Jean Francois; Boyer, Bertrand; Farizon, Frederic

    2013-09-01

    We report the results of a 12-year follow-up retrospective series of 100 total hip arthroplasties using cementless, press-fit, dual-mobility acetabular cups. The aim of our study was to evaluate the clinical and radiographic results of this acetabular cup at last follow-up. This continuous and homogeneous series included 100 primary total hip arthroplasties performed during the year 2000. The THA combined a Corail® stem (Corail®, Depuy, Warsaw, IN) with a stainless steel Novae Sunfit® (Serf, Decines, France) acetabular cup. Fifteen patients died and 2 were lost to follow-up. Two cases of early dislocation were observed, and 3 cases of aseptic loosening of the acetabular component were reported. The mean stem subsidence was 0.71 mm, the mean craniopodal acetabular migration was 1.37 mm, and the mean medio-lateral acetabular migration was 1.52 mm. The 12-year survivorship is comparable to the data from the literature. The low dislocation rate at 12 years confirms the long-term, high stability of dual mobility, which should be recommended in primary THA for patients at risk for postoperative instability. The absence of true intraprosthetic dislocation events at 12-year follow-up provides evidence of the good quality of the latest generation of polyethylene liners and the necessity of combining thin-mirror, polished femoral necks with dual-mobility cups.

  12. Application of positron annihilation lineshape analysis to fatigue damage and thermal embrittlement for nuclear plant materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, M.; Ohta, Y.; Nakamura, N.

    1995-08-01

    Positron annihilation (PA) lineshape analysis is sensitive to detect microstructural defects such as vacancies and dislocations. The authors are developing a portable system and applying this technique to nuclear power plant material evaluations; fatigue damage in type 316 stainless steel and SA508 low alloy steel, and thermal embrittlement in duplex stainless steel. The PA technique was found to be sensitive in the early fatigue life (up to 10%), but showed a little sensitivity for later stages of the fatigue life in both type 316 stainless steel and SA508 ferritic steel. Type 316 steel showed a higher PA sensitivity than SA508more » since the initial SA508 microstructure already contained a high dislocation density in the as-received state. The PA parameter increased as a fraction of aging time in CF8M samples aged at 350 C and 400 C, but didn`t change much in CF8 samples.« less

  13. Return to sport after patellar dislocation or following surgery for patellofemoral instability.

    PubMed

    Ménétrey, Jacques; Putman, Sophie; Gard, Suzanne

    2014-10-01

    Patellofemoral instability may occur in a young population as a result of injury during sporting activities. This review focuses on return to sport after one episode of dislocation treated no operatively and as well after surgery for chronic patellofemoral instability. With or without surgery, only two-thirds of patients return to sports at the same level as prior to injury. A high-quality rehabilitation programme using specific exercises is the key for a safe return to sporting activities. To achieve this goal, recovery of muscle strength and dynamic stability of the lower limbs is crucial. The focus should be directed to strengthen the quadriceps muscle and pelvic stabilizers, as well as lateral trunk muscle training. Patient education and regularly performed home exercises are other key factors that can lead to a successful return to sports. The criteria for a safe return to sports include the absence of pain, no effusion, a complete range of motion, almost symmetrical strength, and excellent dynamic stability. Level of evidence IV.

  14. REHABILITATION FOLLOWING MEDIAL PATELLOFEMORAL LIGAMENT RECONSTRUCTION FOR PATELLAR INSTABILITY

    PubMed Central

    Prohaska, Daniel

    2017-01-01

    Patellar instability is a common problem seen by physical therapists, athletic trainers and orthopedic surgeons. Although following an acute dislocation, conservative rehabilitation is usually the first line of defense; refractory cases exist that may require surgical intervention. Substantial progress has been made in the understanding of the medial patellofemoral ligament (MPFL) and its role as the primary stabilizer to lateral patellar displacement. Medial patellofemoral ligament disruption is now considered to be the essential lesion following acute patellar dislocation due to significantly high numbers of ruptures following this injury. Evidence is now mounting that demonstrates the benefits of early reconstruction with a variety of techniques. Recently rehabilitation has become more robust and progressive due to our better understanding of soft tissue reconstruction and repair techniques. The purpose of this manuscript is to describe the etiology of patellar instability, the anatomy and biomechanics and examination of patellofemoral instability, and to describe surgical intervention and rehabilitation following MPFL rupture. Level of Evidence 5 PMID:28593102

  15. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (ii) Total Hydrocarbon Equivalent (for methanol-fueled diesel engines). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (iii...

  16. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (ii) Total Hydrocarbon Equivalent (for methanol-fueled diesel engines). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (iii...

  17. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (ii) Total Hydrocarbon Equivalent (for methanol-fueled diesel engines). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (iii...

  18. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (ii) Total Hydrocarbon Equivalent (for methanol-fueled diesel engines). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (iii...

  19. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (ii) Total Hydrocarbon Equivalent (for methanol-fueled diesel engines). 1.3 grams per brake horsepower-hour (0.48 gram per megajoule), as measured under transient operating conditions. (iii...

  20. Semi-automated fault system extraction and displacement analysis of an excavated oyster reef using high-resolution laser scanned data

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Székely, Balázs; Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Exner, Ulrike; Pfeifer, Norbert

    2015-04-01

    In this contribution we present a semi-automated method for reconstructing the brittle deformation field of an excavated Miocene oyster reef, in Stetten, Korneuburg Basin, Lower Austria. Oyster shells up to 80 cm in size were scattered in a shallow estuarine bay forming a continuous and almost isochronous layer as a consequence of a catastrophic event in the Miocene. This shell bed was preserved by burial of several hundred meters of sandy to silty sediments. Later the layers were tilted westward, uplifted and erosion almost exhumed them. An excavation revealed a 27 by 17 meters area of the oyster covered layer. During the tectonic processes the sediment volume suffered brittle deformation. Faults mostly with some centimeter normal component and NW-SE striking affected the oyster covered volume, dissecting many shells and the surrounding matrix as well. Faults and displacements due to them can be traced along the site typically at several meters long, and as fossil oysters are broken and parts are displaced due to the faulting, along some faults it is possible to follow these displacements in 3D. In order to quantify these varying displacements and to map the undulating fault traces high-resolution scanning of the excavated and cleaned surface of the oyster bed has been carried out using a terrestrial laser scanner. The resulting point clouds have been co-georeferenced at mm accuracy and a 1mm resolution 3D point cloud of the surface has been created. As the faults are well-represented in the point cloud, this enables us to measure the dislocations of the dissected shell parts along the fault lines. We used a semi-automatic method to quantify these dislocations. First we manually digitized the fault lines in 2D as an initial model. In the next step we estimated the vertical (i.e. perpendicular to the layer) component of the dislocation along these fault lines comparing the elevations on two sides of the faults with moving averaging windows. To estimate the strike-slip dislocation component, the surface points of the dissected shells on both sides of the fault planes were compared and displacement vectors were derived. The exact orientation of the fault planes cannot be accurately extracted automatically, so the distinction between normal and reverse fault is difficult. This makes the third component of the dislocation to be estimated inaccurately. These derived dislocation values are regarded as components of the dislocation vectors and were transformed back to the real world spatial coordinate system. Interpolating these dislocation vectors along fault lines we calculated and visualized the deformation field along the whole surface of the oyster reef. Although this deformation field is only a 2D section of the real 3D deformation field, its elaboration reveals the spatial variability of the deformation according to sediment inhomogeneity. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  1. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copolymers and Colloidal Nanocrystals (NBIT Phase II)

    DTIC Science & Technology

    2013-12-12

    their application in sensors and as displays. We found that the thermochromic behavior of a lamellar block copolymer poly(styrene-b-2-vinylpyridine...the solution pH. The findings of this work provide the basis for understanding and controlling the properties of thermochromic block copolymers...by the glassy PS layers . The glassy layers completely constrain the lateral expansion of the P2VP gel block and the dislocation defect network that

  2. Growth of high quality germanium films on patterned silicon substrates and applications

    NASA Astrophysics Data System (ADS)

    Vanamu, Ganesh

    The principal objective of this work is to determine optimal pattern structures for highest quality (defect free) heteroepitaxial growth. High quality films of Ge on Si are of significant importance and can be used in high electron mobility devices, photodetectors for optical communications (1.3mum or 1.55mum) and integrating III-V optoelectronic devices. However, a 4% lattice mismatch and ˜ 50% thermal expansion mismatch between Ge and Si create three major challenges in growing high quality Ge films on Si, (a) high surface roughness due to a pronounced <110> crosshatch pattern, (b) high dislocation densities in Ge films and (c) high density of microcracks and wafer bending. A common way of reducing lattice and thermal expansion mismatch is to form a "virtual substrate (VS)" by growing a graded composition followed by a uniform layer of the desired epitaxial film on a defect-free Si substrate. Virtual graded layers could not decrease the dislocation densities to the numbers acceptable for most of the devices. Mathews et al. first proposed that limiting the lateral dimensions of the sample prior to growth could reduce the dislocation density. Later On Fitzgerald proposed that patterning decreases the dislocation density in the films. In this work we show high quality crosshatch-free Ge films with dislocation density ˜ 105 cm-2 on the nano-patterned Si and also high quality GaAs films on the Ge/Si virtual substrate. The first step in this research was to perform a systematic study to identify the role of pattern width on the quality of Ge growth. We investigated micrometer and submicrometer scale patterns. We demonstrated that the quality of the heteroepitaxial layers improves as the pattern width decreases. Then we have decreased the pattern width to nanometer-scale dimensions. Significant improvement of the Ge film quality was observed. We used novel interferometric lithography techniques combined with reactive ion and wet chemical etching to fabricate Si structures. The patterning was done using standard photomask based lithography. We analyzed the quality of the Ge films using high resolution x-ray diffraction, TEM and SEM. We performed etch pit density (EPD) measurements by counting the pits formed using a Nomarski optical microscope. In order to correlate characterization with device performance, we designed an inter-digitated pattern to form Ge based metal semiconductor metal photodetector and measured the photoresponse of the Ge films. Preliminary results were very promising. We then grew 4 mum GaAs on the Ge/Si using MBE (0.5 mum/hr and 570°C) and analyzed the GaAs film quality. We also performed modeling to calculate strain energy density and wafer bending in multi-layer films grown epitaxially on planar Si substrates. We have also compared the models with experiments. (Abstract shortened by UMI.)

  3. Modified Boytchev procedure for treatment of recurrent anterior dislocation of shoulder

    PubMed Central

    Garg, Anant Kumar; Ayan, Saankritya; Keshari, Vikas; Kundu, Debi; Mukhopadhyay, Kiran Kumar; Acharyya, Biplab

    2011-01-01

    Background: More than 200 different operations have been described for the treatment of recurrent anterior dislocation of shoulder. The Modified Boytchev procedure employs rerouting of the detached tip of coracoid process with its attached conjoined tendon (short head of biceps and coracobrachialis) deep to subscapularis and reattaches to its anatomical location. We conducted a study on evaluation of long-term effect of modified Boytchev procedure and to compare our results with other studies published in literature. Materials and Methods: Since June 2002, modified Boytchev procedure was performed on 48 patients, who presented with recurrent anterior dislocation. 45 were men and 3 were women and were in the age group of 18-40 years (mean 27.83±4.95 years). Forty patients were affected on the dominant side and rest on the non-dominant side. The mean number of dislocations in these patients was 18.22±12.08. The mean followup period was 58.13±19.06 months (range 18-96 months). The patients were evaluated by visual analogue score, modified American Shoulder and Elbow Surgeon's Score (ASES), and Single Assessment Numeric Evaluation (SANE) score at the last followup. Results: All the patients regained almost preoperative range of forward flexion at the last followup. In the preoperative period the mean external rotation deficit at 0° and at 90° of abduction was 13.22°±5.16° and 18.06°±6.50°, respectively. At the last followup, the mean external rotation deficit at 0° and at 90° of abduction was 8.06°±2.47° and 8.95°±2.07°, respectively. This improvement in external rotation deficit was statistically significant (P<.05). Preoperative scores were compared with the most recent followup scores for all variables with use of a paired t test. All patients had significant improvement in visual analogue score, modified American Shoulder and Elbow Surgeon's Score (ASES), and Single Assessment Numeric Evaluation (SANE) score at the last followup. Four of the patients developed superficial infection which got resolved after treating with antibiotics, and two of the patients developed transient musculocutaneous nerve paresis. There was no radiological evidence of loosening and migration of coracoid screw or any glenohumeral arthritis on subsequent followup of skiagrams in any of our patients. Conclusion: Modified Boytchev procedure is an efficacious and technically simple procedure to treat recurrent anterior dislocation of shoulder. PMID:21772627

  4. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  5. A continuum theory of edge dislocations

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.

  6. What do home videos tell us about early motor and socio-communicative behaviours in children with autistic features during the second year of life – an exploratory study

    PubMed Central

    Zappella, Michele; Einspieler, Christa; Bartl-Pokorny, Katrin D.; Krieber, Magdalena; Coleman, Mary; Bölte, Sven; Marschik, Peter B.

    2018-01-01

    Background Little is known about the first half year of life of individuals later diagnosed with autism spectrum disorders (ASD). There is even a complete lack of observations on the first 6 months of life of individuals with transient autistic behaviours who improved in their socio-communicative functions in the pre-school age. Aim To compare early development of individuals with transient autistic behaviours and those later diagnosed with ASD. Study design Exploratory study; retrospective home video analysis. Subjects 18 males, videoed between birth and the age of 6 months (ten individuals later diagnosed with ASD; eight individuals who lost their autistic behaviours after the age of 3 and achieved age-adequate communicative abilities, albeit often accompanied by tics and attention deficit). Method The detailed video analysis focused on general movements (GMs), the concurrent motor repertoire, eye contact, responsive smiling, and pre-speech vocalisations. Results Abnormal GMs were observed more frequently in infants later diagnosed with ASD, whereas all but one infant with transient autistic behaviours had normal GMs (p < 0.05). Eye contact and responsive smiling were inconspicuous for all individuals. Cooing was not observable in six individuals across both groups. Conclusions GMs might be one of the markers which could assist the earlier identification of ASD. We recommend to implement the GM assessment in prospective studies on ASD. PMID:26246137

  7. Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie

    2012-03-15

    Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less

  8. Encoding model of temporal processing in human visual cortex.

    PubMed

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  9. Worker Dislocation. Case Studies of Causes and Cures.

    ERIC Educational Resources Information Center

    Cook, Robert F., Ed.

    Case studies were made of the following dislocated worker programs: Cummins Engine Company Dislocated Worker Project; GM-UAW Metropolitan Pontiac Retraining and Employment Program; Minnesota Iron Range Dislocated Worker Project; Missouri Dislocated Worker Program Job Search Assistance, Inc.; Hillsborough, North Carolina, Dislocated Worker Project;…

  10. Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.

    2016-10-01

    The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.

  11. Habitual dislocation of patella: A review

    PubMed Central

    Batra, Sumit; Arora, Sumit

    2014-01-01

    Habitual dislocation of patella is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. It is also termed as obligatory dislocation as the patella dislocates completely with each flexion and extension cycle of the knee and the patient has no control over the patella dislocating as he or she moves the knee1. It usually presents after the child starts to walk, and is often well tolerated in children, if it is not painful. However it may present in childhood with dysfunction and instability. Very little literature is available on habitual dislocation of patella as most of the studies have combined cases of recurrent dislocation with habitual dislocation. Many different surgical techniques have been described in the literature for the treatment of habitual dislocation of patella. No single procedure is fully effective in the surgical treatment of habitual dislocation of patella and a combination of procedures is recommended. PMID:25983506

  12. Peroneal tendon disorders

    PubMed Central

    Davda, Kinner; Malhotra, Karan; O’Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-01-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries. Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers. Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus. A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments. Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion. The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047 PMID:28736620

  13. Peroneal tendon disorders.

    PubMed

    Davda, Kinner; Malhotra, Karan; O'Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-06-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries.Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers.Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus.A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments.Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion.The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047.

  14. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less

  15. [Classification and Treatment of Sacroiliac Joint Dislocation].

    PubMed

    Tan, Zhen; Huang, Zhong; Li, Liang; Meng, Wei-Kun; Liu, Lei; Zhang, Hui; Wang, Guang-Lin; Huang, Fu-Guo

    2017-09-01

    To develop a renewed classification and treatment regimen for sacroiliac joint dislocation. According to the direction of dislocation of sacroiliac joint,combined iliac,sacral fractures,and fracture morphology,sacroiliac joint dislocation was classified into 4 types. Type Ⅰ (sacroiliac anterior dislocation): main fracture fragments of posterior iliac wing dislocated in front of sacroiliac joint. Type Ⅱ (sacroiliac posterior dislocation): main fracture fragments of posterior iliac wing dislocated in posterior of sacroiliac joint. Type Ⅲ (Crescent fracturedislocation of the sacroiliac joint): upward dislocation of posterior iliac wing with oblique fracture through posterior iliac wing. Type ⅢA: a large crescent fragment and dislocation comprises no more than onethird of sacroiliac joint,which is typically inferior. Type ⅢB: intermediatesize crescent fragment and dislocation comprises between one and twothirds of joint. Type ⅢC: a small crescent fragment where dislocation comprises most,but not the entire joint. Different treatment regimens were selected for different types of fractures. Treatment for type Ⅰ sacroiliac joint dislocation: anterior iliac fossa approach pry stripping reset; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅱ sacroiliac joint dislocation: posterior sacroiliac joint posterior approach; sacroiliac joint fixed with sacroiliac screw under computer guidance. Treatment for type ⅢA and ⅢB sacroiliac joint dislocation: posterior sacroiliac joint approach; sacroiliac joint fixed with reconstruction plate. Treatment for type ⅢC sacroiliac joint dislocation: sacroiliac joint closed reduction; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅳ sacroiliac joint dislocation: posterior approach; sacroiliac joint fixed with spinal pelvic fixation. Results of 24 to 72 months patient follow-up (mean 34.5 months): 100% survival,100% wound healing,and 100% fracture healing. Two cases were identified as type Ⅰ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Eight cases were identified as type Ⅱ sacroiliac joint dislocation; none had obvious nerve injury during treatments. Twelve cases were identified as type Ⅲ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Three cases were identified as type Ⅳ sacroiliac joint dislocation with coexistence of nerve injury. Two patients fully recovered 12 months after surgery. One had partial recovery of neurological function. The classification and treatment regimen for sacroiliac joint dislocation have achieved better therapeutic effect,which is worth promoting.

  16. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    PubMed

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  17. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2017-05-01

    A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.

  18. Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal

    DOE PAGES

    Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...

    2015-10-08

    In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less

  19. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trishkina, L., E-mail: trishkina.53@mail.ru; Zboykova, N.; Koneva, N., E-mail: koneva@tsuab.ru

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocationmore » chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.« less

  1. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  2. Sonography on injury of the medial patellofemoral ligament after acute traumatic lateral patellar dislocation: Injury patterns and correlation analysis with injury of articular cartilage of the inferomedial patella.

    PubMed

    Zhang, Guang-Ying; Zheng, Lei; Shi, Hao; Qu, Su-Hui; Ding, Hong-Yu

    2013-12-01

    The purpose of this study was to investigate the accuracy of high-frequency ultrasonography in the diagnosis of injuries of medial patellofemoral ligaments (MPFLs), analyse the characteristics of MPFL injury and correlations between injury of the MPFL and articular cartilage of the inferomedial patella in patients with acute traumatic lateral patellar dislocation. High-frequency sonographic images of 49 patients with acute traumatic lateral patellar dislocations treated surgically were reviewed. The χ(2) tests were performed for statistical analysis. Twenty-eight cases of complete MPFL tear and 21 cases of partial MPFL tear were identified in operation, with 27 cases of MPFL tear located at their femoral attachment, 21 cases of tear at the patellar attachment and one case of midsubstance tear. The diagnostic accuracy of sonography regarding partial MPFL tear and complete MPFL tear was 89.8% and 89.8%. Among the patients with MPFL tear at the patellar attachment, eight and six cases were concomitant with chondral and osteochondral lesions in the inferomedial patella, respectively, in contrast to nine and six cases in patients with MPFL tear at the femoral attachment, respectively. There was no significant difference between the two locations described above regarding the prevalence rates of chondral or osteochondral lesions of the inferomedial patella (P=0.732, P=0.614). Among the patients with complete MPFL tear, 12 and 10 cases were concomitant with chondral and osteochondral lesions in the inferomedial patella, respectively, while six and two cases were concomitant with partial MPFL tear. There was no significant difference between the two types of injuries discussed above on the prevalence rates of chondral lesions of the inferomedial patella (P=0.305), but the prevalence rate of osteochondral lesions between the two types of injuries discussed above was statistically different (P=0.035). The MPFL is most easily injured at the femoral attachment, secondly at the patellar attachment. High-frequency ultrasonography is an accurate method in the diagnosis of an MPFL tear. There are neither significant differences on the prevalence rates of chondral or osteochondral lesions of the inferomedial patella between locations of MPFL injuries, nor significant difference on the prevalence rates of chondral lesions between MPFL injury types; but the complete MPFL tear is more often concomitant with inferomedial patellar osteochondral lesions than the partial MPFL tear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modal analysis of dislocation vibration and reaction attempt frequency

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-02-04

    Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less

  4. Dynamics of threading dislocations in porous heteroepitaxial GaN films

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2017-12-01

    Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.

  5. The role of AlGaN buffers and channel thickness in the electronic transport properties of Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirabbasi, M., E-mail: mo.amirabbasi@gmail.com

    We try to theoretically analyze the reported experimental data of the Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures grown by MOCVD and quantitatively investigate the effects of AlGaN buffers and the GaNchannel thickness on the electrical transport properties of these systems. Also, we obtain the most important effective parameters of the temperature-dependent mobility in the range 35–300 K. Our results show that inserting a 1.1 μm thick Al{sub 0.04}Ga{sub 0.96}N buffer enhances electron mobility by decreasing the effect of phonons, the interface roughness, and dislocation and crystal defect scattering mechanisms. Also, as the channel thickness increases from 20 nm to 40 nm, themore » electron mobility increases from 2200 to 2540 cm{sup 2}/(V s) and from 870 to 1000 cm{sup 2}/(V s) at 35 and 300 K respectively, which is attributed to the reduction in the dislocation density and the strain-induced field. Finally, the reported experimental data show that inserting a 450 nm graded AlGaN layer before an Al{sub 0.04}Ga{sub 0.96}N buffer causes a decrease in the electron mobility, which is attributed to the enhancement of the lateral size of roughness, the dislocation density, and the strain-induced field in this sample.« less

  6. PREFACE: Festschrift to mark the sixtieth birthday of Professor Jens Lothe

    NASA Astrophysics Data System (ADS)

    Jøssang, Torstein; Barnett, David M.

    1992-01-01

    The collection of papers in this Festschrift represents the proceedings of a symposium held at the Norwegian Academy of Science and Letters on November 25-26, 1991, marking the occasion of the sixtieth birthday of Professor Jens Lothe. The symposium organizers attempted to invite contributors, either written, oral, or both, from a group of international scientists who have either collaborated with Jens in the past or whose work has had a significant impact in one of three areas in which Jens has focussed his own research interests, namely, statistical physics, elasticity and elastic waves, and the theory of dislocations in crystalline solids. The extent to which we have succeeded in obtaining a proper spectrum of contributors and contributions must be judged by the readers of this volume. It is rather rare in modern times to encounter a physicist such as Jens who has made seminal contributions in fields as diverse as the three included in this Festschrift. For this reason it is both historically interesting and instructive to follow the path that Jens Lothe's research career has taken him, since doing so clearly points out the international nature of the scientific endeavor and the fact that the search for scientific truth transcends national borders and governmental ideologies. Jens' postdoctoral studies at the University of Bristol in the late 1950s brought him in contact with an American postdoctoral student, John Hirth, who had worked on nucleation theory and condensation under the late Professor G M Pound at Carnegie-Mellon University. (Alex Maradudin, one of the contributors to the surface wave session of this symposium was also a postdoctoral fellow at Bristol at this time.) Both Lothe and Hirth had come to Bristol to acquaint themselves with dislocation theory; their first joint paper on double-kink nucleation theory was followed by numerous joint efforts, including their now-classic book Theory of Dislocations. Clearly, their interaction jelled. As legend has it, Hirth, recognizing Jens' interests and talents in statistical physics, brought Lothe to Pound's attention. Jens accepted an invitation to spend time at Carnegie-Mellon as a visiting faculty member, a stay which ultimately resulted in a series of penetrating papers on nucleation theory with Pound, Ken Russell (a student of Pound's, later a postdoctoral fellow with Jens, and a contributor to this symposium), and Jens Feder (a former student of Jens' and co-author of the opening lecture). When Pound later moved to Stanford University, he was fond of saying how at that time nucleation theory needed the strong hand of a good statistical physicist, and that "Jens Lothe showed us how to do it right". Meanwhile, a part of the "Bristol Connection" had moved to Ohio State University, where John Hirth had joined the faculty, and where one of us (TJ, who is also a former student of Jens') had come for postdoctoral work with Hirth on dislocation theory. When Jøssang returned to Oslo, Lothe rejoined Hirth for a year, to continue the preparations for production of the dislocation text several years later. A glance at Jens' publication list shows that upon his return to the physics group in Oslo in the mid 1960s his research interests were turning to the effects of elastic anisotropy in dislocation theory. His 1967 paper "Dislocation Bends in Anisotropic Media" appears immediately before L M Brown's "A Proof of Lothe's Theorem" in the same issue of Philosophical Magazine, the latter paper being stimulated by the former. Together these two articles form the basis for what might be termed the modern geometrical theory of planar dislocation loops. Within a year V L Indenbom and S S Orlov in the Soviet Union would publish the fully three-dimensional version of the theory; Jens was instrumental in bringing to the attention of western scientists the correctness and importance of the Indenbom-Orlov work at the 1969 National Bureau of Standards Conference on Fundamental Aspects of Dislocation Theory (Gaithersburg, Maryland, USA). This familiarity with and appreciation for contemporary Russian work in dislocation theory and (later) in elastic waves, as well as his knowledge of the Russian language, was to become a trademark of Jens during the next 20 years, a point to which we shall return. Kazumi Nishioka, a student of Pound's from Stanford (and a contributor to this symposium) joined Jens for post- doctoral studies in statistical physics in 1970, but soon found himself engaged in anisotropic elasticity and the connection between dislocations in uniform motion and the theory of surface waves (as pointed out by the late A N Stroh in 1962). Lothe and Nishioka wrote to one of us (DMB), who was now at Stanford and pursuing the use of an integral formalism rather than the Stroh sextic formalism for anisotropic elasticity, about the possibility of collaborating on certain aspects of subsonic Rayleigh wave theory. By 1974 Jens and DMB had not only virtually settled the issue of the existence of subsonic surface waves in anisotropic elastic half-spaces, but had embarked on a collaboration which still exists, having produced 24 joint publications. Oddly enough, a key ingredient in resolving the Rayleigh wave problem was somewhat fortuitously recalled by Barnett from a paper he requested from Jens ("Some Unifying Relations for Moving Dislocations", by R J Beltz, T L Davis and K Malen, three of Jens' postdoctoral students in 1967-68) four years prior to their collaboration. Professor Peter Chadwick, FRS (a contributor to the surface wave session), of the School of Mathematics at the University of East Anglia, UK, and his student, G D Smith, placed the Lothe-Barnett theory of subsonic surface waves on a much firmer and comprehensive basis in their beautiful 1977 monograph "Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials"; this work clearly delineated the important notions of limiting speed, first transonic state, and exceptional limiting waves, notions which in a sense lead to what can be called the "Russian Connection" with V L Indenbom, V I Alshits (a contributor to the surface wave session), and their colleagues, as well as the broadening of Jens' interests in elastic waves. Jens' much earlier work on radiation forces on moving dislocations was known and well-appreciated by Indenbom. Following a stay in Oslo as a visiting scientist, Alshits collaborated with Lothe to produce a remarkable series of three papers which clearly showed that degeneracies between slowness branches (acoustic axes) are usually the rule and not the exception in any crystal symmetry class, and that acoustic axes are the anchoring points for lines of exceptional waves on the unit sphere. Later, Professor Per Holm (Mathematics Department, University of Oslo, and a contributor of this volume) and Jens co-authored a deep mathematical study of the topology of bulk wave polarization fields on the unit sphere. In 1981 Alshits and Lothe provided the link between surface wave theory and the theory of bulk wave reflection, which have essentially paved the way for a clearer and more unified view of supersonic surface wave theory. More recent work by Steinar A Gundersen (Jens' most recent doctoral graduate and author of the introductory surface wave paper in this volume), Litian Wang (Jens' present graduate student and a contributor to this volume), and Jens on secluded surface waves and by Chadwick, Lothe and Barnett on one-component surface waves have roots in the 1981 Alshits-Lothe paper. We now eagerly await the appearance of the book Elastic Strain Fields and Dislocation Mobility, co-edited by Jens and V L Indenbom, currently in press through North-Holland, Amsterdam. A glance at the last 30 publications in Jens' vita shows the extent to which his Russian connection has broadened. He has taken great efforts to maintain familiarity with the relevant Russian scientific literature and to nurture and encourage western acquaintance with their work. No doubt his warm personality, natural curiosity and willingness to promote and seize opportunities for collaboration across national boundaries is what has allowed great intellect stationed in a somewhat remote part of the scientific community to engender such a large international following, when other gifted men might have chosen to work in isolation under similar circumstances. Vladimir Alshits may have said it best during his visit to Oslo last April, namely, "There are three Norwegian names known to every Russian—Henrik Ibsen, Fridtjof Nansen and Jens Lothe". None of this is meant to imply that Jens has neglected or ignored his colleagues in Norway. Indeed, quite the contrary is true, but we believe the exposition on the development within the Solid State Group and the Cooperative Phenomena Program at the University of Oslo and at NTH in Trondheim in this symposium and its proceedings, presented by the local staff and present close associates addresses Jens Lothe's contribution on the home front far better than this preface would allow. We believe we speak for all the symposium attendees by extending to Jens the happiest greetings and our best wishes for continued health and happiness.

  7. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  8. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    NASA Astrophysics Data System (ADS)

    Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.

    2015-05-01

    Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  9. Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis

    NASA Astrophysics Data System (ADS)

    Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.

    2017-07-01

    The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.

  10. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng

    2016-05-15

    In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less

  11. Tailoring Superconductivity with Quantum Dislocations.

    PubMed

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  12. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  13. Automated identification and indexing of dislocations in crystal interfaces

    DOE PAGES

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  14. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Vastola, Guglielmo; Zhang, Yong-Wei; Ren, Qijun; Fan, Yongliang; Zhong, Zhenyang

    2015-03-01

    We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs.We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07433e

  15. [Derotational subtrochanteric osteotomy of the femur in celebral palsy patients].

    PubMed

    Schejbalová, A

    2006-10-01

    Derotational subtrochanteric osteotomy as an independent surgical procedure is one of the options for treatment of hip anteversion in adolescent patients with cerebral palsy. In other indications it is one of combined surgical procedures for hip joint reconstruction. During the 1992-2005 period, derotational subtrochanteric osteotomy was indicated in 74 cases, in ambulatory patients 9 to 18 years old, with diplegic or hemiplegic cerebral plasy. In 63 cases it was used a part of combined surgery. The postoperative evaluation was based on clinical and radiographic findings, migration rates and Wiberg's CE angle obtained at 2 and 6 months, and then at each 6 months following surgery. Derotational subtrochanteric osteotomy alone always resulted in improvement of clinical status and an increase in Wiberg's CE angle by 10 degrees on average. Patients with marginal or high dislocation showed best results when the hip joint was reconstructed before the age of 9 years. In three hips a recurrent dislocation occurred gradually within one year of surgery. These patients fell back to stage II of the Vojta classification found preoperatively. During the next three years, three more hips developed a recurrent dislocation and two showed lateralization (20 %). Reconstructive surgery for neurogenic dislocation in patients over 10 years of age is associated with problems, as is derotation combined with varus osteotomy in abductor insufficiency. On the other hand, derotational subtrochanteric osteotomy alone is indicated particularly in children over 10 years, in whom it corrects hip joint anteversion and improves gait. Complete reconstructive procedures should be considered in the first 10 years of life when neither the femoral head nor the acetabulum are markedly changed. Derotative osteotomy alone is preferred to procedures combined with varus osteotomy. In walking adolescent patients, derotative femoral osteotomy alone is recommended; this can exceptionally be used at earlier age if marked asymmetry is present.

  16. Complication assessment and prevention strategies using midfoot fusion bolt for medial column stabilization in Charcot's osteoarthropathy.

    PubMed

    Mehlhorn, Alexander T; Walther, Markus; Iblher, Niklas; Südkamp, Norbert P; Schmal, Hagen

    2016-12-01

    In Charcot's osteoarthropathy stabilization of the medial column of the foot was introduced in order to establish a stable foot and reduce the risk for amputation. This study was performed to analyze postoperative complications, define risk factors for those and develop strategies for prevention. Since bolt dislocation takes place frequently, it was aimed to predict an appropriate time point for bolt removal under the condition that osseous healing has occurred. Fourteen consecutive patients with neuroosteoarthropathy of the foot and arch collapse were treated with open reduction and stabilization using midfoot fusion bolt and lateral lag screws. Age, gender, presence of preoperative osteomyelitis or ulcer, number of complications and operative revisions, Hba1c value, consolidation of arthrodesis, presence of a load-bearing foot and period to bolt dislocation was assessed. The mean follow-up was 21.4±14.6 (mean±SDM) months, 64% of patients suffered from diabetes with a preoperative Hba1c of 8.5±2.4. The mean number of revisions per foot was 3.6±4.1. Bolt dislocation was seen in 57% of the patients following 11.3±8.5 months; in 75% of these patients bony healing occurred before dislocation. There was a significant association between preoperative increased Hba1c value, presence of preoperative ulcer and wound infection. Healing of arthrodesis was demonstrated in 57% and a permanent weight-bearing foot without recurrent ulcer was achieved in 79%. The early and late postoperative complications could be controlled in general. A fully load-bearing and stable foot was obtained, despite osseous consolidation was not detected in all of these cases. Once a stable foot has established early removal of fusion bolt should be considered. To decrease the risk of infection Hba1c should be adjusted and ulcers should be treated before the operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage].

    PubMed

    Ye, Jingbing; Luo, Dahui; Fu, Weili; He, Xin; Li, Jian

    2009-09-01

    To investigate the method and the short term clinical effectiveness of in situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage. From February 2006 to November 2007, 9 patients suffering from single knee closed dislocation with multiple-ligament injury underwent open in situ suture repair procedure with non-absorbable thread and managements of other combined injuries simultaneously. Nine patients included 6 males and 3 females, aged 34-52 years old. The injured knees were left side in 4 cases and right side in 5 cases. Injuries were caused by traffic accident in 8 cases and heavy-weight crushing in 1 case. EMRI and arthroscopic examination showed that all patients suffered from the avulsion injuries of anterior cruciate ligament and posterior cruciate ligament. The time from injury to operation was 4 to 7 days with an average of 5.1 days. No bacterial arthritis occurred after operation. Subcutaneous ligated fat occurred and cured after symptomatic treatment in 2 cases, other incisions healed by first intension. All patients were followed up 12 months. At 12 months postoperatively, 2 patients' flexion range of the suffering knees lost 10 degrees when to compared with normal knees, and the range of motion was from 0 to 125 degrees. The Lysholm knee scores were 83-92 (average 86.3), the results were excellent in 3 cases and good in 6 cases. The posterior drawer test and anterior drawer test were one-degree positive in 3 cases respectively; the Lachman tests were one-degree positive in 5 cases, lateral stress tests were negative in all cases. In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage has the advantages such as reliable fixation, simultaneous management of other combined injuries and satisfactory short term effect.

  18. Misfit dislocation patterns of Mg-Nb interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Shao, Shuai; Liu, Xiang-Yang

    The role of heterogeneous interfaces in improving mechanical properties of polycrystalline aggregates and laminated composites has been well recognized with interface structure being of fundamental importance in designing composites containing multiple interfaces. In this paper, taking the Mg (hexagonal close-packed (hcp))/Nb (body-centered cubic (bcc)) interface as an example, we develop Mg-Nb interatomic potentials for predicting atomic configurations of Mg/Nb interfaces. We systematically characterize interface dislocations of Mg/Nb interfaces with Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) orientation relationships and propose a generalized procedure of characterizing interface structure by combining atomistic simulation and interface dislocation theory, which is applicable for not only hcp/bccmore » interfaces, but also other systems with complicated interface dislocation configurations.Here, in Mg/Nb, interface dislocation networks of two types of interfaces are significantly different although they originate from partial dislocations of similar character: the NW interface is composed of three sets of partial dislocations, while the KS interface is composed of four sets of interface dislocations - three sets of partial dislocations and one set of full dislocations that forms from the reaction of two close partial dislocations.« less

  19. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  20. Probing the character of ultra-fast dislocations

    DOE PAGES

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less

  1. Three-dimensional formulation of dislocation climb

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

    2015-10-01

    We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

  2. Ultrasonic influence on evolution of disordered dislocation structures

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.

    2017-12-01

    Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.

  3. Hydrogen diffusion in the elastic fields of dislocations in iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A.; Romanov, V. A.

    2016-12-15

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change ofmore » the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.« less

  4. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  5. Correlation of 3D Shift and 3D Tilt of the Patella in Patients With Recurrent Dislocation of the Patella and Healthy Volunteers: An In Vivo Analysis Based on 3-Dimensional Computer Models.

    PubMed

    Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei

    2017-11-01

    The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), <0.2 (no correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that by the 2D (conventional) analyses, based on the bisect offset index and patellar tilt angle, the 3D analyses showed statistically higher correlations between the lateral deviation and inclination of the patella ( P < .01). 3D shift and 3D tilt of the patella were moderately or strongly correlated in 95% of patients with RDP at 0° to 50° of knee flexion. It is not always necessary to use both parameters when evaluating patellar alignment, at least for knees with RDP at 0° to 50° of flexion. Such a description may enable surgeons to describe patellar alignment more simply, leading to a better, easier understanding of the characteristics of each patient with RDP.

  6. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  7. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  8. Atomistic calculations of dislocation core energy in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  9. Management of traumatic patellar dislocation in a regional hospital in Hong Kong.

    PubMed

    Lee, H L; Yau, W P

    2017-04-01

    The role of surgery for acute patellar dislocation without osteochondral fracture is controversial. The aim of this study was to report the short-term results of management of patellar dislocation in our institute. Patients who were seen in our institution with patella dislocation from January 2011 to April 2014 were managed according to a standardised management algorithm. Pretreatment and 1-year post-treatment International Knee Documentation Committee score, Tegner activity level scale score, and presence of apprehension sign were analysed. A total of 41 patients were studied of whom 20 were first-time dislocators and 21 were recurrent dislocators. Among the first-time dislocators, there was a significant difference between patients who received conservative treatment versus surgical management. The conservative treatment group had a 33% recurrent dislocation rate, whereas there were no recurrent dislocations in the surgery group. There was no difference in Tegner activity level scale score or apprehension sign before and 1 year after treatment, however. Among the recurrent dislocators, there was a significant difference between those who received conservative treatment and those who underwent surgery. The recurrent dislocation rate was 71% in the conservative treatment group versus 0% in the surgery group. There was also significant improvement in International Knee Documentation Committee score from 67.7 to 80.0 (P=0.02), and of apprehension sign from 62% to 0% (P<0.01). A management algorithm for patellar dislocation is described. Surgery is preferable to conservative treatment in patients who have recurrent patellar dislocation, and may also be preferable for those who have an acute dislocation.

  10. Dislocations

    MedlinePlus

    ... or a blow, sometimes from playing a contact sport. You can dislocate your ankles, knees, shoulders, hips, ... to dislocate it again. Wearing protective gear during sports may help prevent dislocations.

  11. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...

    2015-07-23

    Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less

  12. The effect of isolated dislocations on substrate and device properties in low-dislocation czochralski GaAs

    NASA Astrophysics Data System (ADS)

    Hunter, A. T.; Kimura, H.; Olsen, H. M.; Winston, H. V.

    1986-07-01

    Czochralski GaAs grown with In incorporated into the melt has large regions with fewer than 100 cm-2 dislocations. We have examined the effect of these dislocations on substrate and device properties. Infrared transmission images reveal dark filaments of high EL2 concentration a few tens of microns in diameter surrounding dislocations, Cathodo and photoluminescence images show orders of magnitude contrast in band-edge luminescence intensity near dislocations. Single dislocations appear to be surrounded by bright rings ˜200 μm in diameter in luminescence images, with dark spots 50 to 75 μm across centered on the dislocation. More complex luminescence structures with larger dark regions (˜150 μ across) and central bright spots are centered on small dislocation clusters. Differences in lifetime of photogenerated electrons or holes are the most likely cause of the luminescence contrast. Anneals typical of our post-implant processing substantially lower the luminescence contrast, suggesting the defect lowering the lifetime is removed by annealing. This may partially explain why we do not observe any effect of dislocation proximity on the properties of devices made in the material, in spite of the enormous luminescence contrast observed near dislocations.

  13. Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls-Nabarro theory

    NASA Astrophysics Data System (ADS)

    Hu, Xiangsheng; Wang, Shaofeng

    2018-02-01

    The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.

  14. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    NASA Astrophysics Data System (ADS)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  15. Open versus closed reduction: diacapitular fractures of the mandibular condyle.

    PubMed

    Chrcanovic, Bruno Ramos

    2012-09-01

    The purpose of the study was to review the literature regarding the evolution of current thoughts on management of diacapitular fractures (DFs) of the mandibular condyle. An electronic search in PubMed was undertaken in March 2012. The titles and abstracts from these results were read to identify studies within the selection criteria. Eligibility criteria included studies reporting clinical series of DFs, including both animal and human studies, without date or language restrictions. The search strategy initially yielded 108 references. Twenty-eight studies were identified without repetition within the selection criteria. Additional hand-searching of the reference lists of selected studies yielded three additional papers. The current indications for open reduction and internal fixation (ORIF) of DFs described in the literature are: (a) fractures affecting the lateral condyle with reduction of mandibular height; (b) fractures in which the proximal fragment dislocates laterally out of the glenoid fossa, which cannot be reduced by closed or open treatment of another part of the mandibular fracture. The indications for conservative treatment are: (a) fractures that do not shorten the condylar height (a fracture with displacement of the medial parts of the condyle); (b) undisplaced fractures; (c) comminution of the condylar head, when the bony fragments are too small for stable fixation; and (d) fractures in children. As the temporomandibular joint disk plays an important role as a barrier preventing ankylosis, it is important to reposition the disk (if displaced/dislocated) during the surgical treatment of DFs. The lateral pterygoid muscle should never be stripped from the medially displaced fragment because its desinsertion disrupts circulation to the medial bony fragment, and also because this muscle helps to restore the muscle function after surgery. ORIF of selected DFs improves prognosis by anatomical bone and soft tissue recovery when combined with physical therapy. If conducted properly, surgical treatment of DFs is a safe and predictable procedure and yields good results.

  16. Transient increase in sAPPα secretion in response to Aβ1-42 oligomers: an attempt of neuronal self-defense?

    PubMed

    Rose, Christiane; Dorard, Emilie; Audrain, Mickael; Gorisse-Hussonnois, Lucie; Cartier, Nathalie; Braudeau, Jérome; Allinquant, Bernadette

    2018-01-01

    Amyloid precursor protein (APP), a key molecule of Alzheimer disease, is metabolized in 2 antagonist pathways generating the soluble APP alpha (sAPPα) having neuroprotective properties and the beta amyloid (Aβ) peptide at the origin of neurotoxic oligomers, particularly Aβ1-42. Whether extracellular Aβ1-42 oligomers modulate the formation and secretion of sAPPα is not known. We report here that the addition of Aβ1-42 oligomers to primary cortical neurons induced a transient increase in α-secretase activity and secreted sAPPα 6-9 hours later. Preventing the generation of sAPPα by using small interfering RNAs (siRNAs) for the α-secretases ADAM10 and ADAM17 or for APP led to increased Aβ1-42 oligomer-induced cell death after 24 hours. Neuronal injuries due to oxidative stress or growth factor deprivation also generated sAPPα 7 hours later. Finally, acute injection of Aβ1-42 oligomers into wild-type mouse hippocampi induced transient secretion of sAPPα 48-72 hours later. Altogether, these data suggest that neurons respond to stress by generating sAPPα for their survival. These data must be taken into account when interpreting sAPPα levels as a biomarker in neurological disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The anteromedial approach to the psoas tendon in patients with cerebral palsy

    PubMed Central

    Poonnoose, Pradeep M.; Palocaren, Thomas

    2007-01-01

    Purpose Release of the psoas tendon for flexion deformity of the hip in children with cerebral palsy has traditionally been performed at the pelvic brim, lateral to the neurovascular bundle, or at its insertion into the lesser trochanter. As the psoas tendon is lateral to the pectineus, the traditional exposure of the tendon through an approach medial to the pectineus is limited by the extent to which the pectineus can be retracted proximally. Technical note We describe the use of the anteromedial approach used for the developmentally dislocated hip to expose the psoas tendon between the pectineus and the neurovascular bundle. This provides a much better visualisation of the tendon as it crosses the superior pubic ramus to its insertion. The use of this approach has not been described in cerebral palsy. PMID:19308518

  18. Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing

    2018-06-01

    Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.

  19. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    ERIC Educational Resources Information Center

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  20. Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; El-Awady, Jaafar A.

    2018-03-01

    We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.

  1. Dislocation-induced stress in polycrystalline materials: mesoscopic simulations in the dislocation density formalism

    NASA Astrophysics Data System (ADS)

    Berkov, D. V.; Gorn, N. L.

    2018-06-01

    In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.

  2. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  3. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  4. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  5. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  6. “Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron

    PubMed Central

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255

  7. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    PubMed

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  8. [Stable ankle joint fractures. Indication for surgical or conservative management?].

    PubMed

    Richter, J; Schulze, W; Muhr, G

    1999-06-01

    In German literature, ankle joint fractures are mostly classified in three groups according to Weber. In cases of the type A, the fracture line runs below, in cases of type B at height of the syndesmotic ligaments. C-type fractures are typically seen above this region. However, this practical and simple classification allows no inferences at accompanying injuries which in turn influence the functional outcome. We observed isolated fractures of the lateral malleolus in more than 60% of all type B-fractures, as soon as in the majority the type A-fractures. Since isolated medial ankle fractures occur very rarely, careful exclusion of further injuries is advisable here. In order to differentiate stable ones from unstable type B ankle injuries, we carry out a manual stress test, if there is less than 2 mm fracture dislocation and a congruent ankle mortise. In this manner we could find that stable lateral ankle fractures are characterized with a combination of an intact dorsal syndesmotic and medial ligament. Stable type B and undisplaced type A fractures were treated conservatively with an ankle brace (Aircast?). Unstable ankle injuries were treated by ORIF. Conservative treatment for undisplaced medial malleolar fractures is recommended, if x-rays showed less than 2 mm dislocation which allows a tibio-talare impingement. Biomechanical investigations could prove a significant increase in ankle joint stability, when an axial load of 300 N was applied to various horizontal loads. The talus does not follow automatically a displaced fibular fracture. The dorsal syndesmotic and the medial deltoid ligaments control ankle joint stability.

  9. [Distal clavicle fracture].

    PubMed

    Seppel, G; Lenich, A; Imhoff, A B

    2014-06-01

    Reposition and fixation of unstable distal clavicle fractures with a low profile locking plate (Acumed, Hempshire, UK) in conjunction with a button/suture augmentation cerclage (DogBone/FibreTape, Arthrex, Naples, FL, USA). Unstable fractures of the distal clavicle (Jäger and Breitner IIA) in adults. Unstable fractures of the distal clavicle (Jäger and Breitner IV) in children. Distal clavicle fractures (Jäger and Breitner I, IIB or III) with marked dislocation, injury of nerves and vessels, or high functional demand. Patients in poor general condition. Fractures of the distal clavicle (Jäger and Breitner I, IIB or III) without marked dislocation or vertical instability. Local soft-tissue infection. Combination procedure: Initially the lateral part of the clavicle is exposed by a 4 cm skin incision. After reduction of the fracture, stabilization is performed with a low profile locking distal clavicle plate. Using a special guiding device, a transclavicular-transcoracoidal hole is drilled under arthroscopic view. Additional vertical stabilization is arthroscopically achieved by shuttling the DogBone/FibreTape cerclage from the lateral portal cranially through the clavicular plate. The two ends of the FibreTape cerclage are brought cranially via adjacent holes of the locking plate while the DogBone button is placed under the coracoid process. Thus, plate bridging is achieved. Finally reduction is performed and the cerclage is secured by surgical knotting. Use of an arm sling for 6 weeks. Due to the fact that the described technique is a relatively new procedure, long-term results are lacking. In the short term, patients postoperatively report high subjective satisfaction without persistent pain.

  10. Anterior transarticular C1-C2 fixation with contralateral screw insertion: a report of two cases and technical note.

    PubMed

    Lvov, Ivan; Grin, Andrey; Kaykov, Aleksandr; Smirnov, Vladimir; Krylov, Vladimir

    2017-08-08

    Anterior transarticular fixation of the C1-C2 vertebrae is a well-known technique that involves screw insertion through the body of the C2 vertebra into the lateral masses of the atlas through an anterior transcervical approach. Meanwhile, contralateral screw insertion has been previously described only in anatomical studies. We describe two case reports of the clinical application of this new technique. In Case 1, the patient was diagnosed with an unstable C1 fracture. The clinical features of the case did not allow for any type of posterior atlantoaxial fusion, Halo immobilization, or routine anterior fixation using the Reindl and Koller techniques. The possible manner of screw insertion into the anterior third of the right lateral mass was via a contralateral trajectory, which was performed in this case. Case 2 involved a patient with neglected posteriorly dislocated dens fracture who could not lie in the prone position due to concomitant cardiac pathology. Reduction of atlantoaxial dislocation was insufficient, even after scar tissue resection at the fracture, while transdental fusion was not possible. Considering the success of the previous case, atlantoaxial fixation was performed through the small approach, using the Reindl technique and contralateral screw insertion. These two cases demonstrate the potential of anterior transarticular fixation of C1-C2 vertebrae in cases where posterior atlantoaxial fusion is not achievable. This type of fixation can be performed through a single approach if one screw is inserted using the Reindl technique and another is inserted via a contralateral trajectory.

  11. Deformation in the Yakataga seismic gap, Southern Alaska, 1980- 1986 ( USA).

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1988-01-01

    A 60-by-40-km trilateration network in the Yakataga seismic gap was surveyed in 1980, 1982, 1984, and 1986 with precise electro-optical distance-measuring equipment to measure strain accumulation. The overall deformation is roughly approximated by a 0.24+ or -0.03 mu strain/yr N32oW+ or -2.4o uniaxial contraction that is uniform in time. However, the spatial distribution of deformation shows some concentration of convergence in the neighbourhood of the Chugach-St. Elias fault and of right-lateral shear across the Contact fault. A simple dislocation model of the plate interaction in the Yakataga gap fits the observed deformation reasonably well but seems to require that the motion of the Pacific plate relative to the North American plate be directed more nearly N36oW than N15oW, the generally accepted direction of relative motion for this location. However, the direction of plate motion inferred from the dislocation model depends upon details of the interaction at the plate boundary that may not have been modeled accurately. A nearby but smaller trilateration network at Icy Bay was surveyed in 1982, 1984, and 1986. This network spans the SW corner of the rupture zone of the 1979 St. Elias earthquake. The deformation at Icy Bay consists of left-lateral shear across a NE trending zone. The relation of this deformation to strain accumulation in the Yakataga gap, postseismic relaxation associated with the 1979 earthquake, or rebound from the unloading associated with the rapid recession of the Guyot glacier is not understood.-Authors

  12. Unified Static and Dynamic Recrystallization Model for the Minerals of Earth's Mantle Using Internal State Variable Model

    NASA Astrophysics Data System (ADS)

    Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.

    2017-12-01

    In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.

  13. BBilateral Neglected Anterior Shoulder Dislocation with Greater Tuberosity Fractures

    PubMed Central

    Upasani, Tejas; Bhatnagar, Abhinav; Mehta, Sonu

    2016-01-01

    Introduction: Shoulder dislocations are a very common entity in routine orthopaedic practice. Chronic unreduced anterior dislocations of the shoulder are not very common. Neurological and vascular complications may occur as a result of an acute anterior dislocation of the shoulder or after a while in chronic unreduced shoulder dislocation. Open reduction is indicated for most chronic shoulder dislocations. We report a case of neglected bilateral anterior shoulder dislocation with bilateral displaced greater tuberosity fracture. To the best of our knowledge, only a handful cases have been reported in literature with bilateral anterior shoulder dislocation with bilateral fractures. Delayed diagnosis/reporting is a scenario which makes the list even slimmer and management all the more challenging. Case Report: We report a case of a 35-year-old male who had bilateral anterior shoulder dislocation and bilateral greater tuberosity fracture post seizure and failed to report it for a period of 30 days. One side was managed conservatively with closed reduction and immobilization and the other side with open reduction. No neurovascular complications pre or post reduction of shoulder were seen. Conclusion: Shoulder dislocations should always be suspected post seizures and if found should be treated promptly. Treatment becomes difficult for any shoulder dislocation that goes untreated for considerable period of time PMID:27703939

  14. Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment.

    PubMed

    Ondry, Justin C; Hauwiller, Matthew R; Alivisatos, A Paul

    2018-04-24

    Using in situ high-resolution TEM, we study the structure and dynamics of well-defined edge dislocations in imperfectly attached PbTe nanocrystals. We identify that attachment of PbTe nanocrystals on both {100} and {110} facets gives rise to b = a/2⟨110⟩ edge dislocations. Based on the Burgers vector of individual dislocations, we can identify the glide plane of the dislocations. We observe that defects in particles attached on {100} facets have glide planes that quickly intersect the surface, and HRTEM movies show that the defects follow the glide plane to the surface. For {110} attached particles, the glide plane is collinear with the attachment direction, which does not provide an easy path for the dislocation to reach the surface. Indeed, HRTEM movies of dislocations for {110} attached particles show that defect removal is much slower. Further, we observe conversion from pure edge dislocations in imperfectly attached particles to dislocations with mixed edge and screw character, which has important implications for crystal growth. Finally, we observe that dislocations initially closer to the surface have a higher speed of removal, consistent with the strong dislocation free surface attractive force. Our results provide important design rules for defect-free attachment of preformed nanocrystals into epitaxial assemblies.

  15. [Therapy of traumatic anterior shoulder dislocation: current status of therapy in Germany. Are there scientifically verified therapy concepts?].

    PubMed

    Tingart, M; Bäthis, H; Bouillon, B; Tiling, T

    2001-06-01

    There are no generally accepted concepts for the treatment of traumatic anterior shoulder dislocation. The objective of this study was to ascertain the current treatment for traumatic shoulder dislocations in German hospitals and to compare this with the data reported in the literature. A total of 210 orthopedic surgery departments were asked for their treatment strategy in an anonymous country-wide survey; 103 questionnaires (49%) were returned for evaluation. Additional imaging (ultrasound, CT, MRI) beyond the routine X-rays is performed in 82% of clinics for primary shoulder dislocation (94% in recurrent dislocation). A young, athletic patient (< 30 years old) would be operated on for a primary traumatic shoulder dislocation in 73% of hospitals (98% in recurrent dislocation). In contrast, a patient of the same age, with a moderate level of sporting activity would be treated conservatively in 67% of cases (14% in recurrent dislocation). Similarly, for an active, middle-aged patient with a demanding job, 74% of responses favored conservative treatment after a primary dislocation and 6% after a recurrent dislocation. Older patients (> 65 years old) are usually treated conservatively after a primary or recurrent shoulder dislocation (99%, 69%). For a primary shoulder dislocation the most popular surgical reconstruction is a Bankart repair (75%). For recurrent shoulder dislocation several different operative techniques are seen (Bankart 29%, T-shift 26%, Putti-Platt 8%, Eden-Lange-Hybbinette 22%, Weber osteotomy 13%). Based on our literature review, we found: (1) The clinical examination of both shoulders is important to diagnose hyperlaxity; (2) Routine CT or MRI is not necessary for primary traumatic shoulder dislocations; (3) A young, athletic patient should undergo surgical reconstruction after a primary shoulder dislocation; (4) The operation of choice for primary and recurrent dislocation is the Bankart repair; (5) There is no sufficient evidence that an arthroscopic Bankart repair is as good as an open procedure; (6) There are limited indications for other operative techniques, as they are associated with a higher recurrence and arthrosis rate.

  16. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  17. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  18. Using O*NET in Dislocated Worker Retraining: The Toledo Dislocated Worker Consortium Project.

    ERIC Educational Resources Information Center

    Sommers, Dixie; Austin, James

    A project used the Occupational Information Network (O*NET) to assist eligible dislocated workers in determining whether training offered by the Toledo Dislocated Worker Consortium fit their needs. More specifically, O*NET was used to help the dislocated workers understand whether they had knowledge and skills that were transferable into the…

  19. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  20. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  1. A phase field crystal model simulation of morphology evolution and misfit dislocation generation in nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.

    2017-10-01

    A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.

  2. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  3. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE PAGES

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...

    2017-02-08

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  4. Motion of 1/3⟨111⟩ dislocations on Σ3 {112} twin boundaries in nanotwinned copper

    NASA Astrophysics Data System (ADS)

    Lu, N.; Du, K.; Lu, L.; Ye, H. Q.

    2014-01-01

    The atomic structure of Σ3 {112} ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 {112} ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 {112} incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.

  5. Complete dislocation of the ulnar nerve at the elbow: a protective effect against neuropathy?

    PubMed

    Leis, A Arturo; Smith, Benn E; Kosiorek, Heidi E; Omejec, Gregor; Podnar, Simon

    2017-08-01

    Recurrent complete ulnar nerve dislocation has been perceived as a risk factor for development of ulnar neuropathy at the elbow (UNE). However, the role of dislocation in the pathogenesis of UNE remains uncertain. We studied 133 patients with complete ulnar nerve dislocation to determine whether this condition is a risk factor for UNE. In all, the nerve was palpated as it rolled over the medial epicondyle during elbow flexion. Of 56 elbows with unilateral dislocation, UNE localized contralaterally in 17 elbows (30.4%) and ipsilaterally in 10 elbows (17.9%). Of 154 elbows with bilateral dislocation, 26 had UNE (16.9%). Complete dislocation decreased the odds of having UNE by 44% (odds ratio = 0.475; P =  0.028), and was associated with less severe UNE (P = 0.045). UNE occurs less frequently and is less severe on the side of complete dislocation. Complete dislocation may have a protective effect on the ulnar nerve. Muscle Nerve 56: 242-246, 2017. © 2016 Wiley Periodicals, Inc.

  6. Unravelling the physics of size-dependent dislocation-mediated plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.

    2015-01-01

    Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.

  7. Characteristics of dislocation structure in creep deformed lamellar tial alloy within primary regime

    NASA Astrophysics Data System (ADS)

    Cho, H. S.; Nam, Soo W.

    1999-06-01

    In this investigation, dislocations of a lamellar TiAl alloy are analyzed after creeping in the primary range at 800°C/200MPa in order to interpret their mobility It was found that the dislocation density in γ-laths decreased as the creep deformation proceeds within primary creep regime Schmid factor analysis suggests that the creep deformation in the early stage of the primary creep regime is controlled by the gliding of some of the initial dislocations which have a high enough Schmid factor As the creep deformation progressed, those dislocations with high Schmid factors slip preferentially to be annihilated at the α-γ interface For further continuous deformation, dislocation generation is required, and for this, α-phase is transformed to γ-phase in order to generate new dislocations A slow dislocation generation process by phase transformation of α-phase compared with the absorbing rate to sinks is responsible for the decreasing dislocation density as the creep strain increases

  8. Strain field mapping of dislocations in a Ge/Si heterostructure.

    PubMed

    Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen

    2013-01-01

    Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.

  9. Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.

    PubMed

    Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben

    2016-01-01

    J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.

  10. Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective

    PubMed Central

    Tsuru, T.; Chrzan, D. C.

    2015-01-01

    Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg, we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy. PMID:25740411

  11. Deformation twinning in a creep-deformed nanolaminate structure

    NASA Astrophysics Data System (ADS)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  12. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  13. Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, S.U.; Blum, W.

    1995-04-15

    The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less

  14. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  15. Instability of total hip replacement: A clinical study and determination of its risk factors.

    PubMed

    Ezquerra-Herrando, L; Seral-García, B; Quilez, M P; Pérez, M A; Albareda-Albareda, J

    2015-01-01

    To determine the risk factors associated with prosthetic dislocation and simulate a finite element model to determine the safe range of movement of various inclination and anteversion cup positions. Retrospective Case Control study with 46 dislocated patients from 1994 to 2011. 83 randomly selected patients. Dislocation risk factors described in the literature were collected. A prosthetic model was simulated using finite elements with 28, 32, 36 mm heads, and a 52 mm cup. Acetabular position was 25°, 40°, and 60° tilt and with 0°, 15° and 25° anteversion. In extension of 0° and flexion of 90°, internal and external rotation was applied to analyze the range of movement, maximum resisting moment, and stress distribution in the acetabulum to impingement and dislocation. There was greater dislocation in older patients (p=0.002). Higher dislocation in fractures than in osteoarthritis (p=0.001). Less anteversion in dislocated patients (p=0.043). Longer femoral neck in dislocated patients (p=0.002). Finite element model: lower dislocation when there is more anteversion, tilt and bigger femoral heads. Advanced age and fractures are the major risk factors for dislocation. "Safe zone" of movement for dislocation avoidance is 40°-60° tilt and 15°-25° anteversion. Both the defect and excess of soft tissue tension predispose to dislocation. Bigger femoral heads are more stable. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  16. Disclinations, dislocations, and continuous defects: A reappraisal

    NASA Astrophysics Data System (ADS)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  17. Traumatic dislocation of the incudostapedial joint repaired with fibrin tissue adhesive.

    PubMed

    Nikolaidis, Vasilios

    2011-03-01

    We present a case of traumatic dislocation of the incudostapedial joint (ISJ) and a simple method for controlled application of the glue using commercial fibrin tissue adhesive. A 26-year-old female presented to our ENT clinic for hearing impairment to her left ear 2 months after a head trauma due to a motorcycle accident. The audiogram revealed a 40- to 50-dB HL conductive hearing loss with a notch configuration in bone conduction curve on the left ear. Computed tomography of the left temporal bone revealed a longitudinal fracture line. An exploratory tympanotomy was performed under general anesthesia. The ISJ was found dislocated while the incus was trapped by the edges of the bony lateral attic wall fracture. A small bony edge that impeded incus movement was removed and a small amount of the glue was precisely applied to the lenticular process of the incus with an angled incision knife. The long process of the incus was firmly pressed over the stapes for 30 seconds with a 90° hook and 60 seconds after the application of the glue the ISJ was repaired. One year after our patient achieved full airbone gap (ABG) closure (ABG, ≤10 dB HL), while she demonstrated overclosure in frequencies 2 and 4 kHz. Fibrin tissue glue allowed safe, rapid, and accurate repair of the ISJ and resulted in an anatomically normal articulation as the mass and shape of the ossicles was preserved. Moreover, our patient achieved full ABG closure. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(0 0 1) heterostructures

    NASA Astrophysics Data System (ADS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Sokolov, L. V.

    2018-02-01

    Edge dislocations in face-centered crystals are formed from two mixed dislocations gliding along intersecting {1 -1 1} planes, forming the so-called Lomer locks. This process, which is called zipping, is energetically beneficial. It is experimentally demonstrated in this paper that a reverse process may occur in Ge/GeSi strained buffer/Si(0 0 1) heterostructures under certain conditions, namely, decoupling of two 60° dislocations that formed the Lomer-type dislocation, i.e., unzipping. It is assumed that the driving force responsible for separation of Lomer dislocations into two 60° dislocations is the strain remaining in the GeSi buffer layer.

  19. Temporomandibular joint dislocation

    PubMed Central

    Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal; Singh, Shreya

    2015-01-01

    Temporomandibular joint (TMJ) dislocation is an uncommon but debilitating condition of the facial skeleton. The condition may be acute or chronic. Acute TMJ dislocation is common in clinical practice and can be managed easily with manual reduction. Chronic recurrent TMJ dislocation is a challenging situation to manage. In this article, we discuss the comprehensive review of the different treatment modalities in managing TMJ dislocation. PMID:26668447

  20. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  1. Grain size effects on dislocation and twinning mediated plasticity in magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-09-20

    Grain size effects on the competition between dislocation slip and {101¯2} -twinning in magnesium are investigated using discrete dislocation dynamics simulations. These simulations account for dislocation–twin boundary interactions and twin boundary migration through the glide of twinning dislocations. It is shown that twinning deformation exhibits a strong grain size effect; while dislocation mediated slip in untwinned polycrystals displays a weak one. In conclusion, this leads to a critical grain size at 2.7 μm, above which twinning dominates, and below which dislocation slip dominates.

  2. Appetitive Context Conditioning Proactively, but Transiently, Interferes with Expression of Counterconditioned Context Fear

    ERIC Educational Resources Information Center

    Holmes, Nathan M.; Westbrook, R. Frederick

    2014-01-01

    Four experiments used rats to study appetitive-aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were…

  3. Transient hypothyroidism after iodine-131 therapy for Grave's disease.

    PubMed

    Gómez, N; Gómez, J M; Orti, A; Gavaldà, L; Villabona, C; Leyes, P; Soler, J

    1995-09-01

    We studied 355 patients with Grave's disease to characterize transient hypothyroidism and its prognostic value following 131I therapy. The patients received therapeutic 131I treatment as follows: 333 received a dose < 10 mCi (6.6 +/- 1.9 mCi) and 22 received a dose > 10 mCi (12.8 +/- 2.9 mCi). Diagnosis of transient hypothyroidism was based on low T4, regardless of TSH within the first year after 131I followed by recovery of T4 and normal TSH. After administration of < 10 mCi 131I, 40 patients developed transient hypothyroidism during the first year; transient hypothyroidism was symptomatic in 15. There was no transient hypothyroidism after high doses (> 10 mCi) of 131I. Iodine-131 uptake > 70% at 2 hr before treatment was a risk factor for developing transient hypothyroidism (Odds ratio 2.8, 95% confidence interval 0.9-9.4). At diagnosis of transient hypothyroidism, basal TSH levels were high (51%), normal (35%) or low (14%); therefore, the transient hypothyroidism was not centralized. If hypothyroidism developed during the first 6 mo after basal TSH > 45 mU/liter ruled out transient hypothyroidism. The development of transient hypothyroidism and its hormonal pattern did not influence long-term thyroid function. Since no prognostic factors reliably predicted transient hypothyroidism before 131I or at the time of diagnosis, if hypothyroidism appears within the first months after 131I, the reevaluation of thyroid function later is warranted to avoid unnecessary chronic replacement therapy.

  4. Heteromeric Canonical Transient Receptor Potential 1 and 4 Channels Play a Critical Role in Epileptiform Burst Firing and Seizure-Induced Neurodegeneration

    PubMed Central

    Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit

    2012-01-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671

  5. Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration.

    PubMed

    Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang

    2012-03-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity.

  6. Undisplaced Intraoperative Fracture Presenting as Early Dislocation with Tapered Wedge Stems in Total Hip Arthroplasty - Case Series and Review of Literature

    PubMed Central

    Reddy, A V Gurava; Eachempati, Krishna Kiran; Mugalur, Aakash; Suchinder, A; Rao, V B N Prasad; Kamurukuru, Nalanda

    2017-01-01

    Introduction: Periprosthetic fractures and dislocation in the early post-operative period can be disastrous both for the surgeon and the patient. However, undisplaced periprosthetic fractures presenting with dislocation is uncommon. We describe successful management of two cases (one bilateral dislocation and one unilateral dislocation) of undisplaced iatrogenic fractures in total hip arthroplasty (THA) presenting as early dislocation. Case Report: Case 1 was a 45-year-old female with osteoarthritis of hip secondary to developmental dysplasia of the hip with bilateral early nontraumatic dislocation with bilateral identical periprosthetic fracture. It was managed by revision to long stem and encirclage wiring. Case 2 presented with early dislocation in the 2nd week post THA. We found an intertrochanteric fracture intra-operatively with unstable implant. Acetabular component and femoral component revision were done with reconstruction of the greater trochanter. Discussion: These fractures could be occult iatrogenic fractures characteristic of taper wedge stems which presented as early nontraumatic dislocation in the post-operative period. The prosthesis subsidence, loss of muscle tension and change of version might be the factors leading to dislocation. Conclusion: Unrecognized incomplete intraoperative fracture can occur with tapered wedge uncemented stems which can present as a dislocation in the immediate post-operative period. This will require early revision of the femoral component. PMID:29051875

  7. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process

    NASA Astrophysics Data System (ADS)

    Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke

    2017-06-01

    Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.

  8. Evolution of the substructure of a novel 12% Cr steel under creep conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk

    2016-05-15

    In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less

  9. Theory of interacting dislocations on cylinders.

    PubMed

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  10. Quantitative analysis of dislocation arrangements induced by electromigration in a passivated Al (0.5 wt % Cu) interconnect

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.

    2003-05-01

    Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.

  11. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    DOEpatents

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  12. Effects of dislocations on polycrystal anelasticity

    NASA Astrophysics Data System (ADS)

    Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.

    2017-12-01

    Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.

  13. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  14. Split and sealing of dislocated pipes at the front of a growing crystal

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Sheinerman, A. G.

    2004-07-01

    A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.

  15. Dislocation-Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals

    NASA Astrophysics Data System (ADS)

    Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng

    2015-03-01

    This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.

  16. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.

    PubMed

    Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng

    2015-03-11

    This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.

  17. Investigation of threading dislocation blocking in strained-layer InGaAs/GaAs heterostructures using scanning cathodoluminescence microscopy

    NASA Astrophysics Data System (ADS)

    Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.

    2000-08-01

    Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.

  18. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  19. Identical activation volumes of dislocation mobility in the [100](010) and [001](010) slip systems in natural olivine

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Blaha, Stephan; Kawazoe, Takaaki; Miyajima, Nobuyoshi; Katsura, Tomoo

    2017-03-01

    Dislocation recovery experiments were performed on predeformed olivine single crystals at pressures of 2, 7 and 12 GPa and a constant temperature of 1650 K to determine the pressure dependence of the annihilation rate constants for [100](010) edge dislocation (a dislocation) and [001](010) screw dislocation (c dislocation). The constants of both types of dislocations are comparable within 0.3 orders of magnitude. The activation volumes of a and c dislocations are small and identical within error: 2.7 ± 0.2 and 2.5 ± 0.9 cm3/mol, respectively. These values are slightly larger and smaller than those of Si lattice and grain-boundary diffusions in olivine, respectively. The small and identical activation volumes for the a and c dislocations suggest that the pressure-induced fabric transition is unlikely in the asthenosphere. The decrease in seismic anisotropy with depth down in the asthenosphere may be caused by the fabric transition from A type or B type to AG type with decreasing stress with depth.

  20. Three-dimensional interaction and movements of various dislocations in anisotropic bicrystals with semicoherent interfaces

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Pan, E.

    2018-07-01

    Lattice dislocation interactions with semicoherent interfaces are investigated by means of anisotropic field solutions in metallic homo- and hetero-structures. The present framework is based on the mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier integral and series transforms, which cover different shapes and dimensions of various extrinsic and intrinsic dislocations. Two-dimensional equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations as well as any polygonal and elliptical dislocation loops in three dimensions are considered using a superposition scheme. Self, image and Peach-Koehler forces are derived to compute the equilibrium dislocation positions in pile-ups, including the internal structures and energetics of the interfacial dislocation networks. For illustration, the effects due to the elastic and misfit mismatches are discussed in the pure misfit Au/Cu and heterophase Cu/Nb systems, while discrepancies resulting from the approximation of isotropic elasticity are clearly exhibited. These numerical examples not only feature and enhance the existing works in anisotropic bimaterials, but also promote a novel opportunity of analyzing the equilibrium shapes of planar glide dislocation loops at nanoscale.

  1. Local electronic and optical behaviors of a-plane GaN grown via epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Kasliwal, V.; Baski, A. A.; Ni, X.; Özgür, Ü.; Morkoç, H.

    2007-01-01

    Conductive atomic force microscopy and near-field optical microscopy (NSOM) were used to study the morphology, conduction, and optical properties of a-plane GaN films grown via epitaxial lateral overgrowth (ELO) by metal organic chemical vapor deposition. The AFM images for the coalesced ELO films show undulations, where the window regions appear as depressions with a high density of surface pits. At reverse bias below 12V, very low uniform conduction (2pA) is seen in the window regions. Above 20V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies explicitly showed enhanced optical quality in the wing regions of the overgrown GaN due to a reduced density of dislocations, with the wings and the windows clearly discernible from near-field photoluminescence mapping.

  2. Pelvic crescent fractures: variations in injury mechanism and radiographic pattern.

    PubMed

    Gehlert, Rick J; Xing, Zhiqing; DeCoster, Thomas A

    2014-01-01

    Pelvic crescent fracture, also known as sacroiliac fracture-dislocation, is traditionally considered as a lateral compression injury and a vertically stable injury. Thirty consecutive cases were analyzed and it was found that 63% of cases were caused by lateral compression (LC), 27% by anteroposterior compression (APC), and 10% by vertical shear (VS). APC and VS injuries cause significant displacement of the anterior iliac fragment, but 21% of LC injury cases showed minimal displacement and were treated successfully with nonoperative treatment. Different injury mechanisms also produce different types of pelvic instability. More important, different injury mechanisms produce distinct radiographic fracture patterns regarding the obliquity of the fracture line and fracture surface. These differences in the fracture pattern will influence the decision of internal fixation options. Therefore, treatment of pelvic crescent fractures should be based on individual analysis of injury mechanism and radiographic fracture pattern.

  3. The PECS II block as a major analgesic component for clavicle operations: A description of 7 case reports.

    PubMed

    Schuitemaker R, J B; Sala-Blanch, X; Rodriguez-Pérez, C L; Mayoral R, J T; López-Pantaleon, L A; Sánchez-Cohen, A P

    2018-01-01

    Clavicle fractures correspond to 35% of traumatic fractures of the shoulder girdle. Regional anaesthesia has shown better analgesic results than systemic treatment for perioperative management. Innervation of the clavicle is complex, at present its knowledge raises controversy. The lateral pectoral nerve through the innervating musculature predominantly participates in the lateral and anterior part of the clavicle. The following report of 7 cases describes the effective postoperative analgesia of modified PEC II block in patients with middle third clavicle fracture or acromioclavicular dislocation who underwent a modified PEC II block for postoperative pain management, in the context of a multimodal analgesia. The potential advantage of this management over other analgesic procedures should be evaluated in specific clinical trials. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Osteogenesis Imperfecta Diagnosed from Mandibular and Lower Limb Fractures: A Case Report.

    PubMed

    Kobayashi, Yoshikazu; Satoh, Koji; Mizutani, Hideki

    2016-06-01

    Osteogenesis imperfecta (OI) is a congenital disease characterized by bone fragility and low bone mass. Despite the variety of its manifestation and severity, facial fractures occur very infrequently. Here, we report a case of an infant diagnosed with OI after mandibular and lower limb fractures. A boy aged 1 year and 3 months was brought to his neighboring hospital with a complaint of facial injury. He was transferred to our hospital to undergo operation 3 days later. Computed tomography images revealed multiple mandibular fractures including complete fracture in the symphysis and dislocated condylar fracture on the right side. Open reduction and internal fixation with absorbable implants was performed 7 days after injury. He fractured his right lower limb 2 months later. He was diagnosed with OI type IA by an orthopedist. He will be administered bone-modifying agents if he suffers from frequent fractures.

  5. [Calcaneo-fibular ligament surgery for chronic lateral instability of the upper ankle : Broström technique with modification by Wille. Video article].

    PubMed

    Kosiol, J; Wille, M; Putzer, D; Biedermann, R

    2015-11-01

    An acute ligament rupture of the lateral ligament complex of the ankle joint is treated without surgery. Treatment failure may lead to a chronically unstable situation of the ankle joint, in which case surgery is an effective procedure for stabilizing the ruptured ligaments. Anatomical reconstruction is the best operative technique if the ligament tissue is of good quality. In our video we demonstrate a new possibility for the positioning of an anchor to tighten the calcaneo-fibular ligament. Modified Broström repairs are described in the literature in which the calcaneo-fibular ligament is released and reattached to the fibula to tighten it. We present the option to release the ligament at the calcaneus and reattach it using a suture anchor. This offers the advantage of preventing the possible dislocation of the peroneal tendons.

  6. Proceedings of the International Symposium on the Structure and Properties of Dislocations in Semiconductors (6th) held in Oxford (England) 5-8 April 1989: Structure and Properties of Dislocations in Semiconductors 1989

    DTIC Science & Technology

    1989-04-08

    now good experimental data on the effects of impurities, including locking by non-electrical xii Preface impurities, and the effect of electrically... locks which result from the interaction of the gliding dislocations. As a matter of fact, these dislocation configurations look similar to those...loop on the go° partial. Structure of grain boundaries and dislocations 3 2.2. Lomer-Cottrell lock : a/2>. Two 60’ dislocations can react and give

  7. Debye screening of dislocations.

    PubMed

    Groma, I; Györgyi, G; Kocsis, B

    2006-04-28

    Debye-like screening by edge dislocations of some externally given stress is studied by means of a variational approach to coarse grained field theory. Explicitly given are the force field and the induced geometrically necessary dislocation (GND) distribution, in the special case of a single glide axis in 2D, for (i) a single edge dislocation and (ii) a dislocation wall. Numerical simulation demonstrates that the correlation in relaxed dislocation configurations is in good agreement with the induced GND in case (i). Furthermore, the result (ii) well predicts the experimentally observed decay length for the GND developing close to grain boundaries.

  8. Te homogeneous precipitation in Ge dislocation loop vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrin Toinin, J.; Portavoce, A., E-mail: alain.portavoce@im2np.fr; Texier, M.

    2016-06-06

    High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te{sup 2+} or Te{sup 1+} ions.

  9. PRESSURE PULSES AT VOYAGER 2 : DRIVERS OF INTERSTELLAR TRANSIENTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J. D.; Wang, C.; Liu, Y. D.

    Voyager 1 ( V1 ) crossed the heliopause into the local interstellar medium (LISM) in 2012. The LISM is a dynamic region periodically disturbed by solar transients with outward-propagating shocks, cosmic-ray intensity changes and anisotropies, and plasma wave oscillations. Voyager 2 ( V2 ) trails V1 and thus may observe the solar transients that are later observed at V1. V2 crossed the termination shock in 2007 and is now in the heliosheath. Starting in 2012, when solar maximum conditions reached V2 , five possible merged interaction regions (MIRs) have been observed by V2 in the heliosheath. The timing is consistentmore » with these MIRs driving the transients observed by V1 in the LISM. The largest heliosheath MIR was observed by V2 in late 2015 and should reach V1 in 2018.« less

  10. Study of the dislocation contribution to the internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  11. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy

    USGS Publications Warehouse

    Kirby, S.H.; Wegner, M.W.

    1978-01-01

    Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.

  12. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    NASA Astrophysics Data System (ADS)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most elaborated and at the same time the most promising descriptions: thermodynamics-based models with and without Zener pinning. For conditions compatible with the S1 and S2 microstructures (~800 °C and strain rate ~10-13 s-1), the calculated stable grain sizes are ~30 μm and >300 μm in the models with and without Zener pinning, respectively. This is in agreement with the contrasting grain sizes associated with S1 and S2 microstructures implying that mainly chemically induced recrystallization of S1 feldspar porphyroclasts must had played a fundamental role in the transition into the diffusion creep. The model with pinning also explains only minor changes of mean grain size associated with S2 microstructure. The S2-S3 switch from the diffusion to dislocation creep is difficult to explain when assuming reasonable temperature and strain rate (or stress). However, a simple incorporation of the effect of melt solidification into the model with pinning can mimic this observed switch. Besides the above mentioned simple models with prescribed temperature and strain rate, we implemented the grain size evolution laws into in a 2D thermo-mechanical model setup, where stress, strain rate and temperature evolve in a more natural manner. This setup simulates a collisional evolution of an orogenic root with anomalous lower crust. The lower-crustal material is a source region for diapirs and it deforms via a combination of dislocation and grain-size-sensitive creeps. We tested the influence of selected parameters in the flow laws and in the grain-size evolution laws on the shape and other characteristics of the growing diapirs. The outputs of our simulations were then compared with the geological record from the Moldanubian granulite massifs.

  13. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  14. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  15. Removal of restrictions following primary THA with posterolateral approach does not increase the risk of early dislocation.

    PubMed

    Gromov, Kirill; Troelsen, Anders; Otte, Kristian Stahl; Ørsnes, Thue; Ladelund, Steen; Husted, Henrik

    2015-01-01

    Patient education and mobilization restrictions are often used in an attempt to reduce the risk of dislocation following primary THA. To date, there have been no studies investigating the safety of removal of mobilization restrictions following THA performed using a posterolateral approach. In this retrospective non-inferiority study, we investigated the rate of early dislocation following primary THA in an unselected patient cohort before and after removal of postoperative mobilization restrictions. From the Danish National Health Registry, we identified patients with early dislocation in 2 consecutive and unselected cohorts of patients who received primary THA at our institution from 2004 through 2008 (n = 946) and from 2010 through 2014 (n = 1,329). Patients in the first cohort were mobilized with functional restrictions following primary THA whereas patients in the second cohort were allowed unrestricted mobilization. Risk of early dislocation (within 90 days) was compared in the 2 groups and odds ratio (OR)-adjusted for possible confounders-was calculated. Reasons for early dislocation in the 2 groups were identified. When we adjusted for potential confounders, we found no increased risk of early dislocation within 90 days in patients who were mobilized without restrictions. Risk of dislocation within 90 days was lower (3.4% vs 2.8%), risk of dislocation within 30 days was lower (2.1% vs 2.0%), and risk of multiple dislocations (1.8% vs 1.1%) was lower in patients who were mobilized without restrictions, but not statistically significantly so. Increasing age was an independent risk factor for dislocation. Removal of mobilization restrictions from the mobilization protocol following primary THA performed with a posterolateral approach did not lead to an increased risk of dislocation within 90 days.

  16. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE PAGES

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...

    2018-02-05

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  17. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  18. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    NASA Astrophysics Data System (ADS)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  19. Non-Traumatic Anterior Dislocation of a Total Knee Replacement Associated with Neurovascular Injury

    PubMed Central

    Aderinto, Joseph; Gross, Allan E; Rittenhouse, Bryan

    2009-01-01

    Prosthetic total knee replacements rarely dislocate. When dislocation does occur, it is usually in a posterior direction in association with a posterior stabilised, cruciate-sacrificing prosthesis. Neurovascular injury is unusual. In this report, we describe a case of anterior dislocation of a cruciate-retaining total knee replacement in a 67-year-old woman. The dislocation occurred in the absence of overt trauma and resulted in severe neurovascular injury. PMID:19686618

  20. Posterior dislocation following revision total knee replacement arthroplasty: a case report and literature analysis.

    PubMed

    Lee, Ho Min; Kim, Jong Pil; Chung, Phil Hyun; Kang, Suk; Kim, Young Sung; Go, Bo Seong

    2018-05-24

    Knee dislocation following total knee replacement arthroplasty is a rare but serious complication. The incidence of dislocation following primary total knee arthroplasty with posterior stabilized implants ranges from 0.15 to 0.5%, and posterior dislocation after revision total knee arthroplasty is even rarer. Here, we report the case of a 76-year-old male who presented with posterior dislocation after posterior stabilized revision total knee arthroplasty.

  1. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  2. Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...

    2017-01-19

    Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less

  3. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  4. Pipe and grain boundary diffusion of He in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.

    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less

  5. Ultrasonic Study of Dislocation Dynamics in Lithium -

    NASA Astrophysics Data System (ADS)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  6. Chronic bilateral dislocation of temporomandibular joint.

    PubMed

    Shakya, S; Ongole, R; Sumanth, K N; Denny, C E

    2010-01-01

    Dislocation of the condyle of the mandible is a common condition that may occur in an acute or chronic form. It is characterised by inability to close the mouth with or without pain. Dislocation has to be differentiated from subluxation which is a self reducible condition. Dislocation can occur in any direction with anterior dislocation being the commonest one. Various predisposing factors have been associated with dislocation like muscle fatigue and spasm, the defect in the bony surface like shallow articular eminence, and laxity of the capsular ligament. People with defect in collagen synthesis like Ehler Danlos syndrome, Marfan syndrome are said to be genetically predisposed to this condition. Various treatment modalities have been used ranging from conservative techniques to surgical methods. Acute dislocations can be reduced manually or with conservative approach and recurrent and chronic cases can be reduced by surgical intervention. Though the dislocation in our case was 4 months a simple manual reduction proved to be successful. We believe that manual reduction can be attempted as first line of treatment prior to surgical intervention.

  7. Period-doubling reconstructions of semiconductor partial dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90 degrees partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantlymore » reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. In conclusion, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  8. Pipe and grain boundary diffusion of He in UO 2

    DOE PAGES

    Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.; ...

    2016-10-12

    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less

  9. Uncovering the inertia of dislocation motion and negative mechanical response in crystals.

    PubMed

    Tang, Yizhe

    2018-01-09

    Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.

  10. Electron energy can oscillate near a crystal dislocation

    DOE PAGES

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.; ...

    2017-01-25

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less

  11. Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory

    PubMed Central

    West, Robert; Braver, Todd

    2009-01-01

    Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581

  12. Autonomic consequences of arousal from sleep: mechanisms and implications.

    PubMed

    Horner, R L

    1996-12-01

    Normal spontaneous arousals from sleep are associated with transient increases in blood pressure, heart rate, and ventilation caused by large transient changes in autonomic output. These autonomic changes are out of proportion to obvious physiological need and are in excess of those observed in later periods of quiet wakefulness. This paper discusses some of the mechanisms underlying the cardio-respiratory consequences of arousal from sleep, and discusses why the normal onset of wakefulness may be associated with such large changes in autonomic output.

  13. Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkung earthquake in eastern Taiwan: Elastic modeling from inversion of GPS data

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Lee, Jian-Cheng; Hu, Jyr-Ching; Chen, Horng-Yue

    2009-03-01

    The Chengkung earthquake with ML = 6.6 occurred in eastern Taiwan at 12:38 local time on December 10th 2003. Based on the main shock relocation and aftershock distribution, the Chengkung earthquake occurred along the previously recognized N20°E trending Chihshang fault. This event did not cause human loss, but significant cracks developed at the ground surface and damaged some buildings. After 1951 Taitung earthquake, there was no larger ML > 6 earthquake occurred in this region until the Chengkung earthquake. As a result, the Chengkung earthquake is a good opportunity to study the seismogenic structure of the Chihshang fault. The coseismic displacements recorded by GPS show a fan-shaped distribution with maximal displacement of about 30 cm near the epicenter. The aftershocks of the Chengkung earthquake revealing an apparent linear distribution helps us to construct the clear fault geometry of the Chihshang fault. In this study, we employ a half-space angular elastic dislocation model with GPS observations to figure out the slip distribution and seismological behavior of the Chengkung earthquake on the Chihshang fault. The elastic half-space dislocation model reveals that the Chengkung earthquake is a thrust event with minor left-lateral strike-slip component. The maximum coseismic slip is located around the depth of 20 km and up to 1.1 m. The slips are gradually decreased to less than 10 cm near the surface part of the Chihshang fault. The seismogenic fault plane, which is constructed by the delineation of the aftershocks, demonstrates that the Chihshang fault is a high-angle fault. However the fault plane changes to a flat plane at depth of 20 km. In addition, a significant part of the measured deformation across the surface fault zone for this earthquake can be attributed to postseismic creep. The postseismic elastic dislocation model shows that most afterslips are distributed to the upper level of the Chihshang fault. And most afterslips consist of both of dip- and left-lateral slip. The model results show that the Chihshang fault may be partially locked or damped near surface during coseismic slip. After the mainshock, the strain, which cumulated near the surface, was released by postseismic creep resulting in significant postseismic deformation.

  14. Superolateral dislocation of an intact mandibular condyle into the temporal fossa: case report and literature review.

    PubMed

    Sharma, Divashree; Khasgiwala, Ankit; Maheshwari, Bharat; Singh, Charanpreet; Shakya, Neelam

    2017-02-01

    Temporomandibular joint dislocation refers to the dislodgement of mandibular condyle from the glenoid fossa. Anterior and anteromedial dislocations of the mandibular condyle are frequently reported in the literature, but superolateral dislocation is a rare presentation. This report outlines a case of superolateral dislocation of an intact mandibular condyle that occurred in conjunction with an ipsilateral mandibular parasymphysis fracture. A review of the clinical features of superolateral dislocation of the mandibular condyle and the possible techniques of its reduction ranging from the most conservative means to extensive surgical interventions is presented. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Ipsilateral fracture dislocation of the shoulder and elbow: A case report and literature review

    PubMed Central

    Behr, Ian; Blint, Andy; Trenhaile, Scott

    2013-01-01

    Ipsilateral dislocation of the shoulder and elbow is an uncommon injury. A literature review identified nine previously described cases. We are reporting a unique case of ipsilateral posterior shoulder dislocation and anterior elbow dislocation along with concomitant intra-articular fractures of both joints. This is the first report describing this combination of injuries. Successful treatment generally occurs with closed reduction of ipsilateral shoulder and elbow dislocations, usually reducing the elbow first. When combined with a fracture at one or both locations, closed reduction of the dislocations in conjunction with appropriate fracture management can result in a positive functional outcome. PMID:26403884

  16. Bilateral posterior fracture-dislocation of the shoulder: Report of two cases

    PubMed Central

    Claro, Rui; Sousa, Ricardo; Massada, Marta; Ramos, Joaquim; Lourenço, José M.

    2009-01-01

    Bilateral posterior fracture-dislocation of the shoulder is a very rare injury. Almost 50% of bilateral posterior dislocations are due to a convulsive seizure, rising to 90% if the dislocations are associated with fractures. Electric shock accounts for less than 5% of bilateral posterior dislocations of the shoulder. A systematization of the clinical and radiological approach, followed by an early diagnosis and proper surgical treatment is essential. Authors report 2 cases of bilateral posterior fracture-dislocation of the shoulder, one caused by a convulsive seizure and the other by an electric shock. A review of literature and a treatment protocol are also presented. PMID:20661400

  17. Simultaneous dislocation of the metacarpophalangeal and interphalangeal joints of the thumb.

    PubMed

    Tabib, William; Sayegh, Samir

    2002-01-01

    Combined dislocation of the metacarpophalangeal and interphalangeal joints of the thumb is uncommon. We know of only four previously reported cases. We report a new case characterised by dorsal dislocation of both joints. Because of entrapment of the volar plate, open reduction at the interphalangeal joint was necessary. The metacarpophalangeal dislocation was treated by closed reduction. After three weeks of immobilisation, physiotherapy resulted in a satisfactory outcome. Even if the diagnosis of dislocation of the interphalangeal joint is obvious it would be easy to overlook a simultaneous dislocation of the metacarpophalangeal joint with serious consequences. Whole hand examination remains an essential rule.

  18. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  19. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  20. Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis

    NASA Astrophysics Data System (ADS)

    Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas

    2017-09-01

    A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.

  1. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  2. Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University

    2016-06-17

    Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less

  3. Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates

    NASA Astrophysics Data System (ADS)

    Song, Yifei; Kujofsa, Tedi; Ayers, John E.

    2018-02-01

    We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.

  4. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  5. Morphological changes in the cervical intervertebral foramen dimensions with unilateral facet joint dislocation.

    PubMed

    Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K

    2009-11-01

    Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.

  6. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  7. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-09-01

    The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.

  8. Size dependence of yield strength simulated by a dislocation-density function dynamics approach

    NASA Astrophysics Data System (ADS)

    Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.

    2015-04-01

    The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.

  9. Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron

    NASA Astrophysics Data System (ADS)

    Anento, N.; Malerba, L.; Serra, A.

    2018-01-01

    The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.

  10. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.

    PubMed

    Kang, Keonwook; Bulatov, Vasily V; Cai, Wei

    2012-09-18

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.

  11. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at highmore » temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.« less

  13. Acetabular cup position and risk of dislocation in primary total hip arthroplasty.

    PubMed

    Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill

    2017-02-01

    Background and purpose - Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods - A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results - 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation - The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies.

  14. Acetabular cup position and risk of dislocation in primary total hip arthroplasty

    PubMed Central

    Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill

    2017-01-01

    Background and purpose — Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods — A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results— 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation— The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies. PMID:27879150

  15. Investigation into three dimensional hip anatomy in anterior dislocation after THA. Influence of the position of the hip rotation centre.

    PubMed

    Sariali, Elhadi; Klouche, Shahnez; Mamoudy, Patrick

    2012-07-01

    The components position is a major factor under the surgeon's control in determining the risk of dislocation post total hip arthroplasty. The aim of this study was to investigate the proper three-dimensional components position including the centre of rotation in the case of anterior dislocation. Among 1764 consecutive patients who underwent total hip arthroplasty using a direct anterior approach, 27 experienced anterior dislocation. The three-dimensional hip anatomy was investigated in 12 patients who were paired with 12 patients from the same initial cohort who did not experience dislocation and also with 36 control patients with osteoarthritis. A pelvic Cartesian referential was defined to perform the acetabular analysis. The coordinates were expressed as percentages of the pelvic width, height and depth. The anteversion angles were measured. The hip centre of rotation was significantly shifted medially and posteriorly in the dislocation group when compared to the non-dislocation group and also to the control group. There was no significant difference in component angular position between the dislocation-group and the non-dislocation group. However, the stem anteversion in the dislocation group was increased in comparison to the mean natural femoral anteversion of the control group. A medial and posterior displacement of the hip rotation centre was found to correlate to anterior dislocation post total hip arthoplasty. These results suggest the importance of an accurate restoration of the centre of rotation, whilst avoiding an excessive acetabular reaming which may induce a medial and a posterior displacement. III comparative non randomised. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes

    USGS Publications Warehouse

    Masterlark, Timothy; Wang, H.F.

    2002-01-01

    A three-dimensional finite-element model (FEM) of the Mojave block region in southern California is constructed to investigate transient stress-coupling between the 1992 Landers and 1999 Hector Mine earthquakes. The FEM simulates a poroelastic upper-crust layer coupled to a viscoelastic lower-crust layer, which is decoupled from the upper mantle. FEM predictions of the transient mechanical behavior of the crust are constrained by global positioning system (GPS) data, interferometric synthetic aperture radar (InSAR) images, fluid-pressure data from water wells, and the dislocation source of the 1999 Hector Mine earthquake. Two time-dependent parameters, hydraulic diffusivity of the upper crust and viscosity of the lower crust, are calibrated to 10–2 m2·sec–1 and 5 × 1018 Pa·sec respectively. The hydraulic diffusivity is relatively insensitive to heterogeneous fault-zone permeability specifications and fluid-flow boundary conditions along the elastic free-surface at the top of the problem domain. The calibrated FEM is used to predict the evolution of Coulomb stress during the interval separating the 1992 Landers and 1999 Hector Mine earthquakes. The predicted change in Coulomb stress near the hypocenter of the Hector Mine earthquake increases from 0.02 to 0.05 MPa during the 7-yr interval separating the two events. This increase is primarily attributed to the recovery of decreased excess fluid pressure from the 1992 Landers coseismic (undrained) strain field. Coulomb stress predictions are insensitive to small variations of fault-plane dip and hypocentral depth estimations of the Hector Mine rupture.

  17. Biomechanical characteristics of hemi-hamate reconstruction versus volar plate arthroplasty in the treatment of dorsal fracture dislocations of the proximal interphalangeal joint.

    PubMed

    Tyser, Andrew R; Tsai, Michael A; Parks, Brent G; Means, Kenneth R

    2015-02-01

    To compare stability and range of motion after hemi-hamate reconstruction versus volar plate arthroplasty in a biomechanical proximal interphalangeal (PIP) joint fracture-dislocation model. Eighteen digits from 6 cadaver hands were tested. We created defects of 40%, 60%, and 80% in the palmar base of each digit's middle phalanx, simulating an acute PIP joint fracture-dislocation. Each defect scenario was reconstructed with a hemi-hamate arthroplasty followed by a volar plate arthroplasty. A computer-controlled mechanism was used to bring each digit's PIP joint from full extension to full flexion via the digital tendons in each testing state, and in the intact state. During each testing scenario we collected PIP joint cinedata in a true lateral projection using mini-fluoroscopy. A digital radiography program was used to measure the amount of middle phalanx dorsal translation (subluxation) in full PIP joint extension. We recorded the angle at which subluxation, if present, occurred during each testing scenario. Average dorsal displacement of the middle phalanx in relation to the proximal phalanx was 0.01 mm for the hemi-hamate reconstructed joints and -0.03 mm for the volar plate arthroplasty, compared with the intact state. Flexion contractures were noted in each of the specimens reconstructed with volar plate arthroplasty. Degree of contracture was directly correlated with defect size, averaging 20° for 40% defects, 35° for 60% defects, and 60° for 80% defects. We observed no flexion contractures in the hemi-hamate reconstructions. Surgeons can use both hemi-hamate and volar plate arthroplasty to restore PIP joint stability following a fracture dislocation with a large middle phalanx palmar base defect. Use of volar plate arthroplasty led to an increasing flexion contracture as the middle phalanx palmar base defect increased. Clinicians can use the information from this study to help with surgical decision-making and patient education. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Mechanical behaviour of TWIP steel under shear loading

    NASA Astrophysics Data System (ADS)

    Vincze, G.; Butuc, M. C.; Barlat, F.

    2016-08-01

    Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.

  19. Local and transient nanoscale strain mapping during in situ deformation

    DOE PAGES

    Gammer, C.; Kacher, J.; Czarnik, C.; ...

    2016-08-26

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. In this paper, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Finally, our results demonstrate how large multidimensional data sets capturedmore » with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.« less

  20. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1986-01-01

    Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.

  1. The role of the lateral pterygoid muscle in the sagittal fracture of mandibular condyle (SFMC) healing process.

    PubMed

    Liu, Chng-Kui; Liu, Ping; Meng, Fan-Wen; Deng, Bang-Lian; Xue, Yang; Mao, Tian-Qiu; Hu, Kai-Jin

    2012-06-01

    The aim of this study was to examine the role of the lateral peterygoid muscle in the reconstruction of the shape of the condyle during healing of a sagittal fracture of the mandibular condyle. Twenty adult sheep were divided into 2 groups: all had a unilateral operation on the right side when the anterior and posterior attachments of the discs were cut, and an oblique vertical osteotomy was made from the lateral pole of the condyle to the medial side of the condylar neck. Ten sheep had the lateral pterygoid muscle cut, and the other 10 sheep did not. Sheep were killed at 4 weeks (n=2 from each group), 12 weeks (n=4), and 24 weeks (n=4) postoperatively. Computed tomograms (CT) were taken before and after operations. We dissected the joints, and recorded with the naked eye the shape, degree of erosion, and amount of calcification of the temporomandibular joint (TMJ). In the group in which the lateral peterygoid muscle had not been cut the joints showed overgrowth of new bone and more advanced ankylosis. Our results show that the lateral pterygoid muscle plays an important part in reconstructing the shape of the condyle during the healing of a sagittal fracture of the mandibular condyle, and combined with the dislocated and damaged disc is an important factor in the aetiology of traumatic ankylosis of the TMJ. Copyright © 2011. Published by Elsevier Ltd.

  2. Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence

    NASA Astrophysics Data System (ADS)

    Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi

    2018-03-01

    The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.

  3. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  4. Ligamentous and capsular injuries to the metacarpophalangeal joints of the hand.

    PubMed

    Shah, Smiresh Suresh; Techy, Fernando; Mejia, Alfonso; Gonzalez, Mark H

    2012-01-01

    The mechanism of dorsal dislocation of the metacarpophalangeal (MCP) joint is with forced hyperextension of the joint and the main structure injured is the volar plate. A simple dislocation can be reduced by closed means whereas a complex dislocation cannot. Care must be taken not to put traction across the joint, which may cause the volar plate to slip into the joint, converting a simple dislocation into a complex dislocation. Volar dislocations are rare and mainly treated nonoperatively. Sagittal band injuries can be treated with extension splinting or surgical management with direct repair or reconstruction. A locked MCP joint can usually be treated with closed manipulation. This article discusses these injuries and management options.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less

  6. Chronic Irreducible Anterior Dislocation of the Shoulder without Significant Functional Deficit.

    PubMed

    Chung, Hoejeong; Yoon, Yeo-Seung; Shin, Ji-Soo; Shin, John Junghun; Kim, Doosup

    2016-09-01

    Shoulder dislocation is frequently encountered by orthopedists, and closed manipulation is often sufficient to treat the injury in an acute setting. Although most dislocations are diagnosed and managed promptly, there are rare cases that are missed or neglected, leading to a chronically dislocated state of the joint. They are usually irreducible and cause considerable pain and functional disability in most affected patients, prompting the need to find a surgical method to reverse the worsening conditions caused by the dislocated joint. However, there are cases of even greater rarity in which chronic shoulder dislocations are asymptomatic with minimal functional or structural degeneration in the joint. These patients are usually left untreated, and most show good tolerance to their condition without developing disabling symptoms or significant functional loss over time. We report on one such patient who had a chronic shoulder dislocation for more than 2 years without receiving treatment.

  7. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  8. First-time anterior shoulder dislocations: should they be arthroscopically stabilised?

    PubMed Central

    Sedeek, Sedeek Mohamed; Bin Abd Razak, Hamid Rahmatullah; Ee, Gerard WW; Tan, Andrew HC

    2014-01-01

    The glenohumeral joint is inherently unstable because the large humeral head articulates with the small shadow glenoid fossa. Traumatic anterior dislocation of the shoulder is a relatively common athletic injury, and the high frequency of recurrent instability in young athletes after shoulder dislocation is discouraging to both the patient and the treating physician. Management of primary traumatic shoulder dislocation remains controversial. Traditionally, treatment involves initial immobilisation for 4–6 weeks, followed by functional rehabilitation. However, in view of the high recurrence rates associated with this traditional approach, there has been an escalating interest in determining whether immediate surgical intervention can lower the rate of recurrent shoulder dislocation, improving the patient’s quality of life. This review article aims to provide an overview of the nature and pathogenesis of first-time primary anterior shoulder dislocations, the widely accepted management modalities, and the efficacy of primary surgical intervention in first-time primary anterior shoulder dislocations. PMID:25631890

  9. Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2016-12-01

    In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.

  10. Growth and Characterization of 3C-SiC and 2H-AIN/GaN Films and Devices Produced on Step-Free 4H-SiC Mesa Substrates

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Du, H.; Skowronski, M.; Spry, D. J.; Trunek, A. J.

    2007-01-01

    While previously published experimental results have shown that the step-free (0 0 0 1) 4H-SiC mesa growth surface uniquely enables radical improvement of 3C-SiC and 2H-AlN/GaN heteroepitaxial film quality (greater than 100-fold reduction in extended defect densities), important aspects of the step-free mesa heterofilm growth processes and resulting electronic device benefits remain to be more fully elucidated. This paper reviews and updates recent ongoing studies of 3C-SiC and 2H-AlN/GaN heteroepilayers grown on top of 4H-SiC mesas. For both 3C-SiC and AlN/GaN films nucleated on 4H-SiC mesas rendered completely free of atomic-scale surface steps, TEM studies reveal that relaxation of heterofilm strain arising from in-plane film/substrate lattice constant mismatch occurs in a remarkably benign manner that avoids formation of threading dislocations in the heteroepilayer. In particular, relaxation appears to occur via nucleation and inward lateral glide of near-interfacial dislocation half-loops from the mesa sidewalls. Preliminary studies of homojunction diodes implemented in 3C-SiC and AlN/GaN heterolayers demonstrate improved electrical performance compared with much more defective heterofilms grown on neighbouring stepped 4H-SiC mesas. Recombination-enhanced dislocation motion known to degrade forward-biased 4H-SiC bipolar diodes has been completely absent from our initial studies of 3C-SiC diodes, including diodes implemented on defective 3C-SiC heterolayers grown on stepped 4H-SiC mesas.

  11. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte.

    PubMed

    Taşaltın, Nevin; Oztürk, Sadullah; Kılınç, Necmettin; Yüzer, Hayrettin; Oztürk, Zaferziya

    2010-05-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current-time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm-2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  12. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    PubMed Central

    2010-01-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417

  13. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  14. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...

  15. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...

  16. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...

  17. Effect of alloying on screw dislocation structure in Mo: atomistic modelling approach with ab-initio parametrization

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.

    2005-03-01

    The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.

  18. Hollow-core screw dislocations in 6H-SiC single crystals: A test of Frank`s theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, W.; Dudley, M.; Glass, R.

    1997-03-01

    Hollow-core screw dislocations, also known as `micropipes`, along the [0001] axis in 6H-SiC single crystals, have been studied by synchrotron white beam x-ray topography (SWBXT), scanning electron microscopy (SEM), and Nomarski optical microscopy (NOM). Using SWBXT, the magnitude of the burgers vector of screw dislocations has been determined by measuring the following four parameters: (1) the diameter of dislocation images in back-reflection topographs; (2) the width of bimodal dislocation images in transmission topographs; (3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and (4) the magnitude of the tilt of latticemore » planes in section topographs. The four methods show good agreement. The burgers vector magnitude of screw dislocations, b, and the diameter of associated micropipes, D, were fitted to Frank`s prediction for hollow-core screw dislocations: D = {mu}b{sup 2}/4{pi}{sup 2}{gamma}, where {mu} is shear modulus, and {gamma} is specific surface energy. 15 refs., 17 figs.« less

  19. Statistics of dislocation pinning at localized obstacles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, A.; Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning ofmore » dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.« less

  20. Surface stress mediated image force and torque on an edge dislocation

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  1. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  2. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  3. Investigation of dislocation cluster evolution during directional solidification of multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Oriwol, Daniel; Trempa, Matthias; Sylla, Lamine; Leipner, Hartmut S.

    2017-04-01

    Dislocation clusters are the main crystal defects in multicrystalline silicon and are detrimental for solar cell efficiency. They were formed during the silicon ingot casting due to the relaxation of strain energy. The evolution of the dislocation clusters was studied by means of automated analysing tools of the standard wafer and cell production giving information about the cluster development as a function of the ingot height. Due to the observation of the whole wafer surface the point of view is of macroscopic nature. It was found that the dislocations tend to build clusters of high density which usually expand in diameter as a function of ingot height. According to their structure the dislocation clusters can be divided into light and dense clusters. The appearance of both types shows a clear dependence on the orientation of the grain growth direction. Additionally, a process of annihilation of dislocation clusters during the crystallization has been observed. To complement the macroscopic description, the dislocation clusters were also investigates by TEM. It is shown that the dislocations within the subgrain boundaries are closely arranged. Distances of 40-30 nm were found. These results lead to the conclusion that the dislocation density within the cluster structure is impossible to quantify by means of etch pit counting.

  4. Thermal activation of dislocations in large scale obstacle bypass

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique

    2017-08-01

    Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.

  5. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  6. A new orientation relationship between cementite and austenite and coexistence of pseudo-primary and secondary dislocations in the habit plane

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Zhang, Wen-Zheng

    2018-01-01

    A new orientation relationship (OR) is found between Widmanstätten cementite precipitates and the austenite matrix in a 1.3C-14Mn steel. The associated habit plane (HP) and the dislocations in the HP have been investigated with transmission electron microscopy. The HP is parallel to ? in cementite, and it is parallel to ? in austenite. Three groups of interfacial dislocations are observed in the HP, with limited quantitative experimental data. The line directions, the spacing and the Burgers vectors of two sets of dislocations have been calculated based on a misfit analysis, which combines the CSL/DSC/O-lattice theories, row matching and good matching site (GMS) mappings. The calculated results are in reasonable agreement with the experimental results. The dislocations 'Coarse 1' and 'Fine 1' are in the same direction as the matching rows, i.e. ?. 'Coarse 1' dislocations are secondary dislocations with a Burgers vector of ?, and 'Fine 1' dislocations are pseudo-primary dislocations with a plausible Burgers vector of ?. The reason why the fraction of the new OR is much less than that of the dominant Pitsch OR has been discussed in terms of the degree of matching in the HPs.

  7. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  8. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  9. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  10. The response of creeping parts of the San Andreas fault to earthquakes on nearby faults: Two examples

    USGS Publications Warehouse

    Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.

    1988-01-01

    Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.

  11. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE PAGES

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-05-19

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  12. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  13. Peierls-Nabarro modeling of dislocations in UO2

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2017-11-01

    Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.

  14. Surface dislocation nucleation controlled deformation of Au nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less

  15. TEM study of 〈110〉-type 35.26° dislocations specially induced by polishing of SrTiO₃ single crystals.

    PubMed

    Jin, L; Guo, X; Jia, C L

    2013-11-01

    The dislocations created by mechanical polishing of SrTiO₃ (100) single crystals were investigated by means of transmission electron microscopy (TEM) techniques combined with scanning TEM (STEM) techniques. A high density of dislocations was observed in the surface layer with a thickness of about 5 μm. These dislocations were found to be straight and highly aligned along the 〈111〉 directions. In most cases they appear in pairs or as a bundle. The nature of the dislocations was determined as mixed 〈110〉-type with the line vector t=〈111〉. They are 〈110〉-type 35.26° dislocations. The isolated 〈110〉-type 35.26° dislocations possess a compact core structure with a core spreading of ~0.5 nm. Dissociation of the dislocation occurs on the {1−10} glide plane, leading to the formation of two b=a/2〈110〉 partials separated by a stacking fault. The separation of the two partials was estimated to be 2.53 ± 0.32 nm based on a cross-correlation analysis of atomic-resolution images. Our results provide a solid experimental evidence for this special type of dislocation in SrTiO₃. The high density of straight and highly 〈111〉-orientated dislocations is expected to have an important influence on the anisotropy in electrical and mass transport properties. © 2013 Elsevier B.V. All rights reserved.

  16. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)<110>111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  17. Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saroj, Rajendra K.; Dhar, S.

    2016-08-01

    ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.

  18. First-principles study of atomic and electronic structures of 60° perfect and 30°/90° partial glide dislocations in CdTe

    DOE PAGES

    Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo

    2016-05-16

    The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less

  19. Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2016-01-29

    Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less

  20. Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less

  1. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  2. Incidence of and risk factors for traumatic anterior shoulder dislocation: an epidemiologic study in high-school rugby players.

    PubMed

    Kawasaki, Takayuki; Ota, Chihiro; Urayama, Shingo; Maki, Nobukazu; Nagayama, Masataka; Kaketa, Takefumi; Takazawa, Yuji; Kaneko, Kazuo

    2014-11-01

    The incidence of reinjuries due to glenohumeral instability and the major risk factors for primary anterior shoulder dislocation in youth rugby players have been unclear. The purpose of this study was to investigate the incidence, mechanisms, and intrinsic risk factors of shoulder dislocation in elite high-school rugby union teams during the 2012 season. A total of 378 male rugby players from 7 high-school teams were investigated by use of self-administered preseason and postseason questionnaires. The prevalence of a history of shoulder dislocation was 14.8%, and there were 21 events of primary shoulder dislocation of the 74 overall shoulder injuries that were sustained during the season (3.2 events per 1000 player-hours of match exposure). During the season, 54.3% of the shoulders with at least one episode of shoulder dislocation had reinjury. This study also indicated that the persistence of glenohumeral instability might affect the player's self-assessed condition, regardless of the incidence during the current season. By a multivariate logistic regression method, a history of shoulder dislocation on the opposite side before the season was found to be a risk factor for contralateral primary shoulder dislocation (odds ratio, 3.56; 95% confidence interval, 1.27-9.97; P = .02). High-school rugby players with a history of shoulder dislocation are not playing at full capacity and also have a significant rate of reinjury as well as a high risk of dislocating the other shoulder. These findings may be helpful in deciding on the proper treatment of primary anterior shoulder dislocation in young rugby players. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation

    PubMed Central

    2011-01-01

    Background Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. Method and materials A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. Result A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. Conclusion The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques. PMID:21676208

  4. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation.

    PubMed

    Akinbami, Babatunde O

    2011-06-15

    Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques.

  5. Growth and dislocation studies of β-HMX.

    PubMed

    Gallagher, Hugh G; Sherwood, John N; Vrcelj, Ranko M

    2014-01-01

    The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in "hot-spot" detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]. Graphical abstractEtch pits on the twinned (010) face of β-HMX.

  6. Observations of Glide and Decomposition of a<101> Dislocations at High Temperatures in Ni-Al Single Crystals Deformed along the Hard Orientation

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Daw, M. S.; Noebe, R. D.; Mills, M. J.

    2003-01-01

    Ni-44at.% Al and Ni-50at.% single crystals were tested in compression in the hard (001) orientations. The dislocation processes and deformation behavior were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from alpha(111) slip to non-alphaaaaaaaaaaa9111) slip at intermediate temperatures. In Ni-50at.% Al single crystal, only alpha(010) dislocations are observed above the slip transition temperature. In contrast, alpha(101)(101) glide has been observed to control deformation beyond the slip transition temperature in Ni-44at.%Al. alpha(101) dislocations are observed primarily along both (111) directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the alpha(101) dislocations along these directions is decomposed into two alpha(010) dislocations, separated by a distance of approximately 2nm. The temperature window of stability for these alpha(101) dislocations depends upon the strain rate. At a strain rate of 1.4 x 10(exp -4)/s, lpha(101) dislocations are observed between 800 and 1000K. Complete decomposition of a alpha(101) dislocations into alpha(010) dislocations occurs beyond 1000K, leading to alpha(010) climb as the deformation mode at higher temperature. At lower strain rates, decomposition of a alpha(101) dislocations has been observed to occur along the edge orientation at temperatures below 1000K. Embedded-atom method calculations and experimental results indicate that alpha(101) dislocation have a large Peieris stress at low temperature. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for alpha(101)(101) glide in Ni-44at.%Al, and for the observed yield strength versus temperature behavior of Ni-Al alloys at intermediate and high temperatures.

  7. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed single crystals and aggregates of olivine for which the strain geometry is known. Tested geometries include constrictional strain, flattening strain, and plane strain. We use measured lattice curvatures to calculate the densities and spatial distributions of geometrically necessary dislocations. Dislocation densities are calculated for each of the major dislocation types in olivine. These densities are then used to estimate the plastic strain geometry under the assumption that the population of geometrically necessary dislocations accurately represents the relative activity of different dislocations during deformation. Our initial results demonstrate compelling relationships between the imposed strain geometry and the calculated plastic strain geometry. In addition, the calculated plastic strain geometry is linked to the distribution of crystallographic orientations, giving insight into the nature of plastic anisotropy in textured olivine aggregates. We present this technique as a new microstructural tool for assessing the kinematic history of deformed rocks.

  8. Transient Source Processes Prior to the March 2011 Kamoamoa Fissure Eruption, Kīlauea Volcano, Hawaíi

    NASA Astrophysics Data System (ADS)

    Lundgren, P.; Poland, M. P.; Miklius, A.; Anderson, K. R.

    2014-12-01

    Interferometric synthetic aperture radar (InSAR) and continuous GPS observations at the summit of Kīlauea Volcano, Hawaíi, show spatially and temporally transient surface displacements in the months and weeks before the 5-9 March 2011 Kamoamoa fissure eruption. Interferograms computed from the Italian Space Agency's COSMO-SkyMed satellites and the German Aerospace Center's TerraSAR-X satellite show a distinctive triangular pattern of surface deformation that extends to the SE of Kīlauea Caldera starting approximately one month prior to the Kamoamoa eruption. GPS and electronic tilt meter time series for sites in the vicinity of this deformation show that this inflation transient is superimposed on the longer (~4-6 month) summit inflation. We examine and model the spatiotemporal evolution of the summit deformation. InSAR data from ascending and descending tracks are used to constrain models of the transient. To achieve low-levels of atmospheric phase noise required interferograms spanning four months prior to the eruption, thus involving multiple sources within the summit region (see figure). To solve for model parameters we use a Markov Chain Monte Carlo optimization approach. First, we model the co-eruption summit deflation to isolate the intra-caldera sources, consisting of a steeply dipping tensile dislocation (D) beneath the western edge of the caldera and a sub-horizontal, NE trending spheroidal pressure source (Y) in the center of the caldera at 1.5 km depth. We use these sources as starting models for the pre-eruption transient, which requires the addition of a sill (S) to explain the deformation that extends to the SE of the caldera. In a third step we add a simplified model for Kīlauea's rifts and basal detachment system to explain the coupled summit and south flank motion. Modeled at over 3 km beneath the surface, the transient sill source inflates over the month before the eruption and deflates during the four-day eruption. The sill runs parallel to and to the west of upper East Rift Zone (ERZ) seismicity, considered to delineate the primary magma conduit to the ERZ at 3 km depth. The deflation of the sill during the eruption fits with the current standard model for Kīlauea: response to the overall depressurization of the summit and ERZ conduit system due to the Kamoamoa dike intrusion and eruption.

  9. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false When must adults and dislocated workers be... LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must adults and...

  10. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker...

  11. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through...

  12. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker...

  13. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker...

  14. Upwardly Mobile Working-Class Adolescents: A Biographical Approach on Habitus Dislocation

    ERIC Educational Resources Information Center

    Christodoulou, Michael; Spyridakis, Manos

    2017-01-01

    Habitus dislocation is a much debatable term. By presenting life-histories of working-class adolescents, this article argues (i) that not all upwardly mobile working-class adolescents experience habitus dislocation and, (ii) that habitus dislocation has its roots in the self-initiated ruptures that face some of those who want to be upwardly mobile…

  15. 78 FR 19736 - Notice on Reallotment of Workforce Investment Act (WIA) Title I Formula Allotted Funds for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Dislocated Worker program for one State and distributed by formula to PY 2012 dislocated worker funds for... Investment Act (WIA) Title I Formula Allotted Funds for Dislocated Worker Activities for Program Year (PY... of dislocated worker formula allotted funds based on State financial reports submitted as of the end...

  16. A modified surgical technique for reconstruction of an acute acromioclavicular joint dislocation

    PubMed Central

    Marchie, Anthony; Kumar, Arun; Catre, Melanio

    2009-01-01

    We report a modified surgical technique for reconstruction of coracoclavicular and acromioclavicular ligaments after acute dislocation of acromioclavicular joint using suture anchors. We have repaired 3 consecutive type III acromioclavicular dislocations with good results. This technique is simple and safe and allows anatomical reconstruction of the ligaments in acute dislocations. PMID:20671868

  17. Women and Plant Closings: Unemployment, Reemployment, and Job Training Enrollment Following Dislocation.

    ERIC Educational Resources Information Center

    Smith, Suzanna D.; Price, Sharon J.

    Thousands of workers have been dislocated from jobs in the textile and apparel industries as a result of recessions and structural changes in the economy. Because of the large concentrations of female workers in these industries, women have been particularly vulnerable to dislocation. This study examined job dislocation and factors that affect…

  18. Effect of copper on the recombination activity of extended defects in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feklisova, O. V., E-mail: feklisov@iptm.ru; Yakimov, E. B.

    2015-06-15

    The effect of copper atoms introduced by high-temperature diffusion on the recombination properties of dislocations and dislocation trails in p-type single-crystal silicon is studied by the electron-beam-induced current technique. It is shown that, in contrast to dislocations, dislocation trails exhibit an increase in recombination activity after the introduction of copper. Bright contrast appearance in the vicinity of dislocation trails is detected after the diffusion of copper and quenching of the samples. The contrast depends on the defect density in these trails.

  19. Dislocation core structures of tungsten with dilute solute hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei

    2017-12-01

    In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.

  20. Computer simulation of concentrated solid solution strengthening

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1976-01-01

    The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.

  1. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE PAGES

    Zhang, C.; Balachandran, S.; Eisenlohr, P.; ...

    2017-10-04

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  2. Dislocation structure produced by an ultrashort shock pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Tomoki, E-mail: t-matsu@mapse.eng.osaka-u.ac.jp; Hirose, Akio; Sano, Tomokazu

    We found an ultrashort shock pulse driven by a femtosecond laser pulse on iron generates a different dislocation structure than the shock process which is on the nanosecond timescale. The ultrashort shock pulse produces a highly dense dislocation structure that varies by depth. According to transmission electron microscopy, dislocations away from the surface produce microbands via a network structure similar to a long shock process, but unlike a long shock process dislocations near the surface have limited intersections. Considering the dislocation motion during the shock process, the structure near the surface is attributed to the ultrashort shock duration. This approachmore » using an ultrashort shock pulse will lead to understanding the whole process off shock deformation by clarifying the early stage.« less

  3. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Balachandran, S.; Eisenlohr, P.

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  4. Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

    NASA Astrophysics Data System (ADS)

    Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo

    2018-03-01

    Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.

  5. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    NASA Astrophysics Data System (ADS)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  6. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  7. Displacement field for an edge dislocation in a layered half-space

    USGS Publications Warehouse

    Savage, J.C.

    1998-01-01

    The displacement field for an edge dislocation in an Earth model consisting of a layer welded to a half-space of different material is found in the form of a Fourier integral following the method given by Weeks et al. [1968]. There are four elementary solutions to be considered: the dislocation is either in the half-space or the layer and the Burgers vector is either parallel or perpendicular to the layer. A general two-dimensional solution for a dip-slip faulting or dike injection (arbitrary dip) can be constructed from a superposition of these elementary solutions. Surface deformations have been calculated for an edge dislocation located at the interface with Burgers vector inclined 0??, 30??, 60??, and 90?? to the interface for the case where the rigidity of the layer is half of that of the half-space and the Poisson ratios are the same. Those displacement fields have been compared to the displacement fields generated by similarly situated edge dislocations in a uniform half-space. The surface displacement field produced by the edge dislocation in the layered half-space is very similar to that produced by an edge dislocation at a different depth in a uniform half-space. In general, a low-modulus (high-modulus) layer causes the half-space equivalent dislocation to appear shallower (deeper) than the actual dislocation in the layered half-space.

  8. Diagnosis of Ehlers-Danlos syndrome after a first shoulder dislocation.

    PubMed

    Nourissat, Geoffroy; Vigan, Marie; Hamonet, Claude; Doursounian, Levon; Deranlot, Julien

    2018-01-01

    Shoulder dislocation is often the first symptom of Ehlers-Danlos syndrome (EDS). Whether it occurs in early-onset EDS is unknown. In most cases, surgical failure leads to the diagnosis. We aimed to determine whether clinical symptoms can signal the presence of EDS at a first dislocation. In this retrospective study, we analyzed clinical and radiologic data for 27 patients with EDS and shoulder instability and a control population of 40 consecutive non-EDS patients undergoing surgery for an unstable shoulder. Data were collected on gender, age, single or bilateral disease, general hyperlaxity, shoulder hyperlaxity, number of dislocations or subluxations, nontraumatic onset, and pain specificity. Nerve and vascular injuries, joint disorders, and family history were recorded, and radiologic data were reported. Age <14 years, female sex, bilateral disorder, and general hyperlaxity were significantly more frequent in patients with EDS and a first dislocation than in those without EDS. Painless dislocation with pain after dislocation and concomitant nerve injury were more frequent in affected patients, as were hemostasis disorders and a family history of joint hyperlaxity. Bone lesions were not seen on radiographs. Only the hyperlaxity sign (external rotation >85°) did not differ between the groups. After a first dislocation in a young girl with global hyperlaxity but not necessarily shoulder hyperlaxity, painless atraumatic dislocation with pain after reduction can suggest EDS. Copyright © 2018. Published by Elsevier Inc.

  9. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo

    The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less

  11. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Cui, Wenfang; Song, Xiu; Zhou, Lian

    2015-08-01

    A nanostructured surface layer was successfully performed on a biomedical β-type TiNbZrFe alloy by surface mechanical attrition treatment (SMAT). The results reveal that the surface layer along the depth from treated surface to strain-free matrix could be divided into an outer nanocrystalline layer (0-30 μm), a high-density dislocation region (30-200 μm) and an inner region with low-density dislocations and twins (200-700 μm) when the surface was treated for 60 min. The microhardness of the surface layer is enhanced and increases with increasing treatment time. Although the {1 1 2} <1 1 1> twin coordinates the deformations with dislocations, this coordination only occurs in the low strain area and cannot affect the nanocrystalline formation. The self-nanocrystallization of TiNbZrFe alloy is mainly attributed to dislocation movements. First, the dislocations start to move and easily form dislocation bands along certain crystal directions; then, multiple slips of dislocations gradually form dislocation tangles; after that, high-density dislocation tangles increases, which divides primary grains into many small domain areas. As high strain energies accumulate on the interfaces among these areas, the lattice rotation can be driven between the adjacent small domain areas, finally resulting in a large number of nanocrystalline regions with low or large angle grain boundaries.

  12. Dislocation

    MedlinePlus

    ... Dislocations can occur in contact sports, such as football and hockey, and in sports in which falls ... downhill skiing, gymnastics and volleyball. Basketball players and football players also commonly dislocate joints in their fingers ...

  13. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through...

  14. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  15. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  16. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through...

  17. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through...

  18. Appearance of wavefront dislocations under interference among beams with simple wavefronts

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Besaha, R. N.; Mokhun, Igor I.

    1997-12-01

    The appearance of wave front dislocations under interference among beams with simple wave fronts is considered. It is shown, that even two beams with the smooth wave fonts is possible the formation of dislocations screw type. The screw dislocations are formed in cross point of lines of equal amplitude of beams and minimum of an interference pattern.

  19. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2017-04-26

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  20. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

Top