Properties of the calcium-activated chloride current in heart.
Zygmunt, A C; Gibbons, W R
1992-03-01
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.
Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing
2014-07-01
Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History
Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy
2015-01-01
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom. PMID:26356684
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.
Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy
2015-01-01
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Rectification of Acetylcholine-Elicited Currents in PC12 Pheochromocytoma Cells
NASA Astrophysics Data System (ADS)
Ifune, C. K.; Steinbach, J. H.
1990-06-01
The current-voltage (I-V) relationship for acetylcholine-elicited currents in the rat pheochromocytoma cell line PC12 is nonlinear. Two voltage-dependent processes that could account for the whole-cell current rectification were examined, receptor channel gating and single receptor channel permeation. We found that both factors are involved in the rectification of the whole-cell currents. The voltage dependence of channel gating determines the shape of the I-V curve at negative potentials. The single-channel I-V relationship is inwardly rectifying and largely responsible for the characteristic shape of the whole-cell I-V curve at positive potentials. The rectification of the single-channel currents is produced by the voltage-dependent block of outward currents by intracellular Mg2+ ions.
Pottosin, Igor; Delgado-Enciso, Iván; Bonales-Alatorre, Edgar; Nieto-Pescador, María G; Moreno-Galindo, Eloy G; Dobrovinskaya, Oxana
2015-01-01
Mechanosensitive channels are present in almost every living cell, yet the evidence for their functional presence in T lymphocytes is absent. In this study, by means of the patch-clamp technique in attached and inside-out modes, we have characterized cationic channels, rapidly activated by membrane stretch in Jurkat T lymphoblasts. The half-activation was achieved at a negative pressure of ~50mm Hg. In attached mode, single channel currents displayed an inward rectification and the unitary conductance of ~40 pS at zero command voltage. In excised inside-out patches the rectification was transformed to an outward one. Mechanosensitive channels weakly discriminated between mono- and divalent cations (PCa/PNa~1) and were equally permeable for Ca²⁺ and Mg²⁺. Pharmacological analysis showed that the mechanosensitive channels were potently blocked by amiloride (1mM) and Gd³⁺ (10 μM) in a voltage-dependent manner. They were also almost completely blocked by ruthenium red (1 μM) and SKF 96365 (250 μM), inhibitors of transient receptor potential vanilloid 2 (TRPV2) channels. At the same time, the channels were insensitive to 2-aminoethoxydiphenyl borate (2-APB, 100 μM) or N-(p-amylcinnamoyl)anthranilic acid (ACA, 50 μM), antagonists of transient receptor potential canonical (TRPC) or transient receptor potential melastatin (TRPM) channels, respectively. Human TRPV2 siRNA virtually abolished the stretch-activated current. TRPV2 are channels with multifaceted functions and regulatory mechanisms, with potentially important roles in the lymphocyte Ca²⁺ signaling. Implications of their regulation by mechanical stress are discussed in the context of lymphoid cells functions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Llinas, R. R.; Alonso, A.
1992-01-01
1. The electrophysiological properties of the tuberomammillary and lateral mammillary neurons in the guinea pig mammillary body were studied using an in vitro brain slice preparation. 2. Tuberomammillary (n = 79) neurons were recorded mainly ventral to the lateral mammillary body as well as ventromedially to the fornix within the rostral part of the medial mammillary nucleus. Intracellular staining with horseradish peroxidase (n = 9) and Lucifer yellow (n = 3) revealed that these cells have several thick, long, spiny dendrites emerging from large (20-35 microns) fusiform somata. 3. Most tuberomammillary neurons (66%) fired spontaneously at a relatively low frequency (0.5-10 Hz) at the resting membrane potential. The action potentials were broad (2.3 ms) with a prominent Ca(2+)-dependent shoulder on the falling phase. Deep (17.8 mV), long-lasting spike afterhyperpolarizations were largely Ca(2+)-independent. 4. All tuberomammillary neurons recorded displayed pronounced delayed firing when the cells were activated from a potential negative to the resting level. The cells also displayed a delayed return to the baseline at the break of hyperpolarizing pulses applied from a membrane potential level close to firing threshold. Analysis of the voltage- and time dependence of this delayed rectification suggested the presence of a transient outward current similar to the A current (IA). These were not completely blocked by high concentrations of 4-aminopyridine, whereas the delayed onset of firing was always abolished when voltage-dependent Ca2+ conductances were blocked by superfusion with Cd2+. 5. Tuberomammillary neurons also displayed inward rectification in the hyperpolarizing and, primarily, depolarizing range. Block of voltage-gated Na(+)-dependent conductances with tetrodotoxin (TTX) selectively abolished inward rectification in the depolarizing range, indicating the presence of a persistent low-threshold sodium-dependent conductance (gNap). In fact, persistent TTX-sensitive, plateau potentials were always elicited following Ca2+ block with Cd2+ when K+ currents were reduced by superfusion with tetraethylammonium. 6. The gNap in tuberomammillary neurons may subserve the pacemaker current underlying the spontaneous firing of these cells. The large-amplitude spike afterhyperpolarization of these neurons sets the availability of the transient outward rectifier, which, in conjunction with the pacemaker current, establishes the rate at which membrane potential approaches spike threshold. 7. Repetitive firing elicited by direct depolarization enhanced the spike shoulder of tuberomammillary neurons. Spike trains were followed by a Ca(2+)-dependent, apamine-sensitive, slow afterhyperpolarization. 8. Lateral mammillary neurons were morphologically and electrophysiologically different from tuberomammillary neurons. All lateral mammillary neurons neurons recorded (n = 44) were silent at rest (-60 mV).(ABSTRACT TRUNCATED AT 400 WORDS).
Glahn, David; Nuccitelli, Richard
2003-04-01
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.
Kubo, Yoshihiro; Murata, Yoshimichi
2001-01-01
The rectification property of the inward rectifier K+ channel is chiefly due to the block of outward current by cytoplasmic Mg2+ and polyamines. In the cloned inward rectifier K+ channel Kir2.1 (IRK1), Asp172 in the second transmembrane region (M2) and Glu224 in the putative cytoplasmic region after M2 are reported to be critical for the sensitivity to these blockers. However, the difference in the inward rectification properties between Kir2.1 and a very weak inward rectifier sWIRK could not be explained by differences at these two sites. Following sequence comparison of Kir2.1 and sWIRK, we focused this study on Glu299 located in the centre of the putative cytoplasmic region after M2. Single-point mutants of Kir2.1 (Glu224Gly and Glu299Ser) and a double-point mutant (Glu224Gly-Glu299Ser) were made and expressed in Xenopus oocytes or in HEK293T cells. Their electrophysiological properties were compared with those of wild-type (WT) Kir2.1 and the following observations were made. (a) Glu299Ser showed a weaker inward rectification, a slower activation upon hyperpolarization, a slower decay of the outward current upon depolarization, a lower sensitivity to block by cytoplasmic spermine and a smaller single-channel conductance than WT. (b) The features of Glu224Gly were similar to those of Glu299Ser. (c) In the double mutant (Glu224Gly-Glu299Ser), the differences from WT described above were more prominent. These results demonstrate that Glu299 as well as Glu224 control rectification and permeation, and suggest the possibility that the two sites contribute to the inner vestibule of the channel pore. The slowing down of the on- and off-blocking processes by mutation of these sites implies that Glu224 and Glu299 function to facilitate the entry (and exit) of spermine to (and from) the blocking site. PMID:11251047
Ishihara, Keiko
2018-06-15
Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.
Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A
2016-09-01
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
THEMIS Observations of Unusual Bow Shock Motion, Attending a Transient Magnetospheric Event
NASA Technical Reports Server (NTRS)
Korotova, Galina; Sibeck, David; Omidi, N.; Angelopoulos, V.
2013-01-01
We present a multipoint case study of solar wind and magnetospheric observations during a transient magnetospheric compression at 2319 UT on October 15, 2008. We use high-time resolution magnetic field and plasma data from the THEMIS and GOES-11/12 spacecraft to show that this transient event corresponded to an abrupt rotation in the IMF orientation, a change in the location of the foreshock, and transient outward bow shock motion. We employ results from a global hybrid code model to reconcile the observations indicating transient inward magnetopause motion with the outward bow shock motion.
Han, Jaehee; Gnatenco, Carmen; Sladek, Celia D; Kim, Donghee
2003-01-01
Magnocellular neurosecretory cells (MNCs) were isolated from the supraoptic nucleus of rat hypothalamus, and properties of K+ channels that may regulate the resting membrane potential and the excitability of MNCs were studied. MNCs showed large transient outward currents, typical of vasopressin- and oxytocin-releasing neurons. K+ channels in MNCs were identified by recording K+ channels that were open at rest in cell-attached and inside-out patches in symmetrical 150 mm KCl. Eight different K+ channels were identified and could be distinguished unambiguously by their single-channel kinetics and voltage-dependent rectification. Two K+ channels could be considered functional correlates of TASK-1 and TASK-3, as judged by their single-channel kinetics and high sensitivity to pHo. Three K+ channels showed properties similar to TREK-type tandem-pore K+ channels (TREK-1, TREK-2 and a novel TREK), as judged by their activation by membrane stretch, intracellular acidosis and arachidonic acid. One K+ channel was activated by application of pressure, arachidonic acid and alkaline pHi, and showed single-channel kinetics indistinguishable from those of TRAAK. One K+ channel showed strong inward rectification and single-channel conductance similar to those of a classical inward rectifier, IRK3. Finally, a K+ channel whose cloned counterpart has not yet been identified was highly sensitive to extracellular pH near the physiological range similar to those of TASK channels, and was the most active among all K+ channels. Our results show that in MNCs at rest, eight different types of K+ channels can be found and six of them belong to the tandem-pore K+ channel family. Various physiological and pathophysiological conditions may modulate these K+ channels and regulate the excitability of MNCs. PMID:12562991
Ion track etching revisited: II. Electronic properties of aged tracks in polymers
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.
2018-02-01
We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.
Samie, F H; Berenfeld, O; Anumonwo, J; Mironov, S F; Udassi, S; Beaumont, J; Taffet, S; Pertsov, A M; Jalife, J
2001-12-07
Ventricular fibrillation (VF) is the leading cause of sudden cardiac death. Yet, the mechanisms of VF remain elusive. Pixel-by-pixel spectral analysis of optical signals was carried out in video imaging experiments using a potentiometric dye in the Langendorff-perfused guinea pig heart. Dominant frequencies (peak with maximal power) were distributed throughout the ventricles in clearly demarcated domains. The fastest domain (25 to 32 Hz) was always on the anterior left ventricular (LV) wall and was shown to result from persistent rotor activity. Intermittent block and breakage of wavefronts at specific locations in the periphery of such rotors were responsible for the domain organization. Patch-clamping of ventricular myocytes from the LV and the right ventricle (RV) demonstrated an LV-to-RV drop in the amplitude of the outward component of the background rectifier current (I(B)). Computer simulations suggested that rotor stability in LV resulted from relatively small rectification of I(B) (presumably I(K1)), whereas instability, termination, and wavebreaks in RV were a consequence of strong rectification. This study provides new evidence in the isolated guinea pig heart that a persistent high-frequency rotor in the LV maintains VF, and that spatially distributed gradients in I(K1) density represent a robust ionic mechanism for rotor stabilization and wavefront fragmentation.
The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.
Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna
2013-03-01
The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.
Raman, I M; Trussell, L O
1995-01-01
We have examined the mechanisms underlying the voltage sensitivity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in voltage-clamped outside-out patches and whole cells taken from the nucleus magnocellularis of the chick. Responses to either glutamate or kainate had outwardly rectifying current-voltage relations. The rate and extent of desensitization during prolonged exposure to agonist, and the rate of deactivation after brief exposure to agonist, decreased at positive potentials, suggesting that a kinetic transition was sensitive to membrane potential. Voltage dependence of the peak conductance and of the deactivation kinetics persisted when desensitization was reduced with aniracetam or blocked with cyclothiazide. Furthermore, the rate of recovery from desensitization to glutamate was not voltage dependent. Upon reduction of extracellular divalent cation concentration, kainate-evoked currents increased but preserved rectifying current-voltage relations. Rectification was strongest at lower kainate concentrations. Surprisingly, nonstationary variance analysis of desensitizing responses to glutamate or of the current deactivation after kainate removal revealed an increase in the mean single-channel conductance with more positive membrane potentials. These data indicate that the rectification of the peak response to a high agonist concentration reflects an increase in channel conductance, whereas rectification of steady-state current is dominated by voltage-sensitive channel kinetics. Images FIGURE 2 FIGURE 3 PMID:8580330
Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells.
Lerma, J; Morales, M; Ibarz, J M; Somohano, F
1994-07-01
Excitatory amino acids exert a depolarizing action on central nervous system cells through an increase in cationic conductances. Non-NMDA receptors have been considered to be selectively permeable to Na+ and K+, while Ca2+ influx has been thought to occur through the NMDA receptor subtype. Recently, however, the expression of cloned non-NMDA receptor subunits has shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are permeable to Ca2+ whenever the receptor lacks a particular subunit (edited GluR-B). The behaviour of recombinant glutamate receptor channels predicts that Ca2+ would only permeate through receptors that show strong inward rectification and vice versa, i.e. AMPA receptors with linear current-voltage relationships would be impermeable to Ca2+. Using the whole-cell configuration of the patch-clamp technique, we have studied the Ca2+ permeability and the rectifying properties of AMPA receptors, when activated by kainate, in hippocampal neurons kept in culture or acutely dissociated from differentiated hippocampus. Cells were classified according to whether they showed outward rectifying (type I), inward rectifying (type II) or almost linear (type III) current-voltage relationships for kainate-activated responses. AMPA receptors of type I cells (52.2%) were mostly Ca(2+)-impermeable (PCa/PCs = 0.1), while type II cells (6.5%) expressed Ca(2+)-permeable receptors (PCa/PCs = 0.9). Type III cells (41.3%) showed responses with low but not negligible Ca2+ permeability (PCa/PCs = 0.18). The degree of Ca2+ permeability and inward rectification were well correlated in cultured cells, i.e. more inward rectification corresponded to higher Ca2+ permeability.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Liu, Xuejiao; Lu, Benzhuo
2017-12-01
Potassium channels are much more permeable to potassium than sodium ions, although potassium ions are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges, does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels. Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models. The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification ratio of ˜3 /2 ) but indicated an outward rectifier effect for Na+ (rectification ratio of ˜1 /6 ) .
The voltage-sensing domain of a phosphatase gates the pore of a potassium channel
Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L.; Thiel, Gerhard
2013-01-01
The modular architecture of voltage-gated K+ (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates KvSynth1, a functional voltage-gated, outwardly rectifying K+ channel. KvSynth1 displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V1/2 = +56 mV; z of ∼1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains. PMID:23440279
Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong
2017-02-08
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
The role of optical rectification in the generation of terahertz radiation from GaBiAs
NASA Astrophysics Data System (ADS)
Radhanpura, K.; Hargreaves, S.; Lewis, R. A.; Henini, M.
2009-06-01
We report on a detailed study of the emission of terahertz-frequency electromagnetic radiation from layers of GaBiyAs1-y (0≤y<0.04) grown by molecular beam epitaxy on (311)B and (001) GaAs substrates. We measure two orthogonally polarized components of the terahertz radiation emitted under excitation by ultrashort near-infrared laser pulses in both transmission and reflection geometries as a function of the crystal rotation about its surface normal as well as the effect of in-plane magnetic field and pump fluence on the terahertz emission. We conclude that the principal mechanism for terahertz generation is via optical rectification rather than transient currents.
Cardiomyocyte dysfunction during the chronic phase of Chagas disease.
Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos
2013-04-01
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.
Cardiomyocyte dysfunction during the chronic phase of Chagas disease
Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos
2013-01-01
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure. PMID:23579807
Prolonged action potential duration in cardiac ablation of PDK1 mice.
Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W
2015-01-01
The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.
Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P
2012-03-01
We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America
Hyperpolarizing muscarinic responses of freshly dissociated rat hippocampal CA1 neurones.
Wakamori, M; Hidaka, H; Akaike, N
1993-01-01
1. Intracellular mechanisms of the muscarinic acetylcholine (ACh) response were investigated in pyramidal neurones freshly dissociated from the rat hippocampal CA1 region. Current recordings were made in the whole-cell mode using the nystatin 'perforated'-patch technique, by which the muscarinic ACh response can be continuously recorded without so-called 'run-down' phenomenon. The amount of intracellular free Ca2+ ([Ca2+]i) was fluorometrically measured using fura-2. 2. In current clamp conditions, ACh induced a transient hyperpolarization accompanied by a decrease in membrane input resistance. 3. Under voltage clamp conditions at a holding potential (Vh) of -40 mV, ACh induced two types of muscarinic currents observed either alone or together: a transient outward current and a slowly activating sustained inward current. 4. The ACh-induced transient outward current reversed the direction at K+ equilibrium potential (EK), and the reversal potential (EACh) shifted 56.7 mV for a tenfold change of extracellular K+ concentration ([K+]o). 5. The ACh-induced transient outward current increased in a sigmoidal fashion with increase in ACh concentration, where the half-maximal concentration (EC50) and the Hill coefficient (n) were 8 x 10(-7) M and 1.9, respectively. Both muscarine and carbamylcholine mimicked the ACh response, but neither McN-A-343 (M1 agonist) nor oxotremorine (cardiac M2 agonist) induced any current. 6. Muscarinic antagonists reversibly blocked the ACh response in a concentration-dependent manner. The inhibitory potency was in the order of atropine > pirenzepine > AF-DX-116. 7. The ACh-induced transient outward current was never recorded when [Ca2+]i was chelated by the acetoxymethyl ester form of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA AM). On the other hand, in Ca(2+)-free external solution containing 2 mM EGTA and 10 mM Mg2+, the ACh response was elicited by the first application and successive ACh applications did not induce any response. Fura-2 imaging showed that [Ca2+]i was increased when ACh was added to the external medium with or without Ca2+, though in Ca(2+)-free medium only the first application of ACh increased the [Ca2+]i. 8. The ACh response was not affected by pretreatment with pertussis toxin (PTX) but the inhibitory effect of ACh on the high-threshold Ca2+ channel was abolished completely. 9. Pretreatment with Li+ enhanced the amplitude of the transient outward current and the increase in [Ca2+]i induced by ACh. 10. The calmodulin antagonists W-7, chlorpromazine and trifluoperazine reversibly inhibited the ACh response in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7504109
Valinsky, William C; Touyz, Rhian M; Shrier, Alvin
2017-08-01
Thiazides block Na + reabsorption while enhancing Ca 2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca 2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl - channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl - channels, however the nature of these Cl - channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl - current at extracellular pH7.4. This constitutive Cl - current was more permeable to larger anions (Eisenman sequence I; I - >Br - ≥Cl - ) and was substantially inhibited by >100mM [Ca 2+ ] o , which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl - current was blocked by NPPB, along with other Cl - channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl - current. This acid-induced Cl - current was also anion permeable (I - >Br - >Cl - ), but was distinguished from the constitutive Cl - current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl - current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl - currents are unique and provide the mechanisms to account for the Cl - efflux previously speculated to be present in MDCT cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hauswirth, O.; Noble, D.; Tsien, R. W.
1972-01-01
1. Experiments on sheep Purkinje fibres were designed to determine whether the current mechanisms responsible for delayed rectification at the pace-maker (negative to -50 mV) and plateau (positive to -50 mV) ranges of potential are kinetically separable and independent. 2. Hyperpolarizations from the plateau range were shown to produce decay of a single component of outward current within the plateau range, but two components were evident when the hyperpolarizations entered the pace-maker range. 3. The time courses of recovery of the two components were too similar at -25 mV to allow temporal resolution at this potential. Clear temporal resolution was, however, possible at potentials between -55 and -95 mV. An indirect method of resolving the two components at -25 mV was used. 4. The kinetic properties of the two components correspond to those previously described for the pace-maker potassium current, iK2, and the outward plateau current, ix1 (Noble & Tsien, 1968, 1969a). 5. The instantaneous (fully activated) current—voltage relation for iK2 was reconstructed from the analysed current records. It was found that this relation shows a negative slope conductance at all potentials positive to -75 mV and that the current tends towards zero at zero membrane potential. 6. The results are compared with those predicted by two reaction models of the iK2 and ix1 mechanisms. It is concluded that iK2 and ix1 are kinetically separable but that it is not possible with present techniques to decide whether they are controlled by the same or completely independent membrane structures. It is also shown that the instantaneous current—voltage relation calculated for iK2 does not depend on whether the controlling mechanisms are assumed to be independent or linked. PMID:4679715
Schottky x-ray detectors based on a bulk β-Ga2O3 substrate
NASA Astrophysics Data System (ADS)
Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili
2018-03-01
β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Parajuli, Shankar P.
2013-01-01
Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523
Schreieck, J; Wang, Y; Overbeck, M; Schömig, A; Schmitt, C
2000-02-01
Electrophysiologic remodeling is involved in the self-perpetuation of atrial fibrillation. To define whether differences in atrial electrophysiology already are present in patients with increased susceptibility for atrial fibrillation, we compared patients in sinus rhythm with and without heart failure. Atrial specimens were obtained from patients with reduced left ventricular ejection fraction (LVEF; n = 10) and normal LVEF (n = 16) who were undergoing aortocoronary bypass surgery and from donor hearts (n = 4). Enzymatically isolated atrial myocytes were investigated by whole cell, patch clamp techniques. Total outward current was significantly larger in myocytes of hearts with low LVEF than normal LVEF (19.4 +/- 1.3 vs 15.1 +/- 1.2 pA/pF at pulses to +60 mV, respectively). Analysis of inactivation time courses of different outward current components revealed that the observed current difference is due to the transient calcium-independent outward current I(to1) which is twice as large in the low LVEF group than in the normal LVEF group (9.4 +/- 0.9 vs 4.7 +/- 0.4 pA/pF at pulses to +60 mV, respectively). I(to1) recovery from inactivation was significantly more rapid in myocytes of hearts with low LVEF, and action potential plateau in these cells was significantly shorter. The results of I(to1) and action potential measurements in atrial myocytes of donor hearts were very similar to the results of patients with preserved heart function. I(to1) in human atrial myocytes of patients with reduced LVEF has an increased density and altered kinetics in sinus rhythm. These differences in outward current may explain the reduced plateau phase of action potentials.
Zholos, A V; Baidan, L V; Shuba, M F
1991-11-01
1. Whole-cell membrane currents in voltage-clamped single isolated cells of longitudinal smooth muscle of guinea-pig ileum were studied at room temperature using patch pipettes filled with either high-K+ solution or high-Cs+ solution, to suppress K+ outward current, and containing 0.3 mM-EGTA. 2. In the presence of high-K+ solution in the pipette, membrane depolarization from the holding potential of -50 mV evoked an initial inward calcium current (ICa) followed by a large initial transient outward current and a sustained outward current with spontaneous oscillations superimposed. Prolonged depolarization above -20 mV produced a late transient outward current which reached a maximum (up to several nanoamps at +10 mV) within approximately 1 s and lasted several seconds. 3. The late outward current (ILTO) was voltage dependent and reversed at the EK (potassium equilibrium potential) in cells exposed to high-K+ external solution. It was blocked by TEA+ (tetraethylammonium) or Ba2+ applied externally (calculated Kd (dissociation constant) values were 0.67 and 4.43 mM, respectively) or by high-Cs+ solution perfusing the cell. The removal of extracellular Ca2+, application of Ca2+ channel blockers (3 mM-Co2+, 0.2 mM-Cd2+ or 1 microM-nifedipine) or perfusion of 5 mM-EGTA inside the cell also abolished the current. Thus, the current seems to be a Ca(2+)-activated K+ current. 4. There is a great discrepancy between the time course of the ICa and that of the late ILTO, which suggests that Ca2+ release from intracellular storage sites may contribute to the generation of the ILTO. 5. Bath application of caffeine (10 mM) during the development of ILTO enhanced the current. However, in the presence of caffeine ILTO was inhibited. Moderate inhibition of ICa by caffeine was also observed. 6. Ryanodine (5 microM) applied to the bathing solution completely inhibited ILTO within 3.5 min; however, it had no or little effect on the ICa. 7. Ruthenium Red (10 microM) completely blocked the ILTO and slightly and more slowly inhibited the ICa. 8. Increasing Mg2+ concentration in the pipette solution from 1 to 6 mM abolished the ILTO. 9. It was concluded that the ILTO was activated mainly by Ca2+ released from the intracellular storage sites following Ca2+ entry, presumably by a Ca(2+)-induced Ca2+ release mechanism.
Rectified directional sensing in long-range cell migration
Nakajima, Akihiko; Ishihara, Shuji; Imoto, Daisuke; Sawai, Satoshi
2014-01-01
How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This ‘rectification’ of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition. PMID:25373620
Chen, Y; Sun, X D; Herness, S
1996-02-01
1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.
Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.
Evans, M G; Fuchs, P A
1987-10-01
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.
Reconstruction of the action potential of ventricular myocardial fibres
Beeler, G. W.; Reuter, H.
1977-01-01
1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889
Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin
1999-01-01
Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately. PMID:10498668
Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients
NASA Technical Reports Server (NTRS)
Maxwell, A.; Dryer, M.
1981-01-01
An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.
Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardioballs.
Bechem, M; Glitsch, H G; Pott, L
1983-11-01
Single channel outward current fluctuations are recorded in excised (outside-out) membrane patches of isolated atrial cells in culture (cardioballs) from hearts of adult guinea-pigs. The ionic channel displays a high selectivity to K ions. Accordingly the reversal potential of the single channel current is close to the K equilibrium potential. The open channel conductance is unaffected by the membrane potential but depends on the K concentration of the outside solution (19.7pS at 2 mM Ko to 30.7pS at 20 mM Ko). The open state probability (Po) of the channel shows a marked voltage dependence. Po amounts to c.0.9 at -40 mV and decreases to c.0.1 at +40 mV. Under the assumption of no channel interaction a macroscopic steady state current voltage relationship is reconstructed from the single channel data. The relationship displays inward-going rectification. The rectification is due to the voltage dependence of Po. The I-V curve displays a negative slope at membrane potentials positive to -15 mV. In bathing solutions containing Ba ions (0.2 mM) Po is reduced by rapid closures which interrupt the open state events. The unit channel conductance is unaffected by Ba ions. The channel block exerted by Ba ions is augmented with increasing membrane hyperpolarization. The results suggest that the channel studied may represent a background K conductance.
Long Duration Responses in Squid Giant Axons Injected with 134Cesium Sulfate Solutions
Sjodin, R. A.
1966-01-01
Giant axons from the squid were injected with 1.5 M cesium sulfate solutions containing the radioactive isotopes 42K and 134Cs. These axons, when stimulated, gave characteristic long duration action potentials lasting between 5 and 45 msec. The effluxes of 42K and 134Cs were measured both under resting conditions and during periods of repetitive stimulation. During the lengthened responses there were considerable increases in potassium efflux but only small increases in cesium efflux. The selectivity of the delayed rectification process was about 9 times greater for potassium ions than for cesium ions. The data suggest that internal cesium ions inhibit the outward potassium movement occurring during an action potential. The extra potassium effluxes taking place during excitation appear to be reduced in the presence of cesium ions to values between 7 and 22% of those expected in the absence of cesium inhibition. PMID:11526828
Jia, Yousheng; Jeng, Jade-Ming; Sensi, Stefano L; Weiss, John H
2002-01-01
Permeation of the endogenous cation Zn2+ through calcium-permeable AMPA/kainate receptor-gated (Ca-A/K) channels might subserve pathological and/or physiological signalling roles. Voltage-clamp recording was used to directly assess Zn2+ flux through these channels on cultured murine hippocampal neurones. Ca-A/K channels were present in large numbers only on a minority of neurones (Ca-A/K(+) neurones), many of which were GABAergic. The presence of these channels was assessed in whole-cell or outside-out patch recording as the degree of inward rectification of kainate-activated currents, quantified via a rectification index (RI = G+40/G-60), which ranged from <0.4 (strongly inwardly rectifying) to >2 (outwardly rectifying). The specificity of a low RI as an indication of robust Ca-A/K channel expression was verified by two other techniques, kainate-stimulated cobalt-uptake labelling, and fluorescence imaging of kainate-induced increases in intracellular Ca2+. In addition, the degree of inward rectification of kainate-activated currents correlated strongly with the positive shift of the reversal potential (Vrev) upon switching to a sodium-free, 10 mm Ca2+ buffer. With Zn2+ (3 mm) as the only permeant extracellular cation, kainate-induced inward currents were only observed in neurones that had previously been identified as Ca-A/K(+). A comparison between the Vrev observed with 3 mm Zn2+ and that observed with Ca2+ as the permeant cation revealed a PCa/PZn of ≈1.8. Inward currents recorded in 3 mm Ca2+ were unaffected by the addition of 0.3 mm Zn2+, while microfluorimetrically detected increases in the intracellular concentration of Zn2+ in Ca-A/K(+) neurones upon kainate exposure in the presence of 0.3 mm Zn2+ were only mildly attenuated by the addition of 1.8 mm Ca2+. These results provide direct evidence that Zn2+ can carry currents through Ca-A/K channels, and that there is little interference between Ca2+ and Zn2+ in permeating these channels. PMID:12181280
Ishihara, K; Hiraoka, M; Ochi, R
1996-01-01
1. The activation kinetics of the IRK1 channel stably expressed in L cells (a murine fibroblast cell line) were studied under the whole-cell voltage clamp. Without polyamines or Mg2+ in the pipettes, inward currents showed an exponential activation on hyperpolarization. The steep inward rectification of the currents around the reversal potential (Erev) could be described by the open-close transition of the channel with first-order kinetics. 2. When the tetravalent organic cation spermine (Spm) was added in the pipettes, the activation kinetics changed; this was explicable by the increase in the closing rate constant. The activation of the currents observed without Spm or Mg2+ in the pipettes was ascribed to the unblocking of the 'endogenous-Spm block'. 3. In the presence of the divalent cation putrescine (Put) or of Mg2+ in the pipettes, a different non-conductive state suppressed the outward currents on depolarization; the channels instantaneously changed to the open state on repolarization. As the depolarization was prolonged, this non-conductive state was replaced by the non-conductive state that shows an exponential activation on repolarization. This phenomenon was attributed to the redistribution of the channels from the Put- or Mg(2+)-blocked state to the 'endogenous Spm-blocked state' during depolarization. 4. In the presence of the trivalent cation spermidine (Spd) in the pipettes, two different non-conductive states occurred, showing a faster and a slower activation on repolarization. The rectification around Erev was mainly due to the non-conductive state showing a faster activation, which appeared to be the Spd-blocked state. During depolarization, redistribution of the channels to the 'endogenous Spm-blocked state' also occurred. 5. In the presence of Spd, Put or Mg2+ in the pipettes, the voltage dependence of the activation time constant reflecting the unblocking of the 'endogenous Spm' was shifted in the hyperpolarizing direction. 6. Our results suggest that the 'intrinsic gating' that shows the time-dependent activation on repolarization, and that is responsible for the inward rectification around Erev, reflects the blocking kinetics of the tetravalent Spm. PMID:8866861
Cardiac ion channel modulation by the hypoglycaemic agent rosiglitazone.
Hancox, J C
2011-06-01
The hypoglycaemic thiazolidinedione rosiglitazone is used clinically in the treatment of type 2 diabetes. However, in 2010, information relating to rosiglitazone-associated increased cardiovascular risk led the European Medicines Agency to recommend suspension of marketing authorizations for rosiglitazone-containing anti-diabetes drugs, while the US Food and Drug Administration recommended significant restriction on the agent's use. Two timely studies in this issue of the British Journal of Phrarmacology provide new information regarding modification of cardiac cellular electrophysiology by rosiglitazone. Szentandrássy et al. demonstrate canine ventricular action potential modification and concentration-dependent suppression of L-type Ca current and of transient outward and rapid delayed rectifier K currents. Jeong et al. demonstrate concentration-dependent inhibition of recombinant K(v) 4.3 channels, providing mechanistic insight into the likely molecular basis of transient outward K current inhibition by the compound. Further studies using diabetic models would be of value to determine whether, in a diabetic setting, rosiglitazone modification of these channels could affect the risk of arrhythmia at clinically relevant drug concentrations. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.
Biscoe, T J; Duchen, M R
1989-01-01
1. The carotid body is the major peripheral sensor of arterial PO2 in the mammal and is excited by cyanide (CN-). Type I cells, the presumed sites for transduction, were freshly dissociated from the carotid body of the adult rabbit and studied with the whole-cell patch clamp technique. 2. Type I cells were hyperpolarized by CN-, the action potential was shortened, and there was an increased after-hyperpolarization. 3. Under voltage clamp control, CN- increased a voltage-dependent outward current, which showed pronounced outward rectification. Tail currents increased by CN- reversed close to the predicted EK, the reversal potential of the CN--induced current depended on extracellular [K+], and the current was blocked by intracellular TEA+ and Cs+. 4. The i-V relation of the CN--induced conductance strongly mirrored that of voltage-gated Ca2+ entry, and the response was abolished by removal of extracellular Ca2+. We conclude that the increased gK is Ca2+ -dependent (gK(Ca]. 5. The Ca2+ current was attenuated by CN-, and showed an increased rate of inactivation. Thus, the increased gK(Ca) must result from an alteration in Ca2+ homeostasis independent of the Ca2+ current, and not an increased Ca2+ entry through voltage-activated channels. 6. Carbachol also hyperpolarized cells and increased a K+ conductance. 7. At depolarized holding potentials a steady-state outward current was increased by CN-. The current reversed close to EK, and was associated with increased current fluctuations. Noise analysis showed that a channel conductance of 3 pS carries the current. 8. The response to CN- was not impaired by the inclusion of 5 mM-MgATP in the patch pipette. 9. If signals to the CNS are initiated by the calcium-dependent release of transmitters from type I cells, transduction would appear to be the direct consequence of the energy dependence of Ca2+ homeostasis. PMID:2557439
Kawa, K
1987-01-01
1. The electrical properties of the cell membrane of thrombocytes in the newt, Triturus pyrrhogaster, were studied using the whole-cell variation of the patch-electrode voltage-clamp technique. 2. In medium containing Ca2+ (1.8 mM), activated thrombocytes became round and then spread on the glass. Activation of thrombocytes was inhibited by the removal of external Ca2+ and addition of 1 w/v% albumin to the external media. 3. For thrombocytes kept in the resting state, depolarizations more positive than -30 mV evoked transient outward currents which decayed completely during the duration of the depolarization (150 ms). The half-decay time of the currents became smaller as the depolarizing pulse strengthened, reaching about 20 ms at +30 mV (20 degrees C). 4. The outward currents are identified as K+ currents, since (1) their reversal potential depended on extracellular K+ concentration and (2) the outward currents were suppressed either by external application of 4-aminopyridine (1 mM) or by internal application of Cs+ (120 mM). The monovalent cation selectivities of the K+ channels were evaluated from the reversal potential as Tl (1.68) greater than K(1.0) greater than Rb (0.89) greater than NH4 (0.13) greater than Na(less than 0.03). 5. When the thrombocytes had been activated, depolarization again evoked K+ currents. The currents, however, showed negligible or small decay during the duration of the depolarization (150 ms). The rate of recovery from preceding depolarization was also reduced to about one-sixth. 6. The sensitivity to 4-aminopyridine and the selectivity of the K+ channels were not changed by cell activation. 7. We conclude that during activation of thrombocytes the inactivation of the K+ channels is almost eliminated. Removal of inactivation of the K+ channels was also induced in resting thrombocytes by intracellular application of 4-bromoacetamide (50 microM). PMID:2443665
PRESSURE PULSES AT VOYAGER 2 : DRIVERS OF INTERSTELLAR TRANSIENTS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, J. D.; Wang, C.; Liu, Y. D.
Voyager 1 ( V1 ) crossed the heliopause into the local interstellar medium (LISM) in 2012. The LISM is a dynamic region periodically disturbed by solar transients with outward-propagating shocks, cosmic-ray intensity changes and anisotropies, and plasma wave oscillations. Voyager 2 ( V2 ) trails V1 and thus may observe the solar transients that are later observed at V1. V2 crossed the termination shock in 2007 and is now in the heliosheath. Starting in 2012, when solar maximum conditions reached V2 , five possible merged interaction regions (MIRs) have been observed by V2 in the heliosheath. The timing is consistentmore » with these MIRs driving the transients observed by V1 in the LISM. The largest heliosheath MIR was observed by V2 in late 2015 and should reach V1 in 2018.« less
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Wu, Xiaojian
2017-01-01
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. PMID:29240676
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes.
Experton, Juliette; Wu, Xiaojian; Martin, Charles R
2017-12-14
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Gregory W.; Lopez, Marcos M.; Ramiah Rajasekaran, Pradeep
2015-07-09
We have recently demonstrated a new electrokinetic phenomenon—electroosmotic flow rectification in membranes with asymmetrically shaped pores. Flow rectification means that at constant driving force the flow rate in one direction through the membrane is faster than the flow rate in the opposite direction. EOF rectification could be of practical use in microfluidic devices incorporating porous membranes, but additional research is required. We explore here the effects of two key experimental variables—current density used to drive flow through the membrane and membrane pore density—on EOF rectification. We have found that the extent of EOF rectification, as quantified by the rectification ratio,more » increases with increasing current density. In contrast, the rectification ratio decreases with increasing membrane pore density. We propose explanations for these results based on simple EOF and membrane-transport theories.« less
Experimental study of thermal rectification in suspended monolayer graphene
Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie
2017-01-01
Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting. PMID:28607493
Experimental study of thermal rectification in suspended monolayer graphene.
Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie
2017-06-13
Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.
Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits
ERIC Educational Resources Information Center
Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.
2012-01-01
Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…
Olson, Marnie L; Kargacin, Margaret E; Ward, Christopher A; Kargacin, Gary J
2007-06-01
The effects of the phytoestrogens phloretin and phloridzin on Ca(2+) handling, cell shortening, the action potential, and Ca(2+) and K(+) currents in freshly isolated cardiac myocytes from rat ventricle were examined. Phloretin increased the amplitude and area and decreased the rate of decline of electrically evoked Ca(2+) transients in the myocytes. These effects were accompanied by an increase in the Ca(2+) load of the sarcoplasmic reticulum, as determined by the area of caffeine-evoked Ca(2+) transients. An increase in the extent of shortening of the myocytes in response to electrically evoked action potentials was also observed in the presence of phloretin. To further examine possible mechanisms contributing to the observed changes in Ca(2+) handling and contractility, the effects of phloretin on the cardiac action potential and plasma membrane Ca(2+) and K(+) currents were examined. Phloretin markedly increased the action potential duration in the myocytes, and it inhibited the Ca(2+)-independent transient outward K(+) current (I(to)). The inwardly rectifying K(+) current, the sustained outward delayed rectifier K(+) current, and L-type Ca(2+) currents were not significantly different in the presence and absence of phloretin, nor was there any evidence that the Na(+)/Ca(2+) exchanger was affected. The effects of phloretin on Ca(2+) handling in the myocytes are consistent with its effects on I(to). Phloridzin did not significantly alter the amplitude or area of electrically evoked Ca(2+) transients in the myocytes, nor did it have detectable effects on the sarcoplasmic reticulum Ca(2+) load, cell shortening, or the action potential.
1995-01-01
The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations. PMID:8786344
Whole-Cell Chloride Currents in Rat Astrocytes Accompany Changes in Cell Morphology
Lascola, Christopher D.; Kraig, Richard P.
2009-01-01
Astrocytes can change shape dramatically in response to increased physiological and pathological demands, yet the functional consequences of morphological change are unknown. We report the expression of Cl− currents after manipulations that alter astrocyte morphology. Whole-cell Cl− currents were elicited after (1) rounding up cells by brief exposure to trypsin; (2) converting cells from a flat polygonal to a process-bearing (stellate) morphology by exposure to serum-free Ringer’s solution; and (3) swelling cells by exposure to hypo-osmotic solution. Zero-current potentials approximated the Nernst for Cl−, and rectification usually followed that predicted by the constant-field equation. We observed heterogeneity in the activation and inactivation kinetics, as well as in the relative degree of outward versus inward rectification. Cl− conductances were inhibited by 4,4-diisothiocyanostilbene-2,2′-disulfonic acid (200 μM) and by Zn2+ (1 mM). Whole-cell Cl− currents were not expressed in cells without structural change. We investigated whether changes in cytoskeletal actin accompanying changes in astrocytic morphology play a role in the induction of shape-dependent Cl− currents. Cytochalasins, which disrupt actin polymers by enhancing actin-ATP hydrolysis, elicited whole-cell Cl− conductances in flat, polygonal astrocytes. In stellate cells, elevated intracellular Ca2+ (2 μM), which can depolymerize actin, enhanced Cl− currents, and high intracellular ATP (5 mM), required for repolymerization, reduced Cl− currents. Modulation of Cl− current by Ca2+ and ATP was blocked by concurrent whole-cell dialysis with phalloidin and DNase, respectively. Phalloidin stabilizes actin polymers and DNase inhibits actin polymerization. Dialysis with phalloidin also prevented hypo-osmotically activated Cl− currents. These results demonstrate how the expression of astrocyte Cl− currents can be dependent on cell morphology, the structure of actin, Ca2+ homeostasis, and metabolism. PMID:8786429
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
The Electrophysiological Effects of Qiliqiangxin on Cardiac Ventricular Myocytes of Rats
Wei, Yidong; Liu, Xiaoyu; Wei, Haidong; Hou, Lei; Che, Wenliang; The, Erlinda; Li, Gang; Jhummon, Muktanand Vikash; Wei, Wanlin
2013-01-01
Qiliqiangxin, a Chinese herb, represents the affection in Ca channel function of cardiac myocytes. It is unknown whether Qiliqiangxin has an effect on Na current and K current because the pharmacological actions of this herb's compound are very complex. We investigated the rational usage of Qiliqiangxin on cardiac ventricular myocytes of rats. Ventricular myocytes were exposed acutely to 1, 10, and 50 mg/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the acute effects of Qiliqiangxin on Sodium current (I Na), outward currents delayed rectifier outward K+ current (I K), slowly activating delayed rectifier outward K+ current (I Ks), transient outward K+ current (I to), and inward rectifier K+ current (I K1). Qiliqiangxin can decrease I Na by 28.53% ± 5.98%, and its IC50 was 9.2 mg/L. 10 and 50 mg/L Qiliqiangxin decreased by 37.2% ± 6.4% and 55.9% ± 5.5% summit current density of I to. 10 and 50 mg/L Qiliqiangxin decreased I Ks by 15.51% ± 4.03% and 21.6% ± 5.6%. Qiliqiangxin represented a multifaceted pharmacological profile. The effects of Qiliqiangxin on Na and K currents of ventricular myocytes were more profitable in antiarrhythmic therapy in the clinic. We concluded that the relative efficacy of Qiliqiangxin was another choice for the existing antiarrhythmic therapy. PMID:24250713
The role of Na-Ca exchange current in the cardiac action potential.
Janvier, N C; Boyett, M R
1996-07-01
Since 1981, when Mullins published his provocative book proposing that the Na-Ca exchanger is electrogenic, it has been shown, first by computer simulation by Noble and later by experiment by various investigators, that inward iNaCa triggered by the Ca2+ transient is responsible for the low plateau of the atrial action potential and contributes to the high plateau of the ventricular action potential. Reduction or complete block of inward iNaCa by buffering intracellular Ca2+ with EGTA or BAPTA, by blocking SR Ca2+ release or by substituting extracellular Na+ with Li+ can result in a shortening of the action potential. The effect of block of outward iNaCa or complete block of both inward and outward iNaCa on the action potential has not been investigated experimentally, because of the lack of a suitable blocker, and remains a goal for the future. An increase in the intracellular Na+ concentration (after the application of cardiac glycoside or an increase in heart rate) or an increase in extracellular Ca2+ are believed to lead to an outward shift in iNaCa at plateau potentials and a shortening of the action potential. Changes in the Ca2+ transient are expected to result in changes in inward iNaCa and thus the action potential. This may explain the shortening of the premature action potential as well as the prolongation of the action potential when a muscle is allowed to shorten during the action potential. Inward iNaCa may play an important role in both normal and abnormal pacemaker activity in the heart.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
He, Xiulan; Zhang, Kailin; Liu, Yang; Wu, Fei; Yu, Ping; Mao, Lanqun
2018-04-16
A nonintuitive observation of monovalent anion-induced ion current rectification inversion at polyimidazolium brush (PimB)-modified nanopipettes is presented. The rectification inversion degree is strongly dependent on the concentration and species of monovalent anions. For chaotropic anions (for example, ClO 4 - ), the rectification inversion is easily observed at a low concentration (5 mm), while there is no rectification inversion observed for kosmotropic anions (Cl - ) even at a high concentration (1 m). Moreover, at the specific concentration (for example, 10 mm), the variation of rectification ratio on the type of anions is ranged by Hofmeister series (Cl - ≥NO 3 - >BF 4 - >ClO 4 - >PF 6 - >Tf 2 N - ). Estimation of the electrokinetic charge density (σ ek ) demonstrates that rectification inversion originates from the charge inversion owing to the over-adsorption of chaotropic monovalent anion. To qualitatively understand this phenomenon, a concentration-dependent adsorption mechanism is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.
2008-11-01
Long-wavelength turbulence (kρi< 1) is locally suppressed simultaneously with a rapid but transient increase in local poloidal flow shear at the appearance of low-order rational qmin surfaces in negative central shear discharges. At these events, reductions in energy transport are observed and Internal Transport Barriers (ITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.
Transient compartment-like syndrome and normokalaemic periodic paralysis due to a Cav1.1 mutation
Fan, Chunxiang; Lehmann-Horn, Frank; Weber, Marc-André; Bednarz, Marcin; Groome, James R.; Jonsson, Malin K. B.
2013-01-01
We studied a two-generation family presenting with conditions that included progressive permanent weakness, myopathic myopathy, exercise-induced contracture before normokalaemic periodic paralysis or, if localized to the tibial anterior muscle group, transient compartment-like syndrome (painful acute oedema with neuronal compression and drop foot). 23Na and 1H magnetic resonance imaging displayed myoplasmic sodium overload, and oedema. We identified a novel familial Cav1.1 calcium channel mutation, R1242G, localized to the third positive charge of the domain IV voltage sensor. Functional expression of R1242G in the muscular dysgenesis mouse cell line GLT revealed a 28% reduced central pore inward current and a −20 mV shift of the steady-state inactivation curve. Both changes may be at least partially explained by an outward omega (gating pore) current at positive potentials. Moreover, this outward omega current of 27.5 nS/nF may cause the reduction of the overshoot by 13 mV and slowing of the upstroke of action potentials by 36% that are associated with muscle hypoexcitability (permanent weakness and myopathic myopathy). In addition to the outward omega current, we identified an inward omega pore current of 95 nS/nF at negative membrane potentials after long depolarizing pulses that shifts the R1242G residue above the omega pore constriction. A simulation reveals that the inward current might depolarize the fibre sufficiently to trigger calcium release in the absence of an action potential and therefore cause an electrically silent depolarization-induced muscle contracture. Additionally, evidence of the inward current can be found in 23Na magnetic resonance imaging-detected sodium accumulation and 1H magnetic resonance imaging-detected oedema. We hypothesize that the episodes are normokalaemic because of depolarization-induced compensatory outward potassium flux through both delayed rectifiers and omega pore. We conclude that the position of the R1242G residue before elicitation of the omega current is decisive for its conductance: if the residue is located below the gating pore as in the resting state then outward currents are observed; if the residue is above the gating pore because of depolarization, as in the inactivated state, then inward currents are observed. This study shows for the first time that functional characterization of omega pore currents is possible using a cultured cell line expressing mutant Cav1.1 channels. Likewise, it is the first calcium channel mutation for complicated normokalaemic periodic paralysis. PMID:24240197
Chung, I; Zhang, Y; Eubanks, J H; Zhang, L
1998-10-01
Hypoxia-induced outward currents (hyperpolarization) were examined in hippocampal CA1 neurons of rat brain slices, using the whole-cell recording technique. Hypoxic episodes were induced by perfusing slices with an artificial cerebrospinal fluid aerated with 5% CO2/95% N2 rather than 5% CO2/95% O2, for about 3 min. The hypoxic current was consistently and reproducibly induced in CA1 neurons dialysed with an ATP-free patch pipette solution. This current manifested as an outward shift in the holding current in association with increased conductance, and it reversed at -78 +/- 2.5 mV, with a linear I-V relation in the range of -100 to -40 mV. To provide extra energy resources to individual neurons recorded, agents were added to the patch pipette solution, including MgATP alone, MgATP + phosphocreatine + creatine kinase, or MgATP + creatine. In CA1 neurons dialysed with patch solutions including these agents, hypoxia produced small outward currents in comparison with those observed in CA1 neurons dialysed with the ATP-free solution. Among the above agents examined, whole-cell dialysis with MgATP + creatine was the most effective at decreasing the hypoxic outward currents. We suggest that the hypoxic hyperpolarization is closely related to energy metabolism in individual CA1 neurons, and that the energy supply provided by phosphocreatine metabolism may play a critical role during transient metabolic stress.
ClC-7 is a slowly voltage-gated 2Cl−/1H+-exchanger and requires Ostm1 for transport activity
Leisle, Lilia; Ludwig, Carmen F; Wagner, Florian A; Jentsch, Thomas J; Stauber, Tobias
2011-01-01
Mutations in the ClC-7/Ostm1 ion transporter lead to osteopetrosis and lysosomal storage disease. Its lysosomal localization hitherto precluded detailed functional characterization. Using a mutated ClC-7 that reaches the plasma membrane, we now show that both the aminoterminus and transmembrane span of the Ostm1 β-subunit are required for ClC-7 Cl−/H+-exchange, whereas the Ostm1 transmembrane domain suffices for its ClC-7-dependent trafficking to lysosomes. ClC-7/Ostm1 currents were strongly outwardly rectifying owing to slow gating of ion exchange, which itself displays an intrinsically almost linear voltage dependence. Reversal potentials of tail currents revealed a 2Cl−/1H+-exchange stoichiometry. Several disease-causing CLCN7 mutations accelerated gating. Such mutations cluster to the second cytosolic cystathionine-β-synthase domain and potential contact sites at the transmembrane segment. Our work suggests that gating underlies the rectification of all endosomal/lysosomal CLCs and extends the concept of voltage gating beyond channels to ion exchangers. PMID:21527911
Nilius, B; Reichenbach, A
1988-06-01
Radial glial (Müller) cells were isolated from rabbit retinae by papaine and mechanical dissociation. Regional membrane properties of these cells were studied by using the patch-clamp technique. In the course of our experiments, we found three distinct types of large K+ conducting channels. The vitread process membrane was dominated by high conductance inwardly rectifying (HCR) channels which carried, in the open state, inward currents along a conductance of about 105 pS (symmetrical solutions with 140 mM K+) but almost no outward currents. In the membrane of the soma and the proximal distal process, we found low conductance inwardly rectifying (LCR) channels which had an open state-conductance of about 60 pS and showed rather weak rectification. The endfoot membrane, on the other hand, was found to contain non-rectifying very high conductance (VHC) channels with an open state-conductance of about 360 pS (same solutions). These results suggest that mammalian Müller cells express regional membrane specializations which are optimized to carry spatial buffering currents of excess K+ ions.
Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.
2012-01-01
SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483
Wells, Gregory D; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J; Pritchard, Erica N; Leys, Sally P; Logothetis, Diomedes E; Boland, Linda M
2012-07-15
A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.
Probing the non-linear transient response of a carbon nanotube mechanical oscillator
NASA Astrophysics Data System (ADS)
Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan
2017-11-01
Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.
Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C
2017-03-01
This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.
Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P
2000-06-01
We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).
Saegusa, Noriko; Garg, Vivek
2013-01-01
The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132
TiO2 Nanowires/Poly(Methyl Methacrylate) Based Hybrid Photodetector: Improved Light Detection.
Saha, S; Mondal, A; Choudhur, B; Goswami, T; Sarkar, M B; Chattopadhyay, K K
2016-03-01
Hybrid photodetector with a maximum external quantum efficiency of ~3.08% in the UV region at 370 nm, was fabricated by spin-coated poly(methyl methacrylate) (PMMA) polymer onto glancing angle deposited (GLAD) vertically aligned TiO2 nanowire (NW) arrays. The TiO2 NWs/PMMA detector shows excellent rectification and constant 1.3 times photo-responsivity in the reverse bias condition from -1 V to -10 V. The photodiode possesses a low ideality factor of 5.1 as compared to bared TiO2 NWs device of 7.1. The hybrid device produces sharp turn-on of -0.8 s and turn-off transient of -0.9 s respectively.
Digital image transformation and rectification of spacecraft and radar images
Wu, S.S.C.
1985-01-01
Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.
Application of classical models of chirality to optical rectification
NASA Astrophysics Data System (ADS)
Wang, Xiao-Ou; Gong, Li-Jing; Li, Chun-Fei
2008-08-01
Classical models of chirality are used to investigate the optical rectification effect in chiral molecular media. Calculation of the zero frequency first hyperpolarizabilities of chiral molecules with different structures is performed and applied to the derivation of a dc electric-dipole polarization. The expression of second-order nonlinear static-electric-dipole susceptibilities is obtained by theoretical derivation in the isotropic chiral thin films. The microscopic mechanism producing optical rectification is analyzed in view of this calculation. We find that optical rectification is derived from interaction between the electric field gradient (spatial dispersion) and chiral molecules in optically active liquids and solution by our calculation, which is consistent with the result given by Woźniak and Wagnière [Opt. Commun. 114, 131 (1995)]: The optical rectification depends on the fourth-order electric-dipole susceptibilities.
Thermal rectification in mass-graded next-nearest-neighbor Fermi-Pasta-Ulam lattices
NASA Astrophysics Data System (ADS)
Romero-Bastida, M.; Miranda-Peña, Jorge-Orlando; López, Juan M.
2017-03-01
We study the thermal rectification efficiency, i.e., quantification of asymmetric heat flow, of a one-dimensional mass-graded anharmonic oscillator Fermi-Pasta-Ulam lattice both with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. The system presents a maximum rectification efficiency for a very precise value of the parameter that controls the coupling strength of the NNN interactions, which also optimizes the rectification figure when its dependence on mass asymmetry and temperature differences is considered. The origin of the enhanced rectification is the asymmetric local heat flow response as the heat reservoirs are swapped when a finely tuned NNN contribution is taken into account. A simple theoretical analysis gives an estimate of the optimal NNN coupling in excellent agreement with our simulation results.
Li, Ke-Yong
2013-01-01
The effect of hypercapnia on outwardly rectifying currents was examined in locus coeruleus (LC) neurons in slices from neonatal rats [postnatal day 3 (P3)–P15]. Two outwardly rectifying currents [4-aminopyridine (4-AP)-sensitive transient current and tetraethyl ammonium (TEA)-sensitive sustained current] were found in LC neurons. 4-AP induced a membrane depolarization of 3.6 ± 0.6 mV (n = 4), while TEA induced a smaller membrane depolarization of 1.2 ± 0.3 mV (n = 4). Hypercapnic acidosis (HA) inhibited both currents. The maximal amplitude of the TEA-sensitive current was reduced by 52.1 ± 4.5% (n = 5) in 15% CO2 [extracellular pH (pHo) 7.00, intracellular pH (pHi) 6.96]. The maximal amplitude of the 4-AP-sensitive current was reduced by 34.5 ± 3.0% (n = 6) in 15% CO2 (pHo 7.00, pHi 6.96), by 29.4 ± 6.8% (n = 6) in 10% CO2 (pHo 7.15, pHi 7.14), and increased by 29.0 ± 6.4% (n = 6) in 2.5% CO2 (pHo 7.75, pHi 7.35). 4-AP completely blocked hypercapnia-induced increased firing rate, but TEA did not affect it. When LC neurons were exposed to HA with either pHo or pHi constant, the 4-AP-sensitive current was inhibited. The data show that the 4-AP-sensitive current (likely an A current) is inhibited by decreases in either pHo or pHi. The change of the A current by various levels of CO2 is correlated with the change in firing rate induced by CO2, implicating the 4-AP-sensitive current in chemosensitive signaling in LC neurons. PMID:23948777
Dai, Wei-Min; Egebjerg, Jan; Lambert, John D C
2001-01-01
Electrophysiological recordings have been used to characterize responses mediated by AMPA receptors expressed by cultured rat cortical and spinal cord neurones. The EC50 values for AMPA were 17 and 11 μM, respectively.Responses of cortical neurones to AMPA were inhibited competitively by NBQX (pKi=6.6). Lower concentrations of NBQX (⩽1 μM) also potentiated the plateau responses of spinal cord neurones to AMPA, which could be attributed to a depression of desensitization to AMPA.GYKI 52466 inhibited responses of spinal cord neurones to AMPA to about twice the extent of responses of cortical neurones.Blockade of AMPA receptor desensitization by cyclothiazide (CTZ) potentiated responses of spinal cord neurones (6.8 fold) significantly more than responses of cortical neurones (4.8 fold). Responses of cortical neurones to KA were potentiated 3.5 fold by CTZ, while responses of spinal cord neurones were unaffected.Ultra-fast applications of AMPA to outside-out patches showed responses of spinal cord neurones desensitized by 97.5% and exhibit marked inward rectification, whereas cortical neurones desensitized by 91% and exhibited slight outward rectification. The time constants of deactivation and desensitization were about twice as fast in spinal cord than cortical neurones.In cortical neurones, single-cell RT – PCR showed GluR2 and GluR1 accounted for 91% of all subunits and were expressed together in 67% of neurones, predominantly as the flip variants (78%). GluR2 was detected alone in 24% of neurones. GluR3 and GluR4 were present in only 14 and 29% of neurones, respectively. For spinal cord neurones, GluR4o was detected in 81% of neurones, whereas predominantly flop versions of GluR1, 2 and 3 were detected in 38, 13 and 13% of neurones, respectively. These expression patterns are related to the respective pharmacological and mechanistic properties. PMID:11309259
NASA Astrophysics Data System (ADS)
Lockwood, J. A.; Webber, W. R.; Jokipii, J. R.
1985-08-01
Recent data indicating that the solar modulation effects are propagated outward in the heliospheric cavity suggest that the 11-year cosmic ray modulation can best be described by a dynamic time dependent model. In this context an understanding of the recovery characteristics of large transient Forbush type decreases is important. This includes the typical recovery time at a fixed energy at 1 AU as well as at large heliocentric radial distances, the energy dependence of the recovery time at 1 Au, and the dependence of the time for the intensity to decrease to the minimum in the transient decreases as a function of distance. These transient decreases are characterized by their asymmetrical decrease and recovery times, generally 1 to 2 days and 3 to 10 days respectively at approx. 1 AU. Near earth these are referred to as Forbush decreases, associated witha shock or blast wave passage. At R equal to or greater than + or - 10 AU, these transient decreases may represent the combined effects of several shock waves that have merged together.
Entropy production and rectification efficiency in colloid transport along a pulsating channel
NASA Astrophysics Data System (ADS)
Florencia Carusela, M.; Rubi, J. Miguel
2018-06-01
We study the current rectification of particles moving in a pulsating channel under the influence of an applied force. We have shown the existence of different rectification scenarios in which entropic and energetic effects compete. The effect can be quantified by means of a rectification coefficient that is analyzed in terms of the force, the frequency and the diffusion coefficient. The energetic cost of the motion of the particles expressed in terms of the entropy production depends on the importance of the entropic contribution to the total force. Rectification is more important at low values of the applied force when entropic effects become dominant. In this regime, the entropy production is not invariant under reversal of the applied force. The phenomenon observed could be used to optimize transport in microfluidic devices or in biological channels.
Han, X; Ferrier, G R
1992-01-01
1. Membrane currents were measured with a two-microelectrode technique in voltage clamped rabbit cardiac Purkinje fibres under conditions known to cause intracellular calcium overload and to eliminate or minimize Na(+)-Ca2+ exchange. 2. Increasing [Ca2+]o from 2.5 to 5 mM or above and substituting external sodium with either sucrose, choline or Li+ induced an oscillatory transient inward current (TI) which peaked 200-300 ms after repolarization from a previous depolarizing pulse. The TI quickly disappeared upon return to normal Tyrode solution. Both the rate and configuration of action potentials of Purkinje fibres also returned to control upon return to Tyrode solution after 30 min of high Ca2+ exposure, if the Ca2+ concentration was 30 mM or less. 3. The TI in Na(+)-free solution was Ca2+ dependent. Either zero or low (2.5 mM) [Ca2+]o, or replacement of [Ca2+]o by BaCl prevented induction of the TI current upon repolarization from a previous depolarizing pulse. 4. In the presence of 30 mM-CaCl2 and with choline chloride as the substitute for NaCl, TI had a distinct reversal potential (Erev) of -25 mV. The time-to-peak TI, either inward or outward, did not shift significantly with change in voltage. Both inward and outward TI were simultaneously abolished by exposure to 1 microM-ryanodine, suggesting they were both activated by transient release of Ca2+ from the sarcoplasmic reticulum. The occurrence of TI in the absence of [Na+]o is not compatible with an electrogenic Na(+)-Ca2+ exchange mechanism. The existence of a clear-cut reversal potential suggests that an ionic channel may be responsible for the TI under these conditions. 5. Both the magnitude of peak TI and the Erev were affected by changes of CaCl2 concentration. (i) Under steady-state conditions, peak inward TI was significantly increased when the [Ca2+]o was elevated from 5 to 15 mM. The peak TI in the outward direction was significantly increased when [Ca2+]o was elevated from 15 to 30 mM; however, the difference in peak inward TI at 15 and 30 mM [Ca2+]o was small. (ii) Clear-cut reversals of TI were found at Ca2+ concentrations of 10 mM (Erev = -19.5 mV) or greater, and elevation of [Ca2+]o to 20, 30, 50 and 105 mM shifted the Erev to more negative potentials. (iii) In the presence of 5 mM [Ca2+]o the inward TI declined to zero at about -30 mV, and test voltages between -55 and +5 mV failed to reveal a distinct outward TI.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1284077
A Thermal Diode Based on Nanoscale Thermal Radiation.
Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod
2018-05-23
In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.
Stretch or contraction induced inversion of rectification in diblock molecular junctions
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui
2013-09-01
Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain
Lee, Terrie M.
2000-01-01
The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.
Efficient thermal diode with ballistic spacer
NASA Astrophysics Data System (ADS)
Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio
2018-03-01
Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.
Resistive-pulse and rectification sensing with glass and carbon nanopipettes
Wang, Yixian; Wang, Dengchao
2017-01-01
Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes. PMID:28413354
Resistive-pulse and rectification sensing with glass and carbon nanopipettes.
Wang, Yixian; Wang, Dengchao; Mirkin, Michael V
2017-03-01
Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes.
Ito, Y; Yokoyama, S; Higashida, H
1992-05-22
Messenger RNAs (mRNAs) specific for NGK1 and NGK2 potassium channels were synthesized from complementary DNAs (cDNAs) that had been cloned from mouse neuroblastoma x rat glioma hybrid NG108-15 cells. Outward pottasium currents were evoked by 5 s depolarizing voltage commands in Xenopus oocytes injected with NGK1- or NGK2-specific mRNAs. The NGK1 or NGK2 currents showed different activation and inactivation kinetics, and different pharmacological sensitivities. The threshold potential for activation of the NGK2 current (-14 mV) was more positive than that for the NGK1 (-36 mV). The NGK2 current showed faster inactivation during a 5 s depolarizing pulse than did the NGK1 current. Inactivation was best fit by time constants of 0.37, 1.5 and 19 s for the NGK2 current and 4.4 and 19 s for NGK1. Extracellularly applied tetraethylammonium chloride (TEA) was 1000 times more potent on the NGK2 current than the NGK1 current. Furthermore we examined outward current following co-injection of an equal amount of mRNAs for NGK1 and NGK2. The timecourse of inactivation differed from either alone or from a simple sum of the two individual currents. TEA sensitivity could not be explained by summation of the two homomultimeric channels. These findings suggest that both NGK1 and NGK2 proteins assemble to form heteromultimeric K+ channels in addition to homomultimeric K+ channels. NGK2 channels and the heteromultimeric channels may be responsible for the native transient outward current with slow inactivation in NG108-15 hybrid cells.
A Nonlinear Model for Transient Responses from Light-Adapted Wolf Spider Eyes
DeVoe, Robert D.
1967-01-01
A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes. PMID:6056011
2013-01-01
Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene nanoribbon-silicon interfaces Ajit K...054308 (2013) Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon J. Appl. Phys. 113, 053513 (2013...2013 to 00-00-2013 4. TITLE AND SUBTITLE Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene
Signaling of Pigment-Dispersing Factor (PDF) in the Madeira Cockroach Rhyparobia maderae
Funk, Nico W.; Giese, Maria; Baz, El-Sayed; Stengl, Monika
2014-01-01
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance. PMID:25269074
The role of geometry in nanoscale rectennas for rectification and energy conversion
NASA Astrophysics Data System (ADS)
Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.
2013-09-01
We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).
Radiation-based near-field thermal rectification with phase transition materials
NASA Astrophysics Data System (ADS)
Yang, Yue; Basu, Soumyadipta; Wang, Liping
2013-10-01
The capability of manipulating heat flow has promising applications in thermal management and thermal circuits. In this Letter, we report strong thermal rectification effect based on the near-field thermal radiation between silicon dioxide (SiO2) and a phase transition material, vanadium dioxide (VO2), separated by nanometer vacuum gaps under the framework of fluctuational electrodynamics. Strong coupling of surface phonon polaritons between SiO2 and insulating VO2 leads to enhanced near-field radiative transfer, which on the other hand is suppressed when VO2 becomes metallic, resulting in thermal rectification. The rectification factor is close to 1 when vacuum gap is at 1 μm and it increases to almost 2 at sub-20-nm gaps when emitter and receiver temperatures are set to 400 and 300 K, respectively. Replacing bulk SiO2 with a thin film of several nanometers, rectification factor of 3 can be achieved when the vacuum gap is around 100 nm.
Georeferencing CAMS data: Polynomial rectification and beyond
NASA Astrophysics Data System (ADS)
Yang, Xinghe
The Calibrated Airborne Multispectral Scanner (CAMS) is a sensor used in the commercial remote sensing program at NASA Stennis Space Center. In geographic applications of the CAMS data, accurate geometric rectification is essential for the analysis of the remotely sensed data and for the integration of the data into Geographic Information Systems (GIS). The commonly used rectification techniques such as the polynomial transformation and ortho rectification have been very successful in the field of remote sensing and GIS for most remote sensing data such as Landsat imagery, SPOT imagery and aerial photos. However, due to the geometric nature of the airborne line scanner which has high spatial frequency distortions, the polynomial model and the ortho rectification technique in current commercial software packages such as Erdas Imagine are not adequate for obtaining sufficient geometric accuracy. In this research, the geometric nature, especially the major distortions, of the CAMS data has been described. An analytical step-by-step geometric preprocessing has been utilized to deal with the potential high frequency distortions of the CAMS data. A generic sensor-independent photogrammetric model has been developed for the ortho-rectification of the CAMS data. Three generalized kernel classes and directional elliptical basis have been formulated into a rectification model of summation of multisurface functions, which is a significant extension to the traditional radial basis functions. The preprocessing mechanism has been fully incorporated into the polynomial, the triangle-based finite element analysis as well as the summation of multisurface functions. While the multisurface functions and the finite element analysis have the characteristics of localization, piecewise logic has been applied to the polynomial and photogrammetric methods, which can produce significant accuracy improvement over the global approach. A software module has been implemented with full integration of data preprocessing and rectification techniques under Erdas Imagine development environment. The final root mean square (RMS) errors for the test CAMS data are about two pixels which are compatible with the random RMS errors existed in the reference map coordinates.
Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region
NASA Technical Reports Server (NTRS)
Nagai, F.
1984-01-01
A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.
A black hole nova obscured by an inner disk torus.
Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A
2013-03-01
Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.
Current rectification in a single molecule diode: the role of electrode coupling.
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-24
We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
Current rectification in a single molecule diode: the role of electrode coupling
NASA Astrophysics Data System (ADS)
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-01
We demonstrate large rectification ratios (\\gt 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 105 A cm-2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
Rapid characterizing of ferromagnetic materials using spin rectification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Wei; Wang, Yutian
2014-12-29
Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constantsmore » of the Fe crystals but also the principle of spin rectification in this method.« less
Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2015-12-02
As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.
1983-10-01
O ) OV6 ISOBSLET *SECURITY CLASSIFICATION OF THIS PAGE (Oc~ Dt. Entered) - 4 .. I,3...* %%S& P 4. A I IUN U ,13 ’ A ^II t~,.. I. f ltnew- A "viously...Abstr. 8:558, 1982. 73. Gustafsson, B., Galvan, M., Grafe, P . and Wigstrom, H. A transient outward current in a mammalian central neurone blocked by 4...TEST CHART N4ATIONAL BUREAU CF STANAROS -963 - A ............ ............ AD _ _ _ Report No. 1 SYNAPTIC MECHANISMS OF ACTION OF CONVULSION-PRODUCING
Effects of premature stimulation on HERG K+ channels
Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I
2001-01-01
The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759
Wettwer, Erich; Himmel, Herbert M; Amos, Gregory J; Li, Qi; Metzger, Franz; Ravens, Ursula
1998-01-01
Tedisamil is a new antiarrhythmic drug with predominant class III action. The aim of the present study was to investigate the blocking pattern of the compound on the transient outward current (Ito) in human subepicardial myocytes isolated from explanted left ventricles. Using the single electrode whole cell voltage clamp technique, Ito was analysed after appropriate voltage inactivation of sodium current and block of calcium current.Tedisamil reduced the amplitude of peak Ito, but did not affect the amplitude of non-inactivating outward current. The drug accelerated the apparent rate of Ito inactivation. The reduction in time constant of Ito inactivation depended on drug concentration, the apparent IC50 value was 4.4 μM.Tedisamil affected Ito amplitude in a use-dependent manner. After 2 min at −80 mV, maximum block of Ito was reached after 4–5 clamp steps either at the frequency of 0.2 or 2 Hz, indicating that the block was not frequency-dependent in an experimentally relevant range. Recovery from block was very slow and proceeded with a time constant of 12.1±1.8 s. Also in the presence of drug, a fraction of channels recovered from inactivation with a similar time constant as in control myocytes (i.e. 81±40 ms and 51±8 ms, respectively, n.s.).From the onset of fractional block of Ito by tedisamil during the initial 60 ms of a clamp step, we calculated k1=9×106 mol−1 s−1 for the association rate constant, and k2=23 s−1 for the dissociation rate constant. The resulting apparent KD was 2.6 μM and is similar to the IC50 value.The effects of tedisamil on Ito could be simulated by assuming a four state channel model where the drug binds to the channel in an open (activated) conformation. It is concluded that in human subepicardial myocytes tedisamil is an open channel blocker of Ito and that this effect probably contributes to the antiarrhythmic potential of this drug. PMID:9831899
Zhang, Xiulin; Beckel, Jonathan M; Daugherty, Stephanie L; Wang, Ting; Woodcock, Stephen R; Freeman, Bruce A; de Groat, William C
2014-01-01
Effects of nitro-oleic acid (OA-NO2) on TRP channels were examined in guinea-pig dissociated dorsal root ganglia (DRG) neurons using calcium imaging and patch clamp techniques. OA-NO2 increased intracellular Ca2+ in 60–80% DRG neurons. 1-Oleoyl-2acetyl-sn-glycerol (OAG), a TRPC agonist, elicited responses in 36% of OA-NO2-sensitive neurons while capsaicin (TRPV1 agonist) or allyl-isothiocyanate (AITC, TRPA1 agonist) elicited responses in only 16% and 10%, respectively, of these neurons. A TRPV1 antagonist (diarylpiperazine, 5 μm) in combination with a TRPA1 antagonist (HC-030031, 30 μm) did not change the amplitude of the Ca2+ transients or percentage of neurons responding to OA-NO2; however, a reducing agent DTT (50 mm) or La3+ (50 μm) completely abolished OA-NO2 responses. OA-NO2 also induced a transient inward current associated with a membrane depolarization followed by a prolonged outward current and hyperpolarization in 80% of neurons. The reversal potentials of inward and outward currents were approximately −20 mV and −60 mV, respectively. Inward current was reduced when extracellular Na+ was absent, but unchanged by niflumic acid (100 μm), a Cl− channel blocker. Outward current was abolished in the absence of extracellular Ca2+ or a combination of two Ca2+-activated K+ channel blockers (iberiotoxin, 100 nm and apamin, 1 μm). BTP2 (1 or 10 μm), a broad spectrum TRPC antagonist, or La3+ (50 μm) completely abolished OA-NO2 currents. RT-PCR performed on mRNA extracted from DRGs revealed the expression of all seven subtypes of TRPC channels. These results support the hypothesis that OA-NO2 activates TRPC channels other than the TRPV1 and TRPA1 channels already known to be targets in rat and mouse sensory neurons and challenge the prevailing view that electrophilic compounds act specifically on TRPA1 or TRPV1 channels. The modulation of sensory neuron excitability via actions on multiple TRP channels can contribute to the anti-inflammatory effect of OA-NO2. PMID:25128576
Switching and Rectification in Carbon-Nanotube Junctions
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid
2003-01-01
Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.
NASA Astrophysics Data System (ADS)
Luo, Xiongbiao; Jayarathne, Uditha L.; McLeod, A. Jonathan; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.
2016-03-01
This paper studies uncalibrated stereo rectification and stable disparity range determination for surgical scene three-dimensional (3-D) reconstruction. Stereoscopic endoscope calibration sometimes is not available and also increases the complexity of the operating-room environment. Stereo from uncalibrated endoscopic cameras is an alternative to reconstruct the surgical field visualized by binocular endoscopes within the body. Uncalibrated rectification is usually performed on the basis of a number of matched feature points (semi-dense correspondence) between the left and the right images of stereo pairs. After uncalibrated rectification, the corresponding feature points can be used to determine the proper disparity range that helps to improve the reconstruction accuracy and reduce the computational time of disparity map estimation. Therefore, the corresponding or matching accuracy and robustness of feature point descriptors is important to surgical field 3-D reconstruction. This work compares four feature detectors: (1) scale invariant feature transform (SIFT), (2) speeded up robust features (SURF), (3) affine scale invariant feature transform (ASIFT), and (4) gauge speeded up robust features (GSURF) with applications to uncalibrated rectification and stable disparity range determination. We performed our experiments on surgical endoscopic video images that were collected during robotic prostatectomy. The experimental results demonstrate that ASIFT outperforms other feature detectors in the uncalibrated stereo rectification and also provides a stable stable disparity range for surgical scene reconstruction.
Wong, M S; Cheng, J C Y; Wong, M W; So, S F
2005-04-01
A study was conducted to compare the CAD/CAM method with the conventional manual method in fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis. Ten subjects were recruited for this study. Efficiency analyses of the two methods were performed from cast filling/ digitization process to completion of cast/image rectification. The dimensional changes of the casts/ models rectified by the two cast rectification methods were also investigated. The results demonstrated that the CAD/CAM method was faster than the conventional manual method in the studied processes. The mean rectification time of the CAD/CAM method was shorter than that of the conventional manual method by 108.3 min (63.5%). This indicated that the CAD/CAM method took about 1/3 of the time of the conventional manual to finish cast rectification. In the comparison of cast/image dimensional differences between the conventional manual method and the CAD/CAM method, five major dimensions in each of the five rectified regions namely the axilla, thoracic, lumbar, abdominal and pelvic regions were involved. There were no significant dimensional differences (p < 0.05) in 19 out of the 25 studied dimensions. This study demonstrated that the CAD/CAM system could save the time in the rectification process and offer a relatively high resemblance in cast rectification as compared with the conventional manual method.
Rectification of graphene self-switching diodes: First-principles study
NASA Astrophysics Data System (ADS)
Ghaziasadi, Hassan; Jamasb, Shahriar; Nayebi, Payman; Fouladian, Majid
2018-05-01
The first principles calculations based on self-consistent charge density functional tight-binding have performed to investigate the electrical properties and rectification behavior of the graphene self-switching diodes (GSSD). The devices contained two structures called CG-GSSD and DG-GSSD which have metallic or semiconductor gates depending on their side gates have a single or double hydrogen edge functionalized. We have relaxed the devices and calculated I-V curves, transmission spectrums and maximum rectification ratios. We found that the DG-MSM devices are more favorable and more stable. Also, the DG-MSM devices have better maximum rectification ratios and current. Moreover, by changing the side gates widths and behaviors from semiconductor to metal, the threshold voltages under forward bias changed from +1.2 V to +0.3 V. Also, the maximum currents are obtained from 1.12 μA to 10.50 μA. Finally, the MSM and SSS type of all devices have minimum and maximum values of voltage threshold and maximum rectification ratios, but the 769-DG devices don't obey this rule.
NASA Astrophysics Data System (ADS)
Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.
2018-05-01
The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.
NASA Astrophysics Data System (ADS)
Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng
2018-02-01
Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.
Structure–function relationships in single molecule rectification by N-phenylbenzamide derivatives
Koenigsmann, Christopher; Ding, Wendu; Koepf, Matthieu; ...
2016-06-30
Here, we examine structure–function relationships in a series of N-phenylbenzamide (NPBA) derivatives by using computational modeling to identify molecular structures that exhibit both rectification and good conductance together with experimental studies of bias-dependent single molecule conductance and rectification behavior using the scanning tunneling microscopy break-junction technique. From a large number of computationally screened molecular diode structures, we have identified NPBA as a promising candidate, relative to the other structures that were screened. We demonstrate experimentally that conductance and rectification are both enhanced by functionalization of the NPBA 4-carboxamido-aniline moiety with electron donating methoxy groups, and are strongly correlated with themore » energy of the conducting frontier orbital relative to the Fermi level of the gold leads used in break-junction experiments.« less
Structure–function relationships in single molecule rectification by N-phenylbenzamide derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenigsmann, Christopher; Ding, Wendu; Koepf, Matthieu
Here, we examine structure–function relationships in a series of N-phenylbenzamide (NPBA) derivatives by using computational modeling to identify molecular structures that exhibit both rectification and good conductance together with experimental studies of bias-dependent single molecule conductance and rectification behavior using the scanning tunneling microscopy break-junction technique. From a large number of computationally screened molecular diode structures, we have identified NPBA as a promising candidate, relative to the other structures that were screened. We demonstrate experimentally that conductance and rectification are both enhanced by functionalization of the NPBA 4-carboxamido-aniline moiety with electron donating methoxy groups, and are strongly correlated with themore » energy of the conducting frontier orbital relative to the Fermi level of the gold leads used in break-junction experiments.« less
Thermal rectification in anharmonic chains under an energy-conserving noise.
Guimarães, Pedro H; Landi, Gabriel T; de Oliveira, Mário J
2015-12-01
Systems in which the heat flux depends on the direction of the flow are said to present thermal rectification. This effect has attracted much theoretical and experimental interest in recent years. However, in most theoretical models the effect is found to vanish in the thermodynamic limit, in disagreement with experiment. The purpose of this paper is to show that the rectification may be restored by including an energy-conserving noise which randomly flips the velocity of the particles with a certain rate λ. It is shown that as long as λ is nonzero, the rectification remains finite in the thermodynamic limit. This is illustrated in a classical harmonic chain subject to a quartic pinning potential (the Φ(4) model) and coupled to heat baths by Langevin equations.
Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho
2010-05-24
We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.
Delgado, R; Labarca, P
1993-06-01
Isolated olfactory neurons from the chilean toad Caudiverbera caudiverbera were found to possess a same set of currents. Outward currents, made of a delayed rectifier and a Ca(2+)-dependent component, were blocked by replacing K+ by Cs+ in the patch pipette, in the presence of millimolar concentrations of tetraethylammonium and 4-aminopyridine in the external solution. Inward currents were made of a transient and a maintained component. The transient was abolished in the absence of external Na+ and was blocked by tetrodotoxin, with an apparent dissociation constant (KDapp) of 25.4 +/- 0.3 nM. The maintained inward currents were suppressed on removing external Ca2+, could be carried also by Ba2+, and were selectively blocked by Cd2+ (KDapp = 3.2 +/- 1.3 microM). A variety of agents found to block the maintained Ca2+ inward currents, including Co2+ and Ni2+, at millimolar concentrations, and nifedipine, verapamil, amiloride, and the amiloride analogue benzamil, at micromolar concentrations, were also effective in either modifying the gating of, or in blocking, the transient inward currents.
5 Percent Ares I Scale Model Acoustic Test: Overpressure Characterization and Analysis
NASA Technical Reports Server (NTRS)
Alvord, David; Casiano, Matthew; McDaniels, Dave
2011-01-01
During the ignition of a ducted solid rocket motor (SRM), rapid expansion of injected hot gases from the motor into a confined volume causes the development of a steep fronted wave. This low frequency transient wave propagates outward from the exhaust duct, impinging the vehicle and ground structures. An unsuppressed overpressure wave can potentially cause modal excitation in the structures and vehicle, subsequently leading to damage. This presentation details the ignition transient f indings from the 5% Ares I Scale Model Acoustic Test (ASMAT). The primary events of the ignition transient environment induced by the SRM are the ignition overpressure (IOP), duct overpressure (DOP), and source overpressure (SOP). The resulting observations include successful knockdown of the IOP environment through use of a Space Shuttle derived IOP suppression system, a potential load applied to the vehicle stemming from instantaneous asymmetrical IOP and DOP wave impingement, and launch complex geometric influences on the environment. The results are scaled to a full-scale Ares I equivalent and compared with heritage data including Ares I-X and both suppressed and unsuppressed Space Shuttle IOP environments.
Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae.
Wei, Hongying; Yasar, Hanzey; Funk, Nico W; Giese, Maria; Baz, El-Sayed; Stengl, Monika
2014-01-01
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
NASA Technical Reports Server (NTRS)
Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.
1999-01-01
The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Man; Shi Wenjie; Fei Xiaowei
2008-02-01
The effect of non-steroidal anti-inflammatory drugs (NSAIDs) on ion channels has been widely studied in several cell models, but less is known about their modulatory mechanisms. In this report, the effect of mefenamic acid on voltage-activated transient outward K{sup +} current (I{sub A}) in cultured rat cerebellar granule cells was investigated. At a concentration of 5 {mu}M to 100 {mu}M, mefenamic acid reversibly inhibited I{sub A} in a dose-dependent manner. However, mefenamic acid at a concentration of 1 {mu}M significantly increased the amplitude of I{sub A} to 113 {+-} 1.5% of the control. At more than 10 {mu}M, mefenamic acidmore » inhibited the amplitude of I{sub A} without any effect on activation or inactivation. In addition, a higher concentration of mefenamic acid induced a significant acceleration of recovery from inactivation with an increase of the peak amplitude elicited by the second test pulse. Intracellular application of mefenamic acid could significantly increase the amplitude of I{sub A}, but had no effect on the inhibition induced by extracellular mefenamic acid, implying that mefenamic acid may exert its effect from both inside and outside the ion channel. Furthermore, the activation of current induced by intracellular application of mefenamic acid was mimicked by other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate that mefenamic acid is able to bi-directionally modulate I{sub A} channels in neurons at different concentrations and by different methods of application, and two different mechanisms may be involved.« less
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Zheng, Lu; Ho, Leon Yoon; Khan, Saif A
2016-10-26
The ability to form transient, self-assembling solid networks that 'cocoon' emulsion droplets on-demand allows new possibilities in the rapidly expanding area of microfluidic droplet-based materials science. In this communication, we demonstrate the spontaneous formation of extended colloidal networks that encase large microfluidic droplet ensembles, thus completely arresting droplet motion and effectively isolating each droplet from others in the ensemble. To do this, we employ molecular inclusion complexes of β-cyclodextrin, which spontaneously form and assemble into colloidal solids at the droplet interface and beyond, via the outward diffusion of a guest molecule (dichloromethane) from the droplets. We illustrate the advantage of such transient network-based droplet stabilization in the area of pharmaceutical crystallization, where we are able to fabricate monodisperse spherical crystalline microgranules of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), a model hydrophobic drug, with a dramatic enhancement of particle properties compared to conventional methods.
Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume
2017-03-29
This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.
Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; ...
2015-11-03
Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findingsmore » are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.« less
Wireless power transfer exploring spin rectification and inverse spin Hall effects
NASA Astrophysics Data System (ADS)
Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.
2018-04-01
Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.
NASA Astrophysics Data System (ADS)
Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei
2016-06-01
We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d
The Usefulness of Rectified VEMP.
Lee, Kang Jin; Kim, Min Soo; Son, Eun Jin; Lim, Hye Jin; Bang, Jung Hwan; Kang, Jae Goo
2008-09-01
For a reliable interpretation of left-right difference in Vestibular evoked myogenic potential (VEMP), the amount of sternocleidomastoid muscle (SCM) contraction has to be considered. Therefore, we can ensure that a difference in amplitude between the right and left VEMPs on a patient is due to vestibular abnormality, not due to individual differences of tonic muscle activity, fatigue or improper position. We used rectification to normalize electromyograph (EMG) based on pre-stimulus EMG activity. This study was designed to evaluate and compare the effect of rectification in two conventional ways of SCM contraction. Twenty-two normal subjects were included. Two methods were employed for SCM contraction in a subject. First, subjects were made to lie flat on their back, lifting the head off the table and turning to the opposite side. Secondly, subjects push with their jaw against the hand-held inflated cuff to generate cuff pressure of 40 mmHg. From the VEMP graphs, amplitude parameters and inter-aural difference ratio (IADR) were analyzed before and after EMG rectification. Before the rectification, the average IADR of the first method was not statistically different from that of the second method. The average IADRs from each method decreased in a rectified response, showing significant reduction in asymmetry ratio. The lowest average IADR could be obtained with the combination of both the first method and rectification. Rectified data show more reliable IADR and may help diagnose some vestibular disorders according to amplitude-associated parameters. The usage of rectification can be maximized with the proper SCM contraction method.
Ma, Hao; Tian, Zhiting
2018-01-10
Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.
Geometrical control of ionic current rectification in a configurable nanofluidic diode.
Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua
2016-09-01
Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.
Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.
Duan, Zheng; Liu, Danyang; Zhang, Guang; Li, Qingwei; Liu, Changhong; Fan, Shoushan
2017-03-02
Thermal rectification occurring at interfaces is an important research area, which contains deep fundamental physics and has extensive application prospects. In general, the measurement of interfacial thermal rectification is based on measuring interfacial thermal resistance (ITR). However, ITRs measured via conventional methods cannot avoid extra thermal resistance asymmetry due to the contact between the sample and the thermometer. In this study, we employed a non-contact infrared thermal imager to monitor the temperature of super-aligned carbon nanotube (CNT) films and obtain the ITRs between the CNT films and copper. The ITRs along the CNT-copper direction and the reverse direction are in the ranges of 2.2-3.6 cm 2 K W -1 and 9.6-11.9 cm 2 K W -1 , respectively. The obvious difference in the ITRs of the two directions shows a significant thermal rectification effect, and the rectifying coefficient ranges between 0.57 and 0.68. The remarkable rectification factor is extremely promising for the manufacture of thermal transistors with a copper/CNT/copper structure and further thermal logic devices. Moreover, our method could be extended to other 2-dimensional materials, such as graphene and MoS 2 , for further explorations.
Hamlet, William R.; Lu, Yong
2016-01-01
Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low frequency neurons compared to middle and high frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs. PMID:26964678
Digital image transformation and rectification of spacecraft and radar images
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1985-01-01
The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Quantification of rectifications for the Northwestern University Flexible Sub-Ischial Vacuum Socket.
Fatone, Stefania; Johnson, William Brett; Tran, Lilly; Tucker, Kerice; Mowrer, Christofer; Caldwell, Ryan
2017-06-01
The fit and function of a prosthetic socket depend on the prosthetist's ability to design the socket's shape to distribute load comfortably over the residual limb. We recently developed a sub-ischial socket for persons with transfemoral amputation: the Northwestern University Flexible Sub-Ischial Vacuum Socket. This study aimed to quantify the rectifications required to fit the Northwestern University Flexible Sub-Ischial Vacuum Socket to teach the technique to prosthetists as well as provide a computer-aided design-computer-aided manufacturing option. Development project. A program was used to align scans of unrectified and rectified negative molds and calculate shape change as a result of rectification. Averaged rectifications were used to create a socket template, which was shared with a central fabrication facility engaged in provision of Northwestern University Flexible Sub-Ischial Vacuum Sockets to early clinical adopters. Feedback regarding quality of fitting was obtained. Rectification maps created from 30 cast pairs of successfully fit Northwestern University Flexible Sub-Ischial Vacuum Sockets confirmed that material was primarily removed from the positive mold in the proximal-lateral and posterior regions. The template was used to fabricate check sockets for 15 persons with transfemoral amputation. Feedback suggested that the template provided a reasonable initial fit with only minor adjustments. Rectification maps and template were used to facilitate teaching and central fabrication of the Northwestern University Flexible Sub-Ischial Vacuum Socket. Minor issues with quality of initial fit achieved with the template may be due to inability to adjust the template to patient characteristics (e.g. tissue type, limb shape) and/or the degree to which it represented a fully mature version of the technique. Clinical relevance Rectification maps help communicate an important step in the fabrication of the Northwestern University Flexible Sub-Ischial Vacuum Socket facilitating dissemination of the technique, while the average template provides an alternative fabrication option via computer-aided design-computer-aided manufacturing and central fabrication.
Electrical Rectification in Betaine Derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumpter, Bobby G; Meunier, Vincent; Filho, Antonio G. Souza
2008-01-01
We theoretically investigate the electric rectification in an organic two terminal push-pull molecular device using a combination of ab initio techniques. Our main finding is that the electric rectification is extremely sensitive to the length of the chain, undergoing a complete switching after a specific chain length. This unique process occurs for betainelike donor- bridge-acceptor systems and is directly associated with a conjugated bridge in the presence of an external electric field. The conjugated bridge between the donor and acceptor groups is composed of oligoethylene with sizes ranging from zero to ten C=C units. The appearance of electric rectification occursmore » when the bridge size is equal to 5 units and is complete for those larger than 6 units (i.e. full inversion). This new electronic effect is advantageous for the design of large hybrid organic/inorganic circuits with anincreased majority carrier flow that is necessary for the emerging needs of nanotechnology.« less
Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes.
Guerrette, Joshua P; Zhang, Bo
2010-12-08
Here we report the voltammetric behavior of cone-shaped silica nanopores in quartz nanopipettes in aqueous solutions as a function of the scan rate, v. Current rectification behavior for silica nanopores with diameters in the range 4-25 nm was studied. The rectification behavior was found to be strongly dependent on the scan rate. At low scan rates (e.g., v < 1 V/s), the rectification ratio was found to be at its maximum and relatively independent of v. At high scan rates (e.g., v > 200 V/s), a nearly linear current-voltage response was obtained. In addition, the initial voltage was shown to play a critical role in the current-voltage response of cone-shaped nanopores at high scan rates. We explain this v-dependent current-voltage response by ionic redistribution in the vicinity of the nanopore mouth.
Singh, Kunwar Pal
2016-10-12
The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
Temperature-gated thermal rectifier for active heat flow control.
Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang
2014-08-13
Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.
Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.
2017-01-01
Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)‐mobilized Ca2+: 8‐pCPT‐AM fails to induce CaMKII activation following intracellular Ca2+ store depletion and inhibition of IP3 receptors blocks both 8‐pCPT‐AM‐mediated CaMKII phosphorylation and STOC activity. 8‐pCPT‐AM does not directly activate BKCa channels, but STOCs cannot be generated by 8‐pCPT‐AM in the presence of ryanodine. Furthermore, exposure to 8‐pCPT‐AM significantly slows the initial rate of [Ca2+]i rise induced by the RyR activator caffeine without significantly affecting the caffeine‐induced Ca2+ transient amplitude, a measure of Ca2+ store content. We conclude that Epac‐mediated STOC activity (i) occurs via activation of CaMKII and (ii) is driven by changes in the underlying behaviour of RyR channels. To our knowledge, this is the first report of CaMKII initiating cellular activity linked to vasorelaxation and suggests novel roles for this Ca2+ and redox‐sensing enzyme in the regulation of vascular tone and blood flow. PMID:28731505
Electrical detection of magnetization dynamics via spin rectification effects
NASA Astrophysics Data System (ADS)
Harder, Michael; Gui, Yongsheng; Hu, Can-Ming
2016-11-01
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Lee, Hyekyung; Kim, Junsuk; Kim, Hyeonsoo; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae
2017-08-24
Over the past decade, nanofluidic diodes that rectify ionic currents (i.e. greater current in one direction than in the opposite direction) have drawn significant attention in biomolecular sensing, switching and energy harvesting devices. To obtain current rectification, conventional nanofluidic diodes have utilized complex nanoscale asymmetry such as nanochannel geometry, surface charge density, and reservoir concentration. Avoiding the use of sophisticated nano-asymmetry, micro/nanofluidic diodes using microscale asymmetry have been recently introduced; however, their diodic performance is still impeded by (i) low (even absent) rectification effects at physiological concentrations over 100 mM and strong dependency on the bulk concentration, and (ii) the fact that they possess only passive predefined rectification factors. Here, we demonstrated a new class of micro/nanofluidic diode with an ideal perm-selective nanoporous membrane based on ion concentration polarization (ICP) phenomenon. Thin side-microchannels installed near a nanojunction served as mitigators of the amplified electrokinetic flows generated by ICP and induced convective salt transfer to the nanoporous membrane, leading to actively controlled micro-scale asymmetry. Using this device, current rectifications were successfully demonstrated in a wide range of electrolytic concentrations (10 -5 M to 3 M) as a function of the fluidic resistance of the side-microchannels. Noteworthily, it was confirmed that the rectification factors were independent from the bulk concentration due to the ideal perm-selectivity. Moreover, the rectification of the presenting diode was actively controlled by adjusting the external convective flows, while that of the previous diode was passively determined by invariant nanoscale asymmetry.
The Usefulness of Rectified VEMP
Kim, Min Soo; Son, Eun Jin; Lim, Hye Jin; Bang, Jung Hwan; Kang, Jae Goo
2008-01-01
Objectives For a reliable interpretation of left-right difference in Vestibular evoked myogenic potential (VEMP), the amount of sternocleidomastoid muscle (SCM) contraction has to be considered. Therefore, we can ensure that a difference in amplitude between the right and left VEMPs on a patient is due to vestibular abnormality, not due to individual differences of tonic muscle activity, fatigue or improper position. We used rectification to normalize electromyograph (EMG) based on pre-stimulus EMG activity. This study was designed to evaluate and compare the effect of rectification in two conventional ways of SCM contraction. Methods Twenty-two normal subjects were included. Two methods were employed for SCM contraction in a subject. First, subjects were made to lie flat on their back, lifting the head off the table and turning to the opposite side. Secondly, subjects push with their jaw against the hand-held inflated cuff to generate cuff pressure of 40 mmHg. From the VEMP graphs, amplitude parameters and inter-aural difference ratio (IADR) were analyzed before and after EMG rectification. Results Before the rectification, the average IADR of the first method was not statistically different from that of the second method. The average IADRs from each method decreased in a rectified response, showing significant reduction in asymmetry ratio. The lowest average IADR could be obtained with the combination of both the first method and rectification. Conclusion Rectified data show more reliable IADR and may help diagnose some vestibular disorders according to amplitude-associated parameters. The usage of rectification can be maximized with the proper SCM contraction method. PMID:19434246
Rectification of light refraction in curved waveguide arrays.
Longhi, Stefano
2009-02-15
An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.
AC Electroosmotic Pumping in Nanofluidic Funnels.
Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C
2016-06-21
We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.
Liang, Yanyan; Liu, Zhengping
2016-12-20
Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.
Current rectification for transport of room-temperature ionic liquids through conical nanopores
Jiang, Xikai; Liu, Ying; Qiao, Rui
2016-02-09
Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less
Calcium currents in a fast-twitch skeletal muscle of the rat.
Donaldson, P L; Beam, K G
1983-10-01
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.
Liu, L; Krinsky, V I; Grant, A O; Starmer, C F
1996-01-01
Recent voltage-clamp studies of isolated myocytes have demonstrated widespread occurrence of a transient outward current (I(to)) carried by potassium ions. In the canine ventricle, this current is well developed in epicardial cells but not in endocardial cells. The resultant spatial dispersion of refractoriness is potentially proarrhythmic and may be amplified by channel blockade. The inactivation and recovery time constants of this channel are in excess of several hundred milliseconds, and consequently channel availability is frequency dependent at physiological stimulation rates. When the time constants associated with transitions between different channel conformations are rapid relative to drug binding kinetics, the interactions between drugs and an ion channel can be approximated by a sequence of first-order reactions, in which binding occurs in pulses in response to pulse train stimulation (pulse chemistry). When channel conformation transition time constants do not meet this constraint, analytical characterizations of the drug-channel interaction must then be modified to reflect the channel time-dependent properties. Here we report that the rate and steady-state amount of frequency-dependent inactivation of I(to) are consistent with a generalization of the channel blockade model: channel availability is reduced in a pulsatile exponential pattern as the stimulation frequency is increased, and the rate of reduction is a linear function of the pulse train depolarizing and recovery intervals. I(to) was reduced in the presence of quinidine. After accounting for the use-dependent availability of I(to) channels, we found little evidence of an additional use-dependent component of block after exposure to quinidine, suggesting that quinidine reacts with both open and closed I(to) channels as though the binding site is continuously accessible. The model provides a useful tool for assessing drug-channel interactions when the reaction cannot be continuously monitored.
Wang, H; Shi, H; Zhang, L; Pourrier, M; Yang, B; Nattel, S; Wang, Z
2000-09-05
Nicotine is a main constituent of cigarette smoke and smokeless tobacco, known to increase the risk of sudden cardiac death. This study aimed at establishing ionic mechanisms underlying potential electrophysiological effects of nicotine. Effects of nicotine on Kv4.3 and Kv4.2 channels expressed in Xenopus oocytes were studied at the whole-cell and single-channel levels. The effects of nicotine on the transient outward K(+) current (I:(to)) were studied by use of whole-cell patch-clamp techniques in canine ventricular myocytes. Nicotine potently inhibited Kv4 current. The concentration for half-maximal inhibition (IC(50)) was 40+/-4 nmol/L, and the current was abolished by 100 micromol/L nicotine. The IC(50) for block of native I:(to) was 270+/-43 nmol/L. The steady-state activation properties of Kv4.3 and I:(to) were unaltered by nicotine, whereas positive shifts of the inactivation curves were observed. Of the total inhibition of Kv4.3 and I:(to) by nicotine, 40% was due to tonic block and 60% was attributable to use-dependent block. Activation, inactivation, and reactivation kinetics were not significantly changed by nicotine. Nicotine reduced single-channel conductance, open probability, and open time but increased the closed time of Kv4.3. The effects of nicotine were not altered by antagonists to various neurotransmitter receptors, indicating direct effects on I:(to) channels. Nicotine is a potent inhibitor of cardiac A-type K(+) channels, with blockade probably due to block of closed and open channels. This action may contribute to the ability of nicotine to affect cardiac electrophysiology and induce arrhythmias.
Xiang, Yu-luan; He, Li; Xiao, Jun; Xia, Shuang; Deng, Song-bai; Xiu, Yun; She, Qiang
2012-03-01
Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM + TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg-1·day-1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.
Differences in transient outward currents of feline endocardial and epicardial myocytes.
Furukawa, T; Myerburg, R J; Furukawa, N; Bassett, A L; Kimura, S
1990-11-01
Whole-cell voltage-clamp experiments were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to test the hypothesis that the differences in the amplitude of transient outward current (Ito) contribute to the difference in action potential configuration between endocardial and epicardial myocytes. In the control state, action potentials recorded from epicardial cells demonstrated a prominent notch between phases 1 and 2, and membrane current recordings displayed a prominent Ito, whereas in endocardial cells the notch in action potentials and Ito were small. External application of 4-aminopyridine (2 mM) reduced the amplitudes of notch and Ito in epicardial cells but not in endocardial cells. After application of 4-aminopyridine (2 mM) and caffeine (5 mM), the notch and Ito were abolished completely in both endocardial and epicardial cells. The first component of Ito (Ito1) was present in all epicardial cells studied (n = 20); it was absent in 12 of the 20 endocardial cells, and a small Ito1 was present in the remaining eight endocardial cells. The mean amplitude of Ito1 was significantly greater in epicardial than in endocardial cells. At a test voltage of +80 mV, the amplitude of Ito1 was 102.0 +/- 47.7 pA/pF in epicardial cells and 3.3 +/- 3.3 pA/pF in endocardial cells (p less than 0.01). The second component of Ito (Ito2) was present in all endocardial (n = 30) and epicardial (n = 30) cells studied. The amplitude of Ito2 was significantly greater in epicardial than in endocardial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Bae, Hyemi; Choi, Jeongyoon; Kim, Young-Won; Lee, Donghee; Kim, Jung-Ha; Ko, Jae-Hong; Bang, Hyoweon; Kim, Taeho; Lim, Inja
2018-03-12
This study investigated the expression of voltage-gated K⁺ (K V ) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the K V currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of K V channels were detected in HCFs: delayed rectifier K⁺ channel and transient outward K⁺ channel. In whole-cell patch-clamp technique, delayed rectifier K⁺ current (I K ) exhibited fast activation and slow inactivation, while transient outward K⁺ current (I to ) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S -nitroso- N -acetylpenicillamine (SNAP), increased the amplitude of I K in a concentration-dependent manner with an EC 50 value of 26.4 µM, but did not affect I to . The stimulating effect of SNAP on I K was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the I K . The stimulating effect of SNAP on I K was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated I K . On the other hand, the stimulating effect of SNAP on I K was not blocked by pretreatment of N -ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances I K , but not I to , among K V currents of HCFs, and the stimulating effect of NO on I K is through the PKG and PKA pathways, not through S -nitrosylation.
Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
Colatsky, T J; Tsien, R W
1979-01-01
1. Rabbit Purkinje fibres were studied using micro-electrode recordings of electrical activity or a two-micro-electrode voltage clamp. Previous morphological work had suggested that these preparations offer structural advantages for the analysis of ionic permeability mechanisms. 2. Viable preparations could be obtained consistently by exposure to a K glutamate Tyrode solution during excision and recovery. In NaCl Tyrode solution, the action potential showed a large overshoot and fully developed plateau, but no pacemaker depolarization at negative potentials. 3. The passive electrical properties were consistent with morphological evidence for the accessibility of cleft membranes within the cell bundle. Electrotonic responses to intracellular current steps showed the behaviour expected for a simple leaky capacitative cable. Capacitative current transients under voltage clamp were changed very little by an eightfold reduction in the external solution conductivity. 4. Slow current changes attributable to K depletion were small compared to those found in other cardiac preparations. The amount of depletion was close to that predicted by a cleft model which assumed free K diffusion in 1 micron clefts. 5. Step depolarizations over the plateau range of potentials evoked a slow inward current which was resistant to tetrodotoxin but blocked by D600. 6. Strong depolarizations to potentials near 0 mV elicited a transient outward current and a slowly activating late outward current. Both components resembled currents found in sheep or calf Purkinje fibres. 7. These experiments support previous interpretations of slow plateau currents in terms of genuine permeability changes. The rabbit Purkinje fibre may allow various ionic channels to be studied with relatively little interference from radial non-uniformities in membrane potential or ion concentration. Images Fig. 7 PMID:469754
Enhanced functional expression of transient outward current in hypertrophied feline myocytes.
Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L
1993-08-01
Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).
Proceedings of the NASA Workshop on Registration and Rectification
NASA Technical Reports Server (NTRS)
Bryant, N. A. (Editor)
1982-01-01
Issues associated with the registration and rectification of remotely sensed data. Near and long range applications research tasks and some medium range technology augmentation research areas are recommended. Image sharpness, feature extraction, inter-image mapping, error analysis, and verification methods are addressed.
Thermal conductivity and rectification in asymmetric archaeal lipid membranes
NASA Astrophysics Data System (ADS)
Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven
2018-05-01
Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering applications.
Thermal rectification in thin films driven by gradient grain microstructure
NASA Astrophysics Data System (ADS)
Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel
2018-03-01
As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
Geophysical characterization of the Chicxulub impact structure
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Christeson, G. L.; Barton, P. J.; Grieve, R. A.; Morgan, J. V.; Fucugauchi, J. U.
2013-05-01
The Chicxulub impact structure, conclusively linked to the 65.5 Ma mass extinction, includes three sets of inward dipping, ring faults, between 70 and 130 km radially with a topographically elevated inner rim, at the inner edge of these faults except in the northeast where such a rim is absent. Slump blocks offset by large faults result in a terrace zone, that steps down from the inner rim into the annular trough. The inner blocks underlie the peak ring --an internal topographic ring of topography that exhibits variable relief due to target asymmetries and bounds the coherent melt sheet within the central basin. Impact breccias lie within the annular trough above the slump blocks and proximal ejecta and within the central basin above the melt sheet. Beneath the melt sheet is the top of the central uplift, displaced by >10 km vertically, and an upwarped Moho, displaced by 1-2 km. These interpretations and hydrocode models support the following working hypothesis for the formation of Chicxulub: a 50 km radius transient cavity, lined with melt and impact breccia, formed within 10s of seconds of the 65.5 Ma impact and within minutes, weakened rebounding crust rose above kilometers above the surface, the transient crater rim underwent localized, brittle deformation and collapsed into large slump blocks resulting in a inner rim being preserved 70-85 km from crater center, and ring faults forming farther outwards. The overheightened central uplift of weakened crust collapsed outwards forming the peak ring, and buried the inner slump blocks. Most impact melt that lined the transient cavity was transported on top of the central uplift, ultimately emplaced as a coherent <3-km thick melt sheet that shallows within the inner regions of the peak ring. Smaller pockets of melt flowed into the annular trough. During and likely for sometime after these events, slope collapse, proximal ejecta, ground surge, and tsunami waves infilled the annular trough with sediments up to 3 km thick and the central basin with sediments up to 900 m thick. Testing this working hypothesis requires direct observation and measurements on the impact materials, especially within and adjacent to the peak ring and central basin.
USDA registration and rectification requirements
NASA Technical Reports Server (NTRS)
Allen, R.
1982-01-01
Some of the requirements of the United States Department of Agriculture for accuracy of aerospace acquired data, and specifically, requirements for registration and rectification of remotely sensed data are discussed. Particular attention is given to foreign and domestic crop estimation and forecasting, forestry information applications, and rangeland condition evaluations.
Polarization of gold in nanopores leads to ion current rectification
Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...
2016-10-03
Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less
Self-driven visible-blind photodetector based on ferroelectric perovskite oxides
NASA Astrophysics Data System (ADS)
Li, Jian-kun; Ge, Chen; Jin, Kui-juan; Du, Jian-yu; Yang, Jing-ting; Lu, Hui-bin; Yang, Guo-zhen
2017-04-01
Ultraviolet photodetectors have attracted considerable interest for a variety of applications in health, industry, and science areas. Self-driven visible-blind photodetectors represent an appealing type of sensor, due to the reduced size and high flexibility. In this work, we employed BaTiO3 (BTO) single crystals with a bandgap of 3.2 eV for the realization of a self-driven ultraviolet detector, by utilizing the ferroelectric properties of BTO. We found that the sign of the photocurrent can be reversed by flipping the ferroelectric polarization, which makes the photodetector suitable for electrical manipulation. The photoelectric performance of this photodetector was systematically investigated in terms of rectification character, stability of short-circuit photocurrent, spectral response, and transient photoelectric response. Particularly, the self-driven photodetectors based on BTO showed an ultrafast response time about 200 ps. It is expected that the present work can provide a route for the design of photodetectors based on ferroelectric oxides.
Three Stages and Two Systems of Visual Processing
1989-01-01
as squaring do not, in and of themselves, imply second- order processing . For example, the Adelson and Bergen’s (1985) detector of directional motion...rectification, halfwave rectification is a second- order processing scheme. Figure 8. Stimuli for analyzing second- order processing . (a) An x,y,t representation of
Continuous and Batch Distillation in an Oldershaw Tray Column
ERIC Educational Resources Information Center
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F.
2011-01-01
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
Radial migration in numerical simulations of Milky-Way sized galaxies
NASA Astrophysics Data System (ADS)
Grand, R. J. J.; Kawata, D.
2016-09-01
We show that in ßrm N-body simulations of isolated spiral discs, spiral arms appear to transient, recurring features that co-rotate with the stellar disc stars at all radii. As a consequence, stars around the spiral arm continually feel a tangential force from the spiral and gain/lose angular momentum at all radii where spiral structure exists, without gaining significant amounts of random energy. We demonstrate that the ubiquitous radial migration in these simulations can be seen as outward (inward) systematic streaming motions along the trailing (leading) side of the spiral arms. We characterise these spiral induced peculiar motions and compare with those of the Milky Way obtained from APOGEE red clump data. We find that transient, co-rotating spiral arms are consistent with the data, in contrast with density wave-like spirals which are qualitatively inconsistent. In addition, we show that, in our simulations, radial migration does not change the radial metallicity gradient significantly, and broadens the metallicity distribution function at all radii, similar to some previous studies.
A Physical Model for Mass Ejection in Failed Supernovae
NASA Astrophysics Data System (ADS)
Coughlin, Eric Robert; Quataert, Eliot; Fernandez, Rodrigo; Kasen, Daniel
2018-01-01
During the core collapse of a massive star, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (a few tenths of a Solar mass) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova -- where the shock associated with the original core collapse cannot unbind the envelope in a successful explosion. We provide both rough estimates of the energy contained in the shock that powers the transient and a general formalism for analyzing the propagation and steepening of the pressure wave, and we apply this formalism to polytropic stellar models. We compare our results to simulations, and we find excellent agreement in both the early evolution of the pressure wave and in the energy contained in the shock. Our estimates provide important constraints on the observational implications of failed supernovae.
NASA Technical Reports Server (NTRS)
Leith, Andrew C.; Mckinnon, William B.
1991-01-01
The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.
Bayguinov, Orline; Hagen, Brian; Sanders, Kenton M
2003-01-01
Neurokinins contribute to the neural regulation of gastrointestinal (GI) smooth muscles. We studied responses of murine colonic smooth muscle cells to substance P (SP) and NK1 and NK2 agonists using confocal microscopy and the patch clamp technique. Colonic myocytes generated localized Ca2+ transients that were coupled to spontaneous transient outward currents (STOCs). SP (10−10 M) increased Ca2+ transients and STOCs. Higher concentrations of SP (10−6 M) increased basal Ca2+ and inhibited Ca2+ transients and STOCs. Effects of SP were due to increased Ca2+ entry via L-type Ca2+ channels, and were mediated by protein kinase C (PKC). Nifedipine (10−6 M) and the PKC inhibitor, GF 109203X (10−6 M) reduced L-type Ca2+ current and blocked the effects of SP. SP responses depended upon parallel stimulation of NK1 and NK2 receptors. NK1 agonist ([Sar9,Met(O2)11]-substance P; SSP) and NK2 agonists (neurokinin A (NKA) or GR-64349) did not mimic the effects of SP alone, but NK1 and NK2 agonists were effective when added in combination (10−10–10−6 M). Consistent with this, either an NK1-specific antagonist (GR-82334; 10−7 M) or an NK2-specific antagonist (MEN 10,627; 10−7 M) blocked responses to SP (10−6 M). Ryanodine (10−5 M) blocked the increase in Ca2+ transients and STOCs in response to SP (10−10 M). Our findings show that low concentrations of SP, via PKC-dependent enhancement of L-type Ca2+ current and recruitment of ryanodine receptors, stimulate Ca2+ transients. At higher concentrations of SP (10−6 M), basal Ca2+ increases and spontaneous Ca2+ transients and STOCs are inhibited. PMID:12711623
DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.
2011-11-01
SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less
Coleman, H A; Tare, Marianne; Parkington, Helena C
2001-01-01
Membrane currents attributed to endothelium-derived hyperpolarizing factor (EDHF) were recorded in short segments of submucosal arterioles of guinea-pigs using single microelectrode voltage clamp. The functional responses of arterioles and human subcutaneous, rat hepatic and guinea-pig coronary arteries were also assessed as changes in membrane potential recorded simultaneously with contractile activity. The current-voltage (I-V) relationship for the conductance due to EDHF displayed outward rectification with little voltage dependence. Components of the current were blocked by charybdotoxin (30-60 nM) and apamin (0.25-0.50 μM), which also blocked hyperpolarization and prevented EDHF-induced relaxation. The EDHF-induced current was insensitive to Ba2+ (20-100 μM) and/or ouabain (1 μM to 1 mM). In human subcutaneous arteries and guinea-pig coronary arteries and submucosal arterioles, the EDHF-induced responses were insensitive to Ba2+ and/or ouabain. Increasing [K+]o to 11-21 mM evoked depolarization under conditions in which EDHF evoked hyperpolarization. Responses to ACh, sympathetic nerve stimulation and action potentials were indistinguishable between dye-labelled smooth muscle and endothelial cells in arterioles. Action potentials in identified endothelial cells were always associated with constriction of the arterioles. 18β-Glycyrrhetinic acid (30 μM) and carbenoxolone (100 μM) depolarized endothelial cells by 31 ± 6 mV (n = 7 animals) and 33 ± 4 mV (n = 5), respectively, inhibited action potentials in smooth muscle and endothelial cells and reduced the ACh-induced hyperpolarization of endothelial cells by 56 and 58 %, respectively. Thus, activation of outwardly rectifying K+ channels underlies the hyperpolarization and relaxation due to EDHF. These channels have properties similar to those of intermediate conductance (IKCa) and small conductance (SKCa) Ca2+-activated K+ channels. Strong electrical coupling between endothelial and smooth muscle cells implies that these two layers function as a single electrical syncytium. The non-specific effects of glycyrrhetinic acid precludes its use as an indicator of the involvement of gap junctions in EDHF-attributed responses. These conclusions are likely to apply to a variety of blood vessels including those of humans. PMID:11230509
2013-01-01
Carbon nanotube (CNT) membranes allow the mimicking of natural ion channels for applications in drug delivery and chemical separation. Double-walled carbon nanotube membranes were simply functionalized with dye in a single step instead of the previous two-step functionalization. Non-faradic electrochemical impedance spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic the protein channel under bias. This functional chemistry was proven by a highly efficient ion rectification, wherein the highest experimental rectification factor of ferricyanide was up to 14.4. One-step functionalization by electrooxidation of amine provides a simple and promising functionalization chemistry for the application of CNT membranes. PMID:23758999
Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.
Zhang, Z W; Feltz, P
1990-01-01
1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed. PMID:1693685
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Luck, Rogelio
1995-01-01
The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.
NASA Astrophysics Data System (ADS)
Talbot, Tracey; Lapointe, Michel
2002-06-01
Artificial meander straightening (rectification) was conducted in the early 1960s along the Sainte-Marguerite River, Canada, in order to facilitate highway construction along the valley. Previous studies [Talbot and Lapointe, 2002] confirm that vertical reprofiling, coupled with pavement coarsening in the degrading reach, were the main responses counteracting the disequilibrium in gravel transport rates triggered at rectification of this system. Numerical simulations, using SEDROUT2.0, a one-dimensional hydraulic and sediment transport model, and validated against the observed channel response, show the important role played by an advancing wave of pavement coarsening down the rectified reach in modulating the bed degradation response. Simulations extending into the future reveal an asymptotically slowing approach to equilibrium in the middle of the 21st century, with a response half-time of the order of 10 years. In near-threshold gravel bed systems like the Sainte-Marguerite River, pavement coarsening after rectification buffers the system against extreme degradation. Most significantly for watershed management, this also appears to severely limit the extent of propagation of degradation upstream of the rectification.
Goal-oriented rectification of camera-based document images.
Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J
2011-04-01
Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.
Decker, Keith F; Heijman, Jordi; Silva, Jonathan R; Hund, Thomas J; Rudy, Yoram
2009-04-01
Computational models of cardiac myocytes are important tools for understanding ionic mechanisms of arrhythmia. This work presents a new model of the canine epicardial myocyte that reproduces a wide range of experimentally observed rate-dependent behaviors in cardiac cell and tissue, including action potential (AP) duration (APD) adaptation, restitution, and accommodation. Model behavior depends on updated formulations for the 4-aminopyridine-sensitive transient outward current (I(to1)), the slow component of the delayed rectifier K(+) current (I(Ks)), the L-type Ca(2+) channel current (I(Ca,L)), and the Na(+)-K(+) pump current (I(NaK)) fit to data from canine ventricular myocytes. We found that I(to1) plays a limited role in potentiating peak I(Ca,L) and sarcoplasmic reticulum Ca(2+) release for propagated APs but modulates the time course of APD restitution. I(Ks) plays an important role in APD shortening at short diastolic intervals, despite a limited role in AP repolarization at longer cycle lengths. In addition, we found that I(Ca,L) plays a critical role in APD accommodation and rate dependence of APD restitution. Ca(2+) entry via I(Ca,L) at fast rate drives increased Na(+)-Ca(2+) exchanger Ca(2+) extrusion and Na(+) entry, which in turn increases Na(+) extrusion via outward I(NaK). APD accommodation results from this increased outward I(NaK). Our simulation results provide valuable insight into the mechanistic basis of rate-dependent phenomena important for determining the heart's response to rapid and irregular pacing rates (e.g., arrhythmia). Accurate simulation of rate-dependent phenomena and increased understanding of their mechanistic basis will lead to more realistic multicellular simulations of arrhythmia and identification of molecular therapeutic targets.
Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons.
Alier, Kwai; Li, Zongming; Mactavish, David; Westaway, David; Jhamandas, Jack H
2010-08-01
Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.
Wang, De-jun; Sui, Shao-feng; Kong, Fan-ling; Huang, Dong-hai
2012-11-01
To investigate the occupational exposure levels of dust in new suspension preheated dry process (NSP) cement production line and put forward rectification measures for dust-exposed posts, and to provide ideas for the modern cement production enterprises in dust control and occupational health management. Occupational health field investigation combined with field test were used to measure the time-weighted average concentration (C(TWA)) of the dust in the workplace. Rectification measures were taken for the dust-exposed posts with unqualified dust concentration, and the protective effects of dustproof facilities in the rectified workplace were evaluated. The field investigation revealed incompletely closed dustproof facilities, improperly set dust hoods, excess of dust leakage points, and other problems in the dust-exposed posts of an NSP cement production line before rectification, and the dustproof facilities could hardly exert dust removal effect. The field test showed that the vast majority of dust-exposed posts had the dust concentrations exceeding the occupational exposure limits (OELs), with a qualified rate as low as 31.8%. A series of rectification measures were taken for these posts. After the rectification, the dust-exposed posts demonstrated dramatically dropped C(TWA), and the qualified rate of dust concentration in the dust-exposed posts rose to 90.9%. The dust hazards in NSP cement production line cannot be ignored. Taking appropriate protective measures are critical for curbing dust hazards in modern cement production.
Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents.
Gómez, Ricardo; Caballero, Ricardo; Barana, Adriana; Amorós, Irene; De Palm, Sue-Haida; Matamoros, Marcos; Núñez, Mercedes; Pérez-Hernández, Marta; Iriepa, Isabel; Tamargo, Juan; Delpón, Eva
2014-11-01
We hypothesize that some drugs, besides flecainide, increase the inward rectifier current (IK1) generated by Kir2.1 homotetramers (IKir2.1) and thus, exhibit pro- and/or antiarrhythmic effects particularly at the ventricular level. To test this hypothesis, we analysed the effects of propafenone, atenolol, dronedarone, and timolol on Kir2.x channels. Currents were recorded with the patch-clamp technique using whole-cell, inside-out, and cell-attached configurations. Propafenone (0.1 nM-1 µM) did not modify either IK1 recorded in human right atrial myocytes or the current generated by homo- or heterotetramers of Kir2.2 and 2.3 channels recorded in transiently transfected Chinese hamster ovary cells. On the other hand, propafenone increased IKir2.1 (EC50 = 12.0 ± 3.0 nM) as a consequence of its interaction with Cys311, an effect which decreased inward rectification of the current. Propafenone significantly increased mean open time and opening frequency at all the voltages tested, resulting in a significant increase of the mean open probability of the channel. Timolol, which interacted with Cys311, was also able to increase IKir2.1. On the contrary, neither atenolol nor dronedarone modified IKir2.1. Molecular modelling of the Kir2.1-drugs interaction allowed identification of the pharmacophore of drugs that increase IKir2.1. Kir2.1 channels exhibit a binding site determined by Cys311 that is responsible for drug-induced IKir2.1 increase. Drug binding decreases channel affinity for polyamines and current rectification, and can be a mechanism of drug-induced pro- and antiarrhythmic effects not considered until now. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Su, Yantao; Xin, Chao; Feng, Yancong; Lin, Qinxian; Wang, Xinwei; Liang, Jun; Zheng, Jiaxin; Lin, Yuan; Pan, Feng
2016-10-11
The present work intends to explain why ultrathin Al 2 O 3 atomic-layer-deposited (ALD) on the back contact with rectification and tunneling effects can significantly improve the performance of CdTe solar cells in our previous work [ Liang , J. ; et al. Appl. Phys. Lett. 2015 , 107 , 013907 ]. Herein, we further study the mechanism through establishing the interfacial energy band diagram configuration of the ALD Al 2 O 3 /Cu x Te by experiment of X-ray photoelectron spectroscopy and first-principles calculations and conclude to find the band alignment with optimized layer thickness (about 1 nm ALD Al 2 O 3 ) as the key factor for rectification and tunneling effects.
Rectification of nanopores at surfaces
Sa, Niya
2011-01-01
At the nanoscale, methods to measure surface charge can prove challenging. Herein we describe a general method to report surface charge through the measurement of ion current rectification of a nanopipette brought in close proximity to a charged substrate. This method is able to discriminate between charged cationic and anionic substrates when the nanopipette is brought within distances from ten to hundreds of nanometers from the surface. Further studies of the pH dependence on the observed rectification support a surface-induced mechanism and demonstrate the ability to further discriminate between cationic and nominally uncharged surfaces. This method could find application in measurement and mapping of heterogeneous surface charges and is particularly attractive for future biological measurements, where noninvasive, noncontact probing of surface charge will prove valuable. PMID:21675734
Megahertz organic/polymer diodes
Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola
2012-12-11
Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.
Damiano, E; Bassilana, M; Rigaud, J L; Leblanc, G
1984-01-23
Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-01-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640
NASA Astrophysics Data System (ADS)
Nazirfakhr, Maryam; Shahhoseini, Ali
2018-03-01
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.
Geometric rectification for nanoscale vibrational energy harvesting
NASA Astrophysics Data System (ADS)
Bustos-Marún, Raúl A.
2018-02-01
In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.
Controllable Thermal Rectification Realized in Binary Phase Change Composites
NASA Astrophysics Data System (ADS)
Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang
2015-03-01
Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.
Thermal contact conductance as a method of rectification in bulk materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Robert A.
2016-08-01
A thermal rectifier that utilizes thermal expansion to directionally control interfacial conductance between two contacting surfaces is presented. The device consists of two thermal reservoirs contacting a beam with one rough and one smooth end. When the temperature of reservoir in contact with the smooth surface is raised, a similar temperature rise will occur in the beam, causing it to expand, thus increasing the contact pressure at the rough interface and reducing the interfacial contact resistance. However, if the temperature of the reservoir in contact with the rough interface is raised, the large contact resistance will prevent a similar temperaturemore » rise in the beam. As a result, the contact pressure will be marginally affected and the contact resistance will not change appreciably. Owing to the decreased contact resistance of the first scenario compared to the second, thermal rectification occurs. A parametric analysis is used to determine optimal device parameters including surface roughness, contact pressure, and device length. Modeling predicts that rectification factors greater than 2 are possible at thermal biases as small as 3 K. Lastly, thin surface coatings are discussed as a method to control the temperature bias at which maximum rectification occurs.« less
Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph
1988-01-01
A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.
NASA Astrophysics Data System (ADS)
Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui
2016-09-01
By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.
Mechanisms of the palmitoylcarnitine-induced response in vascular endothelial cells.
Taki, H; Muraki, K; Imaizumi, Y; Watanabe, M
1999-09-01
The mechanisms of Ca2+ mobilization induced by palmitoylcarnitine (Palcar) in rabbit aortic endothelial cells (ETCs) were examined using electrophysiological techniques. The results obtained were compared with those induced by acetylcholine (ACh). When a rabbit aortic muscle preparation with an intact endothelium was treated with 10 microM Palcar, the ACh-induced relaxation was markedly attenuated, whereas endothelium-independent relaxation caused by sodium nitroprusside was not affected. Under perforated-patch whole-cell-clamp conditions, the application of Palcar over the concentration range 0.3 and 10 microM elicited a slowly activating outward current (IPalcar-out), whereas ACh induced a rapidly activating outward current (IACh). A potassium channel blocker, 4-aminopyridine, significantly inhibited both IPalcar-out and IACh. Removal of external Ca2+ almost abolished IPalcar-out. Under the same conditions, however, IACh remained transient. Addition of cation channel blockers SK&F96365 and La3+ inhibited IPalcar-out more effectively than IACh. Application of staurosporine, an inhibitor of protein kinase C, affected neither IACh nor IPalcar-out. In contrast, treatment of ETCs with pertussis toxin (PTX) reduced IACh and almost abolished IPalcar-out. These findings demonstrate that, in ETCs, Palcar induces Ca2+ influx via the activation of PTX-sensitive GTP-binding protein, leading to the activation of Ca(2+)-dependent K+ current and hyperpolarization of the cell.
Substorms At Jupiter: Galileo Observations of Transient Reconnection in The Near Tail
NASA Technical Reports Server (NTRS)
Russell, C. T.; Khurana, K. K.; Kivelson, M. G.; Huddleston, D. E.
2000-01-01
The magnetic flux content of the Jovian magnetosphere is set by the internal dynamo, but those magnetic field lines are constantly being loaded by heavy ions at the orbit of lo and dragged inexorably outward by the centrifugal force. Vasyliunas has proposed a steady state reconnecting magnetospheric model that sheds plasma islands of zero net magnetic flux and returns nearly empty flux tubes to the inner magnetosphere. The Galileo observations indicate that beyond 40 Rj the current sheet begins to tear and beyond 50 Rj on the nightside explosively reconnects as the tearing site reaches the low density lobe region above and below the current sheet. Small events occur irregularly but on average about every 4 hours and large events about once a day. The magnetic flux reconnected in such events amounts up to about 70,000 Webers/sec and is sufficient to return the outwardly convected magnetic flux to the inner magnetosphere. Since this process releases plasmoids into the jovian tail, as do terrestrial substorms; since this process involves explosive reconnection across the current sheet on the nightside of the planet, as do terrestrial substorms; and since the process is a key in closing the circulation pattern of the magnetic and plasma flux, as it is in terrestrial substorms; we refer to these events as jovian substorms.
The cooperative voltage sensor motion that gates a potassium channel.
Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud
2005-01-01
The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.
The Cooperative Voltage Sensor Motion that Gates a Potassium Channel
Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud
2005-01-01
The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close. PMID:15623895
Epipolar Rectification for CARTOSAT-1 Stereo Images Using SIFT and RANSAC
NASA Astrophysics Data System (ADS)
Akilan, A.; Sudheer Reddy, D.; Nagasubramanian, V.; Radhadevi, P. V.; Varadan, G.
2014-11-01
Cartosat-1 provides stereo images of spatial resolution 2.5 m with high fidelity of geometry. Stereo camera on the spacecraft has look angles of +26 degree and -5 degree respectively that yields effective along track stereo. Any DSM generation algorithm can use the stereo images for accurate 3D reconstruction and measurement of ground. Dense match points and pixel-wise matching are prerequisite in DSM generation to capture discontinuities and occlusions for accurate 3D modelling application. Epipolar image matching reduces the computational effort from two dimensional area searches to one dimensional. Thus, epipolar rectification is preferred as a pre-processing step for accurate DSM generation. In this paper we explore a method based on SIFT and RANSAC for epipolar rectification of cartosat-1 stereo images.
Double dissociation between first- and second-order processing.
Allard, Rémy; Faubert, Jocelyn
2007-04-01
To study the difference of sensitivity to luminance- (LM) and contrast-modulated (CM) stimuli, we compared LM and CM detection thresholds in LM- and CM-noise conditions. The results showed a double dissociation (no or little inter-attribute interaction) between the processing of these stimuli, which implies that both stimuli must be processed, at least at some point, by separate mechanisms and that both stimuli are not merged after a rectification process. A second experiment showed that the internal equivalent noise limiting the CM sensitivity was greater than the one limiting the carrier sensitivity, which suggests that the internal noise occurring before the rectification process is not limiting the CM sensitivity. These results support the hypothesis that a suboptimal rectification process partially explains the difference of LM and CM sensitivity.
Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus
NASA Astrophysics Data System (ADS)
Jalikop, Shreyas; Hilgenfeldt, Sascha
2011-11-01
Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.
Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors
NASA Astrophysics Data System (ADS)
Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.
2018-04-01
Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe
2010-01-01
Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114
Thermal gas rectification using a sawtooth channel.
Solórzano, S; Araújo, N A M; Herrmann, H J
2017-09-01
We study the rectification of a two-dimensional thermal gas in a channel of asymmetric dissipative walls. For an ensemble of smooth Lennard-Jones particles, our numerical simulations reveal a nonmonotonic dependence of the flux on the thermostat temperature, channel asymmetry, and particle density, with three distinct regimes. Theoretical arguments are developed to shed light on the functional dependence of the flux on the model parameters.
Full-wave and half-wave rectification in second-order motion perception
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1994-01-01
Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the motion directions of both gratings are easily determinable. Conversely, when half-wave and full-wave gratings are combined, the direction of only one of these gratings can be determined with high accuracy. CONCLUSIONS: the results indicate that three motion computations are carried out, any two in parallel: one standard ("first order") and two non-Fourier ("second-order") computations that employ full-wave and half-wave rectification.
Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert
2017-01-01
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating. PMID:28141821
Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C
2017-03-01
Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10 μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6 μ mol/L and inhibition had an IC 50 of 40.7 μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18 μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10 μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert
2017-01-01
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.
Choi, Bum-Rak; Li, Weiyan; Terentyev, Dmitry; Kabakov, Anatoli Y; Zhong, Mingwang; Rees, Colin M; Terentyeva, Radmila; Kim, Tae Yun; Qu, Zhilin; Peng, Xuwen; Karma, Alain; Koren, Gideon
2018-06-01
Sudden death in long-QT syndrome type 1 (LQT1), an inherited disease caused by loss-of-function mutations in KCNQ1, is triggered by early afterdepolarizations (EADs) that initiate polymorphic ventricular tachycardia (pVT). We investigated ionic mechanisms that underlie pVT in LQT1 using a transgenic rabbit model of LQT1. Optical mapping, cellular patch clamping, and computer modeling were used to elucidate the mechanisms of EADs in transgenic LQT1 rabbits. The results showed that shorter action potential duration in the right ventricle (RV) was associated with focal activity during pVT initiation. RV cardiomyocytes demonstrated higher incidence of EADs under 50 nmol/L isoproterenol. Voltage-clamp studies revealed that the transient outward potassium current (I to ) magnitude was 28% greater in RV associated with KChiP2 but with no differences in terms of calcium-cycling kinetics and other sarcolemmal currents. Perfusing with the I to blocker 4-aminopyridine changed the initial focal sites of pVT from the RV to the left ventricle, corroborating the role of I to in pVT initiation. Computer modeling showed that EADs occur preferentially in the RV because of the larger conductance of the slow-inactivating component of I to , which repolarizes the membrane potential sufficiently rapidly to allow reactivation of I Ca,L before I Kr has had sufficient time to activate. I to heterogeneity creates both triggers and an arrhythmogenic substrate in LQT1. In the absence of I Ks , I to interactions with I Ca,L and I Kr promote EADs in the RV while prolonging action potential duration in the left ventricle. This heterogeneity of action potential enhances dispersion of refractoriness and facilitates conduction blocks that initiate pVTs. © 2018 American Heart Association, Inc.
Singleton, C B; Valenzuela, S M; Walker, B D; Tie, H; Wyse, K R; Bursill, J A; Qiu, M R; Breit, S N; Campbell, T J
1999-01-01
The Kv4.3 gene is believed to encode a large proportion of the transient outward current (Ito), responsible for the early phase of repolarization of the human cardiac action potential. There is evidence that this current is involved in the dispersion of refractoriness which develops during myocardial ischaemia and which predisposes to the development of potentially fatal ventricular tachyarrhythmias. Epidemiological, clinical, animal, and cellular studies indicate that these arrhythmias may be ameliorated in myocardial ischaemia by n-3 polyunsaturated fatty acids (n-3 PUFA) present in fish oils. We describe stable transfection of the Kv4.3 gene into a mammalian cell line (Chinese hamster ovary cells), and using patch clamp techniques have shown that the resulting current closely resembles human Ito. The current is rapidly activating and inactivating, with both processes being well fit by double exponential functions (time constants of 3.8±0.2 and 5.3±0.4 ms for activation and 20.0±1.2 and 96.6±6.7 ms for inactivation at +45 mV at 23°C). Activation and steady state inactivation both show voltage dependence (V1/2 of activation=−6.7±2.5 mV, V1/2 of steady state inactivation=−51.3±0.2 mV at 23°C). Current inactivation and recovery from inactivation are faster at physiologic temperature (37°C) compared to room temperature (23°C). The n-3 PUFA docosahexaenoic acid blocks the Kv4.3 current with an IC50 of 3.6 μmol L−1. Blockade of the transient outward current may be an important mechanism by which n-3 PUFA provide protection against the development of ventricular fibrillation during myocardial ischaemia. PMID:10433502
Cordeiro, Jonathan M.; Nesterenko, Vladislav V.; Sicouri, Serge; Goodrow, Robert J.; Treat, Jacqueline A.; Desai, Mayurika; Wu, Yuesheng; Doss, Michael Xavier; Antzelevitch, Charles; Di Diego, José M.
2013-01-01
Background The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4, KChIP2 and Kv4.3 were quantified from BCs. Results BCs exhibited spontaneous beating (60.5 ± 2.6 bpm) and maximum-diastolic-potential (MDP) of 67.8 ± 0.8 mV (n = 155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7 ± 1.9 pA/pF at +40 mV; n = 14). Recovery of Ito from inactivation (at −80 mV) showed slow kinetics (τ1 = 200 ± 110 ms (12%) and τ2 = 2380 ± 240 ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. PMID:23542310
Chloride currents activated by caffeine in rat intestinal smooth muscle cells.
Ohta, T; Ito, S; Nakazato, Y
1993-01-01
1. Current responses to caffeine in single smooth muscle cells isolated from rat intestine were studied with the whole-cell patch clamp technique. Intracellular calcium concentration, [Ca2+]i, was simultaneously monitored with fura-2 (0.1 mM) introduced into the cell through a patch pipette. 2. With a potassium-containing pipette solution, caffeine (10 mM) produced an outward current at a holding potential of 0 mV and an inward current at -60 mV, both of which were accompanied by parallel increases in [Ca2+]i. The outward current response disappeared after the removal of K+ from pipette solutions, indicating that caffeine activates a Ca(2+)-activated K+ conductance. 3. When NaCl was present in both pipette and external solutions as the major constituent, caffeine evoked an inward current at -60 mV simultaneously with a rise in [Ca2+]i. The reversal potential (Er) of this current was about 0 mV. 4. Substitution of Tris+ or choline+ for external Na+ did not alter the Er. When external Cl- was replaced by thiocyanate-, iodide- or glutamate-, the Er changed to respectively -55, -38 and +35 mV. 5. The current response to caffeine decreased with increasing concentration of EGTA in the pipette solution. The caffeine-induced current and the intracellular Ca2+ transient was still observed for a few minutes after exposure of the cells to Ca(2+)-free external solution containing 2 mM EGTA. Caffeine failed to produce an inward current and Ca2+ transient after treatment with extracellular ryanodine. 6. It is concluded that caffeine caused an increase in membrane Cl- conductance and in K+ conductance resulting from a rise in [Ca2+]i derived from ryanodine-sensitive intracellular Ca2+ stores in isolated smooth muscle cells of the rat intestine. PMID:8229831
Development of heart failure is independent of K+ channel-interacting protein 2 expression
Speerschneider, Tobias; Grubb, Søren; Metoska, Artina; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2013-01-01
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K+ channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K+ current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2−/− mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2−/− mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2−/− control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2−/− mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2−/− with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K+ current. PMID:24099801
Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek
2016-12-21
Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Matsuki, Yuka; Iwamoto, Masayuki; Mita, Kenichiro; Shigemi, Kenji; Matsunaga, Shigeki; Oiki, Shigetoshi
2016-03-30
A hydrogen-bonded water-chain in a nanotube is highly proton conductive, and examining the proton flux under electric fields is crucial to understanding the one-dimensional Grotthuss conduction. Here, we exploited a nanotube-forming natural product, the peptide polytheonamide B (pTB), to examine proton conduction mechanisms at a single-molecule level. The pTB nanotube has a length of ∼40 Å that spans the membrane and a uniform inner diameter of 4 Å that holds a single-file water-chain. Single-channel proton currents were measured using planar lipid bilayers in various proton concentrations and membrane potentials (±400 mV). We found, surprisingly, that the current-voltage curves were asymmetric with symmetric proton concentrations in both solutions across the membrane (rectification). The proton flux from the C-terminal to the N-terminal end was 1.6 times higher than that from the opposite. At lower proton concentrations, the degree of rectification was attenuated, but with the addition of a pH-buffer (dichloroacetate) that supplies protons near the entrance, the rectification emerged. These results indicate that the permeation processes inside the pore generate the rectification, which is masked at low concentrations by the diffusion-limited access of protons to the pore entrance. The permeation processes were characterized by a discrete-state Markov model, in which hops of a proton followed by water-chain turnovers were implemented. The optimized model revealed that the water-chain turnover exhibited unusual voltage dependence, and the distinct voltage-dependencies of the forward and backward transition rates yielded the rectification. The pTB nanotube serves as a rectified proton conductor, and the design principles can be exploited for proton-conducting materials.
Photogrammetry of the Viking Lander imagery
NASA Technical Reports Server (NTRS)
Wu, S. S. C.; Schafer, F. J.
1982-01-01
The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels.
Meng, Zheyi; Chen, Yang; Li, Xiulin; Xu, Yanglei; Zhai, Jin
2015-04-15
A novel and simple design is introduced to construct bichannel nanofluid diodes by combining two poly(ethylene terephthalate) (PET) films with columnar nanochannel arrays varying in size or in surface charge. This type of bichannel device performs obvious ion current rectification, and the pH-dependent tunability and degree of rectification can be improved by histidine modification. The origin of the ion current rectification and its pH-dependent tunability are attributed to the cooperative effect of the two columnar half-channels and the applied bias on the mobile ions. As a result of surface groups on the bichannel being charged with different polarities or degrees at different pH values, the function of the bichannel device can be converted from a nanofluid diode to a normal nanochannel or to a reverse diode.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
China Report, Political, Sociological and Military Affairs
1985-03-13
over the world. Objectively speaking, any Chinese , as long as he feels a deep love for China, identifies his fate with that of China and is willing...party rectification. As soon as party rectification began, the factory CPC committee detected a "what-is-there-to-rectify" feeling among party members...RENMIN RIBAO, 15 Jan 85) 30 Students Protest Living Conditions, Inadequate Curriculum (TAGESSPIEGEL, 22 Dec 84) 33 Chinese Higher Education
High Temperature Near-Field NanoThermoMechanical Rectification
Elzouka, Mahmoud; Ndao, Sidy
2017-01-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324
NASA Astrophysics Data System (ADS)
Xu, Liujun; Jiang, Chaoran; Shang, Jin; Wang, Ruizhe; Huang, Jiping
2017-11-01
Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.
High Temperature Near-Field NanoThermoMechanical Rectification
NASA Astrophysics Data System (ADS)
Elzouka, Mahmoud; Ndao, Sidy
2017-03-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.
Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu
2018-03-01
It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Modulation of the reaction cycle of the Na+:Ca2+, K+ exchanger.
Vedovato, Natascia; Rispoli, Giorgio
2007-09-01
Ca(2+) concentration in retinal photoreceptor rod outer segment (OS) strongly affects the generator potential kinetics and the receptor light adaptation. The response to intense light stimuli delivered in the dark produce potential changes exceeding 40 mV: since the Ca(2+) extrusion in the OS is entirely controlled by the Na(+):Ca(2+), K(+) exchanger, it is important to assess how the exchanger ion transport rate is affected by the voltage and, in general, by intracellular factors. It is indeed known that the cardiac Na(+):Ca(2+) exchanger is regulated by Mg-ATP via a still unknown metabolic pathway. In the present work, the Na(+):Ca(2+), K(+) exchanger regulation was investigated in isolated OS, recorded in whole-cell configuration, using ionic conditions that activated maximally the exchanger in both forward and reverse mode. In all species examined (amphibia: Rana esculenta and Ambystoma mexicanum; reptilia: Gecko gecko), the forward (reverse) exchange current increased about linearly for negative (positive) voltages and exhibited outward (inward) rectification for positive (negative) voltages. Since hyperpolarisation increases Ca(2+) extrusion rate, the recovery of the dark level of Ca(2+) (and, in turn, of the generator potential) after intense light stimuli results accelerated. Mg-ATP increased the size of forward and reverse exchange current by a factor of approximately 2.3 and approximately 2.6, respectively, without modifying their voltage dependence. This indicates that Mg-ATP regulates the number of active exchanger sites and/or the exchanger turnover number, although via an unknown mechanism.
Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics.
NASA Astrophysics Data System (ADS)
Chagnon, Jeffrey M.; Bannon, Peter R.
2005-05-01
The adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered “external” to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems.For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode—the Lamb mode— containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection.The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery—all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward.A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established.A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia-gravity waves oscillating about a nontrivial hydrostatic and geostrophic state.This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.
The calcium–frequency response in the rat ventricular myocyte: an experimental and modelling study
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E.; Niederer, Steven A.
2016-01-01
Key points In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force–frequency response (FFR). The majority of mammals have a positive force–frequency relationship (FFR). In rat the FFR is controversial.We derive a species‐ and temperature‐specific data‐driven model of the rat ventricular myocyte.As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium–frequency response (CFR) in our model and three altered models.The results show a biphasic peak calcium–frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency‐dependent increase in diastolic calcium.Alterations to the model reveal that inclusion of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated L‐type channel and transient outward K+ current activity enhances the positive magnitude calcium–frequency response, and the absence of CAMKII‐mediated increase in activity of the sarco/endoplasmic reticulum Ca2+‐ATPase induces a negative magnitude calcium–frequency response. Abstract An increase in heart rate affects the strength of cardiac contraction by altering the Ca2+ transient as a response to physiological demands. This is described by the force–frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat‐based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca2+ transient characteristics and showed a biphasic peak calcium–frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated increase in sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L‐type channel and transient outward K+ current activity and (3) Na+/K+ pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca2+–frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca2+. PMID:26916026
NASA Astrophysics Data System (ADS)
Kimura, T.; Hiraki, Y.; Tao, C.; Tsuchiya, F.; Delamere, P. A.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kita, H.; Badman, S. V.; Fukazawa, K.; Yoshikawa, I.; Fujimoto, M.
2018-03-01
The production and transport of plasma mass are essential processes in the dynamics of planetary magnetospheres. At Jupiter, it is hypothesized that Io's volcanic plasma carried out of the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle energization, radial plasma flow, and transient auroral emissions. However, it has not been demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of simultaneous observations of both processes. We report the response of plasmoid ejection to mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and a newly developed analytic model. We found that the transient aurora frequently recurred at a 2-6 day period in response to a mass loading increase from 0.3 to 0.5 t/s. In general, the recurrence of the transient aurora was not significantly correlated with the solar wind, although there was an exceptional event with a maximum emission power of 10 TW after the solar wind shock arrival. The recurrence of plasmoid ejection requires the precondition that an amount comparable to the total mass of magnetosphere, 1.5 Mt, is accumulated in the magnetosphere. A plasmoid mass of more than 0.1 Mt is necessary in case that the plasmoid ejection is the only process for mass release.
Near-field thermal rectification devices using phase change periodic nanostructure.
Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi
2018-01-22
We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.
An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R
2016-04-26
Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.
Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo
2017-10-26
The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.
Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.
2014-01-01
Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-01-01
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376
Wireless power transfer system
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
2016-02-23
A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.
The rectification of mono- and bivalent ions in single conical nanopores
NASA Astrophysics Data System (ADS)
Wei, Junzhe; Du, Guanghua; Guo, Jinlong; Li, Yaning; Liu, Wenjing; Yao, Huijun; Zhao, Jing; Wu, Ruqun; Chen, Hao; Ponomarov, Artem
2017-08-01
The polyethylene terephthalate (PET) films were irradiated with single 6.9 MeV/u 58Ni19+ ions at the Lanzhou Interdisciplinary Heavy Ion Microbeam (LIHIM), and single conical nanopores were produced by asymmetric chemical etching of the latent ion tracks. Then, the current-voltage (I-V) characteristic was measured in LiCl, NaCl, KCl, MgCl2, and CaCl2 solution at different concentrations to study the transport properties of different cations in the single conical nanopores respectively. The measured I-V data showed that the conical nanopores have rectified transportation of these cations at the applied voltage of between +2 V and -2 V. The rectification coefficient γ of the mono- and bivalent ions was determined in their solution of 0.0001-1 M measured at 1 V, the result showed that the rectification coefficient is dependent on the valence of the ions and the electrolyte solution.
Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei
2012-07-16
Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Voltage-gated currents in identified rat olfactory receptor neurons.
Trombley, P Q; Westbrook, G L
1991-02-01
Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.
Current rectification with poly-l-lysine-coated quartz nanopipettes.
Umehara, Senkei; Pourmand, Nader; Webb, Chris D; Davis, Ronald W; Yasuda, Kenji; Karhanek, Miloslav
2006-11-01
Ion current rectification with quartz nanopipette electrodes was investigated through the control of the surface charge. The presence and absence of a positively charged poly-l-lysine (PLL) coating resulted in the rectified current with opposite polarity. The results agreed with the theories developed for current-rectifying conical nanopores, suggesting the similar underlying mechanism among asymmetric nanostructure in general. This surface condition dependence can be used as the fundamental principle of multi-purpose real-time in vivo biosensors.
NASA Astrophysics Data System (ADS)
Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.
2018-04-01
Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.
Castilho, Áurea; Madsen, Eirik; Ambrósio, António F.; Veruki, Margaret L.
2015-01-01
There is increasing evidence that diabetic retinopathy is a primary neuropathological disorder that precedes the microvascular pathology associated with later stages of the disease. Recently, we found evidence for altered functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in A17, but not AII, amacrine cells in the mammalian retina, and the observed changes were consistent with an upregulation of the GluA2 subunit, a key determinant of functional properties of AMPA receptors, including Ca2+ permeability and current-voltage (I-V) rectification properties. Here, we have investigated functional changes of extrasynaptic AMPA receptors in AII amacrine cells evoked by diabetes. With patch-clamp recording of nucleated patches from retinal slices, we measured Ca2+ permeability and I–V rectification in rats with ∼3 wk of streptozotocin-induced diabetes and age-matched, noninjected controls. Under bi-ionic conditions (extracellular Ca2+ concentration = 30 mM, intracellular Cs+ concentration = 171 mM), the reversal potential (Erev) of AMPA-evoked currents indicated a significant reduction of Ca2+ permeability in diabetic animals [Erev = −17.7 mV, relative permeability of Ca2+ compared with Cs+ (PCa/PCs) = 1.39] compared with normal animals (Erev = −7.7 mV, PCa/PCs = 2.35). Insulin treatment prevented the reduction of Ca2+ permeability. I–V rectification was examined by calculating a rectification index (RI) as the ratio of the AMPA-evoked conductance at +40 and −60 mV. The degree of inward rectification in patches from diabetic animals (RI = 0.48) was significantly reduced compared with that in normal animals (RI = 0.30). These results suggest that diabetes evokes a change in the functional properties of extrasynaptic AMPA receptors of AII amacrine cells. These changes could be representative for extrasynaptic AMPA receptors elsewhere in AII amacrine cells and suggest that synaptic and extrasynaptic AMPA receptors are differentially regulated. PMID:26156384
Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer.
Izaki, Masanobu; Chizaki, Ryo; Saito, Takamasa; Murata, Kazufumi; Sasano, Junji; Shinagawa, Tsutomu
2013-10-09
We report a hybrid photovoltaic device composed of a 3.3 eV bandgap zinc oxide (ZnO) semiconductor and metal-free phthalocyanine layers and the effects of the insertion of the highly resistive ZnO buffer layer on the electrical characteristics of the rectification feature and photovoltaic performance. The hybrid photovoltaic devices have been constructed by electrodeposition of the 300 nm thick ZnO layer in a simple zinc nitrate aqueous solution followed by vacuum evaporation of 50-400 nm thick-phthalocyanine layers. The ZnO layers with the resistivity of 1.8 × 10(3) and 1 × 10(8) Ω cm were prepared by adjusting the cathodic current density and were installed into the hybrid photovoltaic devices as the n-type and buffer layer, respectively. The phthalocyanine layers with the characteristic monoclinic lattice showed a characteristic optical absorption feature regardless of the thickness, but the preferred orientation changed depending on the thickness. The ZnO buffer-free hybrid 50 nm thick phthalocyanine/n-ZnO photovoltaic device showed a rectification feature but possessed a poor photovoltaic performance with a conversion efficiency of 7.5 × 10(-7) %, open circuit voltage of 0.041 V, and short circuit current density of 8.0 × 10(-5) mA cm(-2). The insertion of the ZnO buffer layer between the n-ZnO and phthalocyanine layers induced improvements in both the rectification feature and photovoltaic performance. The excellent rectification feature with a rectification ratio of 3188 and ideally factor of 1.29 was obtained for the hybrid 200 nm thick phthalocyanine/ZnO buffer/n-ZnO photovoltaic device, and the hybrid photovoltaic device possessed an improved photovoltaic performance with the conversion efficiency of 0.0016%, open circuit voltage of 0.31 V, and short circuit current density of 0.015 mA cm(-2).
Toxicity of cadmium to goldfish, Carassius auratus, in hard, and soft water
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarty, L.S.; Henry, J.A.C.; Houston, A.H.
1978-01-01
Variations in cadmium form and concentration and in selected water quality parameters (pH, dissolved oxygen, total hardness, total alkalinity, conductivity) were monitored during static bioassays conducted with relatively soft (approximately 20 mg/L as CaCO/sub 3/) and hard (approximately 140 mg/L as CaCO/sub 3/) waters. Cadmium concentrations were reasonably stable in soft water, and with the exception of total hardness, water quality was not greatly altered during assay. Cumulative mortality curves were of a simple sigmoidal type and readily analyzed by conventional procedures. LC50 values of 2.76, 2.13, and 1.78 mg Cd/L were estimated on the basis of 48-, 96-, andmore » 240-h periods of observation. During hard-water trials there were transient increases in the amount of particulate cadmium present and sharp decreases in total cadmium levels. Several parameters (pH, total alkalinity, conductivity) exhibited transient and/or sustained variations of a cadmium concentration-dependent type. Mortality curves were typically biphasic. The extent of first-phase mortality was significantly correlated with the magnitude of the initial pH decline and the amount of cadmium present in centrifugable form. Conventional procedures did not result in rectification of 240-h cumulative mortality curves, and the 240-h LC50 value (40.2 mg Cd/L) is considered to be inherently less precise than those obtained on the basis of 48- and 96-h periods of observation (46.9, 46.8 mg Cd/L).« less
Current Rectification with Poly-l-Lysine-Coated Quartz Nanopipettes
Umehara, Senkei; Pourmand, Nader; Webb, Chris D.; Davis, Ronald W.; Yasuda, Kenji; Karhanek, Miloslav
2010-01-01
Ion current rectification with quartz nanopipette electrodes was investigated through the control of the surface charge. The presence and absence of a positively charged poly-l-lysine (PLL) coating resulted in the rectified current with opposite polarity. The results agreed with the theories developed for current-rectifying conical nanopores, suggesting the similar underlying mechanism among asymmetric nanostructure in general. This surface condition dependence can be used as the fundamental principle of multi-purpose real-time in vivo biosensors. PMID:17090078
NASA Technical Reports Server (NTRS)
Gaydos, L.
1982-01-01
The use of satellite imagery and data for registration of land use, land cover and hydrology was discussed. Maps and aggregations are made from existing the data in concert with other data in a geographic information system. Basic needs for registration and rectification of satellite imagery related to specifying, reformatting, and overlaying the data are noted. It is found that the data are sufficient for users who must expand much effort in registering data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovskii, G.M.; Platonov, V.M.; Zhvanetskii, I.B.
The problem of designing optimum rectification separation systems (r.s.) in two-section columns with heat recovery is discussed. This is an important problem because the cost of the energy consumed can reached 70% of the total cost of the r.s. It is shown that the problem may be reduced to one of integral linear programming, for which well-developed methods of solution are available. It is assumed that: 1) the pressure is constant in all rectification columns, and 2) the streams may exchange heat only once.
Fahnline, John B
2016-12-01
An equivalent source method is developed for solving transient acoustic boundary value problems. The method assumes the boundary surface is discretized in terms of triangular or quadrilateral elements and that the solution is represented using the acoustic fields of discrete sources placed at the element centers. Also, the boundary condition is assumed to be specified for the normal component of the surface velocity as a function of time, and the source amplitudes are determined to match the known elemental volume velocity vector at a series of discrete time steps. Equations are given for marching-on-in-time schemes to solve for the source amplitudes at each time step for simple, dipole, and tripole source formulations. Several example problems are solved to illustrate the results and to validate the formulations, including problems with closed boundary surfaces where long-time numerical instabilities typically occur. A simple relationship between the simple and dipole source amplitudes in the tripole source formulation is derived so that the source radiates primarily in the direction of the outward surface normal. The tripole source formulation is shown to eliminate interior acoustic resonances and long-time numerical instabilities.
Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics
NASA Astrophysics Data System (ADS)
Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki
2017-11-01
An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.
Nanoscale rectenna for broadband rectification of light from infrared to visible
NASA Astrophysics Data System (ADS)
Zimmerman, Darin; Chen, James; Phillips, Michael; Rager, Dennis; Sinisi, Zachary; Wambold, Raymond; Weisel, Gary; Weiss, Brock; Willis, Brian; Miskovsky, Nicholas
2014-03-01
We describe a novel approach to the efficient collection and rectification of solar radiation in a device designed to operate from the infrared through the visible. Here, a nanoscale, rectenna array acts both as an absorber of incident radiation and as a rectifier. Rectification derives not from temperature or material asymmetry, as with metal-insulator-metal or silicon-based, Schottky diodes. Instead, it derives from the geometric asymmetry of the rectenna, which is composed of a pointed tip and a flat collector anode. In this arrangement, the difference between the potential barriers for forward and reverse bias results in a rectified dc current. To achieve anode-cathode gap distances within the tunneling regime, we employ selective atomic-layer deposition of copper applied to palladium rectenna arrays produced by electron-beam lithography. We present details of device fabrication and preliminary results of computer simulation, optical characterization, and electro-optical response. This work supported in part by the National Science Foundation: ECCS-1231248 and ECCS-1231313.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids
Randel, Jason C.; Niestemski, Francis C.; Botello-Mendez, Andrés R.; Mar, Warren; Ndabashimiye, Georges; Melinte, Sorin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Butova, Ekaterina D.; Fokin, Andrey A.; Schreiner, Peter R.; Charlier, Jean-Christophe; Manoharan, Hari C.
2014-01-01
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C60 conjugate. By linking both sp3 (diamondoid) and sp2 (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism. PMID:25202942
NASA Astrophysics Data System (ADS)
Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui
2016-08-01
To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.
Inelastic transport and low-bias rectification in a single-molecule diode.
Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian
2011-10-25
Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462
NASA Astrophysics Data System (ADS)
Sanjuan, Federico; Gaborit, Gwenaël; Coutaz, Jean-Louis
2018-04-01
We report for the first time on the observation of an angular anisotropy of the THz signal generated by optical rectification in a < 111 > ZnTe crystal. This cubic (zinc-blende) crystal in the < 111 > orientation exhibits both transverse isotropy for optical effects involving the linear χ (1) and nonlinear χ (2) susceptibilities. Thus, the observed anisotropy can only be related to χ (3) effect, namely two-photon absorption, which leads to the photo-generation of free carriers that absorb the generated THz signal. Two-photon absorption in zinc-blende crystals is known to be due to a spin-orbit interaction between the valence and higher-conduction bands. We perform a couple of measurements that confirm our hypothesis, as well as we fit the recorded data with a simple model. This two-photon absorption effect makes difficult an efficient generation, through optical rectification in < 111 > zinc-blende crystals, of THz beams of any given polarization state by only monitoring the laser pump polarization.
Density-dependent changes of the pore properties of the P2X2 receptor channel
Fujiwara, Yuichiro; Kubo, Yoshihiro
2004-01-01
Ligand-gated ion channels underlie and play important roles in synaptic transmission, and it is generally accepted that the ion channel pores have a rigid structure that enables strict regulation of ion permeation. One exception is the P2X ATP-gated channel. After application of ATP, the ion selectivity of the P2X2 channel time-dependently changes, i.e. permeability to large cations gradually increases, and there is significant cell-to-cell variation in the intensity of inward rectification. Here we show P2X2 channel properties are correlated with the expression level: increasing P2X2 expression level in oocytes increases permeability to large cations, decreases inward rectification and increases ligand sensitivity. We also observed that the inward rectification changed in a dose-dependent manner, i.e. when low concentration of ATP was applied to an oocyte with a high expression level, the intensity of inward rectification of the evoked current was weak. Taken together, these results show that the pore properties of P2X2 channel are not static but change dynamically depending on the open channel density. Furthermore, we identified by mutagenesis study that Ile328 located at the outer mouth of the pore is critical for the density-dependent changes of P2X2. Our findings suggest synaptic transmission can be modulated by the local density-dependent changes of channel properties caused, for example, by the presence of clustering molecules. PMID:15107474
The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P
2016-08-01
In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca(2+) transient characteristics and showed a biphasic peak calcium-frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated increase in sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L-type channel and transient outward K(+) current activity and (3) Na(+) /K(+) pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca(2+) -frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca(2+) . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Vandorpe, D H; Shmukler, B E; Jiang, L; Lim, B; Maylie, J; Adelman, J P; de Franceschi, L; Cappellini, M D; Brugnara, C; Alper, S L
1998-08-21
We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651-11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed in Xenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nM concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nM concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.
Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
Hiraoka, M; Kawano, S
1989-01-01
1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and slow heart rates, respectively. PMID:2552080
Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H
2016-02-19
The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Luo, Wenqi; Jia, Yixin; Zheng, Shuai; Li, Yan; Han, Jie; Meng, Xu
2017-01-01
Acute cardiac rejection contributes to the changes in the electrophysiological properties of grafted hearts. However, the electrophysiological changes of cardiomyocytes during acute cardiac rejection are still unknown. An understanding of the electrophysiological mechanisms of cardiomyocytes could improve the diagnosis and treatment of acute cardiac rejection. So it is important to characterize the changes in the action potential ( AP ) and the transient outward potassium current ( I to ) in cardiomyocytes during acute cardiac rejection. Heterotopic heart transplantation was performed in allogeneic [Brown Norway (BN)-to-Lewis] and isogeneic (BN-to-BN) rats. Twenty models were established in each group. Ten recipients were sacrificed at the 2nd day and the other ten recipients were sacrificed at the 4 th day after the operation in each group. Histopathological examinations of the grafted hearts were performed in half of the recipients in each group randomly. The other half of the grafted hearts were excised rapidly and enzymatically dissociated to obtain single cardiomyocytes. The AP and I to current were recorded using the whole cell patch-clamp technique. Forty grafted hearts were successfully harvested and used in experiments. Histologic examination showed mild rejection at the 2 nd day and moderate rejection at the 4 th day in the allogeneic group after cardiac transplantation, while no evidence of histologic lesions of rejection were observed in the isogeneic group. Compared with the isogeneic group, the action potential duration ( APD ) of cardiomyocytes in the allogeneic group was significantly prolonged ( APD 90 was 49.28±5.621 mV in the isogeneic group and 88.08±6.445 mV in the allogeneic group at the 2 nd day, P=0.0016; APD 90 was 59.34±5.183 mV in the isogeneic group and 104.0±9.523 mV in the allogeneic group at the 4 th day, P=0.0064). The current density of I to was significantly decreased at the 4 th day after cardiac transplantation. The APD of cardiomyocytes was significantly prolonged during acute cardiac rejection in rats, which might be partly attributed to decreased current densities of I to .
Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition
Xiao, Ling; Koopmann, Tamara T.; Ördög, Balázs; Postema, Pieter G.; Verkerk, Arie O.; Iyer, Vivek; Sampson, Kevin J.; Boink, Gerard J.J.; Mamarbachi, Maya A.; Varro, Andras; Jordaens, Luc; Res, Jan; Kass, Robert S.; Wilde, Arthur A.; Bezzina, C.R.; Nattel, Stanley
2015-01-01
Rationale A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (Ito) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF Ito and that its overexpression might specifically alter PF Ito properties and repolarization. Objective To assess the potential role of DPP6 in PF Ito. Methods and Results Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle Ito had similar density, but PF Ito differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, Ito density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K+-channel interacting β-subunit K+-channel interacting protein type-2, essential for normal expression of Ito in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small Ito; Ito amplitude was greatly enhanced by coexpression with K+-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K+-channel interacting protein type-2 failed to alter Ito compared with Kv4.3/K+-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF Ito composition) greatly enhanced Ito compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that Ito enhancement can greatly accelerate PF repolarization. Conclusions These results point to a previously unknown central role of DPP6 in PF Ito, with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation. PMID:23532596
Reversible cobalt ion binding to imidazole-modified nanopipettes
Sa, Niya; Fu, Yaqin; Baker, Lane A.
2010-01-01
In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co2+) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification response. By cycling nanopipettes between solutions of different pH, adsorbed Co2+ can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses to be attained. PMID:21090777
Reversible cobalt ion binding to imidazole-modified nanopipettes.
Sa, Niya; Fu, Yaqin; Baker, Lane A
2010-12-15
In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co(2+)) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification ratio. When nanopipettes are cycled between solutions of different pH, adsorbed Co(2+) can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses can be attained.
Fractional Brownian motors and stochastic resonance
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Kharchenko, Vasyl
2012-05-01
We study fluctuating tilt Brownian ratchets based on fractional subdiffusion in sticky viscoelastic media characterized by a power law memory kernel. Unlike the normal diffusion case, the rectification effect vanishes in the adiabatically slow modulation limit and optimizes in a driving frequency range. It is shown also that the anomalous rectification effect is maximal (stochastic resonance effect) at optimal temperature and can be of surprisingly good quality. Moreover, subdiffusive current can flow in the counterintuitive direction upon a change of temperature or driving frequency. The dependence of anomalous transport on load exhibits a remarkably simple universality.
Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y
2001-04-23
The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.
Van Vlack, C; Hughes, S
2007-04-20
Ultrashort pulse light-matter interactions in a semiconductor are investigated within the regime of resonant optical rectification. Using pulse envelope areas of around 1.5-3.5 pi, a single-shot dependence on carrier-envelope-offset phase (CEP) is demonstrated for 5 fs pulse durations. A characteristic phase map is predicted for several different frequency regimes using parameters for thin-film GaAs. We subsequently suggest a possible technique to extract the CEP, in both sign and amplitude, using a solid state detector.
Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang
2013-01-01
Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action. PMID:23610573
Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang
2013-03-01
To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (I to), the rapidly activated omponent of delayed rectifier potassium current (I Kr), the slowly activated component of delayed rectifier potassium current (I Ks), and the L-type calcium current (I CaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca(2+) current are likely the underlying mechanism of action.
Northwest Outward Bound Instructor's Manual.
ERIC Educational Resources Information Center
Northwest Outward Bound School, Portland, OR.
Instructor responsibilities, procedures for completing activities safely, and instructional methods and techniques are outlined to assist instructors in the Northwest Outward Bound School (Portland, Oregon) as they strive for teaching excellence. Information is organized into six chapters addressing: history and philosophy of Outward Bound; course…
Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osgood, Richard M.; Giardini, Stephen; Carlson, Joel
2016-09-01
Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively themore » rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current, given by the rectification responsivity, calculated from the I-V curve times input power.« less
Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa
2018-04-18
Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.
MapEdit: solution to continuous raster map creation
NASA Astrophysics Data System (ADS)
Rančić, Dejan; Djordjevi-Kajan, Slobodanka
2003-03-01
The paper describes MapEdit, MS Windows TM software for georeferencing and rectification of scanned paper maps. The software produces continuous raster maps which can be used as background in geographical information systems. Process of continuous raster map creation using MapEdit "mosaicking" function is also described as well as the georeferencing and rectification algorithms which are used in MapEdit. Our approach for georeferencing and rectification using four control points and two linear transformations for each scanned map part, together with nearest neighbor resampling method, represents low cost—high speed solution that produce continuous raster maps with satisfactory quality for many purposes (±1 pixel). Quality assessment of several continuous raster maps at different scales that have been created using our software and methodology, has been undertaken and results are presented in the paper. For the quality control of the produced raster maps we referred to three wide adopted standards: US Standard for Digital Cartographic Data, National Standard for Spatial Data Accuracy and US National Map Accuracy Standard. The results obtained during the quality assessment process are given in the paper and show that our maps meat all three standards.
High-performance noncontact thermal diode via asymmetric nanostructures
NASA Astrophysics Data System (ADS)
Shen, Jiadong; Liu, Xianglei; He, Huan; Wu, Weitao; Liu, Baoan
2018-05-01
Electric diodes, though laying the foundation of modern electronics and information processing industries, suffer from ineffectiveness and even failure at high temperatures. Thermal diodes are promising alternatives to relieve above limitations, but usually possess low rectification ratios, and how to obtain a high-performance thermal rectification effect is still an open question. This paper proposes an efficient contactless thermal diode based on the near-field thermal radiation of asymmetric doped silicon nanostructures. The rectification ratio computed via exact scattering theories is demonstrated to be as high as 10 at a nanoscale gap distance and period, outperforming the counterpart flat-plate diode by more than one order of magnitude. This extraordinary performance mainly lies in the higher forward and lower reverse radiative heat flux within the low frequency band compared with the counterpart flat-plate diode, which is caused by a lower loss and smaller cut-off wavevector of nanostructures for the forward and reversed scheme, respectively. This work opens new routes to realize high performance thermal diodes, and may have wide applications in efficient thermal computing, thermal information processing, and thermal management.
Lee, Nam-Suk; Shin, Hoon-Kyu; Kwon, Young-Soo
2015-02-01
An ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and a scanning tunneling spectroscopy (STS) are used measure the rectification property of self-assembled viologen single molecules (VC8SH, VC10SH, HSC8VC8SH, and HSC10VC10SH) in the previous study. Using STM we observe viologen single molecules in the self-assembled octanethiol (OT) SAM matrix. In the OT matrix a mixed phase that includes a c(4 x 2) superlattice of high-density standing up-phase is observed. We indicate high peak current-like rectifications at + 1.68 V(VC8SH), + 1.56 V(VC10SH), + 1.14 V(HSC8VC8SH), and + 1.04 V(HSC10VC10SH) based on the experiment implemented in this study. In addition, transition voltages (Vtrans) from direct tunneling to the Fowler-Nordheim tunneling are presented at 1.08 V(VC8SH), 0.97 V(VC10SH), 0.99 V(HSC8VC8SH), and 0.89 V(HSC1VC1SH).
NASA Astrophysics Data System (ADS)
Liu, W. W.; Jia, C. H.; Zhang, Q.; Zhang, W. F.
2015-12-01
Epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films have been grown on Nb:SrTiO3 (NSTO) (1 0 0) substrates. The films are a tetragonal perovskite phase with good density and homogeneity. Rectification behavior and two types of bipolar resistance switching (BRS) have been observed in the Pt/PZT/NSTO device. It exhibits rectification below 3 V. According to piezo force microscopy analysis, PZT film has a multidomain structure below 8 V and the device shows abnormal BRS between 3 V and 8 V. When the voltage increases above 8 V, the polarization of the PZT film tends to saturation and it becomes single domain and displays normal BRS behavior. In addition, the device demonstrates good retention and anti-fatigue properties. The transition from abnormal bipolar to normal bipolar behavior caused by ferroelectric polarization can broaden device applications and enable large flexibility in terms of memory architecture.
Single-molecular diodes based on opioid derivatives.
Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C
2015-12-01
We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics.
Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei
2015-03-07
Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.
Outward Bound--An Adjunctive Psychiatric Therapy: Preliminary Research Findings.
ERIC Educational Resources Information Center
Stich, Thomas F.; Sussman, Lewis R.
According to a small study, Outward Bound can enhance the treatment of hospitalized psychiatric patients. Researchers measured the effect of a therapeutic Outward Bound program of prescribed physical and social tasks on the contentment and self-esteem of seven patients undergoing short-term treatment at the Veterans Administration Hospital in…
ERIC Educational Resources Information Center
McPeake, John D.; And Others
1991-01-01
Describes adolescent chemical dependency treatment model developed at Beech Hill Hospital (New Hampshire) which integrated Twelve Step-oriented alcohol and drug rehabilitation program with experiential education school, Hurricane Island Outward Bound School. Describes Beech Hill Hurricane Island Outward Bound School Adolescent Chemical Dependency…
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan
2013-01-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. PMID:23934399
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.
Vilozny, Boaz; Wollenberg, Alexander L; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-10-07
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.
Large Spatially Resolved Rectification in a Donor–Acceptor Molecular Heterojunction
Smerdon, Joseph A.; Giebink, Noel C.; Guisinger, Nathan P.; ...
2016-03-10
Here, we demonstrate that rectification ratios (RR) of ≳250 (≳1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor–acceptor bilayers of pentacene on C 60 on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu- hybridized metallic C 60. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects.
Steinhäuser, C; Kressin, K; Kuprijanova, E; Weber, M; Seifert, G
1994-10-01
In the present study, we were interested in a quantitative analysis of voltage-activated channels in a subpopulation of hippocampal glial cells, termed "complex" cells. The patch-clamp technique in the whole-cell mode was applied to identified cells in situ and to glial cells acutely isolated from tissue slices. The outward current was composed of two components: a sustained and a transient current. The transient K+ channel had electrophysiological and pharmacological properties resembling those of the channel through which the A-currents pass. In addition, this glial A-type current possessed a significant Ca2+ dependence. The current parameters determined in situ or in isolated cells corresponded well. Due to space clamp problems in situ, properties of voltage-dependent Na+ currents were only analysed in suspended glial cells. The tetrodotoxin (TTX) sensitivity and the stationary and kinetic characteristics of this current were similar to corresponding properties of hippocampal neurons. These quantitative data demonstrate that at an early postnatal stage of central nervous system maturation, glial cells in situ express a complex pattern of voltage-gated ion channels. The results are compared to findings in other preparations and the possible consequences of transmitter-mediated channel modulation in glial cells are discussed.
Activation of outward K+ currents: effect of VIP in oesophagus
Jury, Jennifer; Daniel, Edwin E
1999-01-01
Electrical field stimulations (EFS) of the opossum and canine lower oesophageal sphincters (OLOS and CLOS respectively) and opossum oesophageal body circular muscle (OOBCM) induce non-adrenergic, non-cholinergic (NANC) relaxations of any active tension and NO-mediated hyperpolarization. VIP relaxes the OLOS and CLOS and any tone in OOBCM without major electrophysiological effects. These relaxations are not blocked by NOS inhibitors. Using isolated smooth muscle cells, we tested whether VIP acted through myogenic NO production.Outward currents were similar in OOBCM and OLOS and NO increased them regardless of pipette Ca2+i, from 50–8000 nM. L-NAME or L-NOARG did not block outward currents in OLOS at 200 nM pipette Ca2+.Outward currents in CLOS cells decreased at 200 nM pipette Ca2+ or less but NO donors still increased them. VIP had no effect on outward currents in cells from OOBCM, OLOS or CLOS under conditions of pipette Ca2+ at which NO donors increased outward K+ currents.We conclude, VIP does not mimic electrophysiological effects of NO donors on isolated cells of OOBCM, OLOS or CLOS. VIP relaxes the OLOS and CLOS and inhibits contraction of OOBCM by a mechanism unrelated to release of myogenic NO or an increase in outward current.Also, the different dependence of outward currents of OOBCM and OLOS on pipette Ca2+ from those of CLOS suggests that different K+ channels are involved and that myogenic NO production contributes to K+ channel activity in CLOS but not in OLOS or OOBCM. PMID:10385258
Outward Bound Outcome Model Validation and Multilevel Modeling
ERIC Educational Resources Information Center
Luo, Yuan-Chun
2011-01-01
This study was intended to measure construct validity for the Outward Bound Outcomes Instrument (OBOI) and to predict outcome achievement from individual characteristics and course attributes using multilevel modeling. A sample of 2,340 participants was collected by Outward Bound USA between May and September 2009 using the OBOI. Two phases of…
Outward Bound Giwaykiwin: Connecting to Land and Culture through Indigenous Outdoor Education
ERIC Educational Resources Information Center
Lowan, Greg
2007-01-01
Outward Bound Canada's (OBC) Giwaykiwin Program was founded in 1985 in response to a recognized need for programming specific to students from Indigenous backgrounds. The Giwaykiwin program aims to integrate Outward Bound (OB) and Indigenous philosophies and traditions. Giwaykiwin means "coming home" in Ojibwa and signifies the program's…
NASA Astrophysics Data System (ADS)
Wang, Li-Ying; Ravi, Vidhya M.; Leblanc, Gérard; Padrós, Esteve; Cladera, Josep; Perálvarez-Marín, Alex
2016-09-01
Molecular dynamics simulations have been used to study the alternate access mechanism of the melibiose transporter from Escherichia coli. Starting from the outward-facing partially occluded form, 2 out of 12 simulations produced an outward full open form and one partially open, whereas the rest yielded fully or partially occluded forms. The shape of the outward-open form resembles other outward-open conformations of secondary transporters. During the transporter opening, conformational changes in some loops are followed by changes in the periplasm region of transmembrane helix 7. Helical curvature relaxation and unlocking of hydrophobic and ionic locks promote the outward opening of the transporter making accessible the substrate binding site. In particular, FRET studies on mutants of conserved aromatic residues of extracellular loop 4 showed lack of substrate binding, emphasizing the importance of this loop for making crucial interactions that control the opening of the periplasmic side. This study indicates that the alternate access mechanism for the melibiose transporter fits better into a flexible gating mechanism rather than the archetypical helical rigid-body rocker-switch mechanism.
BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David
2000-01-01
The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Gómez-Hurtado, Nieves; Domínguez-Rodríguez, Alejandro; Mateo, Philippe; Fernández-Velasco, María; Val-Blasco, Almudena; Aizpún, Rafael; Sabourin, Jessica; Gómez, Ana María; Benitah, Jean-Pierre; Delgado, Carmen
2017-07-01
Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca 2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca 2+ handling parameters. Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg -1 day -1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca 2+ ] i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca 2+ waves. These proarrhythmic manifestations, related to Ca 2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Working memory in healthy aging and in Parkinson's disease: evidence of interference effects.
Di Rosa, Elisa; Pischedda, Doris; Cherubini, Paolo; Mapelli, Daniela; Tamburin, Stefano; Burigo, Michele
2017-05-01
Focusing on relevant information while suppressing the irrelevant one are critical abilities for different cognitive processes. However, their functioning has been scarcely investigated in the working memory (WM) domain, in both healthy and pathological conditions. The present research aimed to study these abilities in aging and Parkinson's disease (PD), testing three groups of healthy participants (young, older and elderly) and one of PD patients, employing a new experimental paradigm. Results showed that the transient storing of irrelevant information in WM causes substantial interference effects, which were remarkable in elderly individuals on both response latency and accuracy. Interestingly, PD patients responded faster and were equally accurate compared to a matched control group. Taken together, findings confirm the existence of similar mechanisms for orienting attention inwards to WM contents or outwards to perceptual stimuli, and suggest the suitability of our task to assess WM functioning in both healthy aging and PD.
Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery
NASA Astrophysics Data System (ADS)
Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R. James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R.; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori
2016-06-01
Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named ‘eruptions’) into the tumour interstitial space. We propose that ‘dynamic vents’ form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Nonlinear hyperbolic theory of thermal waves in metals
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Choi, S. H.
1975-01-01
A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto
2016-05-05
The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.
Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto
2016-01-01
The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140
Mechanosensitive cation channels in human leukaemia cells: calcium permeation and blocking effect
Staruschenko, Alexandr V; Vedernikova, Elena A
2002-01-01
Cell-attached and inside-out patch-clamp methods were employed to identify and characterize mechanosensitive (MS) ionic channels in the plasma membrane of human myeloid leukaemia K562 cells. A reversible activation of gadolinium-blockable mechanogated currents in response to negative pressure application was found in 58 % of stable patches (n = 317). I-V relationships measured with a sodium-containing pipette solution showed slight inward rectification. Data analysis revealed the presence of two different populations of channels that were distinguishable by their conductance properties (17.2 ± 0.3 pS and 24.5 ± 0.5 pS), but were indistinguishable with regard to their selective and pharmacological properties. Ion-substitution experiments indicated that MS channels in leukaemia cells were permeable to cations but not to anions and do not discriminate between Na+ and K+. The channels were fully impermeable to large organic cations such as Tris+ and N-methyl-d-glucamine ions (NMDG+). Ca2+ permeation and blockade of MS channels were examined using pipettes containing different concentrations of Ca2+. In the presence of 2 mm CaCl2, when other cations were impermeant, both outward and inward single-channel currents were observed; the I-V relationship showed a unitary conductance of 7.7 ± 1.0 pS. The relative permeability value, PCa/PK, was equal to 0.75, as estimated at physiological Ca2+ concentrations. Partial or full inhibition of inward Ca2+ currents through MS channels was observed at higher concentrations of external Ca2+ (10 or 20 mm). No MS channels were activated when using a pipette containing 90 mm CaCl2. Monovalent mechanogated currents were not significantly affected by extracellular Ca2+ at concentrations within the physiological range (0-2 mm), and at some higher Ca2+ concentrations. PMID:12015421
Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Chen, Shih-Ann; Chen, Yi-Jen
2013-06-01
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF. Copyright © 2013 Elsevier Ltd. All rights reserved.
Przywara, D A; Bhave, S V; Bhave, A; Chowdhury, P S; Wakade, T D; Wakade, A R
1992-01-01
We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine (3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 microM) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca(2+)-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 microM, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+]i) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 microM La3+. However, 3 microM La3+ produced only a partial block of voltage clamped Ca2+ current (ICa). Following La3+ (10 microM) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 microM) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (IA) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.
Wu, Kun-Wei; Kou, Zeng-Wei; Mo, Jia-Lin; Deng, Xu-Xu; Sun, Feng-Yan
2016-10-15
This study examined the effect of neuron-endothelial coupling on the survival of neurons after ischemia and the possible mechanism underlying that effect. Whole-cell patch-clamp experiments were performed on cortical neurons cultured alone or directly cocultured with brain microvascular endothelial cells (BMEC). Propidium iodide (PI) and NeuN staining were performed to examine neuronal death following oxygen and glucose deprivation (OGD). We found that the neuronal transient outward potassium currents (I A ) decreased in the coculture system, whereas the outward delayed-rectifier potassium currents (I K ) did not. Sodium nitroprusside, a NO donor, enhanced BMEC-induced I A inhibition and nitro-l-arginine methylester, a NOS inhibitor, partially prevented this inhibition. Moreover, the neurons directly cocultured with BMEC showed more resistance to OGD-induced injury compared with the neurons cultured alone, and that neuroprotective effect was abolished by treatment with NS5806, an activator of the I A . These results indicate that vascular endothelial cells assist neurons to prevent hypoxic injury via inhibiting neuronal I A by production of NO in the direct neuron-BMEC coculture system. These results further provide direct evidence of functional coupling between neurons and vascular endothelial cells. This study clearly demonstrates that vascular endothelial cells play beneficial roles in the pathophysiological processes of neurons after hypoxic injury, suggesting that the improvement of neurovascular coupling or functional remodeling may become an important therapeutic target for preventing brain injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Local rectification of heat flux
NASA Astrophysics Data System (ADS)
Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.
2017-09-01
We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.
NASA Astrophysics Data System (ADS)
Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao
2016-11-01
The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.
Design and fabrication of metal-insulator-metal diode for high frequency applications
NASA Astrophysics Data System (ADS)
Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias
2017-02-01
Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.
Geometric accuracy of LANDSAT-4 MSS image data
NASA Technical Reports Server (NTRS)
Welch, R.; Usery, E. L.
1983-01-01
Analyses of the LANDSAT-4 MSS image data of North Georgia provided by the EDC in CCT-p formats reveal that errors of approximately + or - 30 m in the raw data can be reduced to about + or - 55 m based on rectification procedures involving the use of 20 to 30 well-distributed GCPs and 2nd or 3rd degree polynomial equations. Higher order polynomials do not appear to improve the rectification accuracy. A subscene area of 256 x 256 pixels was rectified with a 1st degree polynomial to yield an RMSE sub xy value of + or - 40 m, indicating that USGS 1:24,000 scale quadrangle-sized areas of LANDSAT-4 data can be fitted to a map base with relatively few control points and simple equations. The errors in the rectification process are caused by the spatial resolution of the MSS data, by errors in the maps and GCP digitizing process, and by displacements caused by terrain relief. Overall, due to the improved pointing and attitude control of the spacecraft, the geometric quality of the LANDSAT-4 MSS data appears much improved over that of LANDSATS -1, -2 and -3.
Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang
2016-04-28
We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.
Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel
2016-09-15
Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, andmore » predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current, given by the rectification responsivity, calculated from the I–V curve times input power.« less
NASA Astrophysics Data System (ADS)
Elzouka, Mahmoud
This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under write/read cycles for a practical silicon-based device. NanoThermoMechanical rectification is achieved experimentally--for the first time--with measurements at a high temperature of 600 K, demonstrating the feasibility of NanoThermoMechanical to operate in harsh environments. The proof-of-concept device has shown a maximum rectification of 10.9%. This dissertation proposes using meshed photonic crystal structures to enhance NFTR between surfaces. Numerical results show thermal rectification as high as 2500%. Incorporating these structures in thermal memory and rectification devices will significantly enhance their functionality and performance.
A Means-End Investigation of Outcomes Associated with Outward Bound and NOLS Programs
ERIC Educational Resources Information Center
Goldenberg, Marni; Pronsolino, Dan
2008-01-01
This study compares outcomes associated with participation in Outward Bound (OB) and National Outdoor Leadership Schools (NOLS) courses in the United States. OB and NOLS (two of the largest providers of outdoor adventure education [OAE] courses) combined saw more than 30,000 students in 2006 (NOLS, n.d.; Outward Bound, n.d.). Comparing these two…
ERIC Educational Resources Information Center
Sakofs, Mitchell S.; And Others
During the summer of 1987, 29 students from the Cooperstown High School in New York received scholarships and participated in an Outward Bound course. This report presents the results of a study assessing the impact of the Outward Bound experience on these students. Data gathering instruments included: the Self Report Survey (SRS), developed by…
Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2.
Grubb, Søren; Aistrup, Gary L; Koivumäki, Jussi T; Speerschneider, Tobias; Gottlieb, Lisa A; Mutsaers, Nancy A M; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2015-08-01
Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice. Copyright © 2015 the American Physiological Society.
Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.
1993-01-01
1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366
Thermal transport across metal–insulator interface via electron–phonon interaction.
Zhang, Lifa; Lü, Jing-Tao; Wang, Jian-Sheng; Li, Baowen
2013-11-06
The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green's function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling.
Programmable Electrochemical Rectifier Based on a Thin-Layer Cell.
Park, Seungjin; Park, Jun Hui; Hwang, Seongpil; Kwak, Juhyoun
2017-06-21
A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 μm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.
Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films
NASA Astrophysics Data System (ADS)
Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.
2017-11-01
Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.
NASA Astrophysics Data System (ADS)
Xu, Ai-Hua; Liu, Juan; Luo, Bo
2016-10-01
Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.
Nardi, Bernardo; Marini, Alessandra; Turchi, Chiara; Arimatea, Emidio; Tagliabracci, Adriano; Bellantuono, Cesario
2013-01-01
Reciprocity with primary caregivers affects subjects' adaptive abilities toward the construction of the most useful personal meaning organization (PMO) with respect to their developmental environment. Within cognitive theory the post-rationalist approach has outlined two basic categories of identity construction and of regulation of cognitive and emotional processes: the Outward and the Inward PMO. The presence of different, consistent clinical patterns in Inward and Outward subjects is paralleled by differences in cerebral activation during emotional tasks on fMRI and by different expression of some polymorphisms in serotonin pathways. Since several lines of evidence support a role for the 5-HTTLPR polymorphism in mediating individual susceptibility to environmental emotional stimuli, this study was conducted to investigate its influence in the development of the Inward/Outward PMO. PMO was assessed and the 5-HTTLPR polymorphism investigated in 124 healthy subjects who were subdivided into an Inward (n = 52) and an Outward (n = 72) group. Case-control comparisons of short allele (S) frequencies showed significant differences between Inwards and Outwards (p = 0.036, χ2 test; p = 0.026, exact test). Genotype frequencies were not significantly different although values slightly exceeded p ≤ 0.05 (p = 0.056, χ2 test; p = 0.059, exact test). Analysis of the 5-HTTLPR genotypes according to the recessive inheritance model showed that the S/S genotype increased the likelihood of developing an Outward PMO (p = 0.0178, χ2 test; p = 0.0143, exact test; OR = 3.43, CI (95%) = 1.188-9.925). A logistic regression analysis confirmed the association between short allele and S/S genotypes with the Outward PMO also when gender and age were considered. However none of the differences remained significant after correction for multiple testing, even though using the recessive model they approach significance. Overall our data seem to suggest a putative genetic basis for interindividual differences in PMO development.
Nardi, Bernardo; Marini, Alessandra; Turchi, Chiara; Arimatea, Emidio; Tagliabracci, Adriano; Bellantuono, Cesario
2013-01-01
Reciprocity with primary caregivers affects subjects' adaptive abilities toward the construction of the most useful personal meaning organization (PMO) with respect to their developmental environment. Within cognitive theory the post-rationalist approach has outlined two basic categories of identity construction and of regulation of cognitive and emotional processes: the Outward and the Inward PMO. The presence of different, consistent clinical patterns in Inward and Outward subjects is paralleled by differences in cerebral activation during emotional tasks on fMRI and by different expression of some polymorphisms in serotonin pathways. Since several lines of evidence support a role for the 5-HTTLPR polymorphism in mediating individual susceptibility to environmental emotional stimuli, this study was conducted to investigate its influence in the development of the Inward/Outward PMO. PMO was assessed and the 5-HTTLPR polymorphism investigated in 124 healthy subjects who were subdivided into an Inward (n = 52) and an Outward (n = 72) group. Case-control comparisons of short allele (S) frequencies showed significant differences between Inwards and Outwards (p = 0.036, χ2 test; p = 0.026, exact test). Genotype frequencies were not significantly different although values slightly exceeded p≤0.05 (p = 0.056, χ2 test; p = 0.059, exact test). Analysis of the 5-HTTLPR genotypes according to the recessive inheritance model showed that the S/S genotype increased the likelihood of developing an Outward PMO (p = 0.0178, χ2 test; p = 0.0143, exact test; OR = 3.43, CI (95%) = 1.188–9.925). A logistic regression analysis confirmed the association between short allele and S/S genotypes with the Outward PMO also when gender and age were considered. However none of the differences remained significant after correction for multiple testing, even though using the recessive model they approach significance. Overall our data seem to suggest a putative genetic basis for interindividual differences in PMO development. PMID:24358153
Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E
2008-01-01
Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (IA) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca2+ levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in IA current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished IA availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K+ channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca2+ imaging demonstrated enhanced action potential-evoked intracellular Ca2+ transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished IA availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension. PMID:18238809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, A.; Scammon, R.J.; Godwin, R.P.
Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced amore » monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.« less
Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann
2010-04-01
Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Chen, Yi-Jen; Chen, Yao-Chang; Tai, Ching-Tai; Yeh, Hung-I; Lin, Cheng-I; Chen, Shih-Ann
2006-01-01
Angiotensin II receptor blockers (AIIRBs) have been shown to prevent atrial fibrillation. The pulmonary veins (PVs) are the most important focus for the generation of atrial fibrillation. The aim of this study was to evaluate whether angiotensin II or AIIRB may change the arrhythmogenic activity of the PVs. Conventional microelectrodes and whole-cell patch clamps were used to investigate the action potentials (APs) and ionic currents in isolated rabbit PV tissue and single cardiomyocytes before and after administering angiotensin II or losartan (AIIRB). In the tissue preparations, angiotensin II induced delayed after-depolarizations (1, 10, and 100 nM) and accelerated the automatic rhythm (10 and 100 nM). Angiotensin II (100 nM) prolonged the AP duration and increased the contractile force (10 and 100 nM). Losartan (1 and 10 microM) inhibited the automatic rhythm. Losartan (10 microM) prolonged the AP duration and reduced the contractile force (1 and 10 microM). Angiotensin II reduced the transient outward potassium current (I(to)) but increased the L-type calcium, delayed rectifier potassium (I(K)), transient inward (I(ti)), pacemaker, and Na(+)-Ca(2+) exchanger (NCX) currents in the PV cardiomyocytes. Losartan decreased the I(to), I(K), I(ti), and NCX currents. In conclusion, angiotensin II and AIIRB modulate the PV electrical activity, which may play a role in the pathophysiology of atrial fibrillation.
The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex
Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.; Roland, Per E.
2016-01-01
Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual scenes. PMID:27582693
Fabrication of Schottky Junction Between Au and SrTiO3
NASA Astrophysics Data System (ADS)
Inoue, Akira; Izumisawa, Kei; Uwe, Hiromoto
2001-05-01
A Schottky junction with a high rectification ratio between Au and La-doped SrTiO3 has been fabricated using a simple surface treatment. Highly La-doped (5%) SrTiO3 single crystals are annealed in O2 atmosphere at about 1000°C for 1 h and etched in HNO3 for more than five min. The HNO3 etching is performed in a globe box containing N2 to prevent pollution from the air. After the treatment, Au is deposited on the SrTiO3 surface in a vacuum (˜ 10-7 Torr) with an e-gun evaporator. The current voltage characteristics of the junction have shown excellent rectification properties, although junctions using neither annealed nor etched SrTiO3 exhibit high leak current in reverse voltage. The rectification ratio of the junction at 1 V is more than six orders of magnitude and there is no hysteresis in the current voltage spectra. The logarithm of the current is linear with the forward bias voltage. The ideal factor of the junction is estimated to be about 1.68. These results suggest that, if prevented from being pollution by the air, a good Schottky junction can be obtained by easy processes such as annealing in oxygen atmosphere and surface etching with acid.
Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo
2010-07-27
We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teii, K., E-mail: teii@asem.kyushu-u.ac.jp; Ito, H.; Katayama, N.
2015-02-07
Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation ofmore » the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.« less
NASA Astrophysics Data System (ADS)
Rodríguez, Pablo Alonso; Carbajal, Noel; Rodríguez, Juan Heberto Gaviño
2017-07-01
Considering a semi-implicit approximation of the Coriolis terms, a numerical solution of the vertically integrated equations of motion is proposed. To test the two-dimensional numerical model, several experiments for the calculation of Euler, Stokes and Lagrange residual currents in the Gulf of California were carried out. To estimate the Lagrangian residual current, trajectories of particles were also simulated. The applied tidal constituents were M2, S2, K2, N2, K1, P1 and O1. At spring tides, strong tidal velocities occur in the northern half of the gulf. In this region of complex geometry, depths change from a few meter in the northern shelf zone to more than 3000 m in the southern part. In the archipelago region, the presence of islands alters amplitude and direction of tidal currents producing a rectification process which is reflected in a clockwise circulation around Tiburón Island in the Lagrangian residual current. The rectification process is explained by the superposition of the Euler and Stokes residual currents. Residual current patterns show several cyclonic and anticyclonic gyres in the Northern Gulf of California. Numerical experiments for individual and combinations of several tidal constituents revealed a large variability of Lagrangian trajectories.
Blitzer, B L; Terzakis, C; Scott, K A
1986-09-15
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.
Outward Migration of Giant Planets in Orbital Resonance
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Marzari, F.
2013-05-01
A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.
Electronic tunneling currents at optical frequencies
NASA Technical Reports Server (NTRS)
Faris, S. M.; Fan, B.; Gustafson, T. K.
1975-01-01
Rectification characteristics of nonsuperconducting metal-barrier-metal junctions as deduced from electronic tunneling theory have been observed experimentally for optical frequency irradiation of the junction.
Chavira-Suárez, Erika; Sandoval, Alejandro; Felix, Ricardo; Lamas, Mónica
2011-01-14
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy. Copyright © 2010 Elsevier Inc. All rights reserved.
Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells
Saung, Wint Thu; Foskett, J. Kevin
2017-01-01
Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574
Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.
Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin
2017-05-01
Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.
Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314
Puopolo, Michelino; Binshtok, Alexander M.; Yao, Gui-Lan; Oh, Seog Bae; Woolf, Clifford J.
2013-01-01
QX-314 (N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of “pore dilation” previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50–100 μM. We conclude that QX-314 is directly permeant in the “standard” pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry. PMID:23303863
Empson, Ruth M; Turner, Paul R; Nagaraja, Raghavendra Y; Beesley, Philip W; Knöpfel, Thomas
2010-03-15
Cerebellar Purkinje neurones (PNs) express high levels of the plasma membrane calcium ATPase, PMCA2, a transporter protein critical for the clearance of calcium from excitable cells. Genetic deletion of one PMCA2 encoding gene in heterozygous PMCA2 knock-out (PMCA2(+/-) mice enabled us to determine how PMCA2 influences PN calcium regulation without the complication of the severe morphological changes associated with complete PMCA2 knock-out (PMCA2(-/-) in these cells. The PMCA2(+/-) cerebellum expressed half the normal levels of PMCA2 and this nearly doubled the time taken for PN dendritic calcium transients to recover (mean fast and slow recovery times increased from 70 ms to 110 ms and from 600 ms to 1100 ms). The slower calcium recovery had distinct consequences for PMCA2(+/-) PN physiology. The PNs exhibited weaker climbing fibre responses, prolonged outward Ca(2+)-dependent K(+) current (mean fast and slow recovery times increased from 136 ms to 192 ms and from 595 ms to 1423 ms) and a slower mean frequency of action potential firing (7.4 Hz compared with 15.8 Hz). Our findings were consistent with prolonged calcium accumulation in the cytosol of PMCA2(+/-) Purkinje neurones. Although PMCA2(+/-) mice exhibited outwardly normal behaviour and little change in their gait pattern, when challenged to run on a narrow beam they exhibited clear deficits in hindlimb coordination. Training improved the motor performance of both PMCA2(+/-) and wild-type mice, although PMCA2(+/-) mice were always impaired. We conclude that reduced calcium clearance perturbs calcium dynamics in PN dendrites and that this is sufficient to disrupt the accuracy of cerebellar processing and motor coordination.
Workman, Antony J; Pau, Davide; Redpath, Calum J; Marshall, Gillian E; Russell, Julie A; Norrie, John; Kane, Kathleen A; Rankin, Andrew C
2009-01-01
Background Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective To investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes which could predispose to AF. Methods Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. Results The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period, ERP (209±8 ms; 52 cells, 18 patients vs 233±7 ms; 134 cells, 49 patients; P<0.05); confirmed by multiple linear regression analysis. The LV ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36±4%, n=15) than in those without LVSD (62±2%, n=31; P<0.05). In cells from patients with LVEF≤45%, the ERP and action potential duration at 90% repolarisation were shorter than in those from patients with LVEF>45%, by 24 and 18%, respectively. The LVEF and ERP were positively correlated (r=0.65, P<0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current was unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. Conclusion LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF. PMID:19324301
Pandit, Sandeep V; Giles, Wayne R; Demir, Semahat S
2003-02-01
Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca(2+)-independent transient outward K(+) current (I(t)) and the steady-state outward K(+) current (I(ss)), along with slowed inactivation of the L-type Ca(2+) current (I(CaL)), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of I(t) in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na(+)-K(+) pump current (I(NaK)) results in a small depolarization in the resting membrane potential (V(rest)). This depolarization reduces the availability of the Na(+) channels (I(Na)), thereby resulting in a slower upstroke (dV/dt(max)) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of I(CaL), in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca(2+) load. These factors contribute to characteristic abnormal [Ca(2+)](i) homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.
Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R
1997-01-01
The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.
On the impact origin of Phobos and Deimos
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Hyodo, Ryuki; Chanorz, Sebastian; Rosenblatt, Pascal
2017-10-01
Phobos and Deimos, the two small satellites of Mars, are thought either to be captured asteroids or to have accreted in an impact-induced debris disk. Recently, we succeeded in making them in a framework of the giant impact scenario [1]. In our canonical simulation, large moons form from the material in the dense inner disk and then migrate outwards due to gravitational interactions with the remnant disk. As the large inner moons migrate outward, their orbital resonances sweep up and gather materials distributed within a thin outer disk, facilitating accretion of two small satellites whose sizes are similar to Phobos and Deimos. The large inner moons fall back to Mars after about 5 million years due to tidal pull of Mars, and the two small outer satellites evolve into current Phobos- and Deimos-like orbits.In addition, we recently perform high-resolution SPH giant impact simulations using sophisticated equation of states (M-ANEOS). We investigate the thermodynamic and physical aspects of the impact-induced disk [2], such as degrees of melting and vaporization of materials, mixing ratio of Mars and impactor’s materials, and expected particle sizes that form Phobos and Deimos. Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.[1] Rosenblatt, P., Charnoz, S., Dunseath, K.M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Genda, H., Toupin, S., 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience 9, 581-583.[2] Hyodo, R., Genda, H., Charnoz, S., Rosenblatt, P., 2017, On the impact origin of Phobos and Deimos I: Thermodynamic and physical aspects. ApJ accepted (arXiv:1707.06282).
METHOD OF PRODUCING AND ACCELERATING AN ION BEAM
NASA Technical Reports Server (NTRS)
Foster, John E. (Inventor)
2005-01-01
A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
NASA Astrophysics Data System (ADS)
Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli
2016-03-01
We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.
Influence of camera parameters on the quality of mobile 3D capture
NASA Astrophysics Data System (ADS)
Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska
2010-01-01
We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.
Equatorial potassium currents in lenses.
Wind, B E; Walsh, S; Patterson, J W
1988-02-01
Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K+ concentrations across the membrane responsible for J is unchanged. Therefore, the decrease in PD is ascribed to an increase in Na+ permeance with a resultant increase in driving force accounting for the increase in J.
Xianwei, Tan; Diannan, Lu; Boxiong, Wang
2016-07-19
The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.
NASA Astrophysics Data System (ADS)
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-01
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
NASA Astrophysics Data System (ADS)
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-09-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-06
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Thermal hysteresis measurement of the VO2 emissivity and its application in thermal rectification.
Gomez-Heredia, C L; Ramirez-Rincon, J A; Ordonez-Miranda, J; Ares, O; Alvarado-Gil, J J; Champeaux, C; Dumas-Bouchiat, F; Ezzahri, Y; Joulain, K
2018-05-31
Hysteresis loops in the emissivity of VO 2 thin films grown on sapphire and silicon substrates by a pulsed laser deposition process are experimentally measured through the thermal-wave resonant cavity technique. Remarkable variations of about 43% are observed in the emissivity of both VO 2 films, within their insulator-to-metal and metal-to-insulator transitions. It is shown that: i) The principal hysteresis width (maximum slope) in the VO 2 emissivity of the VO 2 + silicon sample is around 3 times higher (lower) than the corresponding one of the VO 2 + sapphire sample. VO 2 synthesized on silicon thus exhibits a wider principal hysteresis loop with slower MIT than VO 2 on sapphire, as a result of the significant differences on the VO 2 film microstructures induced by the silicon or sapphire substrates. ii) The hysteresis width along with the rate of change of the VO 2 emissivity in a VO 2 + substrate sample can be tuned with its secondary hysteresis loop. iii) VO 2 samples can be used to build a radiative thermal diode able to operate with a rectification factor as high as 87%, when the temperature difference of its two terminals is around 17 °C. This record-breaking rectification constitutes the highest one reported in literature, for a relatively small temperature change of diode terminals.
Rectification of curved document images based on single view three-dimensional reconstruction.
Kang, Lai; Wei, Yingmei; Jiang, Jie; Bai, Liang; Lao, Songyang
2016-10-01
Since distortions in camera-captured document images significantly affect the accuracy of optical character recognition (OCR), distortion removal plays a critical role for document digitalization systems using a camera for image capturing. This paper proposes a novel framework that performs three-dimensional (3D) reconstruction and rectification of camera-captured document images. While most existing methods rely on additional calibrated hardware or multiple images to recover the 3D shape of a document page, or make a simple but not always valid assumption on the corresponding 3D shape, our framework is more flexible and practical since it only requires a single input image and is able to handle a general locally smooth document surface. The main contributions of this paper include a new iterative refinement scheme for baseline fitting from connected components of text line, an efficient discrete vertical text direction estimation algorithm based on convex hull projection profile analysis, and a 2D distortion grid construction method based on text direction function estimation using 3D regularization. In order to examine the performance of our proposed method, both qualitative and quantitative evaluation and comparison with several recent methods are conducted in our experiments. The experimental results demonstrate that the proposed method outperforms relevant approaches for camera-captured document image rectification, in terms of improvements on both visual distortion removal and OCR accuracy.
Demonstrating Acquisition of Real-Time Thermal Data Over Fires Utilizing UAVs
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Wegener, Steven S.; Brass, James A.; Buechel, Sally W.; Peterson, David L. (Technical Monitor)
2002-01-01
A disaster mitigation demonstration, designed to integrate remote-piloted aerial platforms, a thermal infrared imaging payload, over-the-horizon (OTH) data telemetry and advanced image geo-rectification technologies was initiated in 2001. Project FiRE incorporates the use of a remotely piloted Uninhabited Aerial Vehicle (UAV), thermal imagery, and over-the-horizon satellite data telemetry to provide geo-corrected data over a controlled burn, to a fire management community in near real-time. The experiment demonstrated the use of a thermal multi-spectral scanner, integrated on a large payload capacity UAV, distributing data over-the-horizon via satellite communication telemetry equipment, and precision geo-rectification of the resultant data on the ground for data distribution to the Internet. The use of the UAV allowed remote-piloted flight (thereby reducing the potential for loss of human life during hazardous missions), and the ability to "finger and stare" over the fire for extended periods of time (beyond the capabilities of human-pilot endurance). Improved bit-rate capacity telemetry capabilities increased the amount, structure, and information content of the image data relayed to the ground. The integration of precision navigation instrumentation allowed improved accuracies in geo-rectification of the resultant imagery, easing data ingestion and overlay in a GIS framework. We focus on these technological advances and demonstrate how these emerging technologies can be readily integrated to support disaster mitigation and monitoring strategies regionally and nationally.
Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...
2015-04-13
The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less
RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials
NASA Astrophysics Data System (ADS)
Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).
Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk
2015-04-15
Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
Tracking by the GRAIL spacecraft has yielded a model of the gravitational field of the Orientale basin at 3-5-km horizontal resolution. The diameter of the basin excavation cavity closely matches that of the Inner Depression. A volume of at least (3.4 +/- 0.2) x10(exp 6) cu km of crustal material was removed and redistributed during basin formation; the outer edges of the zone of uplifted mantle slope downward and outward by 20deg-25deg. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be calculated from the observed structure to be between the diameters of the Inner Depression and Inner Rook ring. The model resolves distinctive structures of Orientale's three rings, including their azimuthal variations, and suggests the presence of faults that penetrate the crust. The crustal structure of Orientale provides constraints in the third dimension on models for the formation of multi-ring basins.
Understanding the bursty electron cyclotron emission during a sawtooth crash in the HT-7 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Erzhong, E-mail: rzhonglee@ipp.ac.cn; Hu, Liqun; Chen, Kaiyun
2014-01-15
Bursts in electron cyclotron emission (ECE) were observed during sawtooth crashes in HT-7 in discharges with ion cyclotron resonance heating injected near the q = 1 rational surface (q is the safety factor). The local ECE measurement indicated that the bursty radiation is only observed on channels near but a little away outward from the q = 1 magnetic surface. In conjunction with the soft x-ray tomography analysis, it was determined that, for the first time, only a compression process survives in the later stage of fast magnetic reconnection but before prompt heat transport. The compression enhanced the electron radiation temperature, the increased amplitudemore » of which agreed well with the estimation according to a kinetic compression theory model [R. J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988)]. This paper presents the experimental evidence that there indeed exists a transient compression phase which results in the bursty ECE radiation during a sawtooth crash.« less
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2016-02-01
We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2015-08-01
We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
Chouabe, C; Amsellem, J; Espinosa, L; Ribaux, P; Blaineau, S; Mégas, P; Bonvallet, R
2002-04-01
Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities.
Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station
NASA Technical Reports Server (NTRS)
Maxwell, A.
1983-01-01
Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.
Modeling the heliospheric current sheet: Solar cycle variations
NASA Astrophysics Data System (ADS)
Riley, Pete; Linker, J. A.; Mikić, Z.
2002-07-01
In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.
Li, Guangke; Sang, Nan
2009-01-01
Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.
Le Maout, S; Sewing, S; Coudrier, E; Elalouf, J M; Pongs, O; Merot, J
1996-01-01
Functional Kv 1-4 channels were stably expressed in filter-grown MDCK cells which form a polarized epithelium with two distinct plasma membrane domains: a basolateral and an apical cell surface. The Shaker-related Kv 1-4 channels mediated in MDCK cells fast transient (A-type) voltage-activated outward currents having similar properties to the ones reported for Kv 1-4 in the Xenopus oocytes expression system. Immunoblot analysis with specific anti-Kv 1-4 antibodies showed that two Kv 1-4 protein forms are expressed in MDCK cells which most likely represent the glycosylated and non-glycosylated Kv 1-4 protein, respectively. Using immunocytochemistry and confocal microscopy we showed that the Kv 1-4 channels are specifically localized in the basolateral membranes of MDCK cells. Thus, the MDCK cells may provide an important model system to analyse the polarized transport of ion channels such as Kv 1-4, which are distinctly expressed in the mammalian central nervous system.
Ionic current rectification in organic solutions with quartz nanopipettes.
Yin, Xiaohong; Zhang, Shudong; Dong, Yitong; Liu, Shujuan; Gu, Jing; Chen, Ye; Zhang, Xin; Zhang, Xianhao; Shao, Yuanhua
2015-09-01
The study of behaviors of ionic current rectification (ICR) in organic solutions with quartz nanopipettes is reported. ICR can be observed even in organic solutions using quartz pipettes with diameters varied from several to dozens of nanometers, and the direction of ICR is quite different from the ICR observed in aqueous phase. The influences of pore size, electrolyte concentration, and surface charge on the ICR have been investigated carefully. Water in organic solutions affects the direction and extent of ICR significantly. Mechanisms about the formation of an electrical double layer (EDL) on silica in organic solutions with different amount of water have been proposed. An improved method, which can be employed to detect trace water in organic solutions, has been implemented based on Au ultramicroelectrodes with cathodic differential pulse stripping voltammetry.
Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A; Siwy, Zuzanna S
2015-12-07
Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li(+) ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.
Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes.
Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H; Shao, Yuanhua
2012-07-03
The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.
Perfect Diode in Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Balachandran, Vinitha; Benenti, Giuliano; Pereira, Emmanuel; Casati, Giulio; Poletti, Dario
2018-05-01
We study the rectification of the spin current in X X Z chains segmented in two parts, each with a different anisotropy parameter. Using exact diagonalization and a matrix product state algorithm, we find that a large rectification (of the order of 1 04) is attainable even using a short chain of N =8 spins, when one-half of the chain is gapless while the other has a large enough anisotropy. We present evidence of diffusive transport when the current is driven in one direction and of a transition to an insulating behavior of the system when driven in the opposite direction, leading to a perfect diode in the thermodynamic limit. The above results are explained in terms of matching of the spectrum of magnon excitations between the two halves of the chain.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-04-26
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-01-01
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393
Noise and Ionic Conductivity in Glass Nanochannels
NASA Astrophysics Data System (ADS)
Wiener, Benjamin; Siria, Alessandro; Bocquet, Lydéric; Stein, Derek
2015-03-01
Ion transport in nanochannels is relevant to processes in biology and has technological applications like batteries, fuel cells, and water desalination. We report experimental studies of the ionic conductance and noise characteristics of pulled glass capillaries with openings on the order of 200 nanometers. We employed an AC measurement technique to probe very low frequency fluctuations in the conductivity and to test a theory attributing these to chemical fluctuations in the surface charge density of the glass. We also investigate Hooge's empirical description of the noise power spectrum and its relationship to current rectification observed in nanochannels in the surface dominated ``Dukhin'' regime. Finally, we test the effects of anion and cation mobility on the direction and magnitude of the observed rectification. Research supported by NSF Grant DMR-1409577 and Oxford Nanopore Technologies.
Rectification induced in N2AA-doped armchair graphene nanoribbon device
NASA Astrophysics Data System (ADS)
Chen, Tong; Li, Xiao-Fei; Wang, Ling-Ling; Luo, Kai-Wu; Xu, Liang
2014-07-01
By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N2AA-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N2AA-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changing the width of graphene nanoribbons or the position of the N2AA dopant. The mechanisms are revealed to explain the rectifying behaviors.
Experimental study of digital image processing techniques for LANDSAT data
NASA Technical Reports Server (NTRS)
Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.
1976-01-01
The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Malysheva, L. M.
2014-07-01
Ground-based geomagnetic Pc5 (2-7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ˜ 30-50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called "anomaly rectification" in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth's magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.
Outward Bound Goes to the Inner City.
ERIC Educational Resources Information Center
Buchanan, David
1993-01-01
A program at the Thompson Island Outward Bound Education Center in Boston (Massachusetts) supplements the traditional program of ropes and rocks with community service, giving urban students opportunities to try out new leadership skills in local neighborhoods. (MLF)
2009-06-09
This NAC image from MESSENGER’s second Mercury flyby shows a crater with a set of light-colored rays radiating outward from it. Such rays are formed when an impact excavates material from below the surface and throws it outward from the crater.
Investigation of the cardiomyocyte dysfunction in bradykinin type 2 receptor knockout mice.
Roman-Campos, Danilo; Duarte, Hugo Leonardo; Gomes, Enéas Ricardo; Castro, Carlos Henrique; Guatimosim, Silvia; Natali, Antonio José; Almeida, Alvair Pinto; Pesquero, João Bosco; Pesquero, Jorge Luiz; Cruz, Jader Santos
2010-12-18
Bradykinin type 2 receptor (B(2)R) is the key component to trigger the intracellular signaling pathway in response to bradykinin under physiological conditions. The present study sought to investigate whether the B(2)R gene deletion will have an impact on myocardial function. Isolated cell shortening, patch-clamp technique, Western blot and confocal microscopy. Isolated cell shortening measurements showed significant reduction in B(2)R knockout (B(2)R(-/-)) left ventricular cardiac myocytes' shortening. Whole-cell recordings were used to study the electrophysiological aspects of the left ventricular B(2)R(-/-) cardiomyocytes. Results showed: 1) action potential lengthening; 2) unchanged inwardly rectifying K(+) current; 3) reduced transient outward K(+) (I(to)) and L-type Ca(2+) current densities; 5) changes in kinetic properties related to I(to) and I(Ca,L). In addition, transient sarcoplasmic reticulum (SR) Ca(2+) release was found to be smaller in B(2)R(-/-) cardiomyocytes. Importantly, evidence is provided that NO constitutive production is, at least in part, responsible for the reported electrophysiological modifications observed in cardiomyocytes from B(2)R(-/-) mice. Surprisingly, NO is not involved in the SR Ca(2+) release reduction as demonstrated in the present study. Taken together, our findings indicate that B(2)R plays a fundamental role in the regulation of cardiac function and Ca(2+) homeostasis, probably through a NO dependent pathway. These results may contribute to our understanding of the kinins participation in the control of cardiac function. Copyright © 2010 Elsevier Inc. All rights reserved.
Castillo, Juan P.; De Giorgis, Daniela; Basilio, Daniel; Gadsby, David C.; Rosenthal, Joshua J. C.; Latorre, Ramon; Holmgren, Miguel; Bezanilla, Francisco
2011-01-01
The Na+/K+ pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na+ from the cell and import 2K+ per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na+/K+ pump that represent the kinetics of extracellular Na+ binding/release and Na+ occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na+ from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site. PMID:22143771
Castillo, Juan P; De Giorgis, Daniela; Basilio, Daniel; Gadsby, David C; Rosenthal, Joshua J C; Latorre, Ramon; Holmgren, Miguel; Bezanilla, Francisco
2011-12-20
The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.
A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes.
Pandit, S V; Clark, R B; Giles, W R; Demir, S S
2001-01-01
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle. PMID:11720973
Belugin, Sergei; Mifflin, Steve
2005-12-01
Whole cell patch-clamp measurements were made in neurons enzymatically dispersed from the nucleus of the solitary tract (NTS) to determine if alterations occur in voltage-dependent potassium channels from rats made hypertensive (HT) by unilateral nephrectomy/renal wrap for 4 wk. Some rats had the fluorescent tracer DiA applied to the aortic nerve before the experiment to identify NTS neurons receiving monosynaptic baroreceptor afferent inputs. Mean arterial pressure (MAP) was greater in 4-wk HT (165 +/- 5 mmHg, n = 26, P < 0.001) rats compared with normotensive (NT) rats (109 +/- 3 mmHg measured in 10 of 69 rats). Transient outward currents (TOCs) were observed in 67-82% of NTS neurons from NT and HT rats. At activation voltages from -10 to +10 mV, TOCs were significantly less in HT neurons compared with those observed in NT neurons (P < 0.001). There were no differences in the voltage-dependent activation kinetics, the voltage dependence of steady-state inactivation, and the rise and decay time constants of the TOCs comparing neurons isolated from NT and HT rats. The 4-aminopyridine-sensitive component of the TOC was significantly less in neurons from HT compared with NT rats (P < 0.001), whereas steady-state outward currents, whether or not sensitive to 4-aminopyridine or tetraethylammonium, were not different. Delayed excitation, studied under current clamp, was observed in 60-80% of NTS neurons from NT and HT rats and was not different comparing neurons from NT and HT rats. However, examination of the subset of NTS neurons exhibiting somatic DiA fluorescence revealed that DiA-labeled neurons from HT rats had a significantly shorter duration delayed excitation (n = 8 cells, P = 0.022) than DiA-labeled neurons from NT rats (n = 7 cells). Neurons with delayed excitation from HT rats had a significantly broader first action potential (AP) and a slower maximal downstroke velocity of repolarization compared with NT neurons with delayed excitation (P = 0.016 and P = 0.014, respectively). The number of APs in the first 200 ms of a sustained depolarization was greater in HT than NT neurons (P = 0.012). These results suggest that HT of 4-wk duration reduces TOCs in NTS neurons, and this contributes to reduced delayed excitation and increased AP responses to depolarizing inputs. Such changes could alter baroreflex function in hypertension.
Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José
2013-01-01
Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.
Nanopore DNA sensors based on dendrimer-modified nanopipettes.
Fu, Yaqin; Tokuhisa, Hideo; Baker, Lane A
2009-08-28
A dendrimer-modified nanopipette is used to detect hybridization of a specific DNA sequence through evaluation of the extent of rectification of ion currents observed in the measured current-voltage response.
Geometric rectification of camera-captured document images.
Liang, Jian; DeMenthon, Daniel; Doermann, David
2008-04-01
Compared to typical scanners, handheld cameras offer convenient, flexible, portable, and non-contact image capture, which enables many new applications and breathes new life into existing ones. However, camera-captured documents may suffer from distortions caused by non-planar document shape and perspective projection, which lead to failure of current OCR technologies. We present a geometric rectification framework for restoring the frontal-flat view of a document from a single camera-captured image. Our approach estimates 3D document shape from texture flow information obtained directly from the image without requiring additional 3D/metric data or prior camera calibration. Our framework provides a unified solution for both planar and curved documents and can be applied in many, especially mobile, camera-based document analysis applications. Experiments show that our method produces results that are significantly more OCR compatible than the original images.
Rectification induced in N{sub 2}{sup AA}-doped armchair graphene nanoribbon device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Luo, Kai-Wu
2014-07-07
By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N{sub 2}{sup AA}-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N{sub 2}{sup AA}-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changingmore » the width of graphene nanoribbons or the position of the N{sub 2}{sup AA} dopant. The mechanisms are revealed to explain the rectifying behaviors.« less
The Real Time Correction of Stereoscopic Images: From the Serial to a Parallel Treatment
NASA Astrophysics Data System (ADS)
Irki, Zohir; Devy, Michel; Achour, Karim; Azzaz, Mohamed Salah
2008-06-01
The correction of the stereoscopic images is a task which consists in replacing acquired images by other images having the same properties but which are simpler to use in the other stages of stereovision. The use of the pre-calculated tables, built during an off line calibration step, made it possible to carry out the off line stereoscopic images rectification. An improvement of the built tables made it possible to carry out the real time rectification. In this paper, we describe an improvement of the real time correction approach so it can be exploited for a possible implementation on an FPGA component. This improvement holds in account the real time aspect of the correction and the available resources that can offer the FPGA Type Stratix 1S40F780C5.
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures
NASA Astrophysics Data System (ADS)
Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi
2016-07-01
Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.
Single-molecule designs for electric switches and rectifiers.
Kornilovitch, Pavel; Bratkovsky, Alexander; Williams, Stanley
2003-12-01
A design for molecular rectifiers is proposed. Current rectification is based on the spatial asymmetry of a molecule and requires only one resonant conducting molecular orbital. Rectification is caused by asymmetric coupling of the orbital to the electrodes, which results in asymmetric movement of the two Fermi levels with respect to the orbital under external bias. Results from numerical studies of the family of suggested molecular rectifiers, HS-(CH(2))(n)-C(6)H(4)(CH(2))(m)SH, are presented. Current rectification ratios in excess of 100 are achievable for n = 2 and m > 6. A class of bistable stator-rotor molecules is proposed. The stationary part connects the two electrodes and facilitates electron transport between them. The rotary part, which has a large dipole moment, is attached to an atom of the stator via a single sigma bond. Electrostatic bonds formed between the oxygen atom of the rotor and hydrogen atoms of the stator make the symmetric orientation of the dipole unstable. The rotor has two potential minima with equal energy for rotation about the sigma bond. The dipole can be flipped between the two states by an external electric field. Both rotor-orientation states have asymmetric current-voltage characteristics that are the reverse of each other, so they are distinguishable electrically. Theoretical results on conformation, energy barriers, retention times, switching voltages, and current-voltage characteristics are presented for a particular stator-rotor molecule. Such molecules could be the base for single-molecule switches, reversible diodes, and other molecular electronic devices.
Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao
2014-10-01
In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.
NR2C in the thalamic reticular nucleus; effects of the NR2C knockout.
Zhang, Yuchun; Buonanno, Andres; Vertes, Robert P; Hoover, Walter B; Lisman, John E
2012-01-01
NMDAR antagonists can evoke delta frequency bursting in the nucleus reticularis of the thalamus (nRT). The mechanism of this oscillation was determined; antagonist blocks an NR2C-like conductance that has low Mg block at resting potential and thus can contribute a resting inward current in response to ambient glutamate. Block of this current hyperpolarizes the cell, deinactivating T-type Ca channels and thus triggering delta frequency bursting. The basis for assuming a NR2C-like conductance was that (1) transcripts for NR2C are abundant in the thalamus and (2) the current-voltage curve of the synaptically evoked NMDAR current has the low rectification characteristic of NR2C. In the current study, we have sought to determine whether the channels that generate the NMDAR current are NR2C-like or are actually comprised of receptors containing NR2C. We studied the current-voltage curve of synaptically evoked NMDAR current in the nRT of NR2C knockout mice. In wild-type mice, the current was weakly voltage dependent, as previously observed in rats. This weak rectification was absent in NR2C KO mice. In contrast, NR2C KO had no effect on the strongly rectifying NMDAR current in pyramidal cells of the prefrontal cortex. These results demonstrate that the low rectification normally observed in the nRT is due to NR2C.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Sepulveda-Orengo, Marian T; Lopez, Ana V; Soler-Cedeño, Omar; Porter, James T
2013-04-24
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Single In x Ga1-x As nanowire/p-Si heterojunction based nano-rectifier diode.
Sarkar, K; Palit, M; Guhathakurata, S; Chattopadhyay, S; Banerji, P
2017-09-20
Nanoscale power supply units will be indispensable for fabricating next generation smart nanoelectronic integrated circuits. Fabrication of nanoscale rectifier circuits on a Si platform is required for integrating nanoelectronic devices with on-chip power supply units. In the present study, a nanorectifier diode based on a single standalone In x Ga 1-x As nanowire/p-Si (111) heterojunction fabricated by metal organic chemical vapor deposition technique has been studied. The nanoheterojunction diodes have shown good rectification and fast switching characteristics. The rectification characteristics of the nanoheterojunction have been demonstrated by different standard waveforms of sinusoidal, square, sawtooth and triangular for two different frequencies of 1 and 0.1 Hz. Reverse recovery time of around 150 ms has been observed in all wave response. A half wave rectifier circuit with a simple capacitor filter has been assembled with this nanoheterojunction diode which provides 12% output efficiency. The transport of carriers through the heterojunction is investigated. The interface states density of the nanoheterojunction has also been determined. Occurrence of output waveforms incommensurate with the input is attributed to higher series resistance of the diode which is further explained considering the dimension of p-side and n-side of the junction. The sudden change of ideality factor after 1.7 V bias is attributed to recombination through interface states in space charge region. Low interface states density as well as high rectification ratio makes this heterojunction diode a promising candidate for future nanoscale electronics.
The turbulent generation of outward traveling Alfvenic fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Goldstein, M. L.; Montgomery, D. C.
1983-01-01
From an analysis of the incompressible MHD equations, it is concluded that the frequent observation of outward propagating Alfvenic fluctuations in the solar wind can arise from early stages of in situ turbulent evolution, and need not reflect coronal processes.
Revealing an outward-facing open conformational state in a CLC Cl –/H + exchange transporter
Khantwal, Chandra M.; Abraham, Sherwin J.; Han, Wei; ...
2016-01-22
CLC secondary active transporters exchange Cl - for H + . Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Glu ex ) upon its protonation. Using 19 F NMR, we show that as [H + ] is increased to protonate Glu ex and enrich the outward-facing state, a residue ~20 Å away from Glu ex , near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that themore » cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function.« less
2016-01-01
Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the “minimal physiological requirements” to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple “parsimonious” rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important “emergent” phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid “building-block” to generate more detailed ionic models to represent complex rabbit electrophysiology. PMID:27749895
Identification of second messenger mediating signal transduction in the olfactory receptor cell.
Takeuchi, Hiroko; Kurahashi, Takashi
2003-11-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Gray, Richard A; Pathmanathan, Pras
2016-10-01
Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the "minimal physiological requirements" to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple "parsimonious" rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important "emergent" phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid "building-block" to generate more detailed ionic models to represent complex rabbit electrophysiology.
Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1)
McNamara, Fergal N; Randall, Andrew; Gunthorpe, Martin J
2005-01-01
We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. The current–voltage relationship of piperine-activated currents showed pronounced outward rectification (25±4-fold between −70 and +70 mV) and a reversal potential of 0.0±0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. Although piperine was a less potent agonist (EC50=37.9±1.9 μM) than capsaicin (EC50=0.29±0.05 μM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230±20%, n=11) or capsaicin (284±32%, n=8) upon acidification to pH 6.5. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t1/2=9.9±0.7 s) than capsaicin (t1/2>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function. PMID:15685214
Identification of Second Messenger Mediating Signal Transduction in the Olfactory Receptor Cell
Takeuchi, Hiroko; Kurahashi, Takashi
2003-01-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed “InsP3 odorants”). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells (∼2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants. PMID:14581582
Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J
2012-01-01
BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103
Outward transport of high-temperature materials around the midplane of the solar nebula.
Ciesla, Fred J
2007-10-26
The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.
Turbine assembly containing an inner shroud
Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud
2000-01-01
A turbine assembly having a turbine stator, a ceramic inner shroud, and a first spring. The stator has a longitudinal axis and an outer shroud block with opposing and longitudinally outward facing first and second sides. The first side has a longitudinally outward projecting first ledge and has a first side portion located radially outward of the first ledge. The ceramic inner shroud has a first hook portion longitudinally and radially surrounding the first ledge. The first spring is attached to one of the first side portion and the first hook portion and unattachedly and resiliently contacts the other of the first side portion and the first hook portion.
Photogrammetric aspects of remapping procedures
NASA Technical Reports Server (NTRS)
Mikhail, E. M.
1982-01-01
Photogrammetric control generation is discussed. Techniques in remote sensing data reduction are described. Emphasis is placed on methods of rectification of aerial photography and frame photography. Examples of multispectral band scanner data that were processed are presented.
Unimolecular rectifiers and proposed unimolecular amplifier.
Metzger, Robert M
2003-12-01
The rectification by three molecules that form Langmuir-Blodgett monolayers between gold electrodes is reviewed, along with a proposal for the means to obtain gain in a unimolecular amplifier, the molecular analog of a bipolar junction transistor.
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1984-01-01
Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.
High Efficiency Synchronous Rectification in Spacecraft
NASA Technical Reports Server (NTRS)
Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.
1993-01-01
This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.
The Articulatory In-Out Effect Resists Oral Motor Interference
ERIC Educational Resources Information Center
Lindau, Berit; Topolinski, Sascha
2018-01-01
People prefer words with inward directed consonantal patterns (e.g., MENIKA) compared to outward patterns (KENIMA), because inward (outward) articulation movements resemble positive (negative) mouth actions such as swallowing (spitting). This effect might rely on covert articulation simulations, or subvocalizations, since it occurs also under…
ERIC Educational Resources Information Center
Gewertz, Catherine
2005-01-01
This article describes the different experiences of the participants in an Outward Bound-sponsored "urban expedition" to New York City that was designed to make them better teachers by examining their beliefs and biases. The participants in this "urban expedition" came from schools that work with Outward Bound USA, the…
Colorado Outward Bound School Rafting Manual.
ERIC Educational Resources Information Center
Brown, Al
River rafting trips at the Colorado Outward Bound School (COBS) present participants with an opportunity for developing self-confidence, self-awareness, and concern for others through challenging and adventuresome group effort, combined with a program of instruction in rafting skills, safety consciousness, and awareness of the natural environment.…
Logistics Handbook, 1976. Colorado Outward Bound School.
ERIC Educational Resources Information Center
Colorado Outward Bound School, Denver.
Logistics, a support mission, is vital to the successful operation of the Colorado Outward Bound School (COBS) courses. Logistics is responsible for purchasing, maintaining, transporting, and replenishing a wide variety of items, i.e., food, mountaineering and camping equipment, medical and other supplies, and vehicles. The Logistics coordinator…
Regional analysis of whole cell currents from hair cells of the turtle posterior crista.
Brichta, Alan M; Aubert, Anne; Eatock, Ruth Anne; Goldberg, Jay M
2002-12-01
The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to the basolateral currents of the hair cells innervated, we selectively harvested type I and II hair cells from the central zone and type II hair cells from two parts of the peripheral zone, one near the planum and the other near the torus. Voltage-dependent currents were studied with the whole cell, ruptured-patch method and characterized in voltage-clamp mode. We found regional differences in both outwardly and inwardly rectifying voltage-sensitive currents. As in birds and mammals, type I hair cells have a distinctive outwardly rectifying current (I(K,L)), which begins activating at more hyperpolarized voltages than do the outward currents of type II hair cells. Activation of I(K,L) is slow and sigmoidal. Maximal outward conductances are large. Outward currents in type II cells vary in their activation kinetics. Cells with fast kinetics are associated with small conductances and with partial inactivation during 200-ms depolarizing voltage steps. Almost all type II cells in the peripheral zone and many in the central zone have fast kinetics. Some type II cells in the central zone have large outward currents with slow kinetics and little inactivation. Although these currents resemble I(K,L), they can be distinguished from the latter both electrophysiologically and pharmacologically. There are two varieties of inwardly rectifying currents in type II hair cells: activation of I(K1) is rapid and monoexponential, whereas that of I(h) is slow and sigmoidal. Many type II cells either have both inward currents or only have I(K1); very few cells only have I(h). Inward currents are less conspicuous in type I cells. Type II cells near the torus have smaller outwardly rectifying currents and larger inwardly rectifying currents than those near the planum, but the differences are too small to account for variations in discharge properties of bouton afferents innervating the two regions of the peripheral zone. The large outward conductances seen in central cells, by lowering impedances, may contribute to the low rotational gains of some central-zone afferents.
Park, Irene J. K.; Wang, Lijuan; Williams, David R.; Alegría, Margarita
2016-01-01
Although prior research has consistently documented the association between racial/ethnic discrimination and poor mental health outcomes, the mechanisms that underlie this link are still unclear. The present three-wave longitudinal study tested the mediating role of anger regulation in the discrimination—mental health link among 269 Mexican-origin adolescents (Mage = 14.1 years, SD = 1.6; 57% girls), 12 – 17 years old. Three competing anger regulation variables were tested as potential mediators: outward anger expression, anger suppression, and anger control. Longitudinal mediation analyses were conducted using multilevel modeling that disaggregated within-person effects from between-person effects. Results indicated that outward anger expression was a significant mediator; anger suppression and anger control were not significant mediators. Within a given individual, greater racial/ethnic discrimination was associated with more frequent outward anger expression. In turn, more frequent outward anger expression was associated with higher levels of anxiety and depression at a given time point. Gender, age, and nativity status were not significant moderators of the hypothesized mediation models. By identifying outward anger expression as an explanatory mechanism in the discrimination-distress link among Latino youths, this study points to a malleable target for prevention and intervention efforts aimed at mitigating the detrimental impact of racism on Latino youths’ mental health during the developmentally critical period of adolescence. PMID:27893238
The functional organization of the crayfish lamina ganglionaris. I. Nonspiking monopolar cells.
Wang-Bennett, L T; Glantz, R M
1987-06-01
The light responses of the second order lamina monopolar neurons were examined in the crayfish compound eye. Single cartridge monopolar neurons (M1-M4) exhibited nonspiking hyperpolarizing light responses; for M1, M3 and M4 the transient 'on' response operated over the same intensity range as the receptor, 3.5 log units. M2 operated in a much narrower intensity range (1.5 log unit). The 'on' responses were associated with a 19% increase in conductance. The hyperpolarizing 'on' response can be reversed at 18 mV below the resting membrane potential. The half-angular sensitivity width of monopolar cells (in partially dark-adapted eyes) is 15 degrees X 8 degrees (horizontal by vertical). Off axis stimuli elicit attenuated hyperpolarizing responses associated with a diminished conductance increase or depolarizing responses associated with a net decrease in conductance. The latter result is consistent with the presynaptic inhibition of a 'back-ground' transmitter release which normally persists in the dark. Lateral inhibition is elicited from the area immediately surrounding the excitatory field, and it is associated with diminished transient responses and an accelerated decay of the response. Inhibitory stimuli decrease the conductance change associated with the hyperpolarizing response. The surround stimuli can also elicit depolarizing 'off' responses with reversal potentials positive to the membrane resting potential. It is concluded that the rapidly repolarizing monopolar cell response is modulated by both pre- and postsynaptic inhibitory mechanisms. A compartment model indicates that signal attenuation along a 500 microns length of monopolar cell axon is 22-34%. Simulation of steady-state signal transmission suggests that passive (decremental) conduction is sufficient to convey 66 to 78% of the monopolar cell signal from lamina to medulla. The current-voltage relation in current clamp is linear over the physiological operating range, and there is no evidence for rectification. Hyperpolarization of single monopolar cells (M1-M4) provides a polysynaptic excitatory signal to the medullary sustaining fibers.
Outdoor Education Academic Programs in the United States
ERIC Educational Resources Information Center
Bell, Brent J.; Seaman, Jayson; Trauntvein, Nate
2017-01-01
The growth of outdoor adventure programs developed, in part, from the Outward Bound movement in the 1970s (MacArthur, 1979; Outward Bound, 1968), which created a demand for specialized collegiate training. Since the inaugural conference on outdoor pursuits in higher education at Appalachian State University in 1974 (Smathers, 1974), approximately…
Outward Bound...Into the Mainstream of Education.
ERIC Educational Resources Information Center
Outward Bound, Inc., Andover, MA.
Outward Bound schools have instituted advanced courses designed specifically for adults engaged in education and youth work. Benefits for teachers include greater development of capacitites and potentialities, greater confidence in their abilities, and the ability to relate more effectively to others. Some of the specific training elements in an…
Instructor's Field Manual: North Carolina Outward Bound School.
ERIC Educational Resources Information Center
Outward Bound, Morganton, NC.
A supplement to the North Carolina Outward Bound School's Instructor's Handbook, this field manual presents useful, but not required, information gleaned from old timers and resource books which may enable the instructor to conduct a better course. Section one considers advantages and disadvantages and provides directions and topographical maps…
An Investigation of the Outward Bound Final Expedition
ERIC Educational Resources Information Center
Bobilya, Andrew J.; Kalisch, Ken; Daniel, Brad
2011-01-01
Research of wilderness programs indicates a clear need for additional investigation of specific program components and their influence on participant outcomes. This study examines one component of the Outward Bound wilderness program--the Final Expedition. The Final Expedition is a student-led wilderness expedition and is also referred to as an…
Adapted Outward Bound Programmes: An Alternative for Corrections.
ERIC Educational Resources Information Center
Cardwell, G. R.
A number of programmes for delinquent youth have been established throughout North America based on the Outward Bound concept: to involve volunteer participants in an outdoor programme which offers challenging and adventuresome tasks in a high-impact environment. Project D.A.R.E. (Development through Adventure, Responsibility and Education) in…
Alternate Semester 1972. An Evaluation.
ERIC Educational Resources Information Center
Copp, Barry D.; And Others
Five students from a Boston high school and 35 from Lincoln-Sudbury took part in an alternate semester consisting of 5 units: Outward Bound, environmental issues, urban, rural, and river/building. Students had to be juniors or seniors, have parental permission, and meet graduation requirements. The alternate semester began with Outward Bound, a…
ERIC Educational Resources Information Center
Hamed, Heather; Reyes, Jazmin; Moceri, Dominic C.; Morana, Laura; Elias, Maurice J.
2011-01-01
The authors describe a program implemented in Red Bank Middle School in New Jersey to help at-risk, minority middle school girls realize their leadership potential. The GLO (Girls Leading Outward) program was developed by the Developing Safe and Civil Schools Project at Rutgers University and is facilitated by university students. Selected middle…
Ac electronic tunneling at optical frequencies
NASA Technical Reports Server (NTRS)
Faris, S. M.; Fan, B.; Gustafson, T. K.
1974-01-01
Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin
2018-03-01
Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.
NASA Astrophysics Data System (ADS)
Chen, Zhendong; Kong, Wenwen; Mi, Kui; Chen, Guilin; Zhang, Peng; Fan, Xiaolong; Gao, Cunxu; Xue, Desheng
2018-03-01
Epitaxial Co2FeAl films with the thickness varying from 26.4 nm to 4.6 nm were grown on MgO(001) substrates by molecular beam epitaxy. Spin rectification was adopted to study the dynamic magnetic properties of the Co2FeAl films, considering the reported advantages of this technique with high thickness-independent sensitivity on samples. At a fixed microwave frequency, the in-plane angular dependent resonance fields and their linewidths exhibit a superposition of a uniaxial and a fourfold anisotropy for all samples. The results reveal an anisotropic damping behavior of the films. Along in-plane different azimuths of the films, frequency-dependent resonance-field linewidths were investigated. The anisotropic effective damping of the films with the thickness varying from 26.4 nm to 4.6 nm was then analyzed, which is contributed from the two-magnon scattering.
Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg
2017-08-09
The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.
Pseudo-diode based on protonic/electronic hybrid oxide transistor
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran
2018-01-01
Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Anyuan; Liu, Erfu; Long, Mingsheng
2016-05-30
We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less
Chen, Zhen; Wong, Carlaton; Lubner, Sean; Yee, Shannon; Miller, John; Jang, Wanyoung; Hardin, Corey; Fong, Anthony; Garay, Javier E.; Dames, Chris
2014-01-01
A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an ‘inelastic thermal collimator’ element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9±0.8%, while without the collimator no rectification is detectable (<0.3%). PMID:25399761
Spatially resolved, substrate-induced rectification in C 60 bilayers on copper
Smerdon, J. A.; Darancet, P.; Guest, J. R.
2017-02-22
Here, we demonstrate rectification ratios ( RR) of ≳1000 at biases of 1.3 V in bilayers of C 60 deposited on copper. Using scanning tunneling spectroscopy and first-principles calculations, we show that the strong coupling between C 60 and the Cu(111) surface leads to the metallization of the bottom C 60 layer, while the molecular orbitals of the top C60 are essentially unaffected. Due to this substrate-induced symmetry breaking and to a tunneling transport mechanism, the system behaves as a hole-blocking layer, with a spatial dependence of the onset voltage on intra-layer coordination. Together with previous observations of strong electron-blockingmore » character of pentacene/C 60 bilayers on Cu(111), this work further demonstrates the potential of strongly hybridized, C 60-coated electrodes to harness the electrical functionality of molecular components.« less
Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices
NASA Astrophysics Data System (ADS)
Nian, L. L.; Zhang, Rong; Tang, F. R.; Tang, Jun; Bai, Long
2018-03-01
By employing the nonequilibrium Green's function technique, we study the thermal-induced spin-Seebeck transport through a chiral double-stranded DNA (dsDNA) connected to a normal-metal and a ferromagnetic lead. How the main parameters of the dsDNA-based system influence the spin-Seebeck transport is analyzed at length, and the thermally created charge (spin-related) current displays the rectification effect and the negative differential thermal conductance feature. More importantly, the spin current exhibits the rectification behavior of the spin-Seebeck effect; even the perfect spin-Seebeck effect can be obtained with the null charge current. Thus, the chiral dsDNA-based system can act as a spin(charge)-Seebeck diode, spin(charge)-Seebeck switch, and spin(charge)-Seebeck transistor. Our results provide new ways to design spin caloritronic devices based on dsDNA or other organic molecules.
Room temperature stable single molecule rectifiers with graphite electrodes
NASA Astrophysics Data System (ADS)
Rungger, Ivan; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M.; Broekmann, P.; Rudnev, A. V.
In this combined theoretical and experimental study we present new molecular electronics device characteristics of unprecedented stability at room temperature by using electrodes based on highly oriented pyrolytic graphite with covalently attached molecules. To this aim, we explore the effect of the anchoring group chemistry on the charge transport properties of graphite/molecule contacts by means of the scanning tunneling microscopy break-junction technique and ab initio simulations. The theoretical approach to evaluate the conductance is based on density functional theory calculations combined with the non-equilibrium Greens function technique, as implemented in the Smeagol electron transport code. We also demonstrate a strong bias dependence and rectification of the single molecule conductance induced by the anchoring chemistry in combination with the very low density of states of graphite around the Fermi energy. We show that the direction of tunneling current rectification can be tuned by anchoring group chemistry.
Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films
NASA Astrophysics Data System (ADS)
Gity, Farzan; Ansari, Lida; Lanius, Martin; Schüffelgen, Peter; Mussler, Gregor; Grützmacher, Detlev; Greer, J. C.
2017-02-01
Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation.
Mallajosyula, Sairam S; Pati, Swapan K
2007-10-11
Protonation of DNA basepairs is a reversible phenomenon that can be controlled by tuning the pH of the system. Under mild acidic conditions, the hydrogen-bonding pattern of the DNA basepairs undergoes a change. We study the effect of protonation on the electronic properties of the DNA basepairs to probe for possible molecular electronics applications. We find that, under mild acidic pH conditions, the A:T basepair shows excellent rectification behavior that is, however, absent in the G:C basepair. The mechanism of rectification has been discussed using a simple chemical potential model. We also consider the noncanonical A:A basepair and find that it can be used as efficient pH dependent molecular switch. The switching action in the A:A basepair is explained in the light of pi-pi interactions, which lead to efficient delocalization over the entire basepair.
NASA Astrophysics Data System (ADS)
Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.
2017-07-01
This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.
Single-contact tunneling thermometry
Maksymovych, Petro
2016-02-23
A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
Cooling arrangement for a superconducting coil
Herd, K.G.; Laskaris, E.T.
1998-06-30
A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.
Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores
van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf
2015-01-01
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328
NASA Astrophysics Data System (ADS)
Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.
2015-11-01
Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j
NASA Astrophysics Data System (ADS)
Denner, Michele; Raubenheimer, Jacobus H.
2018-05-01
Historical aerial photography has become a valuable commodity in any country, as it provides a precise record of historical land management over time. In a developing country, such as South Africa, that has undergone enormous political and social change over the last years, such photography is invaluable as it provides a clear indication of past injustices and serves as an aid to addressing post-apartheid issues such as land reform and land redistribution. National mapping organisations throughout the world have vast repositories of such historical aerial photography. In order to effectively use these datasets in today's digital environment requires that it be georeferenced to an accuracy that is suitable for the intended purpose. Using image-to-image georeferencing techniques, this research sought to determine the accuracies achievable for ortho-rectifying large volumes of historical aerial imagery, against the national standard for ortho-rectification in South Africa, using two different types of scanning equipment. The research conducted four tests using aerial photography from different time epochs over a period of sixty years, where the ortho-rectification matched each test to an already ortho-rectified mosaic of a developed area of mixed land use. The results of each test were assessed in terms of visual accuracy, spatial accuracy and conformance to the national standard for ortho-rectification in South Africa. The results showed a decrease in the overall accuracy of the image as the epoch range between the historical image and the reference image increased. Recommendations on the applications possible given the different epoch ranges and scanning equipment used are provided.
In situ superexchange electron transfer through a single molecule: a rectifying effect.
Kornyshev, Alexei A; Kuznetsov, Alexander M; Ulstrup, Jens
2006-05-02
An increasingly comprehensive body of literature is being devoted to single-molecule bridge-mediated electronic nanojunctions, prompted by their prospective applications in molecular electronics and single-molecule analysis. These junctions may operate in gas phase or electrolyte solution (in situ). For biomolecules, the latter is much closer to their native environment. Convenient target molecules are aromatic molecules, peptides, oligonucleotides, transition metal complexes, and, broadly, molecules with repetitive units, for which the conducting orbitals are energetically well below electronic levels of the solvent. A key feature for these junctions is rectification in the current-voltage relation. A common view is that asymmetric molecules or asymmetric links to the electrodes are needed to acquire rectification. However, as we show here, this requirement could be different in situ, where a structurally symmetric system can provide rectification because of the Debye screening of the electric field in the nanogap if the screening length is smaller than the bridge length. The Galvani potentials of each electrode can be varied independently and lead to a transistor effect. We explore this behavior for the superexchange mechanism of electron transport, appropriate for a wide class of molecules. We also include the effect of conformational fluctuations on the lowest unoccupied molecular orbital (LUMO) energy levels; that gives rise to non-Arrhenius temperature dependence of the conductance, affected by the molecule length. Our study offers an analytical formula for the current-voltage characteristics that demonstrates all these features. A detailed physical interpretation of the results is given with a discussion of reported experimental data.
Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.
Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W
2015-12-01
Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.
Current rectification by self-assembled molecular quantum dots from first principles
NASA Astrophysics Data System (ADS)
Larade, Brian; Bratkovsky, Alexander
2003-03-01
We present results of first-principles calculations of the current rectification by self-assembled molecular quantum dots. Molecules of that kind should be synthesized with a central conjugated (narrow band-gap) part, and two peripheral saturated (wide band-gap) barrier groups of substantially different lengths L1 and L_2. The peripheral groups must end with chemical Â"anchorÂ" groups, enabling attachment of the molecule to the electrodes. In such molecules, if they are not longer than about 2-3 nm, the electron transport is likely to proceed by resonant tunneling through molecular orbitals (MO) centered on the conjugated part of the molecule (Â"quantum dotÂ") [1,2]. Generally, either LUMO (lowest unoccupied MO) or HOMO (highest occupied MO) will be most transparent to the tunneling electrons because of their different coupling to electrodes. We have studied (i) single benzene ring C6H6 [2] and (ii) naphthalene C10H8, separated from gold electrodes by alkane chains of different lengths with the use of the non-equilibrium Green's function method and self-consistent density-functional theory. The results show significant changes in electron density and potential distribution in the vicinity of molecule-electrode contact. In the case of a naphthalene quantum dot, separated from electrodes by asymmetric alkane groups (CH2)2 and (CH2)6, the I-V curve shows current rectification on the order of ˜ 10^2. [1] A.M. Bratkovsky and P.E. Kornilovitch, Phys. Rev. B (2002), to be published. [2] P. E. Kornilovitch, A.M. Bratkovsky, and R.S. Williams, Phys. Rev. B 66, 165436 (2002).
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons
Sepulveda-Orengo, Marian T.; Lopez, Ana V.; Soler-Cedeño, Omar; Porter, James T.
2013-01-01
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPA receptors into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPA receptors into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPA receptors with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. Together, these findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPA receptors in IL synapses. Consequently, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders. PMID:23616528
BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David
2000-01-01
The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Leijon, Sara; Magnusson, Anna K.
2014-01-01
The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential <−75 mV and their passive responses in the hyperpolarizing range. In contrast, the response properties of VE and LOC neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596
NASA Astrophysics Data System (ADS)
Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa
2015-04-01
The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.
Gao, Ya-dong; Hanley, Peter J; Rinné, Susanne; Zuzarte, Marylou; Daut, Jurgen
2010-07-01
STIM1 'senses' decreases in endoplasmic reticular (ER) luminal Ca(2+) and induces store-operated Ca(2+) (SOC) entry through plasma membrane Orai channels. The Ca(2+)/calmodulin-activated K(+) channel K(Ca)3.1 (previously known as SK4) has been implicated as an 'amplifier' of the Ca(2+)-release activated Ca(2+) (CRAC) current, especially in T lymphocytes. We have previously shown that human macrophages express K(Ca)3.1, and here we used the whole-cell patch-clamp technique to investigate the activity of these channels during Ca(2+) store depletion and store-operated Ca(2+) influx. Using RT-PCR, we found that macrophages express the elementary CRAC channel components Orai1 and STIM1, as well as Orai2, Orai3 and STIM2, but not the putatively STIM1-activated channels TRPC1, TRPC3-7 or TRPV6. In whole-cell configuration, a robust Ca(2+)-induced outwardly rectifying K(+) current inhibited by clotrimazole and augmented by DC-EBIO could be detected, consistent with K(Ca)3.1 channel current (also known as intermediate-conductance IK1). Introduction of extracellular Ca(2+) following Ca(2+) store depletion via P2Y(2) receptors induced a robust charybdotoxin (CTX)- and 2-APB-sensitive outward K(+) current and hyperpolarization. We also found that SOC entry induced by thapsigargin treatment induced CTX-sensitive K(+) current in HEK293 cells transiently expressing K(Ca)3.1. Our data suggest that SOC and K(Ca)3.1 channels are tightly coupled, such that a small Ca(2+) influx current induces a much large K(Ca)3.1 channel current and hyperpolarization, providing the necessary electrochemical driving force for prolonged Ca(2+) signaling and store repletion. Copyright 2010 Elsevier Ltd. All rights reserved.
An Evaluation of Dropouts from Outward Bound Programs for the Unemployed
ERIC Educational Resources Information Center
Maxwell, Robert; Perry, Martin; Martin, Andrew John
2008-01-01
Outward Bound New Zealand provides 21-day residential motivational intervention courses (Catalyst courses) to long-term unemployed clients approved by the Ministry of Social Development. During the period 2002/03, 20% of participants starting the course dropped out before course completion; which was double the contracted acceptable level set by…
Exploring Familial Relationship Growth and Negotiation: A Case Study of Outward Bound Family Courses
ERIC Educational Resources Information Center
Overholt, Jillisa R.
2013-01-01
This study explored the phenomenon of father-child relationship development within the context of an Outward Bound (OB) family course, an environment that may both disrupt the ordinary aspects of an established relationship, and provide activities to purposefully encourage relationship development through a variety of aspects inherent to the…
Academic Perspectives on the Outcomes of Outward Student Mobility
ERIC Educational Resources Information Center
Bridger, Kath
2015-01-01
This research project was commissioned by the UK Higher Education International Unit (IU) and the Higher Education Academy (HEA) in June 2014 to explore academic perspectives on the outcomes of outward mobility at undergraduate, postgraduate and research levels for UK domiciled students, and to consider how best to facilitate the take up as well…
Service at the Heart of Learning: Teachers' Writings.
ERIC Educational Resources Information Center
Cousins, Emily, Ed.; Mednick, Amy, Ed.
Expeditionary Learning Outward Bound (ELOB) is a framework for comprehensive school improvement that uses the philosophy and pedagogy of Outward Bound to make learning more hands-on, project-based, and adventurous. One of the 10 ELOB design principles is service and compassion. This book by teachers in ELOB schools contains accounts of students'…
Outward Bound Leadership Model: An Exploratory Study of Leadership Variables.
ERIC Educational Resources Information Center
Bartley, Natalie L.
A field study of 29 mountain-course instructors at the Colorado Outward Bound School (COBS) explored the relationships of gender-related personality traits and soft skills to outdoor leadership styles and course outcomes. Soft skills are competencies necessary for effective interpersonal helping skills, as opposed to hard skills, which are…
To Know By Experience: Outward Bound, North Carolina.
ERIC Educational Resources Information Center
Meyer, Dan; Meyer, Diane
Directed at discovering one's inner resources and the dignity of one's fellow man, the Outward Bound experience seeks to instill self-reliance, physical fitness, and compassion as fundamental values recognizing there are few opportunities to formulate such values in an increasingly technological and urbanized society. For 3 1/2 weeks, people from…
ERIC Educational Resources Information Center
Berger, Ron
2013-01-01
Renaissance School is part of a network of Expeditionary Learning (EL) schools that was borne of a collaboration between the Harvard Graduate School of Education and Outward Bound, USA. The EL model is centered on the Outward Bound ethic of having youth work together to achieve a task. EL schools take an approach to teaching and learning that…
Colorado Outward Bound School River Rafters' Manual.
ERIC Educational Resources Information Center
Leachman, Mark
Instructional sequences, safety rules, duties of crew members, and procedures for Colorado Outward Bound School river rafting trips are summarized in this manual. Designed to acquaint instructors with the duties expected of them on the trips, the information in the manual is presented in outline form and is intended for those with prior river…
Revealing an outward-facing open conformational state in a CLC Cl–/H+ exchange transporter
Khantwal, Chandra M; Abraham, Sherwin J; Han, Wei; Jiang, Tao; Chavan, Tanmay S; Cheng, Ricky C; Elvington, Shelley M; Liu, Corey W; Mathews, Irimpan I; Stein, Richard A; Mchaourab, Hassane S; Tajkhorshid, Emad; Maduke, Merritt
2016-01-01
CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function. DOI: http://dx.doi.org/10.7554/eLife.11189.001 PMID:26799336
Ceramic turbine stator vane and shroud support
Glenn, Robert G.
1981-01-01
A support system for supporting the stationary ceramic vanes and ceramic outer shrouds which define the motive fluid gas path in a gas turbine engine is shown. Each individual segment of the ceramic component whether a vane or shroud segment has an integral radially outwardly projecting stem portion. The stem is enclosed in a split collet member of a high-temperature alloy material having a cavity configured to interlock with the stem portion. The generally cylindrical external surface of the collet engages a mating internal cylindrical surface of an aperture through a supporting arcuate ring segment with mating camming surfaces on the two facing cylindrical surfaces such that radially outward movement of the collet relative to the ring causes the internal cavity of the collet to be reduced in diameter to tightly engage the ceramic stem disposed therein. A portion of the collet extends outwardly through the ring segment opposite the ceramic piece and is threaded for receiving a nut and a compression washer for retaining the collet in the ring segment under a continuous biasing force urging the collet radially outwardly.
Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1982-01-01
The problems involved in processing remotely sensed data are defined within the contex of the total information system structure. The correlation of various data sets through georeferencing and cataloging is emphasized along with geometric rectification. The sources and types of possible geometric errors are outlined.
NASA Astrophysics Data System (ADS)
Kuroda, Kazuaki; LCGT Collaboration
Piezoelectric materials are just now, within the last decade, coming into their own as a commercial material. Capable of converting energy from the mechanical domain to the electrical domain; piezos are ideal sensors, vibration dampers, energy harvesters, and actuators. Frequency rectification, or the conversion of small, high frequency piezoelectric vibrations into useful low frequency actuation, is required to obtain widespread industrial use of piezoelectric devices. This work examines three manifestations of piezoelectric frequency rectification: energy harvesting, a hydraulic motor, and friction based commercial-off-the-shelf motors. An energy harvesting device is developed, manufactured, and tested in this work, resulting in the development of a high Energy Density (J/m 3), high Power Density (W/m3) energy harvester. The device is shown to have an Energy Density nearly twice that of a similar conventional energy harvesting device. The result of this work is the development of an energy harvesting system that generates more energy in a given volume of piezoelectric material, opening the possibility of miniaturization of energy harvesting devices. Also presented is an effort to integrate a high frequency, high flow rate micromachined valve array into a PiezoHydraulic Pump (PHP), enabling resonant operation of the PHP. Currently, the device is limited by the resonant frequency of the proprietary passive check valves. The PHP is fully characterized, and the microvalve array is tested to determine its resonant frequency in a fluid medium. The valve testing resulted in a resonant frequency of 6.9 kHz, slightly lower than the target operating frequency of 10 kHz. Finally, the results of an examination of frequency rectification as applied to COTS piezoelectric motors are presented. Currently, motors are almost universally characterized based upon their available mechanical power. A better comparison is one based upon the actual Energy Density of the piezoelectric material utilized in the motor compared to the theoretical maximum Energy Density under the motor operating conditions (i.e., frequency, applied electric field). The result of this work is a more descriptive metric to evaluate piezoelectric motors that provides information on the effectiveness of the motor drive train; that is, how effectively the motion of the piezoelectric is transferred to the outside world.
Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide
NASA Astrophysics Data System (ADS)
Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe
2012-08-01
Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion. Electronic supplementary information (ESI) available: Pattern transfer of local AAO mask into Si layers of different thickness; characterization of the Ag/AgCl electrodes and the cell constant; control experiments of mono-charged nanopore membranes; and simulation of ionic transport in nanofluidic diodes. See DOI: 10.1039/c2nr31243c
X-ray structures of LeuT in substrate-free outward-open and apo inward-open states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, Harini; Gouaux, Eric
2012-08-09
Neurotransmitter sodium symporters are integral membrane proteins that remove chemical transmitters from the synapse and terminate neurotransmission mediated by serotonin, dopamine, noradrenaline, glycine and GABA ({gamma}-aminobutyric acid). Crystal structures of the bacterial homologue, LeuT, in substrate-bound outward-occluded and competitive inhibitor-bound outward-facing states have advanced our mechanistic understanding of neurotransmitter sodium symporters but have left fundamental questions unanswered. Here we report crystal structures of LeuT mutants in complexes with conformation-specific antibody fragments in the outward-open and inward-open states. In the absence of substrate but in the presence of sodium the transporter is outward-open, illustrating how the binding of substrate closes themore » extracellular gate through local conformational changes: hinge-bending movements of the extracellular halves of transmembrane domains 1, 2 and 6, together with translation of extracellular loop 4. The inward-open conformation, by contrast, involves large-scale conformational changes, including a reorientation of transmembrane domains 1, 2, 5, 6 and 7, a marked hinge bending of transmembrane domain 1a and occlusion of the extracellular vestibule by extracellular loop 4. These changes close the extracellular gate, open an intracellular vestibule, and largely disrupt the two sodium sites, thus providing a mechanism by which ions and substrate are released to the cytoplasm. The new structures establish a structural framework for the mechanism of neurotransmitter sodium symporters and their modulation by therapeutic and illicit substances.« less
Differences in intersaccadic adaptation transfer between inward and outward adaptation.
Schnier, Fabian; Lappe, Markus
2011-09-01
Saccadic adaptation is a mechanism to increase or decrease the amplitude gain of subsequent saccades, if a saccade is not on target. Recent research has shown that the mechanism of gain increasing, or outward adaptation, and the mechanism of gain decreasing, or inward adaptation, rely on partly different processes. We investigate how outward and inward adaptation of reactive saccades transfer to other types of saccades, namely scanning, overlap, memory-guided, and gap saccades. Previous research has shown that inward adaptation of reactive saccades transfers only partially to these other saccade types, suggesting differences in the control mechanisms between these saccade categories. We show that outward adaptation transfers stronger to scanning and overlap saccades than inward adaptation, and that the strength of transfer depends on the duration for which the saccade target is visible before saccade onset. Furthermore, we show that this transfer is mainly driven by an increase in saccade duration, which is apparent for all saccade categories. Inward adaptation, in contrast, is accompanied by a decrease in duration and in peak velocity, but only the peak velocity decrease transfers from reactive saccades to other saccade categories, i.e., saccadic duration remains constant or even increases for test saccades of the other categories. Our results, therefore, show that duration and peak velocity are independent parameters of saccadic adaptation and that they are differently involved in the transfer of adaptation between saccade categories. Furthermore, our results add evidence that inward and outward adaptation are different processes.
Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.
Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127
α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat.
Báez, Adriana; Salceda, Emilio; Fló, Martín; Graña, Martín; Fernández, Cecilia; Vega, Rosario; Soto, Enrique
2015-10-08
Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8 μM) when continuously perfused during 25 s (including a 5 s pulse to pH 6.1), but not when co-applied with the pH drop. Additionally, we show that α-DTx abolished a transient component of the outward current that, in some experiments, appeared immediately after the end of the acid pulse. Our data indicate that α-DTx inhibits ASICs in the high nM range while some Kv are inhibited in the low nM range. The α-DTx selectivity and its potential interaction with ASICs should be taken in consideration when DTx is used in the high nM range. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fluid-driven seismicity in a stable tectonic context: The Remiremont fault zone, Vosges, France
NASA Astrophysics Data System (ADS)
Audin, Laurence; Avouac, Jean-Philippe; Flouzat, Mireille; Plantet, Jean-Louis
2002-03-01
Some relocated seismic events, which have small magnitudes (ML < 4.8), are found to align along a 40 km-long fault zone flanking the southern Vosges Massif to the west. It joins to the south with the epicentral area of the historical 1682 earthquake (Io = VIII MSK). The Remiremont cluster was preceded by a period of seismic coalescence and triggered outward of bilateral seismic migration. The 1984 seismic crisis developed along a well defined 3 km-long vertical plane. In both cases, migration rates of the order of 5-10 km/yr over 30 km-long distances are determined. This pattern requires some mechanism of stress interaction which must act over distances of the order of 1 to 20 km within years. Given the low tectonic activity and the magnitudes of the events the stress transfer cannot result from co-seismic elastic loading or from transient strain at depth. We suggest that the seismic activity reflect rupture of asperities driven by fluid-flow in a zone of relatively high permeability.
Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.
Luo, Qingshan; Yang, Xu; Yu, Shan; Shi, Huigang; Wang, Kun; Xiao, Le; Zhu, Guangyu; Sun, Chuanqi; Li, Tingting; Li, Dianfan; Zhang, Xinzheng; Zhou, Min; Huang, Yihua
2017-05-01
After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptB 2 FG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptB 2 FG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptB 2 FG that is distinct from those of classical ABC transporters that transport substrates across the IM.
Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee
2016-01-01
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368
Modulation by clamping: Kv4 and KChIP interactions.
Wang, Kewei
2008-10-01
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs that belong to neuronal calcium sensor (NCS) family of calcium binding EF-hand proteins co-assemble with Kv4 (Shal) alpha subunits to form a native complex that encodes major components of neuronal somatodendritic A-type K+ current, I(SA), in neurons and transient outward current, I(TO), in cardiac myocytes. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Here, I attempt to emphasize the interaction between KChIPs and Kv4 based on recent progress made in understanding the structure complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials of designing compounds aimed at disrupting the protein-protein interaction for treatment of membrane excitability-related disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M {sub disk} ≈ M {sub MMSN}, where MMSN is the {sup m}inimum-mass solar nebula{sup )} disks with viscous stress parameter α between 10{sup –3} andmore » 10{sup –2}. In disks with relatively low-mass (M {sub disk} ≲ M {sub MMSN}), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α ≤ 10{sup –4}). Such disks have a very small aspect ratio (h ∼ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ∼ 0.02 and α ≤ 10{sup –4}. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.« less
Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M.
2017-02-10
The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can playmore » a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.« less
Ishihara, Keiko; Yan, Ding-Hong
2007-01-01
The outward component of the strong inward rectifier K+ current (IKir) plays a pivotal role in polarizing the membranes of excitable and non-excitable cells and is regulated by voltage-dependent channel block by internal cations. Using the Kir2.1 channel, we previously showed that a small fraction of the conductance susceptible only to a low-affinity mode of block likely carries a large portion of the outward current. To further examine the relevance of the low-affinity block to outward IKir and to explore its molecular mechanism, we studied the block of the Kir2.1 and Kir2.2 channels by spermine, which is the principal Kir2 channel blocker. Current–voltage relations of outward Kir2.2 currents showed a peak, a plateau and two peaks in the presence of 10, 1 and 0.1 μm spermine, respectively, which was explained by the presence of two conductances that differ in their susceptibility to spermine block. When the current–voltage relations showed one peak, like those of native IKir, outward Kir2.2 currents were mediated mostly by the conductance susceptible to the low-affinity block. They also flowed in a narrower range than the corresponding Kir2.1 currents, because of 3- to 4-fold greater susceptibility to the low-affinity block than in Kir2.1. Reducing external [K+] shifted the voltage dependences of both the high- and low-affinity block of Kir2.1 in parallel with the shift in the reversal potential, confirming the importance of the low-affinity block in mediating outward IKir. When Kir2.1 mutants known to have reduced sensitivity to internal blockers were examined, the D172N mutation in the transmembrane pore region made almost all of the conductance susceptible only to low-affinity block, while the E224G mutation in the cytoplasmic pore region reduced the sensitivity to low-affinity block without markedly altering that to the high-affinity block or the high/low conductance ratio. The effects of these mutations support the hypothesis that Kir2 channels exist in two states having different susceptibilities to internal cationic blockers. PMID:17640933
NASA Astrophysics Data System (ADS)
Sharma, Saumya
Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.
An Analysis of the Impact of Outward Bound on Twelve High Schools.
ERIC Educational Resources Information Center
Schulze, Joseph R.
Describing and analyzing the impact of Outward Bound (OB) programs on 12 high schools which reflect OB involvement varying from 1 to 5 years and include urban, suburban, and rural (public, private, boarding, and day) schools, this 1970-71 report is aimed at furthering OB philosophy and method. The report presents OB program: background; evaluation…
Outward Motions of SiO Masers around VX Sgr
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Jiang, D. R.
2014-09-01
We report the proper motions of SiO maser features around VX Sgr from the two-epoch VLBA observations (2006 December 15 and 2007 August 19). The majority of maser feature activities show a trend of outward motions. It is consistent with our previous finding that the outflow may play an important role for SiO maser pumping.
Outward Foreign Direct Investment and Human Capital Development: A Small Country Perspective
ERIC Educational Resources Information Center
McDonnell, Anthony
2008-01-01
Purpose: The purpose of this paper is to examine the pattern of outward foreign direct investment (FDI) by Irish MNCs, and more specifically, to investigate their approach to human capital development and how these correspond to foreign MNCs in Ireland. In particular, it seeks to investigate training and development expenditure, adoption of…
ERIC Educational Resources Information Center
Bobilya, Andrew J.; Kalisch, Kenneth R.; Daniel, Brad
2014-01-01
The purpose of this mixed-method study was to understand participants' perceptions of their Outward Bound Final Expedition experience and more specifically the relationship between the instructor supervisory position and participant's perception of learning. A sample of 331 students consented to participate and completed a survey at the conclusion…
19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...
19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...
19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...
19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...
An exploratory study of the changes in benefits sought during an outward bound experience
Frederick Kacprzynski
1992-01-01
Participants in an eight-day Outward Bound program were asked about their motivations for participation before the experience began and at the mid-point of the actual experience. Although more anticipated differences were expected, based on motivational theory, only one of the twelve motivational domains was significantly different at the .001 level.
Using Means-End Theory To Understand the Outdoor Adventure Experience.
ERIC Educational Resources Information Center
Goldenberg, Marni; Klenosky, David; McAvoy, Leo; Holman, Tom
Means-end analysis was used to examine the linkages between elements of an Outward Bound course and the personal benefits and outcomes obtained or reinforced by course completion. A self-administered questionnaire was completed by 216 persons, who completed a course at the North Carolina Outward Bound School. Respondents were aged 14-66 (83…
Utilization of LANDSAT images in cartography
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Alburquerque, P. C. G.
1981-01-01
The use of multispectral imagery obtained from LANDSAT for mapping purposes is discussed with emphasis on geometric rectification, image resolution, and systematic topographic mapping. A method is given for constructing 1:250,000 scale maps. The limitations for satellite cartography are examined.
The History of Science as a Tool to Identify and Confront Pseudoscience
ERIC Educational Resources Information Center
Rasmussen, Seth C.
2007-01-01
The pseudoscientific views in educated society are facing increased problems, which needs the rectification of current deficiency of historical context in science education. This can change the way the students view claims and ideas presented to them.
Training for Skill in Fault Diagnosis
ERIC Educational Resources Information Center
Turner, J. D.
1974-01-01
The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)
DOT National Transportation Integrated Search
2009-03-01
A method was developed to obtain dimensional data from photographs for analyzing steel truss gusset plate : connections. The method relies on a software application to correct photographic distortion and to scale the : photographs for analysis. The a...
27 CFR 19.472 - Need to determine use of spirits-industrial or nonindustrial.
Code of Federal Regulations, 2011 CFR
2011-04-01
... under 26 U.S.C. 501(a), or for the use of any scientific university or college of learning; (ii) For any... purposes; (2) In the manufacture, rectification, or blending of alcoholic beverages; or in the preparation...
ERIC Educational Resources Information Center
Martin, Bruce; Bright, Alan; Cafaro, Philip; Mittelstaedt, Robin; Bruyere, Brett
2008-01-01
This study attempted to assess the development of environmental virtue in 7th and 8th grade students in an Expeditionary Learning Outward Bound school. The purpose of this study was twofold. First, the researchers were interested in introducing a virtue ethics perspective into their teaching of environmental ethics. Second, the researchers were…
City Kids in the Wilderness: A Pilot-Test of Outward Bound for Foster Care Group Home Youth.
ERIC Educational Resources Information Center
Fischer, Robert L.; Attah, E. B.
2001-01-01
A study examined perceptions of a 7-day Outward Bound program among 23 urban youths, foster parents, and foster care workers from group homes in Atlanta (Georgia). Foster parents reported improved self-esteem and behavior among the teens, but foster care workers reported worse behavior. Negative program impressions lessened among male youths but…
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
Asymmetric nanopore membranes: Single molecule detection and unique transport properties
NASA Astrophysics Data System (ADS)
Bishop, Gregory William
Biological systems rely on the transport properties of transmembrane channels. Such pores can display selective transport by allowing the passage of certain ions or molecules while rejecting others. Recent advances in nanoscale fabrication have allowed the production of synthetic analogs of such channels. Synthetic nanopores (pores with a limiting dimension of 1--100 nm) can be produced in a variety of materials by several different methods. In the Martin group, we have been exploring the track-etch method to produce asymmetric nanopores in thin films of polymeric or crystalline materials. Asymmetric nanopores are of particular interest due to their ability to serve as ion-current rectifiers. This means that when a membrane that contains such a pore or collection of pores is used to separate identical portions of electrolyte solution, the magnitude of the ionic current will depend not only on the magnitude of the applied potential (as expected) but also the polarity. Ion-current rectification is characterized by an asymmetric current--potential response. Here, the interesting transport properties of asymmetric nanopores (ion-current rectification and the related phenomenon of electroosmotic flow rectification) are explored. The effects of pore shape and pore density on these phenomena are investigated. Membranes that contain a single nanopore can serve as platforms for the single-molecule sensing technique known as resistive pulse sensing. The resistive-pulse sensing method is based on the Coulter principle. Thus, the selectivity of the technique is based largely upon size, making the analysis of mixtures by this method difficult in many cases. Here, the surface of a single nanopore membrane is modified with a molecular recognition agent in an attempt to obtain a more selective resistive-pulse sensor for a specific analyte.
Hybrid Cu(2)O diode with orientation-controlled C(60) polycrystal.
Izaki, Masanobu; Saito, Takamasa; Ohata, Tatsuya; Murata, Kazufumi; Fariza, Binti Mohamad; Sasano, Junji; Shinagawa, Tsutomu; Watase, Seiji
2012-07-25
We report on a hybrid diode composed of a 2.1 eV bandgap p-cupric oxide (Cu2O) semiconductor and fullerene (C60) layer with a face-centered cubic configuration. The hybrid diode has been constructed by electrodeposition of the 500 nm thick Cu2O layer in a basic aqueous solution containing a copper acetate hydrate and lactic acid followed by a vacuum evaporation of the 50 nm thick C60 layer at the evaporation rate from 0.25 to 1.0 Å/s. The C60 layers prepared by the evaporation possessed a face-centered cubic configuration with the lattice constant of 14.19 A, and the preferred orientation changed from random to (111) plane with decrease in the C60 evaporation rate from 1.0 to 0.25 Å/s. The hybrid p-Cu2O/C60 diode showed a rectification feature regardless of the C60 evaporation rate, and both the rectification ratio and forward current density improved with decrease in the C60 evaporation rate. The excellent rectification with the ideality factor of approximately 1 was obtained for the 500 nm thick (111)-Cu2O/50 nm thick (111)-fcc-C60/bathocuproine (BCP) diode at the C60 evaporation rate of 0.25 Å /s. The hybrid Cu2O/C60 diode prepared by stacking the C60 layer at the evaporation rate of 0.25 Å/s revealed the photovoltaic performance of 8.7 × 10(-6)% in conversion efficiency under AM1.5 illumination, and the conversion efficiency changed depending on the C60 evaporation rate.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Worthy, D.
2004-05-01
Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.
Interannual variability in the atmospheric CO2 rectification over a boreal forest region
NASA Astrophysics Data System (ADS)
Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.
2005-08-01
Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.
Fecso, A B; Kuzulugil, S S; Babaoglu, C; Bener, A B; Grantcharov, T P
2018-03-30
The operating theatre is a unique environment with complex team interactions, where technical and non-technical performance affect patient outcomes. The correlation between technical and non-technical performance, however, remains underinvestigated. The purpose of this study was to explore these interactions in the operating theatre. A prospective single-centre observational study was conducted at a tertiary academic medical centre. One surgeon and three fellows participated as main operators. All patients who underwent a laparoscopic Roux-en-Y gastric bypass and had the procedures captured using the Operating Room Black Box ® platform were included. Technical assessment was performed using the Objective Structured Assessment of Technical Skills and Generic Error Rating Tool instruments. For non-technical assessment, the Non-Technical Skills for Surgeons (NOTSS) and Scrub Practitioners' List of Intraoperative Non-Technical Skills (SPLINTS) tools were used. Spearman rank-order correlation and N-gram statistics were conducted. Fifty-six patients were included in the study and 90 procedural steps (gastrojejunostomy and jejunojejunostomy) were analysed. There was a moderate to strong correlation between technical adverse events (r s = 0·417-0·687), rectifications (r s = 0·380-0·768) and non-technical performance of the surgical and nursing teams (NOTSS and SPLINTS). N-gram statistics showed that after technical errors, events and prior rectifications, the staff surgeon and the scrub nurse exhibited the most positive non-technical behaviours, irrespective of operator (staff surgeon or fellow). This study demonstrated that technical and non-technical performances are related, on both an individual and a team level. Valuable data can be obtained around intraoperative errors, events and rectifications. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
Baptista-Hon, Daniel T.; Deeb, Tarek Z.; Lambert, Jeremy J.; Peters, John A.; Hales, Tim G.
2013-01-01
The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity. PMID:23740249
A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.
Sanchez-Soares, Alfonso; Greer, James C
2016-12-14
For semimetal nanowires with diameters on the order of 10 nm, a semimetal-to-semiconductor transition is observed due to quantum confinement effects. Quantum confinement in a semimetal lifts the degeneracy of the conduction and valence bands in a "zero" gap semimetal or shifts energy levels with a "negative" overlap to form conduction and valence bands. For semimetal nanowires with diameters less than 10 nm, the band gap energy can be significantly larger than the thermal energy at room temperature resulting in a new class of semiconductors suitable for nanoelectronics. As a nanowire's diameter is reduced, its surface-to-volume ratio increases rapidly leading to an increased impact of surface chemistry on its electronic structure. Energy level shifts to states in the vicinity of the Fermi energy with varying surface electronegativity are shown to be comparable in magnitude to quantum confinement effects arising in nanowires with diameters of a few nanometer; these two effects can counteract one another leading to semimetallic behavior at nanowire cross sections at which confinement effects would otherwise dominate. Abruptly changing the surface terminating species along the length of a nanowire can lead to an abrupt change in the surface electronegativity. This can result in the formation of a semimetal-semiconductor junction within a monomaterial nanowire without impurity doping nor requiring the formation of a heterojunction. Using density functional theory in tandem with a Green's function approach to determine electronic structure and charge transport, respectively, current rectification is calculated for such a junction. Current rectification ratios of the order of 10 3 -10 5 are predicted at applied biases as low as 300 mV. It is concluded that rectification can be achieved at essentially molecular length scales with conventional biasing, while rivaling the performance of macroscopic semiconductor diodes.