Sample records for transient thermal problems

  1. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  2. Development of higher-order modal methods for transient thermal and structural analysis

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Haftka, Raphael T.

    1989-01-01

    A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.

  3. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  4. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  5. The SPAR thermal analyzer: Present and future

    NASA Astrophysics Data System (ADS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  6. The SPAR thermal analyzer: Present and future

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    1982-01-01

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  7. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  8. Mixed time integration methods for transient thermal analysis of structures, appendix 5

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    Mixed time integration methods for transient thermal analysis of structures are studied. An efficient solution procedure for predicting the thermal behavior of aerospace vehicle structures was developed. A 2D finite element computer program incorporating these methodologies is being implemented. The performance of these mixed time finite element algorithms can then be evaluated employing the proposed example problem.

  9. Transient thermal state of an active Braille matrix with incorporated thermal actuators by means of finite element method.

    PubMed

    Aluţei, Alexandra-Maria; Szelitzky, Emoke; Mândru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS v.12 software. The researchers offer data on the heat distribution in the proposed model of the actuator as well as on the material properties required for these applications and provide the opportunity to identify new problems specific to thermal actuation, such as the heater properties and the cooling process of the active material in the structure of the Braille cell.

  10. Numerical studies of the thermal design sensitivity calculation for a reaction-diffusion system with discontinuous derivatives

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Sheen, Jeen S.

    1987-01-01

    The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity.

  11. Summary of comparison and analysis of results from exercises 1 and 2 of the OECD PBMR coupled neutronics/thermal hydraulics transient benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhabela, P.; Han, J.; Tyobeka, B.

    2006-07-01

    The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises andmore » six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)« less

  12. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  13. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  14. Fast Flux Test Facility thermal and pressure transient events during Cycle 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, D. M.

    1992-03-01

    This report documents the thermal and pressure transients experienced by the Reactor Heat Transport System (RHTS) during Cycle 11 which included Cycles 11A, 11B-1, 11B-2 and 11C (i.e. 4 startups and 4 shutdowns). Cycle 11 consisted of a refueling period that began on March 14, 1989 and power operation which began on May 3, 1989 and ended on October 27, 1990. Transients resulted from secondary pump starts/stops while at refueling conditions. The major causes of transients at power were five unplanned reactor scrams from 100% power and problems with Loop 2 DHX Fan Controls During 11A.

  15. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1983-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  16. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  17. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  18. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  19. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  20. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  1. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  2. New computer program solves wide variety of heat flow problems

    NASA Technical Reports Server (NTRS)

    Almond, J. C.

    1966-01-01

    Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

  3. Some aspects of algorithm performance and modeling in transient analysis of structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1981-01-01

    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).

  4. On the performance of explicit and implicit algorithms for transient thermal analysis

    NASA Astrophysics Data System (ADS)

    Adelman, H. M.; Haftka, R. T.

    1980-09-01

    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.

  5. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  6. Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity

    NASA Astrophysics Data System (ADS)

    Xie, Yushu; Li, Fatao

    2010-06-01

    The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.

  7. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-01-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  8. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    NASA Astrophysics Data System (ADS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-08-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  9. On the generalized VIP time integral methodology for transient thermal problems

    NASA Technical Reports Server (NTRS)

    Mei, Youping; Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong

    1993-01-01

    The paper describes the development and applicability of a generalized VIrtual-Pulse (VIP) time integral method of computation for thermal problems. Unlike past approaches for general heat transfer computations, and with the advent of high speed computing technology and the importance of parallel computations for efficient use of computing environments, a major motivation via the developments described in this paper is the need for developing explicit computational procedures with improved accuracy and stability characteristics. As a consequence, a new and effective VIP methodology is described which inherits these improved characteristics. Numerical illustrative examples are provided to demonstrate the developments and validate the results obtained for thermal problems.

  10. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  11. The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    NASA Technical Reports Server (NTRS)

    El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.; Choy, F. C.

    1989-01-01

    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models.

  12. TAP 2: A finite element program for thermal analysis of convectively cooled structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1980-01-01

    A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.

  13. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  14. A simplified model for tritium permeation transient predictions when trapping is active*1

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement.

  15. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.

  16. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  17. Transient thermal analysis of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  18. International Workshop on Finite Elements for Microwave Engineering (11th) - FEM2012 Student Support Grants

    DTIC Science & Technology

    2015-05-22

    Liu 4.4. Optical, Electromagnetics, and Thermal Modeling of Interaction of a Focused Beam of Light with Plasmonic Nanoparticles Eren S. Unlu and...Kursat Sendur* 11:50 Lunch break (MacGregor Room) 13:10 3.4. Transient Thermal Analysis using a Non-conformal Domain Decomposition Approach Yang...Coffee break (Pinion room) 10:10 Session 9: Advances in Hybrid Methods and Multiphysics Problems (B. Shanker, L. Kempel) 9.2. Thermal -Aware DC IR

  19. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  20. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  1. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  2. Transient thermography testing of unpainted thermal barrier coating surfaces

    NASA Astrophysics Data System (ADS)

    Ptaszek, Grzegorz; Cawley, Peter; Almond, Darryl; Pickering, Simon

    2013-01-01

    This paper has investigated the effects of uneven surface discolouration of a thermal barrier coating (TBC) and of its IR translucency on the thermal responses observed by using mid and long wavelength IR cameras. It has been shown that unpainted blades can be tested satisfactorily by using a more powerful flash heating system and a long wavelength IR camera. The problem of uneven surface emissivity can be overcome by applying 2nd derivative processing of the log-log surface cooling curves.

  3. Variable reluctance proximity sensors for cryogenic valve position indication

    NASA Technical Reports Server (NTRS)

    Cloyd, R. A.

    1982-01-01

    A test was conducted to determine the performance of a variable reluctance proximity sensor system when installed in a space shuttle external tank vent/relief valve. The sensors were used as position indicators. The valve and sensors were cycled through a series of thermal transients; while the valve was being opened and closed pneumatically, the sensor's performance was being monitored. During these thermal transients, the vent valve was cooled ten times by liquid nitrogen and two times by liquid hydrogen. It was concluded that the sensors were acceptable replacements for the existing mechanical switches. However, the sensors need a mechanical override for the target similar to what is presently used with the mechanical switches. This override could insure contact between sensor and target and eliminate any problems of actuation gap growth caused by thermal gradients.

  4. Kinetic: A system code for analyzing nuclear thermal propulsion rocket engine transients

    NASA Astrophysics Data System (ADS)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    The topics are presented in viewgraph form and include the following: outline of kinetic code; a kinetic information flow diagram; kinetic neutronic equations; turbopump/nozzle algorithm; kinetic heat transfer equations per node; and test problem diagram.

  5. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  6. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, J.C.; Shin, W.K.; Choi, C.Y.

    Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less

  8. Transient Thermoelectric Solution Employing Green's Functions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  9. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  10. A thermal, thermoelastic, and wear analysis of high-energy disk brakes

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E., Jr.; Wu, J. J.; Ling, F. F.

    1974-01-01

    A thermomechanical investigation of the sliding contact problem encountered in high-energy disk brakes is described. The analysis includes a modelling, using the finite element method of the thermoelastic instabilities that cause transient changes in contact area to occur on the friction surface. In order to include the effect of wear at the contact surface, a wear criterion is proposed that results in the prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake assembly can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It also shows that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and, especially, the heat capacity of the brake components.

  11. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  12. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  13. Flux-Based Finite Volume representations for general thermal problems

    NASA Technical Reports Server (NTRS)

    Mohan, Ram V.; Tamma, Kumar K.

    1993-01-01

    Flux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.

  14. Turbomachinery Design Quality Checks to Avoid Friction Induced Structural Failure

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H.

    1999-01-01

    A unique configuration of the P&W SSME Alternate Fuel Turbopump turbine disk/blade assembly, combined with a severe thermal environment, resulted in several structural anomalies that were driven by frictional contact forces. Understanding the mechanics of these problems provides new quality checks for future turbo machinery designs. During development testing in 1997 of the SSME alternate fuel turbopump at Stennis Space Center, several potentially serious problems surfaced with the turbine disk/blade assembly that had not been experienced in extensive earlier testing. Changes to the operational thermal environment were noted based on analytical prediction of modifications that affected performance and on stationary thermal measurements adjacent to the rotor assembly. A detailed structural investigation was required to reveal the mechanism of distress induced by the change. The turbine disk experienced cracking in several locations due to increased thermal gradient induced stress during start and shutdown transients. This was easily predictable using standard analysis procedures and expected once the thermal environment was characterized. What was not expected was the curling of a piston ring used for blade axial retention in the disk, indentation of the axial face of the blade attachment by a spacer separating the first and second stage blades, and most significantly, galling and cracking of the blade root attachment that could have resulted in blade release. Past experience, in gas turbine environments, set a precedent of never relying on friction for help and to evaluate it only in specific instances where it was obvious that it would degrade capability. In each of the three cases above, friction proved to be a determining factor that pushed the components into an unsatisfactory mode of operation. The higher than expected temperatures and rapid thermal transients combined with friction to move beyond past experience. The turbine disk/blade assembly configuration contributed to the potential for these problems to occur by limiting the radial deflection from thermals and centrifugal loading. The cooled solid bore configuration was chosen to improve rotordynamic stability by limiting the length of rotor overhang while still protecting the roller bearing by maintaining zero slope under the inner race. During a start transient, the rim area of the disk heats rapidly and expands axially and circumferentially and requires corresponding radial and axial growth of the disk to maintain relative positioning of the disk, blades, spacers and retainer rings. The stiffness, large thermal mass, and bore cooling flow combine to severely limit the disk rim radial growth which results in the potential for relative movement between these parts. Friction then becomes a player in the determination of component stress.

  15. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  16. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-07-15

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

  17. GAS eleven node thermal model (GEM)

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    1988-01-01

    The Eleven Node Thermal Model (GEM) of the Get Away Special (GAS) container was originally developed based on the results of thermal tests of the GAS container. The model was then used in the thermal analysis and design of several NASA/GSFC GAS experiments, including the Flight Verification Payload, the Ultraviolet Experiment, and the Capillary Pumped Loop. The model description details the five cu ft container both with and without an insulated end cap. Mass specific heat values are also given so that transient analyses can be performed. A sample problem for each configuration is included as well so that GEM users can verify their computations. The model can be run on most personal computers with a thermal analyzer solution routine.

  18. A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1988-01-01

    High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.

  19. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hulse, R. J.; Rowley, R. L.; Wilding, W. V.

    2005-01-01

    Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

  20. Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.

    2017-01-01

    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.

  1. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  2. Problems with numerical techniques: Application to mid-loop operation transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, W.M.; Lillington, J.N.

    1997-07-01

    There has been an increasing need to consider accidents at shutdown which have been shown in some PSAs to provide a significant contribution to overall risk. In the UK experience has been gained at three levels: (1) Assessment of codes against experiments; (2) Plant studies specifically for Sizewell B; and (3) Detailed review of modelling to support the plant studies for Sizewell B. The work has largely been carried out using various versions of RELAP5 and SCDAP/RELAP5. The paper details some of the problems that have needed to be addressed. It is believed by the authors that these kinds ofmore » problems are probably generic to most of the present generation system thermal-hydraulic codes for the conditions present in mid-loop transients. Thus as far as possible these problems and solutions are proposed in generic terms. The areas addressed include: condensables at low pressure, poor time step calculation detection, water packing, inadequate physical modelling, numerical heat transfer and mass errors. In general single code modifications have been proposed to solve the problems. These have been very much concerned with means of improving existing models rather than by formulating a completely new approach. They have been produced after a particular problem has arisen. Thus, and this has been borne out in practice, the danger is that when new transients are attempted, new problems arise which then also require patching.« less

  3. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  4. Integral method for transient He II heat transfer in a semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2002-05-01

    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  5. Transient electro-thermal characterization of Si-Ge heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Sahoo, Amit Kumar; Weiß, Mario; Fregonese, Sébastien; Malbert, Nathalie; Zimmer, Thomas

    2012-08-01

    In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230 GHz and 290 GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R-C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.

  6. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  7. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Chunchen; Hu, Peng, E-mail: hupeng@ustc.edu.cn; Cheng, Xiaofang

    2016-06-15

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principlemore » was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m{sup 2} with high accuracy and the response time of less than 10 s.« less

  8. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    PubMed

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  9. Transient Thermal State of an Active Braille Matrix with Incorporated Thermal Actuators by Means of Finite Element Method

    ERIC Educational Resources Information Center

    Alutei, Alexandra-Maria; Szelitzky, Emoke; Mandru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS…

  10. Numerical modeling of thermal refraction inliquids in the transient regime.

    PubMed

    Kovsh, D; Hagan, D; Van Stryland, E

    1999-04-12

    We present the results of modeling of nanosecond pulse propagation in optically absorbing liquid media. Acoustic and electromagnetic wave equations must be solved simultaneously to model refractive index changes due to thermal expansion and/or electrostriction, which are highly transient phenomena on a nanosecond time scale. Although we consider situations with cylindrical symmetry and where the paraxial approximation is valid, this is still a computation-intensive problem, as beam propagation through optically thick media must be modeled. We compare the full solution of the acoustic wave equation with the approximation of instantaneous expansion (steady-state solution) and hence determine the regimes of validity of this approximation. We also find that the refractive index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulsewidth and the acoustic transit time exceeds a factor of unity.

  11. Transient analysis of a thermal storage unit involving a phase change material

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  12. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1990-01-01

    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.

  13. Transient combustion in hybrid rockets

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement of regression rate by the entrainment mass transfer from a liquid layer formed on the fuel surface. The predicted regression rates are in good agreement with the cryogenic experimental findings obtained recently at Edwards Airforce Base with a frozen pentane and gaseous oxygen system.

  14. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  15. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  16. Development of time-domain differential Raman for transient thermal probing of materials

    DOE PAGES

    Xu, Shen; Wang, Tianyu; Hurley, David; ...

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore » account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10⁻⁵, 8.14 × 10⁻⁵, and 9.51 × 10⁻⁵ m²/s. These results agree well with the reference value of 8.66 × 10⁻⁵ m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less

  17. Novel Material Systems and Methodologies for Transient Thermal Management

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of multifunctional and thermally switchable systems to address reduced mass and components, and tailored for both structural and transient thermal applications. Active, passive, and novel combinations of the two functional approaches are being developed along two lines of research investigation: switchable systems and transient heat spreading. The approach is to build in thermal functionality to structural elements to lay the foundation for a revolution in the way high energy space systems are designed.

  18. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  19. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    PubMed

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  20. Transient thermal camouflage and heat signature control

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  1. Transient Temperature Analysis in a System of Thin Shells Combined with Convective and Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Prasad, Ravindra; Samria, N. K.

    1989-01-01

    The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.

  2. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  3. Apparatus and method for transient thermal infrared emission spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  4. TACT1, a computer program for the transient thermal analysis of a cooled turbine blade or vane equipped with a coolant insert. 1. Users manual

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1978-01-01

    A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.

  5. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    ERIC Educational Resources Information Center

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  6. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  7. The transient divided bar method for laboratory measurements of thermal properties

    NASA Astrophysics Data System (ADS)

    Bording, Thue S.; Nielsen, Søren B.; Balling, Niels

    2016-12-01

    Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Several methods, including the classical divided bar technique, are available for laboratory measurements of thermal conductivity, but much fewer for thermal diffusivity. We have generalized the divided bar technique to the transient case in which thermal conductivity, volumetric heat capacity and thereby also thermal diffusivity are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity can also be determined. The finite element formulation provides a flexible forward solution for heat transfer across the bar, and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties and information on their origin. The developed methodology was applied to various materials, including a standard ceramic material and different rock samples, and measuring results were compared with results applying traditional steady-state divided bar and an independent line-source method. All measurements show highly consistent results and with excellent reproducibility and high accuracy. For conductivity the obtained uncertainty is typically 1-3 per cent, and for diffusivity uncertainty may be reduced to about 3-5 per cent. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces in the bar. These are not resolved during inversion and it is imperative that they are minimized. The proposed procedure is simple and may quite easily be implemented to the many steady-state divided bar systems in operation. A thermally controlled bath, as applied here, may not be needed. Simpler systems, such as applying temperature-controlled water directly from a tap, may also be applied.

  8. Origin of coronal mass ejection and magnetic cloud: Thermal or magnetic driven?

    NASA Technical Reports Server (NTRS)

    Zhang, Gong-Liang; Wang, Chi; He, Shuang-Hua

    1995-01-01

    A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.

  9. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    NASA Astrophysics Data System (ADS)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  10. A High-Performance Parallel Implementation of the Certified Reduced Basis Method

    DTIC Science & Technology

    2010-12-15

    point of view of model reduction due to the “curse of dimensionality”. We consider transient thermal conduction in a three– dimensional “ Swiss cheese ... Swiss cheese ” problem (see Figure 7a) there are 54 unique ordered pairs in I. A histogram of 〈δµ〉 values computed for the ntrain = 106 case is given in...our primal-dual RB method yields a very fast and accurate output approxima- tion for the “ Swiss Cheese ” problem. Our goal in this final subsection is

  11. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    USDA-ARS?s Scientific Manuscript database

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobel, R.

    TRUMP is a general finite difference computer program for the solution of transient and steady state heat transfer problems. It is a very general program capable of solving heat transfer problems in one, two or three dimensions for plane, cylindrical or spherical geometry. Because of the variety of possible geometries, the effort required to describe the geometry can be large. GIFT was written to minimize this effort for one-dimensional heat flow problems. After describing the inner and outer boundaries of a region made of a single material along with the modes of heat transfer which thermally connect different regions, GIFTmore » will calculate all the geometric data (BLOCK 04) and thermal network data (BLOCK 05) required by TRUMP for one-dimensional problems. The heat transfer between layers (or shells) of a material may be by conduction or radiation; also, an interface resistance between layers can be specified. Convection between layers can be accounted for by use of an effective thermal conductivity in which the convection effect is included or by a thermal conductance coefficient. GIFT was written for the Sigma 7 computer, a small digital computer with a versatile graphic display system. This system makes it possible to input the desired data in a question and answer mode and to see both the input and the output displayed on a screen in front of the user at all times. (auth)« less

  13. Temperature Field Simulation of Powder Sintering Process with ANSYS

    NASA Astrophysics Data System (ADS)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  14. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

    DOE PAGES

    Wang, Tianyu; Xu, Shen; Hurley, David H.; ...

    2015-12-18

    Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less

  15. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bsebsu, F.M.; Abotweirat, F.; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulicmore » design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)« less

  16. Tritium permeation model for plasma facing components

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  17. Some useful innovations with TRASYS and SINDA-85

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.

  18. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  19. Thermal Mechanical Fatigue of Coated Blade Materials

    DTIC Science & Technology

    1989-06-01

    temperature and strain greatly affect TMF life. The temperature-strain phase angle may vary from 180 degrees out of phase, for fast transients at...simplified constitutive technique. The life prediction model was specifically not designed to be a constitutive excercise , and therefore the observed test...the actual test. In one case (S/N 25) the actual tensile stresses were larger than the predicted values. This was caused by intermittent problems with

  20. Finite Element Method Applied to Fuse Protection Design

    NASA Astrophysics Data System (ADS)

    Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin

    2014-03-01

    In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.

  1. Modeling of Ultrasonic and Terahertz Radiations in Defective Tiles for Condition Monitoring of Thermal Protection Systems

    DTIC Science & Technology

    2013-04-01

    different ultrasonic and electromagnetic field modeling problems for NDE (nondestructive evaluation) applications [5- 14]. 2d . Use of the...transient ultrasonic wave propagation using the Distributed Point Source Method”, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control...Cavity”, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control, Vol. 57(6), pp. 1396-1404, 2010. [10] A. Shelke, S. Das and T. Kundu

  2. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  3. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, Fazil

    1988-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  4. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, F.

    1989-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  5. Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah

    2018-03-01

    Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.

  6. Formulation of the nonlinear analysis of shell-like structures, subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Carlson, Robert L.; Riff, Richard

    1991-01-01

    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications.

  7. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  8. Computer simulation of thermal modeling of primary lithium cells

    NASA Technical Reports Server (NTRS)

    Young, I. Cho; Frank, Harvey; Halpert, Gersid

    1987-01-01

    The objective was to gain a better understanding of the safety problem of primary Li-SOCl2 and Li-SO2 cells by carrying out detailed thermal modeling work. In particular, the transient heat generation rates during moderate and extermely high discharge rate tests of Li-SOCl2 cells were predicted and compared with those from the electrochemical heating. The difference between the two may be attributed to the lithium corrosion and other chemical reactions. The present program was also tested for charging of Li-SO2. In addition, the present methodology should be applicable to other primary cylindrical cells as well as rechargeable battery analyses with minor modifications.

  9. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  10. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  11. Review of LOX Bearing and Seal Materials Tester (BSMT) radial load system

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1984-01-01

    Problems concerning the bearings in the high pressure oxygen turbopumps (HPOTP) were investigated. The tasks involved: failure analyses, bearing dynamics calculations, lubrication studies, wear studies, and analyses of thermal transients. The radial load system on MSFC's bearing and seal tester used to study components for the HPOTP in liquid oxygen (LOX) is analyzed and the wear behavior of AISI 440C steel with polytetrafluoroethylene (PTFE) lubrication is studied.

  12. Materials constitutive models for nonlinear analysis of thermally cycled structures

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.

  13. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  14. Experiments and simulation of thermal behaviors of the dual-drive servo feed system

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu

    2015-01-01

    The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.

  15. A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Glen, E-mail: Glen.Hansen@inl.gov

    2011-07-20

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  16. A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glen Hansen

    2011-07-01

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  17. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  18. Characterization of various two-phase materials based on thermal conductivity using modified transient plane source method

    NASA Astrophysics Data System (ADS)

    Jayachandran, S.; Prithiviraajan, R. N.; Reddy, K. S.

    2017-07-01

    This paper presents the thermal conductivity of various two-phase materials using modified transient plane source (MTPS) technique. The values are determined by using commercially available C-Therm TCi apparatus. It is specially designed for testing of low to high thermal conductivity materials in the range of 0.02 to 100 Wm-1K-1 within a temperature range of 223-473 K. The results obtained for the two-phase materials (solids, powders and liquids) are having an accuracy better than 5%. The transient method is one of the easiest and less time consuming method to determine the thermal conductivity of the materials compared to steady state methods.

  19. Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Nishi, Yoshio; Wong, H.-S. Philip

    2018-05-01

    Niobium oxide (NbOx) two-terminal threshold switches are potential candidates as selector devices in crossbar memory arrays and as building blocks for neuromorphic systems. However, the physical mechanism of NbOx threshold switches is still under debate. In this paper, we show that a thermal feedback mechanism based on Poole-Frenkel conduction can explain both the quasi-static and the transient electrical characteristics that are experimentally observed for NbOx threshold switches, providing strong support for the validity of this mechanism. Furthermore, a clear picture of the transient dynamics during the thermal-feedback-induced threshold switching is presented, providing useful insights required to model nonlinear devices where thermal feedback is important.

  20. Transient natural and surface-tension-driven convection in a two-layer gas-and-liquid enclosure with nonuniform radiative transfer

    NASA Technical Reports Server (NTRS)

    Abramzon, B.; Edwards, D. K.; Sirignano, W. A.

    1986-01-01

    A numerical study has been made of transient heat transfer and fluid flow in a cylindrical enclosure containing a two-layer gas-and-liquid system. The geometric configuration and the boundary conditions of the problem are relevant to the analysis of the preignition processes during the fire accident situation involving a pool of liquid fuel in the vicinity of an ignition source. It is demonstrated that the effects of the natural and thermocapillary convection, radiative transfer, thermal inertia and conduction of the walls bounding the enclosure, as well as, the magnitude of the gravity field play important roles in the development of the temperature and velocity fields in the container.

  1. Development and evaluation of the impulse transfer function technique

    NASA Technical Reports Server (NTRS)

    Mantus, M.

    1972-01-01

    The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.

  2. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T.H.; Holland, J.W.

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less

  3. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  4. Methodology, status and plans for development and assessment of the code ATHLET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G.

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The codemore » has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.« less

  5. Mach 14 Flow Restrictor Thermal Stress Analysis

    DTIC Science & Technology

    1984-08-01

    tranfer analysis, thermal stress analysis, results translation from ABAQUS to PATRAN-G, and the method used to determine the heat transfer film...G, model translation into ABAQUS format, transient heat transfer analysis and thermal stress analysis input decks, results translation from ABAQUS ...TRANSLATION FROM PATRAN-G TO ABAQUS 3 ABAQUS CONSIDERATIONS 8 MATERIAL PROPERTIES OF COLUMBIUM C-103 10 USER SUBROUTINE FILM 11 TRANSIENT

  6. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  7. Some Useful Innovations with Trasys and Sinda-85

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    Several innovative methods have been used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry "by hand." This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models has been elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.

  8. Multidimensional effects in the thermal response of fuel rod simulators. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less

  9. Development of NASA's Sample Cartridge Assembly: Summary of GEDS Design, Development Testing, and Thermal Analyses

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn

    2017-01-01

    Outline: Background of ISS (International Space Station) Material Science Research Rack; NASA SCA (Sample Cartridge Assembly) Design; GEDS (Gravitational Effects in Distortion in Sintering) Experiment Ampoule Design; Development Testing Summary; Thermal Modeling and Analysis. Summary: GEDS design development challenging (GEDS Ampoule design developed through MUGS (Microgravity) testing; Short duration transient sample processing; Unable to measure sample temperatures); MUGS Development testing used to gather data (Actual LGF (Low Gradient Furnace)-like furnace response; Provided sample for sintering evaluation); Transient thermal model integral to successful GEDS experiment (Development testing provided furnace response; PI (Performance Indicator) evaluation of sintering anchored model evaluation of processing durations; Thermal transient model used to determine flight SCA sample processing profiles).

  10. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  11. Measurement of Thermal Properties of Rocks at Temperature up to 1,000°C with Transient Plane Source Techniques

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Lee, Y.

    2017-12-01

    A set of devices that can measure thermal properties of rocks over a temperature range from room temperature up to 1,000°C with transient plane source techniques (also known as a Hot Disk method) is introduced. It consists of a main control system (e.g., TPS 2500 S from Hot Disk), mica-insulated sensor, tubular furnace, N2 gas supplier, and pressure regulator. The TPS 2500 S is the core instrument designed for precise analysis of thermal transport properties including thermal conductivity, thermal diffusivity, and volumetric heat capacity. The mica-insulated sensor is composed of an insulated nickel double spiral, which is utilized for both transient heating and precise temperature reading; a mica insulator protects the sensor against mechanical and thermal damage at high temperatures. The tubular furnace can hold two rock core samples of 50-mm-diameter and 25-mm-height with increasing temperatures up to 1,000°C. N2 gas supplier and pressure regulator are used to keep the inside the furnace away from oxygen. Thermal properties of most rocks and minerals vary with increasing temperatures. Experimental measurements of thermal properties at high temperatures have been made mostly using laser flash, needle probe, and divided bar methods in the previous researches, and no previous measurements with the Hot Disk method have been reported yet. We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for fused silica and mafic rock samples using the introduced transient plane source apparatus. The thermal properties of fused silica have been measured mainly over the temperature range from ambient temperature to 500°C. The results seem to agree moderately with the previously reported values by Birch and Clark (Am. J. Sci., 1940). We now check the possible causes of measurement errors in our measurements and prepare to measure thermal properties of the mafic rock samples at temperatures up to 1,000°C using the hot disk method.

  12. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  13. Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures

    NASA Astrophysics Data System (ADS)

    Falkiewicz, Nathan J.

    Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.

  14. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the thermally-assisted multi-step tunneling process. Another problem of GaInN blue LEDs is the undesired parasitic cyan emission band. The undesired parasitic emission band strongly influence the electrical and optical properties of GaInN blue LEDs including the subthreshold forward leakage current and the color purity of the emission. In Chapter 3 , GaInN blue LEDs emitting at 445 nm with a parasitic cyan (blue-green) emission band (480 nm), which dominates the emission spectrum at low injection current, are analyzed. Photoluminescence using resonant optical excitation shows that the cyan emission originates from the active region of the LED. The current- and excitation-density-dependent blue-to-cyan intensity ratio reveals that the cyan emission is due to a transition from the conduction band to a Mg acceptor having diffused into the last-grown quantum well of the active region. The Mg in the active region provides an additional carrier-transport path, and therefore can explain the high subthreshold forward leakage current that is measured in these LEDs. Deep levels in GaN-based materials strongly affect the electrical and optical properties of GaN-based LEDs. Chapter 4 describes the basic principle and the setup of a deep-level transient spectroscopy (DLTS) measurement system. This DLTS system is used to determine the concentration and thermal activation energy of deep levels in the depletion region of the GaInN LED. Two types of hole traps in the n-type side of the depletion region are observed in the DLTS measurement. The thermal activation energies of these two types of hole traps are compared with the results reported in literature. The hole trap associated with the major DLTS peak with a thermal activation energy of 0.80 eV is presumably related to the “yellow luminescence band”. Self-heating of LEDs is an important issue that affects the efficiency and reliability. In Chapter 5, the thermal properties, including thermal time constants, of GaN LEDs are analyzed. The transient-junction-temperature behavior of unpackaged LED chips is described by a single time constant, which is the product of a thermal resistance Rth and a thermal capacitance Cth. Furthermore, a multistage RthCth thermal model for packaged LEDs is developed. The transient response of the junction temperature of LEDs after the power is switched on or switched off can be described by a multi-exponential function. Each time constant of this function is approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient junction temperature after the power is switched off is measured for a high-power flip-chip LED by the forward-voltage method. A two-stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.7 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaN / sapphire chip and LED Si submount, respectively.

  15. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    USGS Publications Warehouse

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.

  16. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  17. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  18. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  19. Minimal entropy reconstructions of thermal images for emissivity correction

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.

    1999-03-01

    Low emissivity with corresponding low thermal emission is a problem which has long afflicted infrared thermography. The problem is aggravated by reflected thermal energy which increases as the emissivity decreases, thus reducing the net signal-to-noise ratio, which degrades the resulting temperature reconstructions. Additional errors are introduced from the traditional emissivity-correction approaches, wherein one attempts to correct for emissivity either using thermocouples or using one or more baseline images, collected at known temperatures. These corrections are numerically equivalent to image differencing. Errors in the baseline images are therefore additive, causing the resulting measurement error to either double or triple. The practical application of thermal imagery usually entails coating the objective surface to increase the emissivity to a uniform and repeatable value. While the author recommends that the thermographer still adhere to this practice, he has devised a minimal entropy reconstructions which not only correct for emissivity variations, but also corrects for variations in sensor response, using the baseline images at known temperatures to correct for these values. The minimal energy reconstruction is actually based on a modified Hopfield neural network which finds the resulting image which best explains the observed data and baseline data, having minimal entropy change between adjacent pixels. The autocorrelation of temperatures between adjacent pixels is a feature of most close-up thermal images. A surprising result from transient heating data indicates that the resulting corrected thermal images have less measurement error and are closer to the situational truth than the original data.

  20. A Technique for Transient Thermal Testing of Thick Structures

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.; Richards, W. Lance; Gong, Leslie

    1997-01-01

    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.

  1. Advanced Gas Turbine (AGT) technology development

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.

  2. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  3. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  4. Metastable Packaging For Transient Electronics

    DTIC Science & Technology

    2014-09-01

    dated 16 Jan 09. Report contains color. 14. ABSTRACT Metastable polymeric materials were synthesized, formulated with additives and microcapsules ...photoacid generation, thermal activation, and mechanical rupture of acid-filled microcapsules -- were investigated. 15. SUBJECT TERMS transient...carbonate sulfone) (PVBCS)... 11  3.3  Thermal and Mechanical Triggered Transience of Electronic Devices via Embedded Microcapsules

  5. Analysis of transient thermal stress in heat-generating plates and hollow cylinders caused by sudden environmental temperature changes

    NASA Technical Reports Server (NTRS)

    Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.

    1969-01-01

    Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.

  6. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szoke, A.; Brooks, E. D.

    2016-07-12

    We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization canmore » remedy it.« less

  7. Late-time Cooling of Neutron Star Transients and the Physics of the Inner Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Reddy, Sanjay

    2017-04-01

    An accretion outburst onto a neutron star transient heats the neutron star’s crust out of thermal equilibrium with the core. After the outburst, the crust thermally relaxes toward equilibrium with the neutron star core, and the surface thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of the crust will be established ≈ 1000 {days} into quiescence. Recent observations of the cooling neutron star transient MXB 1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted timescale and continued to cool after ≈ 2500 {days} into quiescence. Because the quiescent light curve reveals successively deeper layers of the crust, the observed late-time cooling of MXB 1659-29 depends on the thermal transport in the inner crust. In particular, the observed late-time cooling is consistent with a low thermal conductivity layer near the depth predicted for nuclear pasta that maintains a temperature gradient between the neutron star’s inner crust and core for thousands of days into quiescence. As a result, the temperature near the crust-core boundary remains above the critical temperature for neutron superfluidity, and a layer of normal neutrons forms in the inner crust. We find that the late-time cooling of MXB 1659-29 is consistent with heat release from a normal neutron layer near the crust-core boundary with a long thermal time. We also investigate the effect of inner crust physics on the predicted cooling curves of the accreting transient KS 1731-260 and the magnetar SGR 1627-41.

  8. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  9. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    NASA Astrophysics Data System (ADS)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  10. Transient, heat-induced thermal resistance in the small intestine of mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hume, S.P.; Marigold, J.C.L.

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44/sup 0/C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5/sup 0/C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0/sup 0/Cmore » for 60 min) was followed at varying intervals by a test treatment at 43.0/sup 0/C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D/sub 0/ and a decrease in n compared with curves from previously unheated intestine.« less

  11. Transient thermal characteristics of high-temperature SiC power module enhanced with Al-bump technology

    NASA Astrophysics Data System (ADS)

    Tanisawa, Hidekazu; Kato, Fumiki; Koui, Kenichi; Sato, Shinji; Watanabe, Kinuyo; Takahashi, Hiroki; Murakami, Yoshinori; Sato, Hiroshi

    2018-04-01

    In this paper, we demonstrate a mounting technology that improves the tolerance to transient power loss by adding a heat capacity near the device. Silicon carbide (SiC) power devices can operate at high temperatures, up to 250 °C, at which silicon (Si) power devices cannot. Therefore, it is possible to allow a large temperature difference between the device and ambient air. Thus, the size of a power converter equipped with an SiC power module is reduced by simplifying the cooling system. The temperature of the power module is important not only in the steady state, but in transient loads as well. Therefore, we developed the Al-bump flip-chip mounting technology to increase heat capacity near the device. With this proposed structure, the heat capacity per device increased by 1.7% compared with the total heat capacity of the conventional structure using wire bonding. The reduction in transient thermal impedance is observed from 0.003 to 3 s, and we confirmed that the transient thermal impedance is reduced very efficiently by 15% at the maximum, compared with the conventional structure.

  12. Predication of skin temperature and thermal comfort under two-way transient environments.

    PubMed

    Zhou, Xin; Xiong, Jing; Lian, Zhiwei

    2017-12-01

    In this study, three transient environmental conditions consisting of one high-temperature phase within two low-temperature phases were developed, thus creating a temperature rise followed by a temperature fall. Twenty-four subjects (including 12 males and 12 females) were recruited and they underwent all three test scenarios. Skin temperature on seven body parts were measured during the whole period of the experiment. Besides, thermal sensation was investigated at specific moments by questionnaires. Thermal sensation models including PMV model, Fiala model and the Chinese model were applied to predict subjects' thermal sensation with comparisons carried out among them. Results show that most predicated thermal sensation by Chinese model lies within the range of 0.5 scale of the observed sensation vote, and it agrees best with the observed thermal sensation in transient thermal environment than PMV and Fiala model. Further studies should be carried out to improve performance of Chinese model for temperature alterations between "very hot" to "hot" environment, for prediction error in the temperature-fall situation of C5 (37-32°C) was over 0.5 scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  14. Use of updated material properties in parametric optimization of spaceborne mirrors

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Guenter; Kirchhoff, Rule

    2016-07-01

    Spaceborne sensor mirrors need to be both structurally efficient and to maintain figure through thermal transients. Both properties can be represented in a plot showing structural efficiency on one axis and thermal transient resilience on the other. For material selection, engineers have effectively used such charts. However in some cases thermal attributes have improved considerably. Using contemporary values, this comparison chart looks differently. We will discuss how lines of equal merit may be formulated differently depending on the orbit of the mission.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  16. Effect of Thermal Diffusivity on the Detectability of TNDE

    NASA Technical Reports Server (NTRS)

    Zhao, Junduo; Chu, Tsuchin; Russell, Samuel S.

    2000-01-01

    The effect of thermal diffusively on the defect detectability in Carbon/Epoxy composite panels by transient thermography is presented in this paper. A series of Finite Element Models were constructed and analyzed to simulate the transient heat transfer phenomenon during Thermographic Non-destructive Evaluation (TNDE) of composite panels with square defects. Six common carbon fibers were considered. The models were built for composites with various combinations of fibers and volumetric ratios. Finite Element Analysis of these models showed the trends of the detectable range and the maximum thermal contrast versus the thermal diffusivity of various composites. Additionally, the trends of defect size to depth ratio and the thermal contrast has been investigated.

  17. New portable instrument for the measurement of thermal conductivity in gas process conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queirós, C. S. G. P.; Lourenço, M. J. V., E-mail: mjlourenco@fc.ul.pt; Vieira, S. I.

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based onmore » a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.« less

  18. Nonlinear structural analysis of a turbine airfoil using the Walker viscoplastic material model for B1900 + Hf

    NASA Technical Reports Server (NTRS)

    Meyer, T. G.; Hill, J. T.; Weber, R. M.

    1988-01-01

    A viscoplastic material model for the high temperature turbine airfoil material B1900 + Hf was developed and was demonstrated in a three dimensional finite element analysis of a typical turbine airfoil. The demonstration problem is a simulated flight cycle and includes the appropriate transient thermal and mechanical loads typically experienced by these components. The Walker viscoplastic material model was shown to be efficient, stable and easily used. The demonstration is summarized and the performance of the material model is evaluated.

  19. Catalytic ignition model in a monolithic reactor with in-depth reaction

    NASA Technical Reports Server (NTRS)

    Tien, Ta-Ching; Tien, James S.

    1990-01-01

    Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.

  20. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less

  1. Fractional Steps methods for transient problems on commodity computer architectures

    NASA Astrophysics Data System (ADS)

    Krotkiewski, M.; Dabrowski, M.; Podladchikov, Y. Y.

    2008-12-01

    Fractional Steps methods are suitable for modeling transient processes that are central to many geological applications. Low memory requirements and modest computational complexity facilitates calculations on high-resolution three-dimensional models. An efficient implementation of Alternating Direction Implicit/Locally One-Dimensional schemes for an Opteron-based shared memory system is presented. The memory bandwidth usage, the main bottleneck on modern computer architectures, is specially addressed. High efficiency of above 2 GFlops per CPU is sustained for problems of 1 billion degrees of freedom. The optimized sequential implementation of all 1D sweeps is comparable in execution time to copying the used data in the memory. Scalability of the parallel implementation on up to 8 CPUs is close to perfect. Performing one timestep of the Locally One-Dimensional scheme on a system of 1000 3 unknowns on 8 CPUs takes only 11 s. We validate the LOD scheme using a computational model of an isolated inclusion subject to a constant far field flux. Next, we study numerically the evolution of a diffusion front and the effective thermal conductivity of composites consisting of multiple inclusions and compare the results with predictions based on the differential effective medium approach. Finally, application of the developed parabolic solver is suggested for a real-world problem of fluid transport and reactions inside a reservoir.

  2. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    NASA Astrophysics Data System (ADS)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  3. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  4. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  5. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  6. Thermal annealing and transient electronic excitations induced interfacial and magnetic effects on Pt/Co/Pt trilayer

    NASA Astrophysics Data System (ADS)

    Sehdev, Neeru; Medwal, Rohit; Malik, Rakesh; Kandasami, Asokan; Kanjilal, Dinakar; Annapoorni, S.

    2018-04-01

    Present study investigates the importance of thermal annealing and transient electronic excitations (using 100 MeV oxygen ions) in assisting the interfacial atomic diffusion, alloy composition, and magnetic switching field distributions in Pt/Co/Pt stacked trilayer. X-ray diffraction analysis reveals that thermal annealing results in the formation of the face centered tetragonal L1°CoPt phase. The Rutherford back scattering spectra shows a trilayer structure for as-deposited and as-irradiated films. Interlayer mixing on the thermally annealed films further improves by electronic excitations produced by high energy ion irradiation. Magnetically hard face centered tetragonal CoPt alloy retains its hard phase after ion irradiation and reveals an enhancement in the structural ordering and magnetic stability. Enhancement in the homogeneity of alloy composition and its correlation with the magnetic switching field is evident from this study. A detailed investigation of the contributing parameters shows that the magnetic switching behaviour varies with the type of thermal annealing, transient electronic excitations of ion beams and combination of these processes.

  7. Experiences on p-Version Time-Discontinuous Galerkin's Method for Nonlinear Heat Transfer Analysis and Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    2004-01-01

    The focus of this research is on the development of analysis and sensitivity analysis equations for nonlinear, transient heat transfer problems modeled by p-version, time discontinuous finite element approximation. The resulting matrix equation of the state equation is simply in the form ofA(x)x = c, representing a single step, time marching scheme. The Newton-Raphson's method is used to solve the nonlinear equation. Examples are first provided to demonstrate the accuracy characteristics of the resultant finite element approximation. A direct differentiation approach is then used to compute the thermal sensitivities of a nonlinear heat transfer problem. The report shows that only minimal coding effort is required to enhance the analysis code with the sensitivity analysis capability.

  8. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nero, Franco; Jackson, Maxx; Stowe, Ashley

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  9. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  10. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.

  11. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.

    2002-10-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  12. Analysis of Tank PMD Rewetting Following Thrust Resettling

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Sala, M. A.; Collicott, S. H.; Rame, Enrique (Technical Monitor)

    2002-01-01

    Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.

  13. Step - wise transient method - Influence of heat source inertia

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-07-01

    Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.

  14. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New transient thermoreflectance measures the thermal performance of materials and their interfaces that cannot

  15. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an iterative design process which will lead to a design with a reduced pressure drop, increased thermal effectiveness, and improved mechanical performance as it relates to creep deformation and transient thermal stresses.

  16. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    NASA Technical Reports Server (NTRS)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.

  17. Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.

  18. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    PubMed

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  19. Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle RLV design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth I-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system JPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization.

  20. Structural response of SSME turbine blade airfoils

    NASA Technical Reports Server (NTRS)

    Arya, V. K.; Abdul-Aziz, A.; Thompson, R. L.

    1988-01-01

    Reusable space propulsion hot gas-path components are required to operate under severe thermal and mechanical loading conditions. These operating conditions produce elevated temperature and thermal transients which results in significant thermally induced inelastic strains, particularly, in the turbopump turbine blades. An inelastic analysis for this component may therefore be necessary. Anisotropic alloys such as MAR M-247 or PWA-1480 are being considered to meet the safety and durability requirements of this component. An anisotropic inelastic structural analysis for an SSME fuel turbopump turbine blade was performed. The thermal loads used resulted from a transient heat transfer analysis of a turbine blade. A comparison of preliminary results from the elastic and inelastic analyses is presented.

  1. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Kang; Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it ismore » considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.« less

  2. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    NASA Astrophysics Data System (ADS)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  3. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  4. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite

    NASA Astrophysics Data System (ADS)

    Greco, Angelo; Jiang, Xi; Cao, Dongpu

    2015-03-01

    The thermal management of a cylindrical battery cell by a phase change material (PCM)/compressed expanded natural graphite (CENG) is investigated in this study. The transient thermal behaviour of both the battery and the PCM/CENG is described with a simplified one-dimensional model taking into account the physical and phase change properties of the PCM/CENG composite. The 1D analytical/computational model yielded nearly identical results to the three-dimensional simulation results for various cooling strategies. Therefore, the 1D model is sufficient to describe the transient behaviour of the battery cooled by a PCM/CENG composite. Moreover, the maximum temperature reached by the PCM/CENG cooling strategy is much lower than that by the forced convection in the same configuration. In the test case studied, the PCM showed superior transient characteristics to forced convection cooling. The PCM cooling is able to maintain a lower maximum temperature during the melting process and to extend the transient time for temperature rise. Furthermore, the graphite-matrix bulk density is identified as an important parameter for optimising the PCM/CENG cooling strategy.

  5. Stepwise and Pulse Transient Methods of Thermophysical Parameters Measurement

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-12-01

    Stepwise transient and pulse transient methods are experimental techniques for measuring the thermal diffusivity and conductivity of solid materials. Theoretical models and experimental apparatus are presented, and the influence of the heat source capacity and the heat transfer coefficient is investigated using the experiment simulation. The specimens from low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) were measured by both methods. Coefficients of variation were better than 0.9 % for LDPE and 2.8 % for PMMA measurements. The time dependence of the temperature response to the input heat flux showed a small drop, which was caused by thermoelastic wave generated by thermal expansions of the heat source.

  6. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  7. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  8. Application of an enriched FEM technique in thermo-mechanical contact problems

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Bahmani, B.

    2018-02-01

    In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

  9. Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.

  10. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  11. Analytical transient analysis of Peltier device for laser thermal tuning

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Vujicic, Zoran; Almeida, Álvaro J.; Bastos, Ricardo; Shahpari, Ali; Teixeira, António L.

    2017-08-01

    Recently, industrial trends strongly favor the concepts of high density, low power consumption and low cost applications of Datacom and Telecom pluggable transceiver modules. Hence, thermal management plays an important role, especially in the design of high-performance compact optical transceivers. Extensive care should be taken on wavelength drift for thermal tuning lasers using thermoelectric cooler and indeed, accurate expression is needed to describe transient characteristics of the Peltier device to achieve maximum controllability. In this study, the exact solution of governing equation is presented, considering Joule heating, heat conduction, heat flux of laser diode and thermoelectric effect in one dimension.

  12. Safety of High Speed Magnetic Levitation Transportation Systems : Thermal Effects and Related Safety Issues of Typical Maglev Steel Guideways

    DOT National Transportation Integrated Search

    1994-09-01

    This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...

  13. Enhancement of the thermal transport in a culture medium with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.

    2008-11-01

    In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.

  14. Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto; Bennion, Kevin; King, Charles

    Thermal management strategies for automotive power electronic systems have evolved over time to reduce system cost and to improve reliability and thermal performance. In this study, we characterized the power electronic thermal management systems of two electric-drive vehicles--the 2012 Nissan LEAF and 2014 Honda Accord Hybrid. Tests were conducted to measure the insulated-gate bipolar transistor-to-coolant thermal resistances for both steady-state and transient conditions at various coolant flow rates. Water-ethylene glycol at a temperature of 65 degrees C was used as the coolant for these experiments. Computational fluid dynamics and finite element analysis models of the vehicle's power electronics thermal managementmore » system were then created and validated using experimentally obtained results. Results indicate that the Accord module provides lower steady-state thermal resistance as compared with the LEAF module. However, the LEAF design may provide improved performance in transient conditions and may have cost benefits.« less

  16. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  17. NONLINEAR AND FIBER OPTICS: Transient stimulated thermal scattering in a field of quasiplanar counterpropagating pump beams

    NASA Astrophysics Data System (ADS)

    Arutyunov, Yu A.; Bagan, A. A.; Gerasimov, V. B.; Golyanov, A. V.; Ogluzdin, Valerii E.; Sugrobov, V. A.; Khizhnyak, A. I.

    1990-04-01

    Theoretical analyses and experimental studies are made of transient stimulated thermal scattering in a thermal nonlinear medium subjected to a field of counterpropagating quasiplane waves. The equations for the counterpropagating four-beam interaction are solved analytically for pairwise counterpropagating scattered waves using the constant pump wave intensity approximation. The conditions for the occurrence of an absolute instability of the scattered waves are determined and the angular dependence of their increment is obtained; these results are in good agreement with experimental data. An investigation is reported of the dynamics of spiky lasing in a laser with resonators coupled by a dynamic hologram in which stimulated thermal scattering is a source of radiation initiating lasing in the system as a whole.

  18. Application of the modified transient plane source technique for early detection of liquid explosives

    NASA Astrophysics Data System (ADS)

    Bateman, Robert; Harris, Adam; Lee, Linda; Howle, Christopher R.; Ackermann, Sarah L. G.

    2016-05-01

    The paper will review the feasibility of adapting the Modified Transient Plane Source (MTPS) method as a screening tool for early-detection of explosives and hazardous materials. Materials can be distinguished from others based on their inherent thermal properties (e.g. thermal effusivity) in testing through different types of barrier materials. A complimentary advantage to this technique relative to other traditional detection technologies is that it can penetrate reflective barrier materials, such as aluminum, easily. A strong proof-of-principle is presented on application of the MTPS transient thermal property measuring in the early-screening of liquid explosives. The work demonstrates a significant sensitivity to distinguishing a wide range of fluids based on their thermal properties through a barrier material. The work covers various complicating factors to the longer-term adoption of such a method including the impact of carbonization and viscosity. While some technical challenges remain, the technique offers significant advantages in complimenting existing detection methods in being able to penetrate reflective metal containers (e.g. aluminum soft drinkscans) with ease.

  19. Transient Diabetes Insipidus Following Thermal Burn; A Case Report and Literature Review.

    PubMed

    Dash, Suvashis; Ghosh, Shibajyoti

    2017-10-01

    Diabetes insipidus is a disease charaterised by increased urine production and thrist. Neurogenic diabetes insipidus following head trauma,autoimmune disease and infection is quite common but diabetes insipidus following thermal burn injury is a rare complication.We should know about this complication as its management need a comprehensive approach for satisfactory outcome. Thermal burn can cause different complications in early post burn period like electrolyte imbalance, dehydration, acute renal failure, but diabetes insipidus is a very rare and unusual complication that may come across in thermal burn. We should be aware about this condition to prevent and treat mortality and morbidity in burn patients. We have reported a case of transient diabetes insipidus in a patient of thermal burn in early post burn period. Patient was treated accordingly, leading to complete recovery.

  20. High-Fidelity Real-Time Simulation on Deployed Platforms

    DTIC Science & Technology

    2010-08-26

    three–dimensional transient heat conduction “ Swiss Cheese ” problem; and a three–dimensional unsteady incompressible Navier- Stokes low–Reynolds–number...our approach with three examples: a two?dimensional Helmholtz acoustics ?horn? problem; a three?dimensional transient heat conduction ? Swiss Cheese ...solutions; a transient lin- ear heat conduction problem in a three–dimensional “ Swiss Cheese ” configuration Ω — to illustrate treat- ment of many

  1. Apparatus and method for transient thermal infrared spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  2. Tracking coherent population transfer and thermal population relaxation in condensed system by broad-band transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Xiaosong; Wu, Honglin; Song, Yunfei; Liu, Weilong; Yang, Yanqiang

    2018-04-01

    Broad-band transient grating (BB-TG) spectroscopy was proposed to track both coherent population transfer (CPT) and thermal population relaxation processes in a condensed system of solvated molecules in solution (Rhodamine101 in methanol). A broad band around 1500 cm‑1 and a relative narrow band near 2900 cm‑1 emerge in TG and transient absorption contour plots when pump and probe pulses overlap in the sample. The experimental results matched well with the vibrational modes of Rhodamine101 that were obtained by theoretical calculation. In addition, it was found that the population of CPT particles can be evaluated quantitatively through the intensity of the TG signal.

  3. Dynamic remedial action scheme using online transient stability analysis

    NASA Astrophysics Data System (ADS)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.

  4. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  5. Numerical analysis of transient laminar forced convection of nanofluids in circular ducts

    NASA Astrophysics Data System (ADS)

    Sert, İsmail Ozan; Sezer-Uzol, Nilay; Kakaç, Sadık

    2013-10-01

    In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.

  6. The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis

    NASA Technical Reports Server (NTRS)

    Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.

    2015-01-01

    Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.

  7. Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael

    2002-07-01

    A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less

  8. Temperature shock, injury and transient sensitivity to nisin in Gram negatives.

    PubMed

    Boziaris, I S; Adams, M R

    2001-10-01

    The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.

  9. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  10. Thermal Response Of Composite Insulation

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul

    1988-01-01

    Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.

  11. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less

  12. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    NASA Astrophysics Data System (ADS)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  13. Posttest data analysis and assessment of TRAC-BD1/MOD1 with data from a Full Integral Simulation Test (FIST) power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  14. Modeling of the Multiparameter Inverse Task of Transient Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.

    1998-01-01

    Transient thermography employs preheated surface temperature variations caused by delaminations, cracks, voids, corroded regions, etc. Often, it is enough to detect these changes to declare a defect in a workpiece. It is also desirable to obtain additional information about the defect from the thermal response. The planar size, depth, and thermal resistance of the detected defects are the parameters of interest. In this paper a digital image processing technique is applied to simulated thermal responses in order to obtain the geometry of the inclusion-type defects in a flat panel. A three-dimensional finite difference model in Cartesian coordinates is used for the numerical simulations. Typical physical properties of polymer graphite composites are assumed. Using different informative parameters of the thermal response for depth estimation is discussed.

  15. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  16. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

  17. Transient in-plane thermal transport in nanofilms with internal heating

    PubMed Central

    Cao, Bing-Yang

    2016-01-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903

  18. Transient in-plane thermal transport in nanofilms with internal heating.

    PubMed

    Hua, Yu-Chao; Cao, Bing-Yang

    2016-02-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.

  19. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  20. An investigation of thermal comfort inside an automobile during the heating period.

    PubMed

    Kaynakli, Omer; Kilic, Muhsin

    2005-05-01

    This paper describes a combined theoretical and experimental study of thermal comfort during the heating period inside an automobile. To investigate the effects of thermal conditions on the human physiology and thermal comfort during the heating period, temperature, humidity and air velocity were measured at a number of points inside the automobile, so thermal conditions were accurately determined. The human body was divided into 16 sedentary segments, and the change of temperature was observed both experimentally and theoretically. During transient conditions of the heating period, heat and mass transfer between the human body and the interior environment of an automobile were simulated by a computational model, and predictions were compared with the measured data. It is shown that there is a good agreement between the model predictions and experimental results. By means of the present model, the effects of the fast transient conditions of the heating period on the sensible and latent heat transfer from the body, body segments skin temperatures and thermal sensation were investigated in detail.

  1. Special Test Methods for Batteries

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  2. Special test methods for batteries

    NASA Astrophysics Data System (ADS)

    Gross, S.

    1984-09-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  3. Thermal modelling and control of 130kw direct contact (salt/air) heat exchanger

    NASA Astrophysics Data System (ADS)

    Qureshi, Omer A.; Calvet, Nicolas; Armstrong, Peter R.

    2017-06-01

    This work investigates the transient response of a certain type of direct contact heat exchanger (DCHX) that consists of packing (Raschig Rings) to increase the surface area for effective heat transfer between molten salt and air. Molten salt from the hot tank enters the heat exchanger (HX) and exit after heating the air still in the molten form. Thermal capacitance of the HX, mainly due to packing and resident salt inside the HX, results in strong transient response. Pure delay from salt residence time may also impact transient response. Both phenomena have been modelled in this paper. A Proportional-Integral controller (PI control) performance has been evaluated to maintain the minimum salt temperature above avoid crystallization temperature of the salt.

  4. A finite element program for postbuckling calculations (PSTBKL)

    NASA Technical Reports Server (NTRS)

    Simitses, G. T.; Carlson, R. L.; Riff, R.

    1991-01-01

    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications.

  5. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  6. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    PubMed

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  7. Characterization of thermoplastic polyimide NEW-TPI

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Reddy, R. M.

    1991-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI, were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the meltings of the initial crystallite structures, the sample can be recrystallized by various thermal treatments. A bimodal or single-modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior satisfactorily under conditions of prolonged thermal annealing.

  8. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  9. Influence of clamping plate permeability and metal screen structures on three-dimensional magnetic field and eddy current loss in end region of a turbo-generator by numerical analysis

    NASA Astrophysics Data System (ADS)

    Likun, Wang; Weili, Li; Yi, Xue; Chunwei, Guan

    2013-11-01

    A significant problem of turbogenerators on complex end structures is overheating of local parts caused by end losses in the end region. Therefore, it is important to investigate the 3-D magnetic field and eddy current loss in the end. In end region of operating large turbogenerator at thermal power plants, magnetic leakage field distribution is complex. In this paper, a 3-D mathematical model used for the calculation of the electromagnetic field in the end region of large turbo-generators is given. The influence of spatial locations of end structures, the actual shape and material of end windings, clamping plate, and copper screen are considered. Adopting the time-step finite element (FE) method and taking the nonlinear characteristics of the core into consideration, a 3-D transient magnetic field is calculated. The objective of this paper is to investigate the influence of clamping plate permeability and metal screen structures on 3-D electromagnetic field distribution and eddy current loss in end region of a turbo-generator. To reduce the temperature of copper screen, a hollow metal screen is proposed. The eddy current loss, which is gained from the 3D transient magnetic field, is used as heat source for the thermal field of end region. The calculated temperatures are compared with test data.

  10. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  11. Behavior of a tapered hub flange with a bolted flat cover in transient temperature field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawa, T.; Nakagomi, Y.; Hirose, T.

    1996-02-01

    When bolted flange connections with gaskets are used in mechanical structures such as pipe connections, bolted covers of casks, and pressure vessels in nuclear and chemical plants and cylinder heads in internal combustion engines, they are usually subjected to transient thermal conditions. An experimental and analytical study was made on a bolted connection subjected to thermal loading. The connection consists of an aluminum alloy tapered hub flange and a flat cover, including a gasket fastened by steel bolts and nuts. Temperature distribution in the connection was measured with thermocouples, and the axial bolt force, the maximum bolt stress, and themore » hub stress were measured by strain gages under a thermal condition that the inner surface of the flanges was heated and the outer surfaces of the flanges and the cover were held at room temperature. Finite difference analysis was made to obtain the temperature distributions in the connection due to a transient thermal condition. This paper demonstrates the method for obtaining an increment in axial bolt force and the maximum bolt stress. In all cases, the analytical results were fairly consistent with the experimental results.« less

  12. Thermal characterization of gallium nitride p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Dallas, J.; Pavlidis, G.; Chatterjee, B.; Lundh, J. S.; Ji, M.; Kim, J.; Kao, T.; Detchprohm, T.; Dupuis, R. D.; Shen, S.; Graham, S.; Choi, S.

    2018-02-01

    In this study, various thermal characterization techniques and multi-physics modeling were applied to understand the thermal characteristics of GaN vertical and quasi-vertical power diodes. Optical thermography techniques typically used for lateral GaN device temperature assessment including infrared thermography, thermoreflectance thermal imaging, and Raman thermometry were applied to GaN p-i-n diodes to determine if each technique is capable of providing insight into the thermal characteristics of vertical devices. Of these techniques, thermoreflectance thermal imaging and nanoparticle assisted Raman thermometry proved to yield accurate results and are the preferred methods of thermal characterization of vertical GaN diodes. Along with this, steady state and transient thermoreflectance measurements were performed on vertical and quasi-vertical GaN p-i-n diodes employing GaN and Sapphire substrates, respectively. Electro-thermal modeling was performed to validate measurement results and to demonstrate the effect of current crowding on the thermal response of quasi-vertical diodes. In terms of mitigating the self-heating effect, both the steady state and transient measurements demonstrated the superiority of the tested GaN-on-GaN vertical diode compared to the tested GaN-on-Sapphire quasi-vertical structure.

  13. Approximate analysis of thermal convection in a crystal-growth cell for Spacelab 3

    NASA Technical Reports Server (NTRS)

    Dressler, R. F.

    1982-01-01

    The transient and steady thermal convection in microgravity is described. The approach is applicable to many three dimensional flows in containers of various shapes with various thermal gradients imposed. The method employs known analytical solutions to two dimensional thermal flows in simpler geometries, and does not require recourse to numerical calculations by computer.

  14. Thermal stress fracture of ceramic coatings

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.

    1983-01-01

    Thermal stress failures of ceramic coatings are discussed in terms of fracture mechanics concepts. The effects of transient and residual stresses on single and multiple cycle failure mechanisms are considered. A specific example of a zirconia thermal barrier coating is presented and its endurance calculated using the proposed relationships.

  15. Temporal Treatment of a Thermal Response for Defect Depth Estimation

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2004-01-01

    Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.

  16. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  17. Transient Thermal Analyses of Passive Systems on SCEPTOR X-57

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.

    2017-01-01

    As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.

  18. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  19. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  20. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  1. Cracking of a layered medium on an elastic foundation under thermal shock

    NASA Technical Reports Server (NTRS)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  2. Transient Non Lin Deformation in Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, Enrico

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  3. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  4. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    NASA Astrophysics Data System (ADS)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  5. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    DOE PAGES

    Lantz, G.; Mansart, B.; Grieger, D.; ...

    2017-01-09

    Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V 2O 3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configurationmore » is triggered by the excitation of electrons into the bonding a 1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A 1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A 1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less

  6. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  7. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, G.; Mansart, B.; Grieger, D.

    Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V 2O 3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configurationmore » is triggered by the excitation of electrons into the bonding a 1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A 1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A 1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Colby B.; Folsom, Charles P.; Davis, Cliff B.

    Experimental testing in the Multi-Static Environment Rodlet Transient Test Apparatus (SERTTA) will lead the rebirth of transient fuel testing in the United States as part of the Accident Tolerant Fuels (ATF) progam. The Multi-SERTTA is comprised of four isolated pressurized environments capable of a wide variety of working fluids and thermal conditions. Ultimately, the TREAT reactor as well as the Multi-SERTTA test vehicle serve the purpose of providing desired thermal-hydraulic boundary conditions to the test specimen. The initial ATF testing in TREAT will focus on reactivity insertion accident (RIA) events using both gas and water environments including typical PWR operatingmore » pressures and temperatures. For the water test environment, a test configuration is envisioned using the expansion tank as part of the gas-filled expansion volume seen by the test to provide additional pressure relief. The heat transfer conditions during the high energy power pulses of RIA events remains a subject of large uncertainty and great importance for fuel performance predictions. To support transient experiments, the Multi-SERTTA vehicle has been modeled using RELAP5 with a baseline test specimen composed of UO2 fuel in zircaloy cladding. The modeling results show the influence of the designs of the specimen, vehicle, and transient power pulses. The primary purpose of this work is to provide input and boundary conditions to fuel performance code BISON. Therefore, studies of parameters having influence on specimen performance during RIA transients are presented including cladding oxidation, power pulse magnitude and width, cladding-to-coolant heat fluxes, fuel-to-cladding gap, transient boiling effects (modified CHF values), etc. The results show the great flexibility and capacity of the TREAT Multi-SERTTA test vehicle to provide testing under a wide range of prototypic thermal-hydraulic conditions as never done before.« less

  9. Deconvolution of noisy transient signals: a Kalman filtering application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Zicker, J.E.

    The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.

  10. Transient thermal modeling of the nonscanning ERBE detector

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A numerical model to predict the transient thermal response of the ERBE nonscanning wide field of view total radiometer channel was developed. The model, which uses Monte Carlo techniques to characterize the radiative component of heat transfer, is described and a listing of the computer program is provided. Application of the model to simulate the actual blackbody calibration procedure is discussed. The use of the model to establish a real time flight data interpretation strategy is recommended. Modification of the model to include a simulated Earth radiation source field and a filter dome is indicated.

  11. Thermal transient anemometer

    DOEpatents

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  12. A transient thermal model of a neutral buoyancy cryogenic fluid delivery system

    NASA Astrophysics Data System (ADS)

    Bue, Grant C.; Conger, Bruce S.

    A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.

  13. Unsteady thermal blooming of intense laser beams

    NASA Astrophysics Data System (ADS)

    Ulrich, J. T.; Ulrich, P. B.

    1980-01-01

    A four dimensional (three space plus time) computer program has been written to compute the nonlinear heating of a gas by an intense laser beam. Unsteady, transient cases are capable of solution and no assumption of a steady state need be made. The transient results are shown to asymptotically approach the steady-state results calculated by the standard three dimensional thermal blooming computer codes. The report discusses the physics of the laser-absorber interaction, the numerical approximation used, and comparisons with experimental data. A flowchart is supplied in the appendix to the report.

  14. Synthesis and Thermal Characterization of Hydroxyapatite Powders Obtained by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Jiménez-Flores, Y.; Camacho, N.; Rojas-Trigos, J. B.; Suárez, M.

    The development of bioactive materials presents an interesting and an extremely relevant problem to solve, in the development of customized cranial and maxillofacial prosthesis, bioactive coating, and cements, for example. In such areas, one of the more employed materials is the synthetic hydroxyapatite, due to its proved biocompatibility with the human body; however, there are few studies about the thermal affinity with the biological surroundings, and most of them are centered in the thermal stability of the hydroxyapatite instead of its transient thermal response. In the present paper, the synthesis and physical-chemical characterization of hydroxyapatite samples, obtained by the sol-gel technique employing ultrasonic mixing, are reported. Employing X-ray diffraction patterns, XEDS and FTIR spectra, the crystal symmetry, chemical elements, and the present functional groups of the studied samples were determined and found to correspond to those reported in the literature, with a stoichiometry close to the ideal for biological applications. Additionally, by means of the photoacoustic detection and infrared photothermal radiometry (IPTR) techniques, the thermal response of the samples was obtained. Analyzing the photoacoustic data, the synthetized samples show photoacoustic opaqueness, responding in the thermally thick regime in the measurement range, and their thermal effusivity was also determined, having values of 1.47 folds the thermal effusivity of the mandibular human bone. Finally, from the IPTR measurements, the thermal diffusivity and thermal conductivity of the samples were also determined, having good agreement with the reported values for synthetic hydroxyapatite. The structural and thermophysical properties of the here reported samples show that the synthesized samples have good thermal affinity with the mandibular human bone tissue, and are suitable for biomedical applications.

  15. An experimental platform for real-time measurement of the deformation of nuclear fuel rod claddings submitted to thermal transients

    NASA Astrophysics Data System (ADS)

    Gallais, L.; Burla, R.; Martin, F.; Richaud, J. C.; Volle, G.; Pontillon, M.; Capdevila, H.; Pontillon, Y.

    2018-01-01

    We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.

  16. An experimental platform for real-time measurement of the deformation of nuclear fuel rod claddings submitted to thermal transients.

    PubMed

    Gallais, L; Burla, R; Martin, F; Richaud, J C; Volle, G; Pontillon, M; Capdevila, H; Pontillon, Y

    2018-01-01

    We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.

  17. PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants

    NASA Astrophysics Data System (ADS)

    Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va

    2017-09-01

    The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.

  18. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  19. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  20. FEL investigations of energy transfer in condensed phase systems

    NASA Astrophysics Data System (ADS)

    Henderson, Don O.; Mu, Richard; Silberman, Enrique; Johnson, J. B.; Edwards, Glenn S.

    1993-07-01

    The vibrational dynamics of O-H groups in fused silica have been examined by a time- resolved pump-probe technique using the Vanderbilt Free Electron Laser (FEL). We consider two effects, local heating and transient thermal lensing, which can influence measured T1 values in one color pump-probe measurements. The dependence of these two effects on both the micropulse spacing and the total number of micropulses delivered to the sample are analyzed in detail for the O-H/SiO2 system. The results indicate that transient thermal lensing can significantly influence the measured probe signal. The local heating may cause thermally induced changes in the ground state population of the absorber, thereby complicating the analysis of the relaxation dynamics.

  1. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  2. Structural Evaluation of a Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump Turbine Blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali

    1996-01-01

    Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.

  3. Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats.

    PubMed

    Lian, Yan-Na; Chang, Jin-Long; Lu, Qi; Wang, Yi; Zhang, Ying; Zhang, Feng-Min

    2017-06-09

    Exposure to stress could facilitate or inhibit pain responses (stress-induced hyperalgesia or hypoalgesia, respectively). Fluoxetine is a selective serotonin (5-HT) reuptake inhibitor antidepressant. There have been contradictory reports on whether fluoxetine produces antinociceptive effects. The purpose of this study was to elucidate changes in pain sensitivity after chronic stress exposure, and the effects of fluoxetine on these changes. We measured thermal, mechanical, and formalin-induced acute and inflammatory pain by using the tail-flick, von Frey, and formalin tests respectively. The results showed that rats exposed to chronic stress exhibited thermal and formalin-induced acute and inflammatory hypoalgesia and transient mechanical hyperalgesia. Furthermore, fluoxetine promoted hypoalgesia in thermal and inflammatory pain and induced mechanical hyperalgesia. Our results indicate that the 5-HT system could be involved in hypoalgesia of thermal and inflammatory pain and induce transient mechanical hyperalgesia after stress exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Compact stochastic models for multidimensional quasiballistic thermal transport

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn

    2016-11-01

    The Boltzmann transport equation (BTE) has proven indispensable in elucidating quasiballistic heat dynamics. The experimental observations of nondiffusive thermal transients, however, are interpreted almost exclusively through purely diffusive formalisms that merely extract "effective" Fourier conductivities. Here, we build upon stochastic transport theory to provide a characterisation framework that blends the rich physics contained within the BTE solutions with the convenience of conventional analyses. The multidimensional phonon dynamics are described in terms of an isotropic Poissonian flight process with a rigorous Fourier-Laplace single pulse response P (ξ → ,s )=1 /[s +ψ(∥ ξ → ∥ )] . The spatial propagator ψ(∥ ξ → ∥ ) , unlike commonly reconstructed mean free path spectra κΣ(Λ) , serves as a genuine thermal blueprint of the medium that can be identified in a compact form directly from the raw measurement signals. Practical illustrations for transient thermal grating and time domain thermoreflectance experiments on respectively GaAs and InGaAs are provided.

  5. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    USGS Publications Warehouse

    Denlinger, R.P.; Savage, W.Z.

    1989-01-01

    Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors

  6. Thermoplastic polyimide NEW-TPI (trademark)

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Reddy, Rakasi M.

    1990-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI (trademark), were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the melting of the initial crystallite structure, the sample can be recrystallized by various thermal treatments. A bimodal or single modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior rather satisfactory under the conditions of prolonged thermal annealing. Rheological measurements made in the linear viscoelastic range support the evidence observed in the thermal analysis. Furthermore, the measurements sustain the manufacturer's recommended processing window of 400 to 420 C for this material.

  7. Stress Intensity Factors for Cracking Metal Structures under Rapid Thermal Loading. Volume 2. Theoretical Background

    DTIC Science & Technology

    1989-08-01

    thermal pulse loadings. The work couples a Green’s function integration technique for transient thermal stresses with the well-known influence ... function approach for calculating stress intensity factors. A total of seven most commonly used crack models were investigated in this study. A computer

  8. Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels

    DTIC Science & Technology

    2010-07-01

    Flow Uniformity Test Cell .............................................................................51 Figure 37. Relationship Between Thermal...equations that influence both transient and steady state thermal behavior. Equation 1 describes the relationship between thermal diffusivity and the...intrinsic properties of any material. Equation 2 describes the Wiedemann-Franz law. P. Grootenhuis, et al reported on the relationship between

  9. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Macosko, Robert P.

    1999-01-01

    A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.

  10. Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennett, Cody A.; Short, Michael P.

    2018-06-01

    The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.

  11. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3

    PubMed Central

    Liu, Beiying; Qin, Feng

    2017-01-01

    Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143

  12. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  13. Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod

    NASA Astrophysics Data System (ADS)

    Labouret, Timothée; Palpant, Bruno

    2016-12-01

    The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.

  14. Detecting Thermal Cloaks via Transient Effects

    PubMed Central

    Sklan, Sophia R.; Bai, Xue; Li, Baowen; Zhang, Xiang

    2016-01-01

    Recent research on the development of a thermal cloak has concentrated on engineering an inhomogeneous thermal conductivity and an approximate, homogeneous volumetric heat capacity. While the perfect cloak of inhomogeneous κ and inhomogeneous ρcp is known to be exact (no signals scattering and only mean values penetrating to the cloak’s interior), the sensitivity of diffusive cloaks to defects and approximations has not been analyzed. We analytically demonstrate that these approximate cloaks are detectable. Although they work as perfect cloaks in the steady-state, their transient (time-dependent) response is imperfect and a small amount of heat is scattered. This is sufficient to determine the presence of a cloak and any heat source it contains, but the material composition hidden within the cloak is not detectable in practice. To demonstrate the feasibility of this technique, we constructed a cloak with similar approximation and directly detected its presence using these transient temperature deviations outside the cloak. Due to limitations in the range of experimentally accessible volumetric specific heats, our detection scheme should allow us to find any realizable cloak, assuming a sufficiently large temperature difference. PMID:27605153

  15. PHISICS/RELAP5-3D RESULTS FOR EXERCISES II-1 AND II-2 OF THE OECD/NEA MHTGR-350 BENCHMARK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard

    2016-03-01

    The Idaho National Laboratory (INL) Advanced Reactor Technologies (ART) High-Temperature Gas-Cooled Reactor (HTGR) Methods group currently leads the Modular High-Temperature Gas-Cooled Reactor (MHTGR) 350 benchmark. The benchmark consists of a set of lattice-depletion, steady-state, and transient problems that can be used by HTGR simulation groups to assess the performance of their code suites. The paper summarizes the results obtained for the first two transient exercises defined for Phase II of the benchmark. The Parallel and Highly Innovative Simulation for INL Code System (PHISICS), coupled with the INL system code RELAP5-3D, was used to generate the results for the Depressurized Conductionmore » Cooldown (DCC) (exercise II-1a) and Pressurized Conduction Cooldown (PCC) (exercise II-2) transients. These exercises require the time-dependent simulation of coupled neutronics and thermal-hydraulics phenomena, and utilize the steady-state solution previously obtained for exercise I-3 of Phase I. This paper also includes a comparison of the benchmark results obtained with a traditional system code “ring” model against a more detailed “block” model that include kinetics feedback on an individual block level and thermal feedbacks on a triangular sub-mesh. The higher spatial fidelity that can be obtained by the block model is illustrated with comparisons of the maximum fuel temperatures, especially in the case of natural convection conditions that dominate the DCC and PCC events. Differences up to 125 K (or 10%) were observed between the ring and block model predictions of the DCC transient, mostly due to the block model’s capability of tracking individual block decay powers and more detailed helium flow distributions. In general, the block model only required DCC and PCC calculation times twice as long as the ring models, and it therefore seems that the additional development and calculation time required for the block model could be worth the gain that can be obtained in the spatial resolution« less

  16. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr

    2015-12-31

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less

  17. Measuring thermal conductivity of thin films and coatings with the ultra-fast transient hot-strip technique

    NASA Astrophysics Data System (ADS)

    Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-07-01

    This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.

  18. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  19. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE PAGES

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-08-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  20. Efficient numerical simulation of an electrothermal de-icer pad

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Keith, T. G., Jr.; De Witt, K. J.; Wright, W. B.

    1987-01-01

    In this paper, a new approach to calculate the transient thermal behavior of an iced electrothermal de-icer pad was developed. The method of splines was used to obtain the temperature distribution within the layered pad. Splines were used in order to create a tridiagonal system of equations that could be directly solved by Gauss elimination. The Stefan problem was solved using the enthalpy method along with a recent implicit technique. Only one to three iterations were needed to locate the melt front during any time step. Computational times were shown to be greatly reduced over those of an existing one dimensional procedure without any reduction in accuracy; the curent technique was more than 10 times faster.

  1. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2014-03-01

    The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle evolution thus suggest that mantle plumes play a key role in driving surface tectonic processes and large-scale volcanism.

  2. Thermal transient anemometer

    DOEpatents

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  3. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  4. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  5. The GSFC NASTRAN thermal analyzer new capabilities

    NASA Technical Reports Server (NTRS)

    Lee, H. P.; Harder, R. L.

    1976-01-01

    An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses.

  6. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    NASA Astrophysics Data System (ADS)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  7. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J; Rugh, John P

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions andmore » cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less

  8. High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wu, Dafang; Xia, Yong

    2010-09-01

    To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.

  9. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  10. Quick-Response Thermal Actuator for Use as a Heat Switch

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan

    2010-01-01

    This work improves the performance of a heat switch, or a thermal actuator, by delivering heat to the actuator in a more efficient manner. The method uses a heat pipe as the plunger or plug instead of just using a solid piece of metal. The heat pipe could be one tailored for fast transient thermal response.

  11. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  12. Towards Prognostics for Electronics Components

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  13. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    PubMed

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. On some control problems of dynamic of reactor

    NASA Astrophysics Data System (ADS)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  15. More Analytical Tools for Fluids Management in Space

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark

    Continued advances during the 2000-2010 decade in the analysis of a class of capillary-driven flows relevant to materials processing and fluids management aboard spacecraft have been made. The class of flows addressed concern combined forced and spontaneous capillary flows in complex containers with interior edges. Such flows are commonplace in space-based fluid systems and arise from the particular container geometry and wetting properties of the system. Important applications for this work include low-g liquid fill and/or purge operations and passive fluid phase separation operations, where the container (i.e. fuel tank, water processer, etc.) geometry possesses interior edges, and where quantitative information of fluid location, transients, flow rates, and stability is critical. Examples include the storage and handling of liquid propellants and cryogens, water conditioning for life support, fluid phase-change thermal systems, materials processing in the liquid state, on-orbit biofluids processing, among others. For a growing number of important problems, closed-form expressions to transient three-dimensional flows are possible that, as design tools, replace difficult, time-consuming, and rarely performed numerical calculations. An overview of a selection of solutions in-hand is presented with example problems solved. NASA drop tower, low-g aircraft, and ISS flight ex-periment results are employed where practical to buttress the theoretical findings. The current review builds on a similar review presented at COSPAR, 2002, for the approximate decade 1990-2000.

  16. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  17. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  18. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  19. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    DTIC Science & Technology

    1990-06-01

    long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a

  20. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  1. A Few Examples of Spacecraft Anomalies Attributed to Transient Voltages and Currents Issues

    NASA Technical Reports Server (NTRS)

    Perez, Ray

    2006-01-01

    It is easy to address voltage and current transient related issues when the hardware in question or similar type of hardware is always available to you and when such issues are deterministic in nature. Unexpected or unforeseen transient related problems are not always a challenge but become a severe concern when a unique piece of the hardware, which developed the problem, is in space; as it is with all satellites. This paper addresses in a qualitative manner, a few examples of voltage and current events of transient origin which disabled space hardware.

  2. Hydrothermal heat discharge in the Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Mariner, R.H.

    2010-01-01

    Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.

  3. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  4. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    NASA Astrophysics Data System (ADS)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  5. Investigation of starting transients in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Burnham, E. A.; Hinkey, J. B.; Bruckner, A. P.

    1992-01-01

    An experimental investigation of the starting transients of the thermally choked ram accelerator is presented in this paper. Construction of a highly instrumented tube section and instrumentation inserts provide high resolution experimental pressure, luminosity, and electromagnetic data of the starting transients. Data obtained prior to and following the entrance diaphragm show detailed development of shock systems in both combustible and inert mixtures. With an evacuated launch tube, starting the diffuser is possible at any Mach number above the Kantrowitz Mach number. The detrimental effects and possible solutions of higher launch tube pressures and excessive obturator leakage (blow-by) are discussed. Ignition of a combustible mixture is demonstrated with both perforated and solid obturators. The relative advantages and disadvantages of each are discussed. Data obtained from these starting experiments enhance the understanding of the ram accelerator, as well as assist in the validation of unsteady, chemically reacting CFD codes.

  6. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  7. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  8. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  9. TMAP-7 simulation of D2 thermal release data from Be co-deposited layers

    NASA Astrophysics Data System (ADS)

    Baldwin, M. J.; Schwarz-Selinger, T.; Yu, J. H.; Doerner, R. P.

    2013-07-01

    The efficacy of (1) bake-out at 513 K and 623 K, and (2) thermal transient (10 ms) loading to up to 1000 K, is explored for reducing D inventory in 1 μm thick Be-D (D/Be ˜0.1) co-deposited layers formed at 323 K for experiment (1) and ˜500 K for experiment (2). D release data from co-deposits are obtained by thermal desorption and used to validate a model input into the Tritium Migration & Analysis Program 7 (TMAP). In (1), good agreement with experiment is found for a TMAP model encorporating traps of activation energies, 0.80 eV and 0.98 eV, whereas an additional 2 eV trap was required to model experiment (2). Thermal release is found to be trap limited, but simulations are optimal when surface recombination is taken into account. Results suggest that thick built-up co-deposited layers will hinder ITER inventory control, and that bake periods (˜1 day) will be more effective in inventory reduction than transient thermal loading.

  10. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  11. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user manual 5th Edition. Watermark, Brisbane, Australia [3] Diersch H.-J.G. (2014) FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer- Verlag Berlin Heidelberg, 996p

  12. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  13. Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: a feasibility study.

    PubMed

    Bonmarin, Mathias; Le Gal, Frédérique-Anne

    2014-04-01

    This paper theoretically evaluates lock-in thermal imaging for the early-stage detection of cutaneous melanoma. Lock-in thermal imaging is based on the periodic thermal excitation of the specimen under test. Resulting surface temperature oscillations are recorded with an infrared camera and allow the detection of variations of the sample's thermophysical properties under the surface. In this paper, the steady-state and transient skin surface temperatures are numerically derived for a different stage of development of the melanoma lesion using a two-dimensional axisymmetric multilayer heat-transfer model. The transient skin surface temperature signals are demodulated according to the digital lock-in principle to compute both a phase and an amplitude image of the lesions. The phase image can be advantageously used to accurately detect cutaneous melanoma at an early stage of development while the maximal phase shift can give precious information about the lesion invasion depth. The ability of lock-in thermal imaging to suppress disturbing subcutaneous thermal signals is demonstrated. The method is compared with the previously proposed pulse-based approaches, and the influence of the modulation frequency is further discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of the cooling system parameters on heat transfer and performance of the PAFC stack during transient operation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ridha, Rabi M. J.

    1992-01-01

    An experimental investigation for the effects of transient operation of a phosphoric acid fuel-cell stack on heat transfer and temperature distribution in the electrodes has been conducted. The proposed work utilized the experimental setup with modifications, which was designed and constructed under NASA Contract No. NCC-3-17(5). The experimental results obtained from this investigation and the mathematical model obtained under NASA Contract No. NCC3-17(4) after modifications, were utilized to develop mathematical models for transient heat transfer coefficient and temperature distribution in the electrode and to evaluate the performance of the cooling - system under unsteady state conditions. The empirical formulas developed were then implemented to modifying the developed computer code. Two incompressible coolants were used to study experimentally the effect of the thermophysical properties of the cool-ants on the transient heat transfer coefficient and the thermal contact resistance during start-up and shut-down processes. Coolant mass flow rates were verified from 16 to 88.2 Kg/hr during the transient process when the electrical power supply was gradually increased or decreased in the range (O to 3000 W/sq m). The effect of the thermal contact resistance with a range of stack pressure from O to 3500 KPa was studied.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabinmore » cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less

  16. Transient loads identification for a standoff metallic thermal protection system panel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundhausen, R. J.; Adams, Douglas E.; Derriso, Mark

    2004-01-01

    Standoff thermal protection system (TPS) panels are critical structural components in future aerospace vehicles because they protect the vehicle from the hostile environment encountered during space launch and reentry. Consequently, the panels are exposed to a variety of loads including high temperature thermal stresses, thermal shock, acoustic pressure, and foreign object impacts. Transient impacts are especially detrimental because they can cause immediate and severe degradation of the panel in the form of, for example, debonding and buckling of the face sheet, cracking of the fasteners, or deformation of the standoffs. Loads identification methods for determining the magnitude and location ofmore » impact loads provide an indication of TPS components that may be more susceptible to failure. Furthermore, a historical database of impact loads encountered can be retained for use in the development of statistical models that relate impact loading to panel life. In this work, simulated inservice transient loads are identified experimentally using two methods: a physics-based approach and an inverse Frequency Response Function (FRF) approach. It is shown that by applying the inverse FRF method, the location and magnitude of these simulated impacts can be identified with a high degree of accuracy. The identified force levels vary significantly with impact location due to the differences in panel deformation at the impact site indicating that resultant damage due to impacts would vary with location as well.« less

  17. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2012-12-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.

  18. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2013-10-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.

  19. Numerical Analysis of Transient Temperature Response of Soap Film

    NASA Astrophysics Data System (ADS)

    Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji

    2015-11-01

    Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.

  20. A Numerical Analysis of the Transient Response of an Ablation System Including Effects of Thermal Nonequilibrium, Mass Transfer and Chemical Kinetics. Ph.D Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Clark, R. K.

    1972-01-01

    The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.

  1. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  2. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    DOE PAGES

    Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; ...

    2016-12-05

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less

  3. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    NASA Technical Reports Server (NTRS)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  4. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  5. BODYFIT-1FE: a computer code for three-dimensional steady-state/transient single-phase rod-bundle thermal-hydraulic analysis. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.C.J.; Sha, W.T.; Doria, M.L.

    1980-11-01

    The governing equations, i.e., conservation equations for mass, momentum, and energy, are solved as a boundary-value problem in space and an initial-value problem in time. BODYFIT-1FE code uses the technique of boundary-fitted coordinate systems where all the physical boundaries are transformed to be coincident with constant coordinate lines in the transformed space. By using this technique, one can prescribe boundary conditions accurately without interpolation. The transformed governing equations in terms of the boundary-fitted coordinates are then solved by using implicit cell-by-cell procedure with a choice of either central or upwind convective derivatives. It is a true benchmark rod-bundle code withoutmore » invoking any assumptions in the case of laminar flow. However, for turbulent flow, some empiricism must be employed due to the closure problem of turbulence modeling. The detailed velocity and temperature distributions calculated from the code can be used to benchmark and calibrate empirical coefficients employed in subchannel codes and porous-medium analyses.« less

  6. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  7. Wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of themore » paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.« less

  8. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1991-01-01

    The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.

  9. Determination of the Optimal Fourier Number on the Dynamic Thermal Transmission

    NASA Astrophysics Data System (ADS)

    Bruzgevičius, P.; Burlingis, A.; Norvaišienė, R.

    2016-12-01

    This article represents the result of experimental research on transient heat transfer in a multilayered (heterogeneous) wall. Our non-steady thermal transmission simulation is based on a finite-difference calculation method. The value of a Fourier number shows the similarity of thermal variation in conditional layers of an enclosure. Most scientists recommend using no more than a value of 0.5 for the Fourier number when performing calculations on dynamic (transient) heat transfer. The value of the Fourier number is determined in order to acquire reliable calculation results with optimal accuracy. To compare the results of simulation with experimental research, a transient heat transfer calculation spreadsheet was created. Our research has shown that a Fourier number of around 0.5 or even 0.32 is not sufficient ({≈ }17 % of oscillation amplitude) for calculations of transient heat transfer in a multilayered wall. The least distorted calculation results were obtained when the multilayered enclosure was divided into conditional layers with almost equal Fourier number values and when the value of the Fourier number was around 1/6, i.e., approximately 0.17. Statistical deviation analysis using the Statistical Analysis System was applied to assess the accuracy of the spreadsheet calculation and was developed on the basis of our established methodology. The mean and median absolute error as well as their confidence intervals has been estimated by the two methods with optimal accuracy ({F}_{oMDF}= 0.177 and F_{oEPS}= 0.1633 values).

  10. Transient Thermal Stability of Polymer Nanocomposites

    DTIC Science & Technology

    2012-08-01

    modified Montmorillonite, Nanocor masterbatch ) 1 wt % carbon black (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O Multiwalled Carbon Nanotubes (Nanocyl... masterbatch ) Twin screw extrusion (190C) Slow Heating Regime Thermogravimetric Analysis Nanospecies improve thermal stability as expected Laser

  11. General Solutions for Hydromagnetic Free Convection Flow over an Infinite Plate with Newtonian Heating, Mass Diffusion and Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru

    2017-12-01

    The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.

  12. Sleep Problem Trajectories and Well-Being in Children with Attention-Deficit Hyperactivity Disorder: A Prospective Cohort Study.

    PubMed

    Lycett, Kate; Sciberras, Emma; Hiscock, Harriet; Mensah, Fiona K

    2016-06-01

    Sleep problems affect up to 70% of children with attention-deficit/hyperactivity disorder (ADHD) and are associated with poorer child and family well-being in cross-sectional studies. However, whether these associations hold longitudinally is unclear. The authors aimed to examine the longitudinal relationship between sleep problem trajectories and well-being in children with ADHD. Children with ADHD (n = 186), aged 5 to 13 years, were recruited from 21 pediatric practices across the state of Victoria, Australia. Sleep problem severity data were collected at 3 time points (baseline, 6, and 12 mo) and were used to classify sleep problem trajectories. Child and family well-being (e.g., child emotional and behavioral problems, quality of life [QoL]) were measured at baseline and 12 months by teacher and/or caregiver-report. The well-being of children with "transient" and "persistent" sleep problems was compared with those "never" experiencing sleep problems using a series of hierarchical linear regression models. After accounting for socio-demographic factors, children with transient and persistent sleep trajectories experienced more caregiver-reported behavioral and emotional problems (effect size [ES] both 0.7) and poorer child QoL (ES: -0.7 and -1.2, respectively). These associations remained after also accounting for ADHD medication and symptom severity and comorbidities, but after accounting for baseline measures many associations weakened to the point of nonsignificance. In the fully adjusted model-transient sleep problems were associated with behavioral and emotional problems (ES: 0.2). These associations were not evident by teacher-report. Children with ADHD experiencing transient or persistent sleep problems have poorer caregiver-reported well-being. Managing sleep problems in children with ADHD may improve child well-being.

  13. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  14. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  15. Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste

    NASA Astrophysics Data System (ADS)

    Kismi, M.; Poullain, P.; Mounanga, P.

    2012-07-01

    The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.

  16. TOPAZ2D heat transfer code users manual and thermal property data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less

  17. Laser based micro forming and assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCallum, Danny O'Neill; Wong, Chung-Nin Channy; Knorovsky, Gerald Albert

    2006-11-01

    It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination ofmore » laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.« less

  18. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples

    NASA Technical Reports Server (NTRS)

    Thompson, E.

    1979-01-01

    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  19. Time-resolved microscopy of fs-laser-induced heat flows in glasses

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Seuthe, Thomas; Grehn, Moritz; Eberstein, Markus; Rosenfeld, Arkadi; Mermillod-Blondin, Alexandre

    2018-01-01

    Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient d n/d T. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser-matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.

  20. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  1. A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Alloush, A.; Gosney, W. B.; Wakeham, W. A.

    1982-09-01

    This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 μm. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.

  2. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  3. A Method of Integrating Aeroheating into Conceptual Reusable Launch Vehicle Design: Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by the TPS. Also, this will lower the cost of the TPS and the overall cost of the vehicle.

  4. Microvibration and Centre-of-Gravity Shift Measurements on Thermally Stressed Thermal-Control Blankets

    NASA Astrophysics Data System (ADS)

    Magg, Manfred; Grillenbeck, Anton, , Dr.

    2004-08-01

    Several samples of thermal control blankets were subjected to transient thermal loads in a thermal vacuum chamber in order to study their ability to excite micro- vibrations on a carrier structure and to cause tiny centre- of-gravity shifts. The reason for this investigation was driven by the GOCE project in order to minimize micro- vibrations on-board of the spacecraft while on-orbit. The objectives of this investigation were to better understand the mechanism which may produce micro- vibrations induced by the thermal control blankets, and to identify thermal control blanket lay-ups with minimum micro-vibration activity.

  5. Meshless methods in shape optimization of linear elastic and thermoelastic solids

    NASA Astrophysics Data System (ADS)

    Bobaru, Florin

    This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis. The EFG formulation given here for shape optimization "uncovers" new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work. The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications. Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered. Several new research directions that need further consideration are exposed.

  6. Multi-Physics Simulation of TREAT Kinetics using MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark; Gleicher, Frederick; Ortensi, Javier

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less

  7. Investigation of thermoelastic problem of multiple-disc friction clutches applying different thermal loads

    NASA Astrophysics Data System (ADS)

    Abdullah, Oday I.; Schlattmann, Josef; Senatore, Adolfo; Al-Shabibi, Abdullah M.

    2018-05-01

    The designers of friction clutch systems in vehicular applications should always take into account a number of essential criteria. The friction clutch should be able to transfer the torque from the driving shaft to the driven one within a short time and minimum amount of shocks and vibrations to make the engagement (disengagement) as gentle as possible. Furthermore, it is well known that high surface temperatures were noticed during the beginning of engagement period due to slipping between the contacting elements of the friction clutch system with ensuing heat generation. The transient thermoelastic problem of multi-disc systems has been deeply investigated by many scientists and researchers using numerical techniques such as finite element method. In this analysis, the influence of the sliding speed on the thermoelastic behavior when the initial heat generated is constant was studied. For this purpose an axisymmetric finite element models were developed and used in the simulation shown in the paper.

  8. Relationship between current load and temperature for quasi-steady state and transient conditions

    NASA Astrophysics Data System (ADS)

    Lyon, Bernard R., Jr.; Orlove, Gary L.; Peters, Donna L.

    2000-03-01

    Infrared thermographers involved in predictive maintenance programs often use temperature measurement as a means of quantifying the severity of a problem. Temperature is certainly an important factor in evaluating equipment. However, if you follow guidelines that are based solely on absolute temperature measurement--or on a temperature rise (Delta T)--you run the risk of incorrectly diagnosing your problems. The consequences of such actions can lead to a false sense of security, equipment failure, fire, and even the possibility of personal injury. Understanding the additional factors involved in diagnosis is essential for obtaining productive results. One of these factors is the load or current flowing through conductors. The load can have a drastic effect on the temperature of a component. Changing loads can cause additional concerns because temperature changes lag behind load changes. The purpose of this paper is to illustrate the relationship between load and temperature of a faulty connection. The thermal response of a changing load is also investigated.

  9. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  10. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  11. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, Gene T.

    1987-01-01

    The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.

  12. A Reduced Model for Prediction of Thermal and Rotational Effects on Turbine Tip Clearance

    NASA Technical Reports Server (NTRS)

    Kypuros, Javier A.; Melcher, Kevin J.

    2003-01-01

    This paper describes a dynamic model that was developed to predict changes in turbine tip clearance the radial distance between the end of a turbine blade and the abradable tip seal. The clearance is estimated by using a first principles approach to model the thermal and mechanical effects of engine operating conditions on the turbine sub-components. These effects are summed to determine the resulting clearance. The model is demonstrated via a ground idle to maximum power transient and a lapse-rate takeoff transient. Results show the model demonstrates the expected pinch point behavior. The paper concludes by identifying knowledge gaps and suggesting additional research to improve the model.

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Transient clearing of a water aerosol in the case of thermal blooming of an optical beam

    NASA Astrophysics Data System (ADS)

    Kucherov, Arkadii N.

    1995-03-01

    The moisture approximation is used in a study of transient clearing of a water aerosol when droplets are evaporated by an intense laser beam in the presence of a cross wind. Coordinate distributions of the beam intensity and moisture are obtained between the moment at which the beam begins to act and the attainment of a steady state. The dependences of the intensity of the beam transmitted by an aerosol medium on the scaling parameters (representing aerosol evaporation or clearing, beam attenuation, and thermal blooming) are derived. A comparison is made with experimental and theoretical results obtained by other authors.

  14. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    NASA Astrophysics Data System (ADS)

    Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-01

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO2 particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO2 particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  15. Heat Transfer in Adhesively Bonded Honeycomb Core Panels

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.

  16. Transient Analysis of Thermal Protection System for X-33 Aircraft using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Chargin, M. K.; Bowles, J.; Tam, T.; Chu, D.; Chainyk, M.; Green, Michael J. (Technical Monitor)

    1997-01-01

    X-33 is an advanced technology demonstrator vehicle for the Reusable Launch Vehicle (RLV) program. The thermal protection system (TPS) for the X-33 is composed of complex layers of materials to protect internal components, while withstanding severe external temperatures induced by aerodynamic heating during high speed flight. It also serves as the vehicle aeroshell in some regions using a stand-off design. MSC/NASTRAN thermal analysis capability was used to predict transient temperature distribution (within the TPS) throughout a mission, from launch through the cool-off period after landing. In this paper, a typical analysis model, representing a point on the vehicle where the liquid oxygen tank is closest to the outer mold line, is described. The maximum temperature difference between the outer mold line and the internal surface of the liquid oxygen tank can exceed 1500 F. One dimensional thermal models are used to select the materials and determine the thickness of each layer for minimum weight while insuring that all materials remain within the allowable temperature range. The purpose of working with three dimensional (3D) comprehensive models using MSC/NASTRAN is to assess the 3D radiation effects and the thermal conduction heat shorts of the support fixtures.

  17. Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Égerházi, Lilla; Unger, János

    2012-11-01

    During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET = 29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function ( R 2 = 0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.

  18. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  19. Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers

    NASA Technical Reports Server (NTRS)

    Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.

    1980-01-01

    An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.

  20. Wallboard with Latent Heat Storage for Passive Solar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling testsmore » showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.« less

  1. Tape-Drop Transient Model for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Marchello, Joseph M.

    1998-01-01

    Composite parts of nonuniform thickness can be fabricated by in-situ automated tape placement (ATP) if the tape can be started and stopped at interior points of the part instead of always at its edges. This technique is termed start/stop-on-the-part, or, alternatively, tape-add/tape-drop. The resulting thermal transients need to be managed in order to achieve net shape and maintain uniform interlaminar weld strength and crystallinity. Starting-on-the-part has been treated previously. This paper continues the study with a thermal analysis of stopping-on-the-part. The thermal source is switched off when the trailing end of the tape enters the nip region of the laydown/consolidation head. The thermal transient is determined by a Fourier-Laplace transform solution of the two-dimensional, time-dependent thermal transport equation. This solution requires that the Peclet number Pe (the dimensionless ratio of inertial to diffusive heat transport) be independent of time and much greater than 1. Plotted isotherms show that the trailing tape-end cools more rapidly than the downstream portions of tape. This cooling can weaken the bond near the tape end; however the length of the affected region is found to be less than 2 mm. To achieve net shape, the consolidation head must continue to move after cut-off until the temperature on the weld interface decreases to the glass transition temperature. The time and elapsed distance for this condition to occur are computed for the Langley ATP robot applying PEEK/carbon fiber composite tape and for two upgrades in robot performance. The elapsed distance after cut-off ranges from about 1 mm for the present robot to about 1 cm for the second upgrade.

  2. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; van Eden, G. G.; Kesler, L. A.; De Temmerman, G.; Whyte, D. G.; Woller, K. B.

    2015-08-01

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m2 s1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.

  3. A global model for steady state and transient S.I. engine heat transfer studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohac, S.V.; Assanis, D.N.; Baker, D.M.

    1996-09-01

    A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less

  4. An investigation on die crack detection using Temperature Sensitive Parameter for high speed LED mass production

    NASA Astrophysics Data System (ADS)

    Annaniah, Luruthudass; Devarajan, Mutharasu; San, Teoh Kok

    To ensure the highest quality & long-term reliability of LED components it is necessary to examine LED dice that have sustained mechanical damage during the manufacturing process. This paper has demonstrated that detection of die crack in mass manufactured LEDs can be achieved by measuring Temperature Sensitive Parameters (TSPs) during final testing. A newly-designed apparatus and microcontroller was used for this investigation in order to achieve the millisecond switching time needed for detecting thermal transient effects and at the same time meet the expected speed for mass manufacturing. Evaluations conducted at lab scale shows that thermal transient behaviour of cracked die is significantly different than that of an undamaged die. Having an established test limits to differentiate cracked dice, large volume tests in a production environment were used to confirm the effectiveness of this test method. Failure Bin Analysis (FBA) of this high volume experiment confirmed that all the cracked die LEDs were detected and the undamaged LEDs passed this test without over-rejection. The work verifies that tests based on TSP are effective in identifying die cracks and it is believed that the method could be extended to other types of rejects that have thermal transient signatures such as die delamination.

  5. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation toolsmore » is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.« less

  6. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Du, J.; Wirtz, M.; Luo, G.-N.; Lu, G.-H.; Liu, W.

    2016-03-01

    Surface damage and structure evolution of the full tungsten ITER divertor under transient heat loads is a key concern for component lifetime and plasma operations. Recrystallization caused by transients and steady-state heat loads can lead to degradation of the material properties and is therefore one of the most serious issues for tungsten armor. In order to investigate the thermal response of the recrystallized tungsten under edge localized mode-like transient thermal loads, fully recrystallized tungsten samples with different average grain sizes are exposed to cyclic thermal shocks in the electron beam facility JUDITH 1. The results indicate that not only does the microstructure change due to recrystallization, but that the surface residual stress induced by mechanical polishing strongly influences the surface cracking behavior. The stress-free surface prepared by electro-polishing is shown to be more resistant to cracking than the mechanically polished one. The resulting surface roughness depends largely on the loading conditions instead of the recrystallized-grain size. As the base temperature increases from room temperature to 400 °C, surface roughening mainly due to the shear bands in each grain becomes more pronounced, and sub-grains (up to 3 μm) are simultaneously formed in the sub-surface. The directions of the shear bands exhibit strong grain-orientation dependence, and they are generally aligned with the traces of {1 1 2} twin habit planes. The results suggest that twinning deformation and dynamic recrystallization represent the predominant mechanism for surface roughening and related microstructure evolution.

  7. A tool to separate optical/infrared disc and jet emission in X-ray transient outbursts: the colour-magnitude diagrams of XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Russell, D. M.; Maitra, D.; Dunn, R. J. H.; Fender, R. P.

    2011-09-01

    It is now established that thermal disc emission and non-thermal jet emission can both play a role at optical/infrared (OIR) wavelengths in X-ray transients. The spectra of the jet and disc components differ, as do their dependence on mass accretion properties. Here we demonstrate that the OIR colour-magnitude diagrams (CMDs) of the evolution of the X-ray transient XTE J1550-564 in outburst can be used to separate the disc from the jet. Monitoring in two wavebands is all that is required. This outburst in 2000 was well studied, and both disc and jet were known to contribute. During the outburst the data follow a well-defined path in the CMD, describing what would be expected from a heated single-temperature blackbody of approximately constant area, except when the data appear redder than this track. This is due to the non-thermal jet component which dominates the OIR moreso during hard X-ray states at high luminosities, and which is quenched in the soft state. The CMD therefore shows state-dependent hysteresis, in analogy with (but not identical to) the well-established X-ray hardness-intensity diagram of black hole transients. The blackbody originates in the X-ray illuminated, likely unwarped, outer accretion disc. We show that the CMD can be approximately reproduced by a model that assumes various correlations between X-ray, OIR disc and OIR jet fluxes. We find evidence for the OIR jet emission to be decoupled from the disc near the peak of the hard state.

  8. Load Frequency Control of a Two-Area Thermal-Hybrid Power System Using a Novel Quasi-Opposition Harmony Search Algorithm

    NASA Astrophysics Data System (ADS)

    Mahto, Tarkeshwar; Mukherjee, V.

    2016-09-01

    In the present work, a two-area thermal-hybrid interconnected power system, consisting of a thermal unit in one area and a hybrid wind-diesel unit in other area is considered. Capacitive energy storage (CES) and CES with static synchronous series compensator (SSSC) are connected to the studied two-area model to compensate for varying load demand, intermittent output power and area frequency oscillation. A novel quasi-opposition harmony search (QOHS) algorithm is proposed and applied to tune the various tunable parameters of the studied power system model. Simulation study reveals that inclusion of CES unit in both the areas yields superb damping performance for frequency and tie-line power deviation. From the simulation results it is further revealed that inclusion of SSSC is not viable from both technical as well as economical point of view as no considerable improvement in transient performance is noted with its inclusion in the tie-line of the studied power system model. The results presented in this paper demonstrate the potential of the proposed QOHS algorithm and show its effectiveness and robustness for solving frequency and power drift problems of the studied power systems. Binary coded genetic algorithm is taken for sake of comparison.

  9. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

    NASA Astrophysics Data System (ADS)

    Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri

    2012-06-01

    A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.

  10. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  11. Transport processes in directional solidification and their effects on microstructure development

    NASA Astrophysics Data System (ADS)

    Mazumder, Prantik

    The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.

  12. Coupled field effects in BWR stability simulations using SIMULATE-3K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, J.; Smith, K.; Hagrman, D.

    1996-12-31

    The SIMULATE-3K code is the transient analysis version of the Studsvik advanced nodal reactor analysis code, SIMULATE-3. Recent developments have focused on further broadening the range of transient applications by refinement of core thermal-hydraulic models and on comparison with boiling water reactor (BWR) stability measurements performed at Ringhals unit 1, during the startups of cycles 14 through 17.

  13. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  14. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    DOE PAGES

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; ...

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g.,more » 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

  15. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; Goddard, Braden; Stewart, Scott

    2016-04-01

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 μs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. In this paper we attempt to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.

  16. Current and anticipated uses of thermal-hydraulic codes in NFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  17. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  18. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  19. New core-reflector boundary conditions for transient nodal reactor calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.K.; Kim, C.H.; Joo, H.K.

    1995-09-01

    New core-reflector boundary conditions designed for the exclusion of the reflector region in transient nodal reactor calculations are formulated. Spatially flat frequency approximations for the temporal neutron behavior and two types of transverse leakage approximations in the reflector region are introduced to solve the transverse-integrated time-dependent one-dimensional diffusion equation and then to obtain relationships between net current and flux at the core-reflector interfaces. To examine the effectiveness of new core-reflector boundary conditions in transient nodal reactor computations, nodal expansion method (NEM) computations with and without explicit representation of the reflector are performed for Laboratorium fuer Reaktorregelung und Anlagen (LRA) boilingmore » water reactor (BWR) and Nuclear Energy Agency Committee on Reactor Physics (NEACRP) pressurized water reactor (PWR) rod ejection kinetics benchmark problems. Good agreement between two NEM computations is demonstrated in all the important transient parameters of two benchmark problems. A significant amount of CPU time saving is also demonstrated with the boundary condition model with transverse leakage (BCMTL) approximations in the reflector region. In the three-dimensional LRA BWR, the BCMTL and the explicit reflector model computations differ by {approximately}4% in transient peak power density while the BCMTL results in >40% of CPU time saving by excluding both the axial and the radial reflector regions from explicit computational nodes. In the NEACRP PWR problem, which includes six different transient cases, the largest difference is 24.4% in the transient maximum power in the one-node-per-assembly B1 transient results. This difference in the transient maximum power of the B1 case is shown to reduce to 11.7% in the four-node-per-assembly computations. As for the computing time, BCMTL is shown to reduce the CPU time >20% in all six transient cases of the NEACRP PWR.« less

  20. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  1. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE PAGES

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    2017-10-16

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  2. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  3. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    PubMed

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Solving Problems With SINDA/FLUINT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    SINDA/FLUINT, the NASA standard software system for thermohydraulic analysis, provides computational simulation of interacting thermal and fluid effects in designs modeled as heat transfer and fluid flow networks. The product saves time and money by making the user's design process faster and easier, and allowing the user to gain a better understanding of complex systems. The code is completely extensible, allowing the user to choose the features, accuracy and approximation levels, and outputs. Users can also add their own customizations as needed to handle unique design tasks or to automate repetitive tasks. Applications for SINDA/FLUINT include the pharmaceutical, petrochemical, biomedical, electronics, and energy industries. The system has been used to simulate nuclear reactors, windshield wipers, and human windpipes. In the automotive industry, it simulates the transient liquid/vapor flows within air conditioning systems.

  5. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less

  6. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  7. Thermal sprayed composite melt containment tubular component and method of making same

    DOEpatents

    Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.

    2002-03-19

    A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

  8. A solid reactor core thermal model for nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Rider, William J.; Cappiello, Michael W.; Liles, Dennis R.

    1991-01-01

    A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions.

  9. Instrumentation for sensing moisture content of material using a transient thermal pulse

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1981-01-01

    Instrumentation is developed for sensing moisture content of material using a transient thermal pulse and is comprised of a sensing probe having a sensing element in the form of a ribbon excited by a constant current pulse to increase the temperature, and therefore the resistance, of the ribbon linearly. Moisture in web material limits the increase of temperature during the pulse in proportion to the moisture content. This increase in temperature produces a proportional increase in resistivity which is measured with a Wheatsone bridge as a change in voltage displayed by a measurement display unit. The probe is glued in a shallow groove of a lucite bar and connected to copper pins embedded in the bar.

  10. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  11. Heat flow from eastern Panama and northwestern Colombia

    USGS Publications Warehouse

    Sass, J.H.; Munroe, R.J.; Moses, T.H.

    1974-01-01

    Heat flows were determined at 12 sites in four distinct areas between longitude 77?? and 80??W in eastern Panama and northwestern Colombia. Evidently, most of the region is underlain by mafic oceanic crust so that the crustal radiogenic component of heat flow is very small (??? 0.1 ??cal cm-2 sec-1). Low heat-flow values (??? 0.7 ??cal cm-2 sec-1) in northwestern Colombia may reflect thermal transients associated with shallow subduction. The normal values (??? 1) at about 78??W are consistent with the mean heat flow from the western Caribbean and the Gulf of Mexico. At 80??W, a fairly high value of 1.8 may define the easterly limit of thermal transients due to Cenozoic volcanic activity in Central America. ?? 1974.

  12. Inverse problem to constrain the controlling parameters of large-scale heat transport processes: The Tiberias Basin example

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien

    2015-04-01

    Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer- Verlag Berlin Heidelberg ,996p. Doherty J., 2010, PEST: Model-Independent Parameter Estimation. user manual 5th Edition. Watermark, Brisbane, Australia Magri, F., Inbar, N., Siebert C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520(0), 342-355.

  13. A study of pressure-based methodology for resonant flows in non-linear combustion instabilities

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.

  14. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  15. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1989-01-01

    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.

  16. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    DOE PAGES

    Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; ...

    2017-02-04

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO 2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO 2more » particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO 2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO 2 particle size on fission-fragment damage. Lastly, the proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.« less

  17. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO 2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO 2more » particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO 2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO 2 particle size on fission-fragment damage. Lastly, the proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.« less

  18. Real-time detection of transients in OGLE-IV with application of machine learning

    NASA Astrophysics Data System (ADS)

    Klencki, Jakub; Wyrzykowski, Łukasz

    2016-06-01

    The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.

  19. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    NASA Astrophysics Data System (ADS)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  20. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  1. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  2. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  3. Special Course on Aerothermodynamics of Hypersonic Vehicles

    DTIC Science & Technology

    1989-06-01

    8, No. 3, 1970, pp. 511-518. 36. Kutler P. and Lomax, H., "Shock- Capturing Finite Difference Approach to Supersonic Flows," Journal of Spacecraft and...layer. These were termed *sandwich’ gages. (2) heat may be captured within a thermal mass which acts as a calorimeter and whose transient temperature...within the test duration, the backface thermal sensor is not responsive and the gage becomes one in which the thermal pulse is ’ captured ’ within the

  4. Ultrafast demagnetization at high temperatures

    NASA Astrophysics Data System (ADS)

    Hoveyda, F.; Hohenstein, E.; Judge, R.; Smadici, S.

    2018-05-01

    Time-resolved pump-probe measurements were made at variable heat accumulation in Co/Pd superlattices. Heat accumulation increases the baseline temperature and decreases the equilibrium magnetization. Transient ultrafast demagnetization first develops with higher fluence in parallel with strong equilibrium thermal spin fluctuations. The ultrafast demagnetization is then gradually removed as the equilibrium temperature approaches the Curie temperature. The transient magnetization time-dependence is well fit with the spin-flip scattering model.

  5. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a Germanmore » BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)« less

  7. SIERRA Multimechanics Module: Aria User Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  10. SSME turbopump technology improvements via transient rotordynamic analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1975-01-01

    The rotordynamic behavior of the high pressure oxygen turbopump and high pressure fuel pump was analyzed for the Space Shuttle Main Engine. The identification of potential rotordynamic problem areas which might arise during operation of these units prior to their testing was accomplished. Alternative procedures for correcting potential rotordynamic problems should they occur were investigated. An adequate analytic and physical understanding of the turbopump rotordynamics was developed to improve the probability of a correct diagnosis of rotordynamic problems from test data. Transient rotordynamic models were developed for both turbopumps. The transient models model the hydrodynamic forces of the turbopump seals. A linear stability analysis was performed for the turbopump rotordynamics models, which included gyroscopic effects, seal forces, speed-dependent bearing characteristics, and internal rotor damping. Results are presented and discussed.

  11. Space simulation techniques and facilities for SAX STM test campaign

    NASA Technical Reports Server (NTRS)

    Giordano, Pietro; Raimondo, Giacomo; Messidoro, Piero

    1994-01-01

    SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.

  12. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less

  13. Development of NSSS Thermal-Hydraulic Model for KNPEC-2 Simulator Using the Best-Estimate Code RETRAN-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook

    The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less

  14. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)

  15. Effect of clothing material on thermal responses of the human body

    NASA Astrophysics Data System (ADS)

    Fengzhi, Li; Yi, Li

    2005-09-01

    The influence of clothing material on thermal responses of the human body are investigated by using an integrated model of a clothed thermoregulatory human body. A modified 25-nodes model considering the sweat accumulation on the skin surface is applied to simulate the human physiological regulatory responses. The heat and moisture coupled transfer mechanisms, including water vapour diffusion, the moisture evaporation/condensation, the moisture sorbtion/desorption by fibres, liquid sweat transfer under capillary pressure, and latent heat absorption/release due to phase change, are considered in the clothing model. On comparing prediction results with the experimental data in the literature, the proposed model seems able to predict dynamic heat and moisture transfer between the human body and the clothing system. The human body's thermal responses and clothing temperature and moisture variations are compared for different clothing materials during transient periods. We concluded that the hygroscopicity of clothing materials influences the human thermoregulation process significantly during environmental transients.

  16. TACT 1: A computer program for the transient thermal analysis of a cooled turbine blade or vane equipped with a coolant insert. 2. Programmers manual

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1979-01-01

    A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.

  17. Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Eskin, L. D.

    1981-01-01

    A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.

  18. On the probability of violations of Fourier's law for heat flow in small systems observed for short times

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Williams, Stephen R.

    2010-01-01

    We study the statistical mechanics of thermal conduction in a classical many-body system that is in contact with two thermal reservoirs maintained at different temperatures. The ratio of the probabilities, that when observed for a finite time, the time averaged heat flux flows in and against the direction required by Fourier's Law for heat flow, is derived from first principles. This result is obtained using the transient fluctuation theorem. We show that the argument of that theorem, namely, the dissipation function is, close to equilibrium, equal to a microscopic expression for the entropy production. We also prove that if transient time correlation functions of smooth zero mean variables decay to zero at long times, the system will relax to a unique nonequilibrium steady state, and for this state, the thermal conductivity must be positive. Our expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.

  19. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  20. The use of computer-generated color graphic images for transient thermal analysis. [for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.

    1979-01-01

    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.

  1. Two dimensional, transient catalytic combustion of CO-air on platinum

    NASA Technical Reports Server (NTRS)

    Sinha, N.; Bruno, C.; Bracco, F. V.

    1985-01-01

    The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

  2. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  3. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Houts, Michael G.

    2011-01-01

    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  4. Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction.

    PubMed

    Löwenich, Dennis; Kleinermanns, Karl; Karunakaran, Venugopal; Kovalenko, Sergey Alexander

    2008-01-01

    Photoreduction of cytochrome c (Cyt c) has been reinvestigated using femtosecond-to-nanosecond transient absorption and stationary spectroscopy. Femtosecond spectra of oxidized Cyt c, recorded in the probe range 270-1000 nm, demonstrate similar evolution upon 266 or 403 nm excitation: an ultrafast 0.3 ps internal conversion followed by a 4 ps vibrational cooling. Late transient spectra after 20 ps, from the cold ground-state chromophore, reveal a small but measurable signal from reduced Cyt c. The yield phi for Fe3+-->Fe2+ photoreduction is measured to be phi(403) = 0.016 and phi(266) = 0.08 for 403 and 266 nm excitation. These yields lead to a guess of the barrier E(f)(A) = 55 kJ mol(-1) for thermal ground-state electron transfer (ET). Nanosecond spectra initially show the typical absorption from reduced Cyt c and then exhibit temperature-dependent sub-microsecond decays (0.5 micros at 297 K), corresponding to a barrier E(A)(b) = 33 kJ mol(-1) for the back ET reaction and a reaction energy DeltaE = 22 kJ mol(-1). The nanosecond transients do not decay to zero on a second time scale, demonstrating the stability of some of the reduced Cyt c. The yields calculated from this stable reduced form agree with quasistationary reduction yields. Modest heating of Cyt c leads to its efficient thermal reduction as demonstrated by differential stationary absorption spectroscopy. In summary, our results point to ultrafast internal conversion of oxidized Cyt c upon UV or visible excitation, followed by Fe-porphyrin reduction due to thermal ground-state ET as the prevailing mechanism.

  5. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Thornton, M.

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less

  6. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-04-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  7. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  8. Investigation of thermal-fluid mechanical characteristics of the Capillary Pump Loop

    NASA Technical Reports Server (NTRS)

    Kiper, Ali M.

    1991-01-01

    The main purpose is the experimental and analytical study of behavior of the Capillary Pump Loop (CPL) heat pipe system during the transient mode of operating by applying a step heat pulse to one or more evaporators. Prediction of the CPL behavior when subjected to pulse heat loading requires further study before the transient response of CPL system can be fully understood. The following tasks are discussed: (1) exploratory testing of a CPL heat pipe for transient operational conditions which could generate the type of oscillatory inlet temperature behavior observed in an earlier testing of NASA/GSFC CPL-2 heat pipe system; (2) analytical investigation of the CPL inlet section temperature oscillations; (3) design, construction and testing of a bench-top CPL test system for study of the CPL transient operation; and (4) transient analysis of a CPL heat pipe by applying a step power input to the evaporators.

  9. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  10. Studying the transient magnetar 3XMMJ185246.6+003317 close to SNR Kes 79

    NASA Astrophysics Data System (ADS)

    Murray, Stephen

    2014-09-01

    We have discovered a new transient AXP just south of SNR Kes 79. It has the longest period among transient AXPs and the second longest period among isolated X-ray NSs. It is also only the third low-B magnetar. We propose two 10 ks ACIS-I observations, separated by about six months, to monitor the activity of the transient AXP, which was in a quiescent state from late 2012 to late 2013 and is expected to have a duty cycle of less than 10%. We plan to use these two observations to start our long-term campaign on the AXP and Kes 79, which will address important questions like the nature of this rare, low-B, transient AXP, its connection with Kes 79, the activity of the central compact object at the center of Kes 79 and the non-thermal and ejecta emission from Kes 79.

  11. Radio and white-light observations of coronal transients

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.

  12. Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package

    NASA Technical Reports Server (NTRS)

    Lee, H.-P.; Jackson, C. E., Jr.

    1974-01-01

    The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.

  13. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  14. INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Javier Ortensi; Sonat Sen

    2013-09-01

    The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible formore » defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III results of all other international participants in 2014, while the remaining Phase II transient case results will be reported in 2015.« less

  15. Thermal analyses of the International Ultraviolet Explorer (IUE) scientific instrument using the NASTRAN thermal analyzer (NTA): A general purpose summary

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1976-01-01

    The NTA Level 15.5.2/3, was used to provide non-linear steady-state (NLSS) and non-linear transient (NLTR) thermal predictions for the International Ultraviolet Explorer (IUE) Scientific Instrument (SI). NASTRAN structural models were used as the basis for the thermal models, which were produced by a straight forward conversion procedure. The accuracy of this technique was sub-sequently demonstrated by a comparison of NTA predicts with the results of a thermal vacuum test of the IUE Engineering Test Unit (ETU). Completion of these tasks was aided by the use of NTA subroutines.

  16. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    NASA Astrophysics Data System (ADS)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  17. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOEpatents

    Schmidt, Mark Christopher

    2000-01-01

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  18. Application of the TEMPEST computer code to canister-filling heat transfer problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch fillingmore » mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.« less

  19. Correction of Thermal Gradient Errors in Stem Thermocouple Hygrometers

    PubMed Central

    Michel, Burlyn E.

    1979-01-01

    Stem thermocouple hygrometers were subjected to transient and stable thermal gradients while in contact with reference solutions of NaCl. Both dew point and psychrometric voltages were directly related to zero offset voltages, the latter reflecting the size of the thermal gradient. Although slopes were affected by absolute temperature, they were not affected by water potential. One hygrometer required a correction of 1.75 bars water potential per microvolt of zero offset, a value that was constant from 20 to 30 C. PMID:16660685

  20. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  1. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  2. Thermal Applications for Advanced Metallic Materials (Preprint)

    DTIC Science & Technology

    2007-01-01

    Mondolfo, L.E., Aluminum Alloys-Structure and Properties . 1976: Butterworths. 21. Tritt, T.M. and M.A. Subramanian, Thermoelectric Materials...for Potential Thermoelectric Applications. MRS Bulletin, 2006. 31(March): p. 206-210. 32. Rao, A.M., X. Ji, and T.M. Tritt, Properties of...conductivity metallic composites; lightweight metallic phase-change materials for managing thermal transients; high-efficiency thermoelectric materials for

  3. FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

    2014-12-01

    The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

  4. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects

    NASA Astrophysics Data System (ADS)

    Khun, Josef; Scholtz, Vladimír; Hozák, Pavel; Fitl, Přemysl; Julák, Jaroslav

    2018-06-01

    The appearance of several types of ballast serial impedance-stabilized DC-driven electric corona discharges in the point-to-plane configuration is described. In addition to well-known corona discharges, new ones were observed, namely curved transient spark, interrupted channel and branched transient spark. Their properties are described by volt-ampere characteristics and UV-vis emission spectra. Their bactericidal ability for two bacterial species is also given.

  5. Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Steadman, Todd

    2003-01-01

    The chilldown of fluid transfer lines is an important part of using cryogenic systems such as those found in both ground and space based applications. The chilldown process is a complex combination of both thermal and fluid transient phenomena. A cryogenic liquid flows through a transfer line that is initially at a much higher temperature than the cryogen. Transient heat transfer processes between the liquid and transfer line cause vaporization of the liquid, and this phase change can cause transient pressure and flow surges in the liquid. As the transfer line is cooled, these effects diminish until the liquid reaches a steady flow condition in the chilled transfer line. If these transient phenomena are not properly accounted for in the design process of a cryogenic system, it can lead to damage or failure of system components during operation. For such cases, analytical modeling is desirable for ensuring that a cryogenic system transfer line design is adequate for handling the effects of a chilldown process. The purpose of this paper is to present the results of a numerical model developed using Generalized Fluid System Simulation Program (GFSSP)'s new fluid transient capability in combination with its previously developed thermal transient capability to predict pressure and flow surge in cryogenic transfer lines during a chilldown process. An experiment performed by the National Bureau of Standards (NBS) in 1966 has been chosen as the baseline comparison case for this work. NBS s experimental set-up consisted of a 10.59 cubic foot supply dewar, an inlet valve, and a 200 foot long, in Outside Diameter (OD) vacuum jacketed copper transfer line that exhausted to atmosphere. Three different inlet valves, an in-port ball valve, a 1-in-port globe valve and a 1-in-port gate valve, were used in NBS's experiments. Experiments were performed using both liquid hydrogen and liquid nitrogen as the fluids. The proposed paper will include detailed comparisons of GFSSP's predictions with NBS's experimental results.

  6. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-I. Theory

    USGS Publications Warehouse

    Hsieh, P.A.; Tracy, J.V.; Neuzil, C.E.; Bredehoeft, J.D.; Silliman, Stephen E.

    1981-01-01

    Transient pulse testing has been employed increasingly in the laboratory to measure the hydraulic properties of rock samples with low permeability. Several investigators have proposed a mathematical model in terms of an initial-boundary value problem to describe fluid flow in a transient pulse test. However, the solution of this problem has not been available. In analyzing data from the transient pulse test, previous investigators have either employed analytical solutions that are derived with the use of additional, restrictive assumptions, or have resorted to numerical methods. In Part I of this paper, a general, analytical solution for the transient pulse test is presented. This solution is graphically illustrated by plots of dimensionless variables for several cases of interest. The solution is shown to contain, as limiting cases, the more restrictive analytical solutions that the previous investigators have derived. A method of computing both the permeability and specific storage of the test sample from experimental data will be presented in Part II. ?? 1981.

  7. Improved fluid dynamics similarity, analysis and verification. Part 5: Analytical and experimental studies of thermal stratification phenomena

    NASA Technical Reports Server (NTRS)

    Winter, E. R. F.; Schoenhals, R. J.; Haug, R. I.; Libby, T. L.; Nelson, R. N.; Stevenson, W. H.

    1968-01-01

    The stratification behavior of a contained fluid subjected to transient free convection heat transfer was studied. A rectangular vessel was employed with heat transfer from two opposite walls of the vessel to the fluid. The wall temperature was increased suddenly to initiate the process and was then maintained constant throughout the transient stratification period. Thermocouples were positioned on a post at the center of the vessel. They were adjusted so that temperatures could be measured at the fluid surface and at specific depths beneath the surface. The predicted values of the surface temperature and the stratified layer thickness were found to agree reasonably well with the experimental measurements. The experiments also provided information on the transient centerline temperature distribution and the transient flow distribution.

  8. Three-dimensional time-dependent STAR reactor kinetics analyses coupled with RETRAN and MCPWR system response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1989-11-01

    The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less

  9. Dimensionless figure of merit and its efficiency estimation for transient response of thermoelectric module based on impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Mioko; Hasegawa, Yasuhiro; Arisaka, Taichi; Shinozaki, Ryo; Morita, Hiroyuki

    2017-11-01

    The dimensionless figure of merit and its efficiency for the transient response of a Π-shaped thermoelectric module are estimated according to the theory of impedance spectroscopy. The effective dimensionless figure of merit is described as a function of the product of the characteristic time to reduce the temperature and the representative angular frequency of the module, which is expressed by the thermal diffusivity and the length of the elements used. The characteristic time required for achieving a higher dimensionless figure of merit and efficiency is derived quantitatively for the transient response using the properties of a commercial thermoelectric module.

  10. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  11. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  12. Use of MSC/NASTRAN for the thermal analysis of the Space Shuttle Orbiter braking system

    NASA Technical Reports Server (NTRS)

    Shu, James; Mccann, David

    1987-01-01

    A description is given of the thermal modeling and analysis effort being conducted to investigate the transient temperature and thermal stress characteristics of the Space Shuttle Orbiter brake components and subsystems. Models are constructed of the brake stator as well as of the entire brake assembly to analyze the temperature distribution and thermal stress during the landing and braking process. These investigations are carried out on a UNIVAC computer system with MSC/NASTRAN Version 63. Analytical results and solution methods are presented and comparisons are made with SINDA results.

  13. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  14. Thermal properties of alkali-activated aluminosilicates

    NASA Astrophysics Data System (ADS)

    Florian, Pavel; Valentova, Katerina; Fiala, Lukas; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements and evaluation of thermal properties of alkali-activated aluminosilicates (AAA) with various carbon admixtures. Such composites consisting of blast-furnace slag, quartz sand, water glass as alkali activator and small amount of electrically conductive carbon admixture exhibit better electric and thermal properties than the reference material. Such enhancement opens up new practical applications, such as designing of snow-melting, de-icing or self-sensing systems that do not need any external sensors to detect current condition of building material. Thermal properties of the studied materials were measured by the step-wise transient method and mutually compared.

  15. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  16. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  17. Transient Finite Element Computations on a Variable Transputer System

    NASA Technical Reports Server (NTRS)

    Smolinski, Patrick J.; Lapczyk, Ireneusz

    1993-01-01

    A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.

  18. Numerical prediction of fire resistance of RC beams

    NASA Astrophysics Data System (ADS)

    Serega, Szymon; Wosatko, Adam

    2018-01-01

    Fire resistance of different structural members is an important issue of their strength and durability. A simple but effective tool to investigate multi-span reinforced concrete beams exposed to fire is discussed in the paper. Assumptions and simplifications of the theory as well as numerical aspects are briefly reviewed. Two steps of nonlinear finite element analysis and two levels of observation are distinguished. The first step is the solution of transient heat transfer problem in representative two-dimensional reinforced concrete cross-section of a beam. The second part is a nonlinear mechanical analysis of the whole beam. All spans are uniformly loaded, but an additional time-dependent thermal load due to fire acts on selected ones. Global changes of curvature and bending moment functions induce deterioration of the stiffness. Benchmarks are shown to confirm the correctness of the model.

  19. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  20. Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    NASA Astrophysics Data System (ADS)

    Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.

    2017-11-01

    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.

  1. Parametric Thermal Soak Model for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.

    2013-01-01

    The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model that was used for the simulations. The results indicate that it takes several hours for the thermal energy to soak into the interior of the vehicle and achieve maximum payload temperatures. In addition, a strong correlation between the heatload and peak payload container temperature is observed that will help establishing the parametric thermal soak model.

  2. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    NASA Astrophysics Data System (ADS)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  3. CAVE3: A general transient heat transfer computer code utilizing eigenvectors and eigenvalues

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1978-01-01

    The method of solution is a hybrid analytical numerical technique which utilizes eigenvalues and eigenvectors. The method is inherently stable, permitting large time steps even with the best of conductors with the finest of mesh sizes which can provide a factor of five reduction in machine time compared to conventional explicit finite difference methods when structures with small time constants are analyzed over long time periods. This code will find utility in analyzing hypersonic missile and aircraft structures which fall naturally into this class. The code is a completely general one in that problems involving any geometry, boundary conditions and materials can be analyzed. This is made possible by requiring the user to establish the thermal network conductances between nodes. Dynamic storage allocation is used to minimize core storage requirements. This report is primarily a user's manual for CAVE3 code. Input and output formats are presented and explained. Sample problems are included which illustrate the usage of the code as well as establish the validity and accuracy of the method.

  4. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    NASA Technical Reports Server (NTRS)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  5. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  6. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  7. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  8. Thermal mirror spectrometry: An experimental investigation of optical glasses

    NASA Astrophysics Data System (ADS)

    Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.

    2013-03-01

    The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.

  9. Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, G. P.; Mangal, Ravindra; Bhojak, N.

    2010-06-29

    Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less

  10. The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.

    2015-12-01

    The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar system.

  11. Comparison of Homogeneous and Heterogeneous CFD Fuel Models for Phase I of the IAEA CRP on HTR Uncertainties Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Su-Jong Yoon

    2014-04-01

    Computational Fluid Dynamics (CFD) evaluation of homogeneous and heterogeneous fuel models was performed as part of the Phase I calculations of the International Atomic Energy Agency (IAEA) Coordinate Research Program (CRP) on High Temperature Reactor (HTR) Uncertainties in Modeling (UAM). This study was focused on the nominal localized stand-alone fuel thermal response, as defined in Ex. I-3 and I-4 of the HTR UAM. The aim of the stand-alone thermal unit-cell simulation is to isolate the effect of material and boundary input uncertainties on a very simplified problem, before propagation of these uncertainties are performed in subsequent coupled neutronics/thermal fluids phasesmore » on the benchmark. In many of the previous studies for high temperature gas cooled reactors, the volume-averaged homogeneous mixture model of a single fuel compact has been applied. In the homogeneous model, the Tristructural Isotropic (TRISO) fuel particles in the fuel compact were not modeled directly and an effective thermal conductivity was employed for the thermo-physical properties of the fuel compact. On the contrary, in the heterogeneous model, the uranium carbide (UCO), inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers of the TRISO fuel particles are explicitly modeled. The fuel compact is modeled as a heterogeneous mixture of TRISO fuel kernels embedded in H-451 matrix graphite. In this study, a steady-state and transient CFD simulations were performed with both homogeneous and heterogeneous models to compare the thermal characteristics. The nominal values of the input parameters are used for this CFD analysis. In a future study, the effects of input uncertainties in the material properties and boundary parameters will be investigated and reported.« less

  12. Computationally efficient thermal-mechanical modelling of selective laser melting

    NASA Astrophysics Data System (ADS)

    Yang, Yabin; Ayas, Can

    2017-10-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.

  13. TRAC-BF1 thermal-hydraulic, ANSYS stress analysis for core shroud cracking phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoop, U.; Feltus, M.A.; Baratta, A.J.

    1996-12-31

    The U.S. Nuclear Regulatory Commission sent Generic Letter 94-03 informing all licensees about the intergranular stress corrosion cracking (IGSCC) of core shrouds found in both Dresden unit I and Quad Cities unit 1. The letter directed all licensees to perform safety analysis of their boiling water reactor (BWR) units. Two transients of special concern for the core shroud safety analysis include the main steam line break (MSLB) and recirculation line break transient.

  14. Performance of the supercritical helium cooling loop for the JET divertor cryopump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Mayaux, C.; Barth, K.

    1996-12-31

    A supercritical helium cooling loop for the two JET divertor cryopumps has been tested, commissioned and is operational practically uninterrupted for over one year. Operation experience under a number of different boundary and transient conditions have been obtained. The flow of the supercritical helium (6 g/s, 2.7 bar) is driven by the main compressor of the JET helium refrigerator passing a heat exchanger where it is subcooled to 4.1 K before entering the two cryopumps which are an assembly of two 60 m long and 20 mm diameter corrugated stainless steel tubes. By using a dedicated cold ejector which ismore » driven by the main flow and where the expansion from 12 bar to 2.7 bar takes place increases the flow of supercritical helium up to {approximately}17 g/s. The steady state thermal load to the cooling loop of the cryopump is < 80 W but during transient conditions in particular due to nuclear heating in the active phase of JET considerably higher transient heat loads can be accepted by the loop. Details about the steady state and transient thermal conditions as well as the cooldown and warm up behavior of the loop and the interaction of the supercritical loop with the operation of other plant equipment will be discussed in the paper.« less

  15. Software For Three-Dimensional Stress And Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Wilson, R. B.; Hopkins, D. A.

    1994-01-01

    BEST3D is advanced engineering software system for three-dimensional thermal and stress analyses, particularly of components of hot sections of gas-turbine engines. Utilizes boundary element method, offering, in many situations, more accuracy, efficiency, and ease of use than finite element method. Performs engineering analyses of following types: elastic, heat transfer, plastic, forced vibration, free vibration, and transient elastodynamic. Written in FORTRAN 77.

  16. Thermal Analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The University of Georgia used NASTRAN, a COSMIC program that predicts how a design will stand up under stress, to develop a model for monitoring the transient cooling of vegetables. The winter use of passive solar heating for poultry houses is also under investigation by the Agricultural Engineering Dept. Another study involved thermal analysis of black and green nursery containers. The use of NASTRAN has encouraged student appreciation of sophisticated computer analysis.

  17. Cryogenic strain gage techniques used in force balance design for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1986-01-01

    A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.

  18. Application of millisecond pulsed laser for thermal fatigue property evaluation

    NASA Astrophysics Data System (ADS)

    Pan, Sining; Yu, Gang; Li, Shaoxia; He, Xiuli; Xia, Chunyang; Ning, Weijian; Zheng, Caiyun

    2018-02-01

    An approach based on millisecond pulsed laser is proposed for thermal fatigue property evaluation in this paper. Cyclic thermal stresses and strains within millisecond interval are induced by complex and transient temperature gradients with pulsed laser heating. The influence of laser parameters on surface temperature is studied. The combination of low pulse repetition rate and high pulse energy produces small temperature oscillation, while high pulse repetition rate and low pulse energy introduces large temperature shock. The possibility of application is confirmed by two thermal fatigue tests of compacted graphite iron with different laser controlled modes. The developed approach is able to fulfill the preset temperature cycles and simulate thermal fatigue failure of engine components.

  19. Reflection and refraction of a transient temperature field at a plane interface using Cagniard-de Hoop approach.

    PubMed

    Shendeleva, M L

    2001-09-01

    An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal properties is considered. Green's functions for the temperature field are derived using the Laplace and Fourier transforms in time and space and their inverting by the Cagniard-de Hoop technique known in elastodynamics. The characteristic feature of the proposed approach consists in the application of the Cagniard-de Hoop method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as diagrams of rays and streamlines of the temperature field are presented.

  20. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physicalmore » property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were fabricated for both room temperature proof-of-concept evaluations and high temperature testing. Evaluations have been performed jointly by the INL and the French Alternative Energies and Atomic Energy Commission (CEA), both in Idaho Falls (USA) and in Cadarache (France), in the framework of a collaborative program for instrumentation of Material Testing Reactors. Initial tests were conducted on samples with a large range of thermal conductivities and temperatures ranging from 20 deg. C to 600 deg. C. Particularly, tests were recently performed on a sample having thermal conductivity and dimensions similar to UO{sub 2} and MOX nuclear fuels, in order to validate the ability of this sensor to operate for in-pile characterization of Light Water Reactors fuels. The results of the tests already completed at INL and CEA indicate that the Transient Hot Wire Needle Probe offers an enhanced method for in-pile detection of thermal conductivity. (authors)« less

  1. Synchronized Electronic Shutter System (SESS) for Thermal Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.

    2001-01-01

    The purpose of this paper is to describe a new method for thermal nondestructive evaluation. This method uses a synchronized electronic shutter system (SESS) to remove the heat lamp's influence on the thermal data during and after flash heating. There are two main concerns when using flash heating. The first concern is during the flash when the photons are reflected back into the camera. This tends to saturate the detectors and potentially introduces unknown and uncorrectable errors when curve fitting the data to a model. To address this, an electronically controlled shutter was placed over the infrared camera lens. Before firing the flash lamps, the shutter is opened to acquire the necessary background data for offset calibration. During flash heating, the shutter is closed to prevent the photons from the high intensity flash from saturating the camera's detectors. The second concern is after the flash heating where the lamps radiate heat after firing. This residual cooling introduces an unwanted transient thermal response into the data. To remove this residual effect, a shutter was placed over the flash lamps to block the infrared heat radiating from the flash head after heating. This helped to remove the transient contribution of the flash. The flash lamp shutters were synchronized electronically with the camera shutter. Results are given comparing the use of the thermal inspection with and without the shutter system.

  2. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.

    1990-01-01

    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.

  3. Hot tube method for the measuring of thermophysical properties of materials

    NASA Astrophysics Data System (ADS)

    Dieška, Peter; Boháč, Vlastimil; Vretenár, Viliam

    2017-07-01

    The measurement of thermal properties of materials that do not keep the form is problematic, because usually, the basic condition of the most models predicts constant dimensions. The plastic materials like clay or loam in natural condition always contain some water and thus are viscous and squeeze out of specimen holder when clamped even at weak force produced by specimen holder. Thus, the specimen dimensions are changing in during the measurement when it is not placed in a solid container. Even at this arrangement the shrinkage of material at the measurements causes the lowering the specimen thickness when using two probe method like pulse transient technique. This effect problem could be lowered or neglected at single probe techniques like the planar hot disk or this newly derived hot tube method. Hot tube method is derived for the probe made as the rectangular plane bended around the solid cylinder or tube made of thermally low conducting material. The probe generates the heat and the rate of temperature rise in it is driven by heat transfer ability of the measured surrounding material. Such a probe should be used in laboratory as well as in the field conditions.

  4. Transient liquid-crystal technique used to produce high-resolution convective heat-transfer-coefficient maps

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Poinsatte, Philip E.

    1993-01-01

    In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 20 percent (using a grid), which is typical of real engine conditions.

  5. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  6. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment.

    PubMed

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-12-16

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.

  7. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  8. Thermal-hydraulic modeling needs for passive reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered,more » but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.« less

  9. Thermographic Imaging of Defects in Anisotropic Composites

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2000-01-01

    Composite materials are of increasing interest to the aerospace industry as a result of their weight versus performance characteristics. One of the disadvantages of composites is the high cost of fabrication and post inspection with conventional ultrasonic scanning systems. The high cost of inspection is driven by the need for scanning systems which can follow large curve surfaces. Additionally, either large water tanks or water squirters are required to couple the ultrasonics into the part. Thermographic techniques offer significant advantages over conventional ultrasonics by not requiring physical coupling between the part and sensor. The thermographic system can easily inspect large curved surface without requiring a surface following scanner. However, implementation of Thermal Nondestructive Evaluations (TNDE) for flaw detection in composite materials and structures requires determining its limit. Advanced algorithms have been developed to enable locating and sizing defects in carbon fiber reinforced plastic (CFRP). Thermal Tomography is a very promising method for visualizing the size and location of defects in materials such as CFRP. However, further investigations are required to determine its capabilities for inspection of thick composites. In present work we have studied influence of the anisotropy on the reconstructed image of a defect generated by an inversion technique. The composite material is considered as homogeneous with macro properties: thermal conductivity K, specific heat c, and density rho. The simulation process involves two sequential steps: solving the three dimensional transient heat diffusion equation for a sample with a defect, then estimating the defect location and size from the surface spatial and temporal thermal distributions (inverse problem), calculated from the simulations.

  10. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  11. Theoretical Solution for Temperature Profile in Multi-layered Pavement Systems Subjected to Transient Thermal Loads

    DTIC Science & Technology

    2011-01-01

    kcal/mm s ◦C) Geopolymer paste 2.0x10−7 PCC slab 5.1x10−7 Thermal diffusivity, α (mm2/s) Geopolymer 0.2 PCC slab 1.3 for the surface layer of airfield...concrete pavements. Geopolymer materials have desirable properties for serving as an alternative binder to traditional Portland cement in producing...high thermal stability. Thus it is possible to construct paving concrete made from a geopolymer binder on top of the ordinary concrete slab to limit

  12. Transient Heat Transfer in TCAP Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would havemore » been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.« less

  13. Transient Heat Transfer in TCAP Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would havemore » been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0 tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.« less

  14. Significant Transient Mobility of Platinum Clusters via a Hot Precursor State on the Alumina Surface.

    PubMed

    Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2016-11-17

    Relaxation dynamics of hot metal clusters on oxide surfaces play a crucial role in a variety of physical and chemical processes. However, their transient mobility has not been investigated as much as other systems such as atoms and molecules on metal surfaces due to experimental difficulties. To study the role of the transient mobility of clusters on the oxide surface, we investigated the initial adsorption process of size-selected Pt clusters on a thin Al 2 O 3 film. Soft-landing the size-selected clusters while suppressing the thermal migration resulted in the transient migration controlling the initial adsorption states as an isolated and aggregated cluster, as revealed using scanning tunneling microscopy. We demonstrate that transient migration significantly contributes to the initial cluster adsorption process; the cross section for aggregation is seven times larger than the expected value from geometrical considerations, indicating that metal clusters are highly mobile during a energy dissipation process on the oxide surface.

  15. An optimization method for the problems of thermal cloaking of material bodies

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Levin, V. A.

    2016-11-01

    Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.

  16. The use of the principle of superposition in measuring and predicting the thermal characteristics of an electronic equipment operated in a space environment

    NASA Technical Reports Server (NTRS)

    Gale, E. H.

    1980-01-01

    The advantages and possible pitfalls of using a generalized method of measuring and, based on these measurements, predicting the transient or steady-state thermal response characteristics of an electronic equipment designed to operate in a space environment are reviewed. The method requires generation of a set of thermal influence coefficients by test measurement in vacuo. A implified thermal mockup isused in this test. Once this data set is measured, temperatures resulting from arbitrary steady-state or time varying power profiles can be economically calculated with the aid of a digital computer.

  17. Transient Cognitive Dynamics, Metastability, and Decision Making

    PubMed Central

    Rabinovich, Mikhail I.; Huerta, Ramón; Varona, Pablo; Afraimovich, Valentin S.

    2008-01-01

    The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain. PMID:18452000

  18. Thin film thermocouples for high temperature turbine application

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.

    1991-01-01

    The objective is to develop thin film thermocouples (TFTC) for Space Shuttle Main Engine (SSME) components such as the high pressure fuel turbopump (HPFTP) blades and to test TFTC survivability and durability in the SSME environment. The purpose for developing TFTC's for SSME components is to obtain blade temperatures for computational models developed for fluid mechanics and structures. The TFTC must be able to withstand the presence of high temperature, high pressure hydrogen as well as a severe thermal transient due to a cryogenic to combustion temperature change. The TFTC's will eventually be installed and tested on SSME propulsion system components in the SSME test bed engine. The TFTC's were successfully fabricated on flat coupons of MAR-M 246 (Hf+), which is the superalloy material used for HPFTP turbine blades. The TFTC's fabricated on flat coupons survived thermal shock cycling as well as testing in a heat flux measurement facility which provided a rapid thermal transient. The same fabrication procedure was used to deposit TFTC's on HPFTP first stage rotor blades. Other results from the experiments are presented, and future testing plans are discussed.

  19. An analysis of thermal stress and gas bending effects on vibrations of compressor rotor stages. [blade torsional rigidity

    NASA Technical Reports Server (NTRS)

    Chen, L.-T.; Dugundji, J.

    1979-01-01

    A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.

  20. Mars Propellant Liquefaction and Storage Performance Modeling using Thermal Desktop with an Integrated Cryocooler Model

    NASA Technical Reports Server (NTRS)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

Top