Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways
Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver
2015-01-01
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions. PMID:26488417
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Path Finding on High-Dimensional Free Energy Landscapes
NASA Astrophysics Data System (ADS)
Díaz Leines, Grisell; Ensing, Bernd
2012-07-01
We present a method for determining the average transition path and the free energy along this path in the space of selected collective variables. The formalism is based upon a history-dependent bias along a flexible path variable within the metadynamics framework but with a trivial scaling of the cost with the number of collective variables. Controlling the sampling of the orthogonal modes recovers the average path and the minimum free energy path as the limiting cases. The method is applied to resolve the path and the free energy of a conformational transition in alanine dipeptide.
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Improved transition path sampling methods for simulation of rare events
NASA Astrophysics Data System (ADS)
Chopra, Manan; Malshe, Rohit; Reddy, Allam S.; de Pablo, J. J.
2008-04-01
The free energy surfaces of a wide variety of systems encountered in physics, chemistry, and biology are characterized by the existence of deep minima separated by numerous barriers. One of the central aims of recent research in computational chemistry and physics has been to determine how transitions occur between deep local minima on rugged free energy landscapes, and transition path sampling (TPS) Monte-Carlo methods have emerged as an effective means for numerical investigation of such transitions. Many of the shortcomings of TPS-like approaches generally stem from their high computational demands. Two new algorithms are presented in this work that improve the efficiency of TPS simulations. The first algorithm uses biased shooting moves to render the sampling of reactive trajectories more efficient. The second algorithm is shown to substantially improve the accuracy of the transition state ensemble by introducing a subset of local transition path simulations in the transition state. The system considered in this work consists of a two-dimensional rough energy surface that is representative of numerous systems encountered in applications. When taken together, these algorithms provide gains in efficiency of over two orders of magnitude when compared to traditional TPS simulations.
Foundations and latest advances in replica exchange transition interface sampling.
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M; Bolhuis, Peter G; van Erp, Titus S
2017-10-21
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Foundations and latest advances in replica exchange transition interface sampling
NASA Astrophysics Data System (ADS)
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M.; Bolhuis, Peter G.; van Erp, Titus S.
2017-10-01
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Sampling the multiple folding mechanisms of Trp-cage in explicit solvent
Juraszek, J.; Bolhuis, P. G.
2006-01-01
We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding. PMID:17035504
Ovchinnikov, Victor; Karplus, Martin
2014-01-01
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes. PMID:24811667
NASA Astrophysics Data System (ADS)
Ovchinnikov, Victor; Karplus, Martin
2014-05-01
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15-20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.
Nonequilibrium Phase Transitions in Supercooled Water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2012-02-01
We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.
A one-way shooting algorithm for transition path sampling of asymmetric barriers
NASA Astrophysics Data System (ADS)
Brotzakis, Z. Faidon; Bolhuis, Peter G.
2016-10-01
We present a novel transition path sampling shooting algorithm for the efficient sampling of complex (biomolecular) activated processes with asymmetric free energy barriers. The method employs a fictitious potential that biases the shooting point toward the transition state. The method is similar in spirit to the aimless shooting technique by Peters and Trout [J. Chem. Phys. 125, 054108 (2006)], but is targeted for use with the one-way shooting approach, which has been shown to be more effective than two-way shooting algorithms in systems dominated by diffusive dynamics. We illustrate the method on a 2D Langevin toy model, the association of two peptides and the initial step in dissociation of a β-lactoglobulin dimer. In all cases we show a significant increase in efficiency.
Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water
Juraszek, Jarek; Bolhuis, Peter G.
2008-01-01
We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
Bhatt, Divesh; Zuckerman, Daniel M.
2010-01-01
We performed “weighted ensemble” path–sampling simulations of adenylate kinase, using several semi–atomistic protein models. The models have an all–atom backbone with various levels of residue interactions. The primary result is that full statistically rigorous path sampling required only a few weeks of single–processor computing time with these models, indicating the addition of further chemical detail should be readily feasible. Our semi–atomistic path ensembles are consistent with previous biophysical findings: the presence of two distinct pathways, identification of intermediates, and symmetry of forward and reverse pathways. PMID:21660120
NASA Technical Reports Server (NTRS)
Thomas, Randy; Stueber, Thomas J.
2013-01-01
The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.
Transition path time distributions
NASA Astrophysics Data System (ADS)
Laleman, M.; Carlon, E.; Orland, H.
2017-12-01
Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.
Patra, Sarbani; Keshavamurthy, Srihari
2018-02-14
It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.
PyRETIS: A well-done, medium-sized python library for rare events.
Lervik, Anders; Riccardi, Enrico; van Erp, Titus S
2017-10-30
Transition path sampling techniques are becoming common approaches in the study of rare events at the molecular scale. More efficient methods, such as transition interface sampling (TIS) and replica exchange transition interface sampling (RETIS), allow the investigation of rare events, for example, chemical reactions and structural/morphological transitions, in a reasonable computational time. Here, we present PyRETIS, a Python library for performing TIS and RETIS simulations. PyRETIS directs molecular dynamics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS is designed to be easily interfaced with any molecular simulation package and in the present release, it has been interfaced with GROMACS and CP2K, for classical and ab initio MD simulations, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
Attachment, Well-Being, and College Senior Concerns about the Transition out of College
ERIC Educational Resources Information Center
Lane, Joel A.
2016-01-01
This study examined the relationships among attachment, psychological well-being (PWB), life satisfaction, and concerns about the transition out of college among a sample of college seniors. A path analysis was conducted predicting that PWB and life satisfaction would mediate the relationships between attachment and 3 types of graduation…
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
NASA Astrophysics Data System (ADS)
Jarboe, N. A.; Coe, R. S.; Glen, J. M.; Paul, R. R.
2007-05-01
The best known record of the earth's magnetic field behavior during a geomagnetic polarity reversal preserved in volcanic rock is the reverse to normal (R-N) polarity reversal found in the Steens Basalts of SE Oregon. At three locations where reverse to normal sections are found (Steens Mountain, Catlow Peak, and Poker Jim Ridge), four high precision 40Ar/39Ar plateau ages of plagioclase separates from transitionally magnetized rocks were determined. The ages are the same within error and have a weighted mean age of 16.58 ± 0.14 Ma. Errors are two sigma. A more precise constraint on the youngest possible age of the reversal is 16.548 ± 0.050 Ma determined from the normally magnetized Oregon Canyon tuff capping the Catlow Peak section. Comparison of these ages to the new geomagnetic polarity time scale of Gradstein et al. (A Geologic Time Scale 2004, 589 pp., Cambridge University Press, 2004.), after adjustments due to differences in Fish Canyon sanidine (FCs) standard ages (28.02 Ma, this study; 28.24 Ma, Gradstein et al.), shows that the Steens reversal is uniquely identified as the top of the C5Cr chron. The high precision of the ages and the Steens' reversal location in the geomagnetic polarity timescale convincingly demonstrate that these stratigraphically uncorrelated transitional sections were erupted during the same transition and their transitional paths should be combined. The high-quality, detailed benchmark record of this reversal (Mankinen et al., JGR, 90(B), 10.393-10.416, 1985; Prevot et al., Nature, 316, 230-234, 1985) is a composite derived from two sampled sections 2 km apart on Steens Mountain that overlapped significantly, Steens A above and Steens B below. This study showed that the magnetic field during the reversal moved from reverse to normal and then bounced back to transitional before finally returning to normal (a R-T-N-T-N path). The unexamined upper part of the Steens B section was later sampled and revealed an additional bounce of the field during the transition (Camps et al., JGR, 104(B8), 17747- 58, 1999). This increased the reversal's complexity to a R-T-N-T-N-T-N pattern. We have studied a R-N volcanic section at Catlow Peak 70 km SSE of Steens Mountain with 32 flows erupted during the transition. The transitional directions trace a path very close to the Steens A and B reversal path but contain an additional large swing through the reversed field direction, demonstrating an even more complex R-T-N-T-N-T-R-T-N path. We will also report on two R-N sections recently sampled at Poker Jim Ridge 80 km west of Steens Mountain that add new directions to the Steens record. The complex composite Steens reversal path recorded in these high fidelity lavas gives some credence to suggestions of very complex magnetic field behavior during reversals, previously seen only in sediment records where the acquisition of magnetization is less well understood.
Transition path time distribution and the transition path free energy barrier.
Pollak, Eli
2016-10-19
The recent experimental measurement of the transition path time distributions of proteins presents several challenges to theory. Firstly, why do the fits of the experimental data to a theoretical expression lead to barrier heights which are much lower than the free energies of activation of the observed transitions? Secondly, there is the theoretical question of determining the transition path time distribution, without invoking the Smoluchowski limit. In this paper, we derive an exact expression for a transition path time distribution which is valid for arbitrary memory friction using the normal mode transformation which underlies Kramers' rate theory. We then recall that for low barriers, there is a noticeable difference between the transition path time distribution obtained with absorbing boundary conditions and free boundary conditions. For the former, the transition times are shorter, since recrossings of the boundaries are disallowed. As a result, if one uses the distribution based on absorbing boundary conditions to fit the experimental data, one will find that the transition path barrier will be larger than the values found based on a theory with free boundary conditions. We then introduce the paradigm of a transition path barrier height, and show that one should always expect it to be much smaller than the activation energy.
Chandrasekaran, Srinivas Niranj; Das, Jhuma; Dokholyan, Nikolay V.; Carter, Charles W.
2016-01-01
PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. PMID:26958584
Nonequilibrium umbrella sampling in spaces of many order parameters
NASA Astrophysics Data System (ADS)
Dickson, Alex; Warmflash, Aryeh; Dinner, Aaron R.
2009-02-01
We recently introduced an umbrella sampling method for obtaining nonequilibrium steady-state probability distributions projected onto an arbitrary number of coordinates that characterize a system (order parameters) [A. Warmflash, P. Bhimalapuram, and A. R. Dinner, J. Chem. Phys. 127, 154112 (2007)]. Here, we show how our algorithm can be combined with the image update procedure from the finite-temperature string method for reversible processes [E. Vanden-Eijnden and M. Venturoli, "Revisiting the finite temperature string method for calculation of reaction tubes and free energies," J. Chem. Phys. (in press)] to enable restricted sampling of a nonequilibrium steady state in the vicinity of a path in a many-dimensional space of order parameters. For the study of transitions between stable states, the adapted algorithm results in improved scaling with the number of order parameters and the ability to progressively refine the regions of enforced sampling. We demonstrate the algorithm by applying it to a two-dimensional model of driven Brownian motion and a coarse-grained (Ising) model for nucleation under shear. It is found that the choice of order parameters can significantly affect the convergence of the simulation; local magnetization variables other than those used previously for sampling transition paths in Ising systems are needed to ensure that the reactive flux is primarily contained within a tube in the space of order parameters. The relation of this method to other algorithms that sample the statistics of path ensembles is discussed.
Paths to Success in Young Adulthood from Mental Health and Life Transitions in Emerging Adulthood
ERIC Educational Resources Information Center
Howard, Andrea L.; Galambos, Nancy L.; Krahn, Harvey J.
2010-01-01
This study followed a school-based sample (N = 920) to explore how trajectories of depressive symptoms and expressed anger from age 18 to 25, along with important life transitions, predicted life and career satisfaction at age 32. A two-group (women and men) bivariate growth model revealed that higher depressive symptoms at age 18 predicted lower…
Transition path theory analysis of c-Src kinase activation
Meng, Yilin; Shukla, Diwakar; Pande, Vijay S.; Roux, Benoît
2016-01-01
Nonreceptor tyrosine kinases of the Src family are large multidomain allosteric proteins that are crucial to cellular signaling pathways. In a previous study, we generated a Markov state model (MSM) to simulate the activation of c-Src catalytic domain, used as a prototypical tyrosine kinase. The long-time kinetics of transition predicted by the MSM was in agreement with experimental observations. In the present study, we apply the framework of transition path theory (TPT) to the previously constructed MSM to characterize the main features of the activation pathway. The analysis indicates that the activating transition, in which the activation loop first opens up followed by an inward rotation of the αC-helix, takes place via a dense set of intermediate microstates distributed within a fairly broad “transition tube” in a multidimensional conformational subspace connecting the two end-point conformations. Multiple microstates with negligible equilibrium probabilities carry a large transition flux associated with the activating transition, which explains why extensive conformational sampling is necessary to accurately determine the kinetics of activation. Our results suggest that the combination of MSM with TPT provides an effective framework to represent conformational transitions in complex biomolecular systems. PMID:27482115
Free energy landscape from path-sampling: application to the structural transition in LJ38
NASA Astrophysics Data System (ADS)
Adjanor, G.; Athènes, M.; Calvo, F.
2006-09-01
We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.
Parameter optimization on the convergence surface of path simulations
NASA Astrophysics Data System (ADS)
Chandrasekaran, Srinivas Niranj
Computational treatments of protein conformational changes tend to focus on the trajectories themselves, despite the fact that it is the transition state structures that contain information about the barriers that impose multi-state behavior. PATH is an algorithm that computes a transition pathway between two protein crystal structures, along with the transition state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on several unknown input parameters whose range of different values can potentially generate different transition-state structures. Transition-state structures arising from different input parameters cannot be uniquely compared with those generated by other methods. I outline modifications that I have made to the PATH algorithm that estimates these input parameters in a manner that circumvents these difficulties, and describe two complementary tests that validate the transition-state structures found by the PATH algorithm. First, I show that although the PATH algorithm and two other approaches to computing transition pathways produce different low-energy structures connecting the initial and final ground-states with the transition state, all three methods agree closely on the configurations of their transition states. Second, I show that the PATH transition states are close to the saddle points of free-energy surfaces connecting initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. I show that aromatic side-chain rearrangements create similar potential energy barriers in the transition-state structures identified by PATH for a signaling protein, a contractile protein, and an enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-atom and Calpha-only simulations identify transition state structures in which the Calpha atoms are in essentially the same positions. The consistency between transition-state structures derived by different algorithms for unrelated protein systems argues that although functionally important protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. In the end, I outline the strategies that could enhance the efficiency and applicability of PATH.
Laboratory earthquakes triggered during the eclogitization of lawsonite bearing blueschist
NASA Astrophysics Data System (ADS)
Incel, S.; Hilairet, N.; Labrousse, L.; John, T.; Deldicque, D.; Ferrand, T. P.; Wang, Y.; Renner, J.; Morales, L. F. G.; Schubnel, A.
2016-12-01
The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occur within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions (1 < P < 3.5 GPa; 583 K < T < 1121 K), using a D-DIA apparatus installed at a synchrotron beam line continuously monitoring stress, strain, phase content, and acoustic emissions (AEs). Two distinct eclogitization paths were followed: i) a cold path (maximum temperatures of 762 to 927 K), during which lawsonite and glaucophane went gradually unstable at higher pressure; ii) a hot path (maximum temperatures of 1073 to 1121 K) during which the complete breakdown of lawsonite at high temperature was triggered, but glaucophane or amphibole in general remained stable. Brittle failure of the sample, accompanied by the radiation of AEs, occurred for the cold path. In-situ XRD and post-mortem microstructural analysis demonstrate that fractures are topologically related to the growth of omphacite. Amorphous material was detected along the fractures by transmission electron microscopy without evidence for free-water. Since the growth of omphacite is associated with grain-size reduction, we interpret the observed mechanical instability as a transformation-induced thermal runaway under stress (or transformational faulting) triggered during the transition from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing of the sample along the hot path, although some AEs were detected during an experiment performed at 1.5 GPa. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead our results demonstrate that grain-size reduction (transformational faulting) during the transition from lawsonite-blueschist to lawsonite-eclogite leads to the brittle failure of the samples.
Juraszek, Jarek; Bolhuis, Peter G.
2010-01-01
Abstract We report a numerical study of the (un)folding routes of the truncated FBP28 WW domain at ambient conditions using a combination of four advanced rare event molecular simulation techniques. We explore the free energy landscape of the native state, the unfolded state, and possible intermediates, with replica exchange molecular dynamics. Subsequent application of bias-exchange metadynamics yields three tentative unfolding pathways at room temperature. Using these paths to initiate a transition path sampling simulation reveals the existence of two major folding routes, differing in the formation order of the two main hairpins, and in hydrophobic side-chain interactions. Having established that the hairpin strand separation distances can act as reasonable reaction coordinates, we employ metadynamics to compute the unfolding barriers and find that the barrier with the lowest free energy corresponds with the most likely pathway found by transition path sampling. The unfolding barrier at 300 K is ∼17 kBT ≈ 42 kJ/mol, in agreement with the experimental unfolding rate constant. This work shows that combining several powerful simulation techniques provides a more complete understanding of the kinetic mechanism of protein folding. PMID:20159161
Mechanism of the α -ɛ phase transformation in iron
NASA Astrophysics Data System (ADS)
Dewaele, A.; Denoual, C.; Anzellini, S.; Occelli, F.; Mezouar, M.; Cordier, P.; Merkel, S.; Véron, M.; Rausch, E.
2015-05-01
The α -Fe↔ɛ -Fe pressure-induced transformation under pure hydrostatic static compression has been characterized with in situ x-ray diffraction using α -Fe single crystals as starting samples. The forward transition starts at 14.9 GPa, and the reverse at 12 GPa, with a width of α -ɛ coexistence domain of the order of 2 GPa. The elastic stress in the sample increases in this domain, and partially relaxes after completion of the transformation. Orientation relations between parent α -Fe and child ɛ -Fe have been determined, which definitely validates the Burgers path for the direct transition. On the reverse transition, an unexpected variant selection is observed. X-ray diffraction data, complemented with ex situ microstructural observations, suggest that this selection is caused by defects and stresses accumulated during the direct transition.
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2014-09-01
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Otero, Cassi L.
2007-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.
Water evaporation: a transition path sampling study.
Varilly, Patrick; Chandler, David
2013-02-07
We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
Chirped quantum cascade laser induced rapid passage signatures in an optically thick gas
NASA Astrophysics Data System (ADS)
Northern, J. H.; Ritchie, G. A. D.; Smakman, E. P.; van Helden, J. H.; Walker, R. J.; Duxbury, G.
2011-01-01
We report observations of rapid passage signals induced in samples of N2O and CH4 present in a multipass cell with an optical path length of 5 m. The effect of laser power and chirp rate upon the signals has been studied by utilising two different chirped quantum cascade lasers operating around 8 μm. The rapid passage signals exhibit an increasing delay in the switch from absorption to emission as a function of increased gas pressure (up to 8 Torr of gas). By comparing a selection of transitions in N2O and CH4, we show that, unlike ammonia, this `pressure shift' is independent of the transition dipole moment, spectroscopic branch probed and laser chirp rate. As the transition dipole moment is much larger in nitrous oxide than methane, we believe that this indicates that N2O-N2O collisions are more efficient at removing coherence from the polarised sample than CH4-CH4 collisions. We have also observed this pressure shift in a short path length of 40 cm, although with a much reduced value, indicating that propagation effects are important in this optically thick minimally damped system.
Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins
NASA Astrophysics Data System (ADS)
Seyler, Sean L.
In a typical living cell, millions to billions of proteins--nanomachines that fluctuate and cycle among many conformational states--convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)--an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project--developing a hybrid atomistic-continuum method--is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.
Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue
NASA Technical Reports Server (NTRS)
Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard
2008-01-01
Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.
Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J
2016-11-09
First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.
Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D
2015-04-02
The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.
Transitioning to a narrow path: the impact of fear of falling in older adults.
Dunlap, Pamela; Perera, Subashan; VanSwearingen, Jessie M; Wert, David; Brach, Jennifer S
2012-01-01
Everyday ambulation requires navigation of variable terrain, transitions from wide to narrow pathways, and avoiding obstacles. While the effect of age on the transition to a narrow path has been examined briefly, little is known about the impact of fear of falling on gait during the transition to a narrow path. The purpose was to examine the effect of age and fear of falling on gait during transition to a narrow path. In 31 young, mean age=25.3 years, and 30 older adults, mean age=79.6 years, step length, step time, step width and gait speed were examined during usual and transition to narrow pathway using an instrumented walkway. During the transition to narrow walk condition, fearful older adults compared to young had a wider step width (0.06 m vs 0.04 m) prior to the narrow path and took shorter steps (0.53 m vs 0.72 m; p<0.001). Compared to non-fearful older adults, fearful older adults walked slower and took shorter steps during narrow path walking (gait speed: 1.1m/s vs 0.82 m/s; p=0.01; step length: 0.60 m vs 0.47 m; p=0.03). In young and non-fearful older adults narrow path gait was similar to usual gait. Whereas older adults who were fearful, walked slower (0.82 m/s vs 0.91 m/s; p=0.001) and took shorter steps (0.44 m vs 0.53 m; p=0.004) during narrow path walking compared to usual walking. Changes in gait characteristics with transitioning to a narrow pathway were greater for fear of falling than for age. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Wenjin
2018-02-28
Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.
Ovchinnikov, Victor; Karplus, Martin
2012-07-26
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark
2018-04-10
Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of reaction rates and an improved understanding of activated states.
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
NASA Astrophysics Data System (ADS)
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-06-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
Transition paths in single-molecule force spectroscopy
NASA Astrophysics Data System (ADS)
Cossio, Pilar; Hummer, Gerhard; Szabo, Attila
2018-03-01
In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.
Hobolth, Asger; Stone, Eric A
2009-09-01
Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.
Computation of rare transitions in the barotropic quasi-geostrophic equations
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bouchet, Freddy
2015-01-01
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch
2016-07-21
An analysis of the network defined by the potential energy minima of multi-atomic systems and their connectivity via reaction pathways that go through transition states allows us to understand important characteristics like thermodynamic, dynamic, and structural properties. Unfortunately computing the transition states and reaction pathways in addition to the significant energetically low-lying local minima is a computationally demanding task. We here introduce a computationally efficient method that is based on a combination of the minima hopping global optimization method and the insight that uphill barriers tend to increase with increasing structural distances of the educt and product states. This methodmore » allows us to replace the exact connectivity information and transition state energies with alternative and approximate concepts. Without adding any significant additional cost to the minima hopping global optimization approach, this method allows us to generate an approximate network of the minima, their connectivity, and a rough measure for the energy needed for their interconversion. This can be used to obtain a first qualitative idea on important physical and chemical properties by means of a disconnectivity graph analysis. Besides the physical insight obtained by such an analysis, the gained knowledge can be used to make a decision if it is worthwhile or not to invest computational resources for an exact computation of the transition states and the reaction pathways. Furthermore it is demonstrated that the here presented method can be used for finding physically reasonable interconversion pathways that are promising input pathways for methods like transition path sampling or discrete path sampling.« less
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Daumont, L.; Thomas, X.; Régalia, L.; Rey, M.; Tyuterev, Vl. G.; Brown, L. R.
2011-07-01
New measurements and assignments for the rovibrational transitions of the hot band 2 v3- v4 of 12CH 4 are reported from 4600 to 4880 cm -1 and refer to lower part of the 2 μm methane transparency window. Three long-path spectra were recorded with a Fourier transform spectrometer (FTS) in Reims using an L = 1603 m absorption path length at 1, 7, 34 h Pa for the natural samples of CH 4; a spectrum of enriched 13CH 4 was also used. Assignments were made for 196 lines of 2 v3(F 2,E)- v4. These transitions had an integrated intensity of 5 × 10 -24 cm/molecule at 296 K and improved the overall description of absorption in the 2.1 μm region. The empirical upper state levels of these assignments belong to Tetradecad (4800-6200 cm -1). The new analysis provided much better accuracies of badly blended positions of 2 v3(F 2)-ground state manifolds at 1.66 μm.
Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment
NASA Astrophysics Data System (ADS)
Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip
2014-05-01
Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.
A benchmark for reaction coordinates in the transition path ensemble
2016-01-01
The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559
NASA Astrophysics Data System (ADS)
Peter, Emanuel K.
2017-12-01
In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.
Peter, Emanuel K
2017-12-07
In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.
Ovchinnikov, Victor; Karplus, Martin; Vanden-Eijnden, Eric
2011-01-01
A set of techniques developed under the umbrella of the string method is used in combination with all-atom molecular dynamics simulations to analyze the conformation change between the prepowerstroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific to the application of these techniques to such a large and complex biomolecule are addressed in detail. These challenges include (i) identifying a proper set of collective variables to apply the string method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the mean first passage time of the transition. A detailed description of the PPS↔R transition in the converter domain of myosin VI is obtained, including the transition path, the free energy along the path, and the rates of interconversion. The methodology developed here is expected to be useful more generally in studies of conformational transitions in complex biomolecules. PMID:21361558
McGibbon, J.; Bretherton, C. S.
2017-03-17
During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons andmore » meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a –0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m –2 in sensible heat flux (SHF). Altogether, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.« less
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Statistical Analysis of the First Passage Path Ensemble of Jump Processes
NASA Astrophysics Data System (ADS)
von Kleist, Max; Schütte, Christof; Zhang, Wei
2018-02-01
The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.
Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations
Qu, Luman; Vörös, Márton; Zimanyi, Gergely T.
2017-08-01
Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters supportmore » a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.« less
Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Luman; Vörös, Márton; Zimanyi, Gergely T.
Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters supportmore » a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.« less
Complexity in Matuyama-Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-06-01
Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT), based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19c to MIS 18e, with mid-point at ∼773 ka, and a transition duration of ∼8 kyr. Combining the new MBT records, including one new record for the top Jaramillo, with previously published North Atlantic MBT records (ODP Sites 983, 984 and 1063) yields a total of more than 20 high-sedimentation-rate polarity transition records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, group in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then a NE Asia group before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here contrast with longitudinally-constrained VGP paths for the MBT, indicating that relatively low sedimentation rate (∼4 cm/kyr) records of the MBT are heavily smoothed by the remanence acquisition process and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and were apparently guided by maxima in downward vertical flux similar to those seen in the modern non-dipole (ND) field, implying longevity in ND features through time.
ERIC Educational Resources Information Center
1999
This document contains four symposium papers on work force development. "Effects of Two Different Learning Paths on School-to-Work Transition" (Esther Van Der Schoot) discusses a Dutch study documenting that the following items make a difference in the school-to-work transition: learning path, curriculum characteristics, individual…
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
Zheng, Jingjing; Truhlar, Donald G
2012-01-01
Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
NASA Astrophysics Data System (ADS)
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
Liu, Lei; Cao, Zanxia
2013-01-01
The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH. PMID:23708094
Identifying Source Water and Flow Paths in a Semi-Arid Watershed
NASA Astrophysics Data System (ADS)
Gulvin, C. J.; Miller, S. N.
2016-12-01
Processes controlling water delivery to perennial streams in the semi-arid mountain west are poorly understood, yet necessary to characterize water distribution across the landscape and better protect and manage diminishing water resources. Stream water chemistry profiling and hydrograph separation using stable isotopes can help identify source waters. Weekly stream water samples tested for stable water isotope fractionations, and major cations and anions at seven sites collocated with continuously recording stream depth gauges within a small watershed in southeastern Wyoming is a necessary first-step to identifying seasonally changing source water and flow paths. Sample results will help establish appropriate end members for a mixing analysis, as well as, characterize flow path heterogeneity, transit time distributions, and landscape selectively features. Hourly stream sampling during late-summer thunderstorms and rapid spring melt will help demonstrate if and how stream discharge change is affected by the two different events. Soil water and water extracted from tree xylem will help resolve how water is partitioned in the first 10m of the subsurface. In the face of land use change and a growing demand for water in the area, understanding how the water in small mountain streams is sustained is crucial for the future of agriculture, municipal water supplies, and countless ecosystem services.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
NASA Astrophysics Data System (ADS)
Atashpendar, Arshia; Schilling, Tanja; Voigtmann, Thomas
2016-10-01
We analyze the structure of the state space of chess by means of transition path sampling Monte Carlo simulations. Based on the typical number of moves required to transpose a given configuration of chess pieces into another, we conclude that the state space consists of several pockets between which transitions are rare. Skilled players explore an even smaller subset of positions that populate some of these pockets only very sparsely. These results suggest that the usual measures to estimate both the size of the state space and the size of the tree of legal moves are not unique indicators of the complexity of the game, but that considerations regarding the connectedness of states are equally important.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2016-12-01
Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT) and the top Jaramillo transition, based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19.3 to MIS 18.4, with mid-point at 773 ka, and a transition duration of 5-8 kyr. The top Jaramillo occurs during MIS 28 at 992 ka with a similar 5 kyr transition duration. Combining the new records with previously published North Atlantic records (ODP Sites 983, 984 and 1063) yields a total of 24 high sedimentation rate records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, cluster in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then occupation of the NE Asia cluster before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here are very different to the longitudinally constrained North Atlantic VGP paths from MBT records that are the basis for a 2007 Bayesian inversion of the MBT field. We conclude that the relatively low sedimentation rate ( 4 cm/kyr) records utilized in the Bayesian inversion have been heavily smoothed by the remanence acquisition process, and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and are apparently guided by maxima in downward vertical flux in the modern non-dipole (ND) field, implying longevity in ND features through time.
Drift-Induced Selection Between Male and Female Heterogamety.
Veller, Carl; Muralidhar, Pavitra; Constable, George W A; Nowak, Martin A
2017-10-01
Evolutionary transitions between male and female heterogamety are common in both vertebrates and invertebrates. Theoretical studies of these transitions have found that, when all genotypes are equally fit, continuous paths of intermediate equilibria link the two sex chromosome systems. This observation has led to a belief that neutral evolution along these paths can drive transitions, and that arbitrarily small fitness differences among sex chromosome genotypes can determine the system to which evolution leads. Here, we study stochastic evolutionary dynamics along these equilibrium paths. We find non-neutrality, both in transitions retaining the ancestral pair of sex chromosomes, and in those creating a new pair. In fact, substitution rates are biased in favor of dominant sex determining chromosomes, which fix with higher probabilities than mutations of no effect. Using diffusion approximations, we show that this non-neutrality is a result of "drift-induced selection" operating at every point along the equilibrium paths: stochastic jumps off the paths return with, on average, a directional bias in favor of the dominant segregating sex chromosome. Our results offer a novel explanation for the observed preponderance of dominant sex determining genes, and hint that drift-induced selection may be a common force in standard population genetic systems. Copyright © 2017 by the Genetics Society of America.
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.
2011-01-01
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M
2011-02-17
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.
California PATH : 1997 annual report
DOT National Transportation Integrated Search
1997-01-01
The California Partners for Advanced Transit and Highways Program (PATH) has been leading the way in ITS (Intelligent Transportation Systems) research since PATHs founding in 1986, before the term ITS or its predecessor IVHS (Intelligent Vehicle H...
California PATH : 1996 annual report
DOT National Transportation Integrated Search
1996-01-01
The California Partners for Advanced Transit and Highways Program (PATH ) has been leading the way in ITS (Intelligent Transportation Systems) research since PATH's founding in 1986, before the term ITS or its predecessor IVHS (Intelligent Vehicle Hi...
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
The Microstructural Evolution of Quartzite During Gradually Increasing Stress.
NASA Astrophysics Data System (ADS)
Soleymani, Hamid; Kidder, Steven B.; Hirth, Greg
2016-12-01
In settings where rocks are exhumed along shear zones, mylonites are thought to experience a gradual increase in stress and localization as they approach the brittle-ductile transition (Figure 1. left panel). Our aim is to investigate the microstructural characteristics of experimental samples that have experienced such a stress path and make comparisons to natural samples. A common characteristic of recrystallized grains in shear zones is what appears, at least qualitatively, to be a bimodal distribution of grain size (Figure 1. right panel). We hypothesize that such distributions might form as a natural consequence of a gradual stress increase in rocks approaching the brittle-ductile transition. We carried out several general-shear, Griggs rig experiments on Arkansas novaculite ( 10 micron grain size) and Black Hills quartzite synthesized powder (10-20 micron) annealed at 915°C and confining pressure of 1.5 GPa. To simulate exhumation, stress was increased by gradually decreasing the temperature at various constant rates. Experimental design and mechanical data are presented along with a discussion on grain growth and evolution. Initial results show that the technique is able to successfully simulate the exhumation stress path. The experiments also show that novaculite is roughly twice as strong (at similar water concentrations) as Black Hills quartzite powder ( 10-20 microns). We anticipate that detailed, quantitative study of the microstructure and grain statistics of experiments of this type can lead to improved interpretation of the microstructural development of natural samples.
Gao, Yi Qin
2008-04-07
Here, we introduce a simple self-adaptive computational method to enhance the sampling in energy, configuration, and trajectory spaces. The method makes use of two strategies. It first uses a non-Boltzmann distribution method to enhance the sampling in the phase space, in particular, in the configuration space. The application of this method leads to a broad energy distribution in a large energy range and a quickly converged sampling of molecular configurations. In the second stage of simulations, the configuration space of the system is divided into a number of small regions according to preselected collective coordinates. An enhanced sampling of reactive transition paths is then performed in a self-adaptive fashion to accelerate kinetics calculations.
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Sagui, Celeste; Roland, Christopher
2014-01-01
We have developed a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. In this paper, we set the theoretical framework for employing nonequilibrium work relations to estimate the relative reaction rates associated with different classes of transition pathways. Particularly, we derive an extension of Crook's transient fluctuation theorem, which relates the relative transition rates of driven systems in the forward and reverse directions, and allows for the calculation of these relative rates using work measurements (e.g., in Steered Molecular Dynamics). The formalism presented here can be combined with Transition Path Theory to relate the equilibrium and driven transition rates. The usefulness of this framework is illustrated by means of a Gaussian model and a driven proline dimer.
McMahan, Kevin Weston; Dillard, Daniel Jackson
2016-05-03
A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
A path-integral approach to the problem of time
NASA Astrophysics Data System (ADS)
Amaral, M. M.; Bojowald, Martin
2018-01-01
Quantum transition amplitudes are formulated for model systems with local internal time, using intuition from path integrals. The amplitudes are shown to be more regular near a turning point of internal time than could be expected based on existing canonical treatments. In particular, a successful transition through a turning point is provided in the model systems, together with a new definition of such a transition in general terms. Some of the results rely on a fruitful relation between the problem of time and general Gribov problems.
Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States
NASA Astrophysics Data System (ADS)
de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M.
2018-03-01
Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.
Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States.
de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M
2018-03-23
Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.
Behavior problems and placement change in a national child welfare sample: a prospective study.
Aarons, Gregory A; James, Sigrid; Monn, Amy R; Raghavan, Ramesh; Wells, Rebecca S; Leslie, Laurel K
2010-01-01
There is ongoing debate regarding the impact of youth behavior problems on placement change in child welfare compared to the impact of placement change on behavior problems. Existing studies provide support for both perspectives. The purpose of this study was to prospectively examine the relations of behavior problems and placement change in a nationally representative sample of youths in the National Survey of Child and Adolescent Well-Being. The sample consisted of 500 youths in the child welfare system with out-of-home placements over the course of the National Survey of Child and Adolescent Well-Being study. We used a prospective cross-lag design and path analysis to examine reciprocal effects of behavior problems and placement change, testing an overall model and models examining effects of age and gender. In the overall model, out of a total of eight path coefficients, behavior problems significantly predicted placement changes for three paths and placement change predicted behavior problems for one path. Internalizing and externalizing behavior problems at baseline predicted placement change between baseline and 18 months. Behavior problems at an older age and externalizing behavior at 18 months appear to confer an increased risk of placement change. Of note, among female subjects, placement changes later in the study predicted subsequent internalizing and externalizing behavior problems. In keeping with recommendations from a number of professional bodies, we suggest that initial and ongoing screening for internalizing and externalizing behavior problems be instituted as part of standard practice for youths entering or transitioning in the child welfare system.
Non-Conventional Techniques for the Study of Phase Transitions in NiTi-Based Alloys
NASA Astrophysics Data System (ADS)
Nespoli, Adelaide; Villa, Elena; Passaretti, Francesca; Albertini, Franca; Cabassi, Riccardo; Pasquale, Massimo; Sasso, Carlo Paolo; Coïsson, Marco
2014-07-01
Differential scanning calorimetry and electrical resistance measurements are the two most common techniques for the study of the phase transition path and temperatures of shape memory alloys (SMA) in stress-free condition. Besides, it is well known that internal friction measurements are also useful for this purpose. There are indeed some further techniques which are seldom used for the basic characterization of SMA transition: dilatometric analysis, magnetic measurements, and Seebeck coefficient study. In this work, we discuss the attitude of these techniques for the study of NiTi-based phase transition. Measurements were conducted on several fully annealed Ni50- x Ti50Cu x samples ranging from 3 to 10 at.% in Cu content, fully annealed at 850 °C for 1 h in vacuum and quenched in water at room temperature. Results show that all these techniques are sensitive to phase transition, and they provide significant information about the existence of intermediate phases.
Dependence of Internal Friction on Folding Mechanism
2016-01-01
An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133
Dependence of internal friction on folding mechanism.
Zheng, Wenwei; De Sancho, David; Hoppe, Travis; Best, Robert B
2015-03-11
An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.
NASA Astrophysics Data System (ADS)
Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik
2016-08-01
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.
Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang
2016-09-07
A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method.
Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide
Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...
2015-02-11
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less
Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite
NASA Astrophysics Data System (ADS)
Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.
2018-04-01
Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems ismore » realizable since the liner can be readily removed and replaced as needed.« less
Circuity analyses of HSR network and high-speed train paths in China
Zhao, Shuo; Huang, Jie; Shan, Xinghua
2017-01-01
Circuity, defined as the ratio of the shortest network distance to the Euclidean distance between one origin–destination (O-D) pair, can be adopted as a helpful evaluation method of indirect degrees of train paths. In this paper, the maximum circuity of the paths of operated trains is set to be the threshold value of the circuity of high-speed train paths. For the shortest paths of any node pairs, if their circuity is not higher than the threshold value, the paths can be regarded as the reasonable paths. With the consideration of a certain relative or absolute error, we cluster the reasonable paths on the basis of their inclusion relationship and the center path of each class represents a passenger transit corridor. We take the high-speed rail (HSR) network in China at the end of 2014 as an example, and obtain 51 passenger transit corridors, which are alternative sets of train paths. Furthermore, we analyze the circuity distribution of paths of all node pairs in the network. We find that the high circuity of train paths can be decreased with the construction of a high-speed railway line, which indicates that the structure of the HSR network in China tends to be more complete and the HSR network can make the Chinese railway network more efficient. PMID:28945757
Identification of transitional disks in Chamaeleon with Herschel
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Bouy, H.; Alves de Oliveira, C.; Ardila, D. R.; Puga, E.; Kóspál, Á.; Spezzi, L.; Cox, N. L. J.; Prusti, T.; Pilbratt, G. L.; André, Ph.; Matrà, L.; Vavrek, R.
2013-04-01
Context. Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. Aims: The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. Methods: We propose a new method for transitional disk classification based on the WISE 12 μm - PACS 70 μm color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. Results: The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find six transitional disks, all previously known, and identify five objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. Conclusions: We show the Herschel 70 μm band to be a robust and efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be either a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org
Chen, Changjun; Huang, Yanzhao; Xiao, Yi
2013-01-01
Low sampling efficiency in conformational space is the well-known problem for conventional molecular dynamics. It greatly increases the difficulty for molecules to find the transition path to native state, and costs amount of CPU time. To accelerate the sampling, in this paper, we re-couple the critical degrees of freedom in the molecule to environment temperature, like dihedrals in generalized coordinates or nonhydrogen atoms in Cartesian coordinate. After applying to ALA dipeptide model, we find that this modified molecular dynamics greatly enhances the sampling behavior in the conformational space and provides more information about the state-to-state transition, while conventional molecular dynamics fails to do so. Moreover, from the results of 16 independent 100 ns simulations by the new method, it shows that trpzip2 has one-half chances to reach the naive state in all the trajectories, which is greatly higher than conventional molecular dynamics. Such an improvement would provide a potential way for searching the conformational space or predicting the most stable states of peptides and proteins.
Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.
Varga, Matthew J; Schwartz, Steven D
2016-04-12
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.
Defining conditions of garnet growth across the central and southern Menderes Massif, western Turkey
NASA Astrophysics Data System (ADS)
Etzel, T. M.; Catlos, E. J.; Kelly, E. D.; Cemen, I.; Ozerdem, C.; Atakturk, K. R.
2017-12-01
Here we apply thermodynamic modeling using Theriak-Domino to garnet-bearing rocks from the central and southern portions of the Menderes Massif to gain insight into the dynamics of western Turkey as the region experienced a transition from collisional to extensional tectonics. To this end, we report new pressure-temperature (P-T) paths from garnet-bearing rocks collected along the Alasehir detachment fault, a prominent exhumation structure in the central portion of the Menderes Massif in western Turkey, constituting the southern margin of the Alasehir Graben. These paths are compared to those from the Selimiye shear zone in the Southern (Cine) Massif. Two Alasehir garnets collected from the same outcrop record two P-T paths: 1) a prograde path beginning at 565oC and 6.4 kbar increasing to 592 oC and 7.5 kbar; and 2) near isobaric growth initiating at 531oC and 7.1 kbar and terminating at 571oC and 7.3 kbar. High-resolution P-T paths could not be modeled for the majority of Alasehir samples due to diffusional modification of garnet. However, conditions were estimated by garnet isopleth thermobarometry at the point of highest spessartine content for each crystal. Calculated P-T values for this subset of samples range between 566-651oC and 6.2-6.8 kbar. Despite this broad range, these P-T conditions are consistent with what is observed in the modeled paths. Th-Pb ages of matrix monazite range from 35.8±3.0 to 20.6±2.4 Ma, suggesting metamorphism in the central Menderes Massif occurred over a 15 m.y. period. Selimiye shear zone rocks show distinct N-shaped P-T paths, suggesting garnets in the central and southern portion of the Menderes Massif record distinctly different tectonic histories.
ERIC Educational Resources Information Center
Furstenau, Sara
2005-01-01
In this contribution, the results of an empirical study on young immigrants' learning paths and school to job transition are presented. The study focused on the strategies of successful students from the Portuguese immigrant minority in Hamburg. One aim was to find out whether the young people could profit by their migration experiences and…
An axisymmetric single-path model for gas transport in the conducting airways.
Madasu, Srinath; Borhan, All; Ultman, James S
2006-02-01
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.
Self- and Air-Broadened Line Shapes in the 2v3 P and R Branches of 12CH4
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed
2015-01-01
In this paper we report line shape parameters of 12CH4 for several hundred 2V(sub 3) transitions in the spectral regions 5891-5996 cm( exp -1) (P branch) and 6015-6115 cm(exp -1) (R branch). Air- and self-broadening coefficients were measured as a function of temperature; line mixing via off-diagonal relaxation matrix element coefficients was also obtained for 47 transition pairs. In total, nearly 1517 positions and intensities were retrieved, but many transitions were too weak for the line shape study. For this analysis, we used 25 high-resolution (0.0056 and 0.0067 cm(ex[ -1) and high signal-to-noise (S/N) spectra of high-purity 12CH4 and the same high-purity 12CH4 broadened by dry air recorded at different sample temperatures between 130 K and 295 K with the Bruker IFS 125HR Fourier transform spectrometer at JPL. Three different absorption cells were used (1) a White cell set to a path length of 13.09 m for room temperature data, (2) a single-pass 0.2038 m long coolable cell (for self-broadening) and (3) a multipass cell with 20.941 m total path coolable Herriott cell (for air-broadening). In total there were 13 spectra with pure 12CH4 (0.27-599 Torr) and 12 air-broadened spectra with total sample pressures of 80-805 Torr and volume mixing ratios (VMR) of methane between 0.18 and 1.0. An interactive multispectrum nonlinear least-squares technique was employed to fit the individual P10-P1 and R0-R10 manifolds in all the spectra simultaneously. Results obtained from the present analysis are compared to other recent measurements.
NASA Astrophysics Data System (ADS)
Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.
2017-10-01
Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantialmore » flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.« less
2169 steel waveform experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd
2012-11-01
In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included themore » elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.« less
Variational Identification of Markovian Transition States
NASA Astrophysics Data System (ADS)
Martini, Linda; Kells, Adam; Covino, Roberto; Hummer, Gerhard; Buchete, Nicolae-Viorel; Rosta, Edina
2017-07-01
We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala5 , and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.
Impulsive noise suppression in color images based on the geodesic digital paths
NASA Astrophysics Data System (ADS)
Smolka, Bogdan; Cyganek, Boguslaw
2015-02-01
In the paper a novel filtering design based on the concept of exploration of the pixel neighborhood by digital paths is presented. The paths start from the boundary of a filtering window and reach its center. The cost of transitions between adjacent pixels is defined in the hybrid spatial-color space. Then, an optimal path of minimum total cost, leading from pixels of the window's boundary to its center is determined. The cost of an optimal path serves as a degree of similarity of the central pixel to the samples from the local processing window. If a pixel is an outlier, then all the paths starting from the window's boundary will have high costs and the minimum one will also be high. The filter output is calculated as a weighted mean of the central pixel and an estimate constructed using the information on the minimum cost assigned to each image pixel. So, first the costs of optimal paths are used to build a smoothed image and in the second step the minimum cost of the central pixel is utilized for construction of the weights of a soft-switching scheme. The experiments performed on a set of standard color images, revealed that the efficiency of the proposed algorithm is superior to the state-of-the-art filtering techniques in terms of the objective restoration quality measures, especially for high noise contamination ratios. The proposed filter, due to its low computational complexity, can be applied for real time image denoising and also for the enhancement of video streams.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—themore » shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.« less
Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.
Tiwari, Ambuj; Ensing, Bernd
2016-12-22
Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.
Sign phase transition in the problem of interfering directed paths
NASA Astrophysics Data System (ADS)
Baldwin, C. L.; Laumann, C. R.; Spivak, B.
2018-01-01
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending on dimensionality and the concentration of negative scattering sites x . We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite xc>0 . These results have consequences for several different physical systems. In two-dimensional insulators at low temperature, the variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D -wave superconducting grains embedded in a metallic matrix. Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase diagram at high temperature.
PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvathi, V. S.; Babu, B. R. S.; Sofia, U. J.
2012-11-20
We report previously undetermined interstellar gas and dust-phase carbon abundances along 15 Galactic sight lines based on archival data of the strong 1334.5323 A transition observed with the Space Telescope Imaging Spectrograph. These are combined with previously reported carbon measurements along six sight lines to produce a complete sample of interstellar C II measurements determined with the 1334 A transition. Our data set includes a variety of Galactic disk environments characterized by different extinctions and samples paths ranging over three orders of magnitude in average density of hydrogen ((n(H))). Our data support the idea that dust, specifically carbon-based grains, aremore » processed in the neutral interstellar medium. We, however, do not find that the abundance of carbon in dust or the grain-size distribution is related to the strength of the 2175 A bump. This is surprising, given that many current models have polycyclic aromatic hydrocarbons as the bump-producing dust.« less
Using Approximate Bayesian Computation to Probe Multiple Transiting Planet Systems
NASA Astrophysics Data System (ADS)
Morehead, Robert C.
2015-08-01
The large number of multiple transiting planet systems (MTPS) uncovered with Kepler suggest a population of well-aligned planetary systems. Previously, the distribution of transit duration ratios in MTPSs has been used to place constraints on the distributions of mutual orbital inclinations and orbital eccentricities in these systems. However, degeneracies with the underlying number of planets in these systems pose added challenges and make explicit likelihood functions intractable. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC proposes from a prior on the population parameters to produce synthetic datasets via a physically-motivated model. Samples are accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples then form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We will demonstrate the utility of ABC in exoplanet populations by presenting new constraints on the mutual inclination and eccentricity distributions in the Kepler MTPSs. We will also introduce Simple-ABC, a new open-source Python package designed for ease of use and rapid specification of general models, suitable for use in a wide variety of applications in both exoplanet science and astrophysics as a whole.
Employees on the rebound: Extending the careers literature to include boomerang employment.
Swider, Brian W; Liu, Joseph T; Harris, T Brad; Gardner, Richard G
2017-06-01
As employee careers have evolved from linear trajectories confined within 1 organization to more dynamic and boundaryless paths, organizations and individuals alike have increasingly considered reestablishing prior employment relationships. These "boomerang employees" follow career paths that feature 2 or more temporally separated tenures in particular organizations ("boomerang organizations"). Yet, research to date is mute on how or to what extent differences across boomerang employees' career experiences, and the learning and knowledge developed at and away from boomerang organizations, meaningfully impact their performance following their return. Addressing this omission, we extend a careers-based learning perspective to construct a theoretical framework of a parsimonious, yet generalizable, set of factors that influence boomerang employee return performance. Results based on a sample of boomerang employees and employers in the same industry (professional basketball) indicate that intra- and extraorganizational knowledge construction and disruptions, as well as transition events, are significantly predictive of boomerangs' return performance. Comparisons with 2 matched samples of nonboomerang employees likewise suggest distinctive patterns in the performance of boomerang employees. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.
Chen, Qiang; Li, Weihua; Wu, Jiangtao
2014-01-01
A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. Copyright © 2013 Elsevier B.V. All rights reserved.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
NASA Astrophysics Data System (ADS)
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
Evaluation of Rutter Sigma S6 Ice Navigation Radar on USCGC Healy during Arctic Shield 2014
2015-03-01
useful in making decisions about the pressure ridges ahead of time instead of making an immediate decision. Figure 33. CG radar display of... use the radar to help chart an efficient path through an ice field to reduce transit time and fuel expenses. This includes a clear picture of the ice...a ship would be able to use the radar to help chart an efficient path through an ice field to reduce transit time and fuel expenses. This includes
NASA Astrophysics Data System (ADS)
Fisher, B.; Patlagan, L.
2018-06-01
The mixed metal-insulator state in VO2 sets on within the current-controlled negative differential resistivity regime of I-V loops traced at ambient temperature. In this state, the stability of I(V) and/or spontaneous switching between initial and final steady states are governed by the load resistance RL in series with the sample. With increasing current (decreasing voltage), the power P = IV reaches a maximum (Pmax) and drops to a minimum (Pmin) along a path that depends on RL. For low enough RL, the ratio Pmax/Pmin may exceed by far the contrast in thermal emissivity from films of VO2 over the metal-insulator transition as reported in Kats et al. [Phys. Rev. X 3, 041004 (2013)]. The minimum is followed by a range of currents where the power increases with current. The return path overlaps the original path and continues towards backward switching. For a few samples, there is evidence from optical microscopy that the portion of the P(I) loop between Pmin and backward switching coincides with the range of currents where semiconducting domains slide within a metallic background. Damage induced in crystals by repeated I-V cycling suppresses domain sliding and flattens P(I) in the respective range of currents. This is consistent with the current dependent excess power dissipation being induced by the sliding domains.
Are U-channels measurements appropriate for reversal or excursion records ?
NASA Astrophysics Data System (ADS)
Philippe, E. G. H.; Valet, J. P.
2017-12-01
Sampling of sediment cores by U-channel plastic tubes is a very successful technique that allows to perform measurements of the magnetic remanence and demagnetization of long sections of sediment. This approach made possible the acquisition of detailed records of paleosecular variation, geomagnetic polarity and relative paleointensity over the past million years and yielded significant advances in our knowledge of the geomagnetic field changes. The major pitfall is that the resolution of the signal which is imposed by the deposition rate of the sediment is also attenuated by the response curve of the magnetic sensors used for measurements. This is not so critical to document the dipole field changes, but may have a significant impact to recover fast field changes typical of the non-dipole field that prevail during reversals and excursions. We have investigated possible consequences by comparing 150 successive individual directions of 1 cm side successive single samples with the measurement of the 1.5m equivalent U-channel obtained by placing the same samples adjacent to each other. We compared different transition lengths and generated transitional directions that produce records with similar characteristics as those derived from volcanic records of reversals with a magnetization intensity dropping to 5% of the full polarity value during the transition. The results show that even with transitional intervals as long as 30 cm and therefore associated with deposition rates as high as 10 cm/ka the U-channels considerably smooth all variations with significant consequences on the VGP paths that become more constrained in longitude. Despite little similarity with the global structure of the transition, the U-channels fail to reproduce the complexity of the transitional period. The transitional VGPs never duplicate the variations of the non-dipole field even within several centimeters and generate artificial clusters or periods of apparent fast changes. We are currently testing whether deconvolution techniques can recover the original directions.
Wetting transition on patterned surfaces: transition states and energy barriers.
Ren, Weiqing
2014-03-18
We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.
Energy landscapes and properties of biomolecules.
Wales, David J
2005-11-09
Thermodynamic and dynamic properties of biomolecules can be calculated using a coarse-grained approach based upon sampling stationary points of the underlying potential energy surface. The superposition approximation provides an overall partition function as a sum of contributions from the local minima, and hence functions such as internal energy, entropy, free energy and the heat capacity. To obtain rates we must also sample transition states that link the local minima, and the discrete path sampling method provides a systematic means to achieve this goal. A coarse-grained picture is also helpful in locating the global minimum using the basin-hopping approach. Here we can exploit a fictitious dynamics between the basins of attraction of local minima, since the objective is to find the lowest minimum, rather than to reproduce the thermodynamics or dynamics.
Near-optimal energy transitions for energy-state trajectories of hypersonic aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Bowles, J. V.; Terjesen, E. J.; Whittaker, T.
1992-01-01
A problem of the instantaneous energy transition that occurs in energy-state approximation is considered. The transitions are modeled as a sequence of two load-factor bounded paths (either climb-dive or dive-climb). The boundary-layer equations associated with the energy-state dynamic model are analyzed to determine the precise location of the transition.
Reliable Transition State Searches Integrated with the Growing String Method.
Zimmerman, Paul
2013-07-09
The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.
Architectures of Kepler Planet Systems with Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Morehead, Robert C.; Ford, Eric B.
2015-12-01
The distribution of period normalized transit duration ratios among Kepler’s multiple transiting planet systems constrains the distributions of mutual orbital inclinations and orbital eccentricities. However, degeneracies in these parameters tied to the underlying number of planets in these systems complicate their interpretation. To untangle the true architecture of planet systems, the mutual inclination, eccentricity, and underlying planet number distributions must be considered simultaneously. The complexities of target selection, transit probability, detection biases, vetting, and follow-up observations make it impractical to write an explicit likelihood function. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC generates a sample of trial population parameters from a prior distribution to produce synthetic datasets via a physically-motivated forward model. Samples are then accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We build on the considerable progress from the field of statistics to develop sequential algorithms for performing ABC in an efficient and flexible manner. We demonstrate the utility of ABC in exoplanet populations and present new constraints on the distributions of mutual orbital inclinations, eccentricities, and the relative number of short-period planets per star. We conclude with a discussion of the implications for other planet occurrence rate calculations, such as eta-Earth.
NASA Astrophysics Data System (ADS)
Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato
2018-06-01
We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m = 3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0 = 100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.
NASA Astrophysics Data System (ADS)
Marsman, A.; Horbatsch, M.; Hessels, E. A.
2017-12-01
The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.
Dual-wavelength pump-probe microscopy analysis of melanin composition
NASA Astrophysics Data System (ADS)
Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.
2016-11-01
Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry.
Dual-wavelength pump-probe microscopy analysis of melanin composition
Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.
2016-01-01
Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147
Aughinbaugh, Alison; Pierret, Charles R; Rothstein, Donna S
2005-08-01
We investigated the sensitivity of measures of cognitive ability and socioemotional development to changes in parents' marital status using data from the National Longitudinal Survey of Youth, 1979. We used several scores for each assessment, taken at different times relative to parents' marital transitions, which allowed us to trace the effects starting up to five years before a parent's change in marital status and continuing for up to six years afterward. It also allowed us to correct for the unobserved heterogeneity of the transition and nontransition samples by controlling for the child's fixed effect in estimating the time path of his or her response to the transition. We found that children from families with both biological parents scored significantly better on the BPI and the PIAT-math and PIAT-reading assessments than did children from nonintact families. However, much of the difference disappeared when we controlled for background variables. Furthermore, when we controlled for child fixed effects, we did not find significant longitudinal variation in these scores over long periods that encompass the marital transition. This finding suggests that most of the variation is due to cross-sectional differences and is not a result of marital transitions per se.
NASA Astrophysics Data System (ADS)
Wainwright, Carroll L.
2012-09-01
I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot/undershoot method. The path iteratively deforms in the direction opposite the forces perpendicular to the path until the perpendicular forces vanish (or become very small). To find the phase structure, the program finds and integrates the change in a phase's minimum with respect to temperature.Running time: Approximately 1 minute for full analysis of the two-scalar-field test model on a 2.5 GHz CPU.
NASA Astrophysics Data System (ADS)
Jin, Lingxia; Shi, Shengnan; Zhao, Yang; Luo, Liyang; Zhao, Caibin; Lu, Jiufu; Jiang, Min
2018-02-01
The direct tautomerism (path A) and H2O2 as a catalyst (path B) have been studied in conversion of Cyt2t+ into CytN3+ isomer. The protonated 5-carboxycytosine (5-caCyt) is represented and has been further explored in the presence of H2O2 (path C). In going from a four-membered-ring transition state in the case of the direct tautomerism to the six-membered ring for H2O2, the H2O2 significantly contributes to decreasing the free energy barrier of tautomerisation. Although the carboxylic substituent of 5-carboxycytosine has certain affected on the electron distribution of the pyrimidine ring, the six-membered-ring transition state has not changed. This result illustrates that the C5-carboxylation has no significant effect on the H2O2-mediated isomerisation of Cyt2t+ to CytN3+ isomer. Meanwhile, these paths A-C have been further explored in the presence of two water molecules. Use of implicit solvent models (PCM) does not significantly alter the energetics of water-mediated paths A-C compared to those in gas phase. Furthermore, the rate constant with Wigner tunnelling correction of path A is obviously smaller than those of paths B and C. Finally, the lifetime τ99.9% of paths B and C is 10-5 s, which is implemented by the mechanism of the concerted synchronous double proton transfer.
Variational transition state theory: theoretical framework and recent developments.
Bao, Junwei Lucas; Truhlar, Donald G
2017-12-11
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications. The theoretical methods reviewed here include multidimensional quantum mechanical tunneling, multistructural VTST (MS-VTST), multi-path VTST (MP-VTST), both reaction-path VTST (RP-VTST) and variable reaction coordinate VTST (VRC-VTST), system-specific quantum Rice-Ramsperger-Kassel theory (SS-QRRK) for predicting pressure-dependent rate constants, and VTST in the solid phase, liquid phase, and enzymes. We also provide some perspectives regarding the general applicability of VTST.
Improving Upon String Methods for Transition State Discovery.
Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker
2012-02-14
Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle
NASA Astrophysics Data System (ADS)
Yu, Hsiu-Yu; Eckmann, David M.; Ayyaswamy, Portonovo S.; Radhakrishnan, Ravi
2016-12-01
The reactive flux formalism (Chandler 1978 J. Chem. Phys. 68, 2959-2970. (doi:10.1063/1.436049)) and the subsequent development of methods such as transition path sampling have laid the foundation for explicitly quantifying the rate process in terms of microscopic simulations. However, explicit methods to account for how the hydrodynamic correlations impact the transient reaction rate are missing in the colloidal literature. We show that the composite generalized Langevin equation (Yu et al. 2015 Phys. Rev. E 91, 052303. (doi:10.1103/PhysRevE.91.052303)) makes a significant step towards solving the coupled processes of molecular reactions and hydrodynamic relaxation by examining how the wall-mediated hydrodynamic memory impacts the two-stage temporal relaxation of the reaction rate for a nanoparticle transition between two bound states in the bulk, near-wall and lubrication regimes.
International Space Station: Transitional Platform for Moon and Mars
NASA Technical Reports Server (NTRS)
Greeniesen, Michael C.
2006-01-01
Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
Stationary properties of maximum-entropy random walks.
Dixit, Purushottam D
2015-10-01
Maximum-entropy (ME) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic systems, how state space topology and path-dependent constraints affect ME-inferred state probabilities remains unknown. To that end, we derive the transition probabilities and the stationary distribution of a maximum path entropy Markov process subject to state- and path-dependent constraints. A main finding is that the stationary distribution over states differs significantly from the Boltzmann distribution and reflects a competition between path multiplicity and imposed constraints. We illustrate our results with particle diffusion on a two-dimensional landscape. Connections with the path integral approach to diffusion are discussed.
Ivanov, Sergei D; Grant, Ian M; Marx, Dominik
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Radiative recombination in GaN/InGaN heterojunction bipolar transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin
2015-12-14
We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The I{sub B}-dependent EL intensities for these three recombination paths are discussed. The resultsmore » also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.« less
Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko
2012-11-26
We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.
Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide
Yang, Ding-Shyue; Baum, Peter; Zewail, Ahmed H.
2016-01-01
Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions. PMID:27376103
USDA-ARS?s Scientific Manuscript database
Understanding your goals in life will assist you identifying the right career path. As we transition from an undergraduate student into our professional career there are an array of skills we will require over the years. This leads to, how do we stand out from the crowd? Here I discuss how I transit...
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
Unzip instabilities: Straight to oscillatory transitions in the cutting of thin polymer sheets
NASA Astrophysics Data System (ADS)
Reis, P. M.; Kumar, A.; Shattuck, M. D.; Roman, B.
2008-06-01
We report an experimental investigation of the cutting of a thin brittle polymer sheet with a blunt tool. It was recently shown that the fracture path becomes oscillatory when the tool is much wider than the sheet thickness. Here we uncover two novel transitions from straight to oscillatory fracture by varying either the tilt angle of the tool or the speed of cutting, respectively. We denote these by angle and speed unzip instabilities and analyze them by quantifying both the dynamics of the crack tip and the final shapes of the fracture paths. Moreover, for the speed unzip instability, the straight crack lip obtained at low speeds exhibits out-of-plane buckling undulations (as opposed to being flat above the instability threshold) suggesting a transition from ductile to brittle fracture.
Low carbon transition and sustainable development path of tourism industry
NASA Astrophysics Data System (ADS)
Zhu, Hongbing; Zhang, Jing; Zhao, Lei; Jin, Shenglang
2017-05-01
The low carbon transition is as much a transformative technology shift as it represents a response to global environment challenges. The low carbon paradigm presents a new direction of change for tourism industry. However, the lack of theoretical frameworks on low carbon transformation in tourism industry context provides a significant knowledge gap. This paper firstly investigates the relationships between low carbon and sustainable development, followed by exploring the existing challenges of tourism sustainable development. At last, this paper presents a sustainable development path framework for low carbon transition of tourism industry, which include accelerating deployment of renewable energy, energy-saving green building construction, improving green growth investment, and adopting a sustainable consumption and production system, in order to promote energy and water efficiency, waste management, GHG emissions mitigation and eventually enhance its sustainability.
Development of FB-MultiPier dynamic vessel-collision analysis models, phase 2.
DOT National Transportation Integrated Search
2014-07-01
Massive waterway vessels such as barges regularly transit navigable waterways in the U.S. During passages that fall within : the vicinity of bridge structures, vessels may (under extreme circumstances) deviate from the intended vessel transit path. A...
Computational smart polymer design based on elastin protein mutability.
Tarakanova, Anna; Huang, Wenwen; Weiss, Anthony S; Kaplan, David L; Buehler, Markus J
2017-05-01
Soluble elastin-like peptides (ELPs) can be engineered into a range of physical forms, from hydrogels and scaffolds to fibers and artificial tissues, finding numerous applications in medicine and engineering as "smart polymers". Elastin-like peptides are attractive candidates as a platform for novel biomaterial design because they exhibit a highly tunable response spectrum, with reversible phase transition capabilities. Here, we report the design of the first virtual library of elastin-like protein models using methods for enhanced sampling to study the effect of peptide chemistry, chain length, and salt concentration on the structural transitions of ELPs, exposing associated molecular mechanisms. We describe the behavior of the local molecular structure under increasing temperatures and the effect of peptide interactions with nearest hydration shell water molecules on peptide mobility and propensity to exhibit structural transitions. Shifts in the magnitude of structural transitions at the single-molecule scale are explained from the perspective of peptide-ion-water interactions in a library of four unique elastin-like peptide systems. Predictions of structural transitions are subsequently validated in experiment. This library is a valuable resource for recombinant protein design and synthesis as it elucidates mechanisms at the single-molecule level, paving a feedback path between simulation and experiment for smart material designs, with applications in biomedicine and diagnostic devices. Copyright © 2017. Published by Elsevier Ltd.
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
Transition Specialists Partner with Students to Turn Dreams into Reality
ERIC Educational Resources Information Center
Flannery, Ann
2013-01-01
Ann Flannery is one of two transition specialists who serve youth and families statewide through the Post-Secondary Transition Program of the Idaho Educational Services for the Deaf and the Blind. In this article she writes that too often her office was seeing graduates coming back to school after failing to find a path to success. They returned…
ERIC Educational Resources Information Center
Tchalakov, Ivan; Mitev, Tihomir; Petrov, Venelin
2010-01-01
The paper questions some of the premises in studying academic spin-offs in developed countries, claiming that when taken as characteristics of "academic spin-offs per se," they are of little help in understanding the phenomenon in the Eastern European countries during the transitional and post-transitional periods after 1989. It argues…
ERIC Educational Resources Information Center
Lyons, Guy Kevin
2014-01-01
Students face many challenges in the transition to high school. From pressures of high-stakes testing for graduation to transitioning to the high school environment, many diversions can delay or even stop a student's path to graduation. Ninth-grade students are at a pivotal point in their educational careers, and a successful transition to high…
Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system
NASA Astrophysics Data System (ADS)
Kiyokawa, Shuji
2018-05-01
In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.
Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M
2015-06-21
The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.
NASA Astrophysics Data System (ADS)
Yang, Bo; Li, Xiao-Teng; Chen, Wei; Liu, Jian; Chen, Xiao-Song
2016-10-01
Self-questioning mechanism which is similar to single spin-flip of Ising model in statistical physics is introduced into spatial evolutionary game model. We propose a game model with altruistic to spiteful preferences via weighted sums of own and opponent's payoffs. This game model can be transformed into Ising model with an external field. Both interaction between spins and the external field are determined by the elements of payoff matrix and the preference parameter. In the case of perfect rationality at zero social temperature, this game model has three different phases which are entirely cooperative phase, entirely non-cooperative phase and mixed phase. In the investigations of the game model with Monte Carlo simulation, two paths of payoff and preference parameters are taken. In one path, the system undergoes a discontinuous transition from cooperative phase to non-cooperative phase with the change of preference parameter. In another path, two continuous transitions appear one after another when system changes from cooperative phase to non-cooperative phase with the prefenrence parameter. The critical exponents v, β, and γ of two continuous phase transitions are estimated by the finite-size scaling analysis. Both continuous phase transitions have the same critical exponents and they belong to the same universality class as the two-dimensional Ising model. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384
NASA Astrophysics Data System (ADS)
Pasquier, Benoît; Holzer, Mark
2016-08-01
We systematically quantify the pathways and time scales that set the efficiency, Ebio, of the global biological pump by applying Green-function-based diagnostics to a data-assimilated phosphorus cycle embedded in a jointly assimilated ocean circulation. We consider "bio pipes" that consist of phosphorus paths that connect specified regions of last biological utilization with regions where regenerated phosphate first reemerges into the euphotic zone. The bio pipes that contribute most to Ebio connect the Eastern Equatorial Pacific (EEqP) and Equatorial Atlantic to the Southern Ocean ((21 ± 3)% of Ebio), as well as the Southern Ocean to itself ((15 ± 3)% of Ebio). The bio pipes with the largest phosphorus flow rates connect the EEqP to itself and the subantarctic Southern Ocean to itself. The global mean sequestration time of the biological pump is 130 ± 70 years, while the sequestration time of the bio pipe from anywhere to the Antarctic region of the Southern Ocean is 430 ± 30 years. The distribution of phosphorus flowing within a given bio pipe is quantified by its transit-time partitioned path density. For the largest bio pipes, ˜1/7 of their phosphorus is carried by thermocline paths with transit times less than ˜300-400 years, while ˜4/7 of their phosphorus is carried by abyssal paths with transit times exceeding ˜700 years. The path density reveals that Antarctic Intermediate Water carries about a third of the regenerated phosphate last utilized in the EEqP that is destined for the Southern Ocean euphotic zone. The Southern Ocean is where (62 ± 2)% of the regenerated inventory and (69 ± 1)% of the preformed inventory first reemerge into the euphotic zone.
A Non-Abelian Geometric Phase for Spin Systems
NASA Astrophysics Data System (ADS)
H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.
Frictional behaviour of sandstone: A sample-size dependent triaxial investigation
NASA Astrophysics Data System (ADS)
Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus
2017-01-01
Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.
H theorem for generalized entropic forms within a master-equation framework
NASA Astrophysics Data System (ADS)
Casas, Gabriela A.; Nobre, Fernando D.; Curado, Evaldo M. F.
2016-03-01
The H theorem is proven for generalized entropic forms, in the case of a discrete set of states. The associated probability distributions evolve in time according to a master equation, for which the corresponding transition rates depend on these entropic forms. An important equation describing the time evolution of the transition rates and probabilities in such a way as to drive the system towards an equilibrium state is found. In the particular case of Boltzmann-Gibbs entropy, it is shown that this equation is satisfied in the microcanonical ensemble only for symmetric probability transition rates, characterizing a single path to the equilibrium state. This equation fulfils the proof of the H theorem for generalized entropic forms, associated with systems characterized by complex dynamics, e.g., presenting nonsymmetric probability transition rates and more than one path towards the same equilibrium state. Some examples considering generalized entropies of the literature are discussed, showing that they should be applicable to a wide range of natural phenomena, mainly those within the realm of complex systems.
Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru
2018-04-20
We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na + + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cano-Lozano, José Carlos; Martínez-Bazán, Carlos; Magnaudet, Jacques; Tchoufag, Joël
2016-09-01
We report on a series of results provided by three-dimensional numerical simulations of nearly spheroidal bubbles freely rising and deforming in a still liquid in the regime close to the transition to path instability. These results improve upon those of recent computational studies [Cano-Lozano et al., Int. J. Multiphase Flow 51, 11 (2013), 10.1016/j.ijmultiphaseflow.2012.11.005; Phys. Fluids 28, 014102 (2016), 10.1063/1.4939703] in which the neutral curve associated with this transition was obtained by considering realistic but frozen bubble shapes. Depending on the dimensionless parameters that characterize the system, various paths geometries are observed by letting an initially spherical bubble starting from rest rise under the effect of buoyancy and adjust its shape to the surrounding flow. These include the well-documented rectilinear axisymmetric, planar zigzagging, and spiraling (or helical) regimes. A flattened spiraling regime that most often eventually turns into either a planar zigzagging or a helical regime is also frequently observed. Finally, a chaotic regime in which the bubble experiences small horizontal displacements (typically one order of magnitude smaller than in the other regimes) is found to take place in a region of the parameter space where no standing eddy exists at the back of the bubble. The discovery of this regime provides evidence that path instability does not always result from a wake instability as previously believed. In each regime, we examine the characteristics of the path, bubble shape, and vortical structure in the wake, as well as their couplings. In particular, we observe that, depending on the fluctuations of the rise velocity, two different vortex shedding modes exist in the zigzagging regime, confirming earlier findings with falling spheres. The simulations also reveal that significant bubble deformations may take place along zigzagging or spiraling paths and that, under certain circumstances, they dramatically alter the wake structure. The instability thresholds that can be inferred from the computations compare favorably with experimental data provided by various sets of recent experiments guaranteeing that the bubble surface is free of surfactants.
NASA Astrophysics Data System (ADS)
Mohrmann, J.; Ghate, V. P.; McCoy, I. L.; Bretherton, C. S.; Wood, R.; Minnis, P.; Palikonda, R.
2017-12-01
The Cloud System Evolution in the Trades (CSET) field campaign took place July/August 2015 to study the evolution of clouds, precipitation, and aerosols in the stratocumulus-to-cumulus (Sc-Cu) transition region of the northeast Pacific marine boundary layer (MBL). Aircraft observations sampled across a wide range of cloud and aerosol conditions. The sampling strategy, where MBL airmasses were sampled with the NSF/NCAR Gulfstream-V (HIAPER) and resampled then at their advected location two days later, resulted in a dataset of 14 paired flights suitable for Lagrangian analysis. This analysis shows that Lagrangian coherence of long-lived species (namely CO and O3) across 48 hours are high, but that of subcloud aerosol, MBL depth, and cloud properties is limited. Geostationary satellite retrievals are compared against aircraft observations; these are combined with reanalysis data and HYSPLIT trajectories to document the Lagrangian evolution of cloud fraction, cloud droplet number concentration, liquid water path, estimated inversion strength (EIS), and MBL depth, which are used to expand upon and validate the aircraft-based analysis. Many of the trajectories sampled by the aircraft show a clear Sc-Cu transition. Although satellite cloud fraction and EIS were found to be strongly spatiotemporally correlated, changes in MBL cloud fraction along trajectories did not correlate with any measure of EIS forcing.
Faster protein folding using enhanced conformational sampling of molecular dynamics simulation.
Kamberaj, Hiqmet
2018-05-01
In this study, we applied swarm particle-like molecular dynamics (SPMD) approach to enhance conformational sampling of replica exchange simulations. In particular, the approach showed significant improvement in sampling efficiency of conformational phase space when combined with replica exchange method (REM) in computer simulation of peptide/protein folding. First we introduce the augmented dynamical system of equations, and demonstrate the stability of the algorithm. Then, we illustrate the approach by using different fully atomistic and coarse-grained model systems, comparing them with the standard replica exchange method. In addition, we applied SPMD simulation to calculate the time correlation functions of the transitions in a two dimensional surface to demonstrate the enhancement of transition path sampling. Our results showed that folded structure can be obtained in a shorter simulation time using the new method when compared with non-augmented dynamical system. Typically, in less than 0.5 ns using replica exchange runs assuming that native folded structure is known and within simulation time scale of 40 ns in the case of blind structure prediction. Furthermore, the root mean square deviations from the reference structures were less than 2Å. To demonstrate the performance of new method, we also implemented three simulation protocols using CHARMM software. Comparisons are also performed with standard targeted molecular dynamics simulation method. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Exploring the Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment
NASA Astrophysics Data System (ADS)
Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Reinstorf, Frido; Fleckenstein, Jan H.
2018-03-01
The analysis of transit/residence time distributions (TTDs and RTDs) provides important insights into the dynamics of stream-water ages and subsurface mixing. These insights have significant implications for water quality. For a small agricultural catchment in central Germany, we use a 3D fully coupled surface-subsurface hydrological model to simulate water flow and perform particle tracking to determine flow paths and transit times. The TTDs of discharge, RTDs of storage and fractional StorAge Selection (fSAS) functions are computed and analyzed on daily basis for a period of 10 years. Results show strong seasonal fluctuations of the median transit time of discharge and the median residence time, with the former being strongly related to the catchment wetness. Computed fSAS functions suggest systematic shifts of the discharge selection preference over four main periods: In the wet period, the youngest water in storage is preferentially selected, and this preference shifts gradually toward older ages of stored water when the catchment transitions into the drying, dry and wetting periods. These changes are driven by distinct shifts in the dominance of deeper flow paths and fast shallow flow paths. Changes in the shape of the fSAS functions can be captured by changes in the two parameters of the approximating Beta distributions, allowing the generation of continuous fSAS functions representing the general catchment behavior. These results improve our understanding of the seasonal dynamics of TTDs and fSAS functions for a complex real-world catchment and are important for interpreting solute export to the stream in a spatially implicit manner.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
Kearns, William D; Fozard, James L; Ray, Roger D; Scott, Steven; Jasiewicz, Jan M; Craighead, Jeffrey D; Pagano, Craig V
2016-01-01
Rehabilitation of patients with traumatic brain injury typically includes therapeutic prompts for keeping appointments and adhering to medication regimens. Level of cognitive impairment may significantly affect a traumatic brain injury victim's ability to benefit from text-based prompting. We tested the hypothesis that spatial disorientation as measured by movement path tortuosity during ambulation would be associated with poorer compliance with automated prompts by veterans actively being treated for traumatic brain injury. Clinical polytrauma center. Ten (1 female) veteran patients mean age = 35.4 (SD = 12.4) years. Small group correlational study without random assignment. Fractal Dimension, a measure of movement path tortuosity derived from a GPS logging device used to record casual outdoor ambulation at the start of the study. Compliance with smart home machine-generated therapeutic prompts received during rehabilitation at the James A. Haley Veterans Administration Hospital Polytrauma Transitional Rehabilitation Program. A patient was compliant with a prompt if they transited from where the prompt was presented to the prescribed destination (both within the Polytrauma Transitional Rehabilitation Program) within 30 minutes. Noncompliance was failure to appear at the destination within the allotted time. Fractal dimension was significantly inversely related to overall prompt compliance (r = -0.603, n = 10, P = .032; 1-tailed). The findings support the hypothesis that increased spatial disorientation adversely impacts compliance with automated prompts throughout therapy. The results are consistent with previous studies linking elevated path tortuosity to cognitive impairment and increased risk for falls in assisted living facility residents.
Ohta, Yoshihiro; Nishiyama, Akinobu; Wada, Yoichiro; Ruan, Yijun; Kodama, Tatsuhiko; Tsuboi, Takashi; Tokihiro, Tetsuji; Ihara, Sigeo
2012-08-01
We all use path routing everyday as we take shortcuts to avoid traffic jams, or by using faster traffic means. Previous models of traffic flow of RNA polymerase II (RNAPII) during transcription, however, were restricted to one dimension along the DNA template. Here we report the modeling and application of traffic flow in transcription that allows preferential paths of different dimensions only restricted to visit some transit points, as previously introduced between the 5' and 3' end of the gene. According to its position, an RNAPII protein molecule prefers paths obeying two types of time-evolution rules. One is an asymmetric simple exclusion process (ASEP) along DNA, and the other is a three-dimensional jump between transit points in DNA where RNAPIIs are staying. Simulations based on our model, and comparison experimental results, reveal how RNAPII molecules are distributed at the DNA-loop-formation-related protein binding sites as well as CTCF insulator proteins (or exons). As time passes after the stimulation, the RNAPII density at these sites becomes higher. Apparent far-distance jumps in one dimension are realized by short-range three-dimensional jumps between DNA loops. We confirm the above conjecture by applying our model calculation to the SAMD4A gene by comparing the experimental results. Our probabilistic model provides possible scenarios for assembling RNAPII molecules into transcription factories, where RNAPII and related proteins cooperatively transcribe DNA.
Transitional Patterns of Adolescent Females in Non-Traditional Career Paths.
ERIC Educational Resources Information Center
Ciccocioppo, Anna-Lisa; Stewin, Leonard L.; Madill, Helen M.; Montgomerie, T. Craig; Tovell, Dorothy R.; Armour, Margaret-Ann; Fitzsimmons, George W.
2002-01-01
Examines the factors that affected the career decision-making of adolescent females and young women in undergraduate science, engineering, and technology programs. Qualitative analysis was used to uncover seven themes: transition from high school, educational influences, family influences, academic issues, coursework management, gender issues, and…
The Bulgarian Academic Profession in Transition.
ERIC Educational Resources Information Center
Slantcheva, Snejana
2003-01-01
Analyzes the current status of the academic profession in Bulgaria at a time of difficult socioeconomic transition. After providing a brief overview of the historical development of Bulgarian academia, discusses faculty working conditions, the career path within the profession, and the legal framework for the professoriate. Highlights future key…
Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr
2010-09-20
The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting (3)H samples in groundwater over 27years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean (3)H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 microg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Importance sampling large deviations in nonequilibrium steady states. I.
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T
2018-03-28
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
Importance sampling large deviations in nonequilibrium steady states. I
NASA Astrophysics Data System (ADS)
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2018-03-01
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
Scan path entropy and arrow plots: capturing scanning behavior of multiple observers
Hooge, Ignace; Camps, Guido
2013-01-01
Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993
New assignments in the 2 μm transparency window of the 12CH4 Octad band system
NASA Astrophysics Data System (ADS)
Daumont, L.; Nikitin, A. V.; Thomas, X.; Régalia, L.; Von der Heyden, P.; Tyuterev, Vl. G.; Rey, M.; Boudon, V.; Wenger, Ch.; Loëte, M.; Brown, L. R.
2013-02-01
This paper reports new assignments of rovibrational transitions of 12CH4 bands in the range 4600-4887 cm-1 which is usually referred to as a part of the 2 μm methane transparency window. Several experimental data sources for methane line positions and intensities were combined for this analysis. Three long path Fourier transform spectra newly recorded in Reims with 1603 m absorption path length and pressures of 1, 7 and 34 hPa for samples of natural abundance CH4 provided new measurements of 12CH4 lines. Older spectra for 13CH4 (90% purity) from JPL with 73 m absorption path length were used to identify the corresponding lines. Most of the lines in this region belong to the Octad system of 12CH4. The new spectra allowed us to assign 1014 new line positions and to measure 1095 line intensities in the cold bands of the Octad. These new line positions and intensities were added to the global fit of Hamiltonian and dipole moment parameters of the Ground State, Dyad, Pentad and Octad systems. This leads to a noticeable improvement of the theoretical description in this methane transparency window and a better global prediction of the methane spectrum.
Generalized Ensemble Sampling of Enzyme Reaction Free Energy Pathways
Wu, Dongsheng; Fajer, Mikolai I.; Cao, Liaoran; Cheng, Xiaolin; Yang, Wei
2016-01-01
Free energy path sampling plays an essential role in computational understanding of chemical reactions, particularly those occurring in enzymatic environments. Among a variety of molecular dynamics simulation approaches, the generalized ensemble sampling strategy is uniquely attractive for the fact that it not only can enhance the sampling of rare chemical events but also can naturally ensure consistent exploration of environmental degrees of freedom. In this review, we plan to provide a tutorial-like tour on an emerging topic: generalized ensemble sampling of enzyme reaction free energy path. The discussion is largely focused on our own studies, particularly ones based on the metadynamics free energy sampling method and the on-the-path random walk path sampling method. We hope that this mini presentation will provide interested practitioners some meaningful guidance for future algorithm formulation and application study. PMID:27498634
Plotnikov, Nikolay V
2014-08-12
Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.
2015-01-01
Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force. PMID:25136268
Bifurcations on Potential Energy Surfaces of Organic Reactions
Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.
2009-01-01
A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis.
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M
2016-07-14
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
NASA Astrophysics Data System (ADS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-07-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Bauer, Talya N; Bodner, Todd; Erdogan, Berrin; Truxillo, Donald M; Tucker, Jennifer S
2007-05-01
The authors tested a model of antecedents and outcomes of newcomer adjustment using 70 unique samples of newcomers with meta-analytic and path modeling techniques. Specifically, they proposed and tested a model in which adjustment (role clarity, self-efficacy, and social acceptance) mediated the effects of organizational socialization tactics and information seeking on socialization outcomes (job satisfaction, organizational commitment, job performance, intentions to remain, and turnover). The results generally supported this model. In addition, the authors examined the moderating effects of methodology on these relationships by coding for 3 methodological issues: data collection type (longitudinal vs. cross-sectional), sample characteristics (school-to-work vs. work-to-work transitions), and measurement of the antecedents (facet vs. composite measurement). Discussion focuses on the implications of the findings and suggestions for future research. 2007 APA, all rights reserved
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
Genome-scale modeling of the evolutionary path to C4 photosynthesis
NASA Astrophysics Data System (ADS)
Myers, Christopher R.; Bogart, Eli
In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.
MEPSA: minimum energy pathway analysis for energy landscapes.
Marcos-Alcalde, Iñigo; Setoain, Javier; Mendieta-Moreno, Jesús I; Mendieta, Jesús; Gómez-Puertas, Paulino
2015-12-01
From conformational studies to atomistic descriptions of enzymatic reactions, potential and free energy landscapes can be used to describe biomolecular systems in detail. However, extracting the relevant data of complex 3D energy surfaces can sometimes be laborious. In this article, we present MEPSA (Minimum Energy Path Surface Analysis), a cross-platform user friendly tool for the analysis of energy landscapes from a transition state theory perspective. Some of its most relevant features are: identification of all the barriers and minima of the landscape at once, description of maxima edge profiles, detection of the lowest energy path connecting two minima and generation of transition state theory diagrams along these paths. In addition to a built-in plotting system, MEPSA can save most of the generated data into easily parseable text files, allowing more versatile uses of MEPSA's output such as the generation of molecular dynamics restraints from a calculated path. MEPSA is freely available (under GPLv3 license) at: http://bioweb.cbm.uam.es/software/MEPSA/ CONTACT: pagomez@cbm.csic.es. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zima, V. G.; Fedoruk, S. O.
1999-11-01
The transition amplitude is obtained for a free massive particle of arbitrary spin by calculating the path integral in the index-spinor formulation within the BFV-BRST approach. No renormalizations of the path integral measure were applied. The calculation has given the Weinberg propagator written in the index-free form by the use of an index spinor. The choice of boundary conditions on the index spinor determines the holomorphic or antiholomorphic representation for the canonical description of particle/antiparticle spin.
Survey of Retired Military Pharmacist's Transition to a Civilian Pharmacy Career Path.
Bennett, David; Wellman, Greg; Mahmood, Maysaa; Freye, Ryan; Remund, Daniel; Samples, Phil L
2015-12-01
To explore variables relevant to transition to civilian pharmacy career path for retiring military pharmacists. A cross-sectional survey was designed to collect information from retired military pharmacists including demographics, military service information, postretirement employment and perceptions of transition, satisfaction, level of responsibility, work environment, rewards (level of financial compensation, opportunities for professional development and career advancement, health benefits), and level of supervisory support. The questionnaire also included additional items asking about their perception of their military experience, transition to civilian work and the impact the military career had on their personal and family life. Respondents included 140 retired pharmacists from the U.S. Army, Navy, Air Force, or Coast Guard. Factors found to be significant predictors of transition to civilian career included: bureaucracy in current job, time elapsed since retirement, extent to which an individual misses military structure and chain of command, access to military facilities and Veterans Administration benefits, and reporting little or no stress in committed long-term personal relationship while in the military. Findings suggest that the majority of retired military pharmacists perceived the transition to civilian professional sector was about what they expected or easier than expected. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Men, Yumei; Yan, Qingzhao; Jiang, Guangfeng; Zhang, Xianren; Wang, Wenchuan
2009-05-01
In this work, we propose a method to stabilize a nucleus in the framework of lattice density-functional theory (LDFT) by imposing a suitable constraint. Using this method, the shape of critical nucleus and height of the nucleation barrier can be determined without using a predefined nucleus as input. As an application of this method, we study the nucleation behavior of vapor-liquid transition in nanosquare pores with infinite length and relate the observed hysteresis loop on an adsorption isotherm to the nucleation mechanism. According to the dependence of hysteresis and the nucleation mechanism on the fluid-wall interaction, w , in this work, we have classified w into three regions ( w>0.9 , 0.1< or =w< or =0.9 , and w<0.1 ), which are denoted as strongly, moderately, and weakly attractive fluid-wall interaction, respectively. The dependence of hysteresis on the fluid-wall interaction is interpreted by the different nucleation mechanisms. Our constrained LDFT calculations also show that the different transition paths may induce different nucleation behaviors. The transition path dependence should be considered if morphological transition of nuclei exists during a nucleation process.
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
Signs and stability in higher-derivative gravity
NASA Astrophysics Data System (ADS)
Narain, Gaurav
2018-02-01
Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
Efficient collective influence maximization in cascading processes with first-order transitions
NASA Astrophysics Data System (ADS)
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-03-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.
Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms
NASA Astrophysics Data System (ADS)
David Froning, H.; Meholic, Gregory V.
2010-01-01
This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
The Senior Year: Culminating Experiences and Transitions
ERIC Educational Resources Information Center
Hunter, Mary Stuart, Ed.; Keup, Jennifer R., Ed.; Kinzie, Jillian, Ed.; Maietta, Heather, Ed.
2012-01-01
Increasing pressures on colleges and universities to ensure degree completion and job placement as measures of success make it imperative that the path to graduation is clear and that seniors receive the support needed to earn a degree and make a successful transition to life beyond college. This new edited collection describes today's college…
Youth Transition to Employment in Vietnam: A Vulnerable Path
ERIC Educational Resources Information Center
Tran, Thi Tuyet
2018-01-01
Literature suggests that educational attainment is one of the significant factors affecting youth transition to work. The process of capital accumulation through education is suggested as the key marker of social inclusion and exclusion. This paper compares the educational attainment among youth in Vietnam with their status in employment. It uses…
Technologies and Species Transitions: Polanyi, on a Path to Posthumanity?
ERIC Educational Resources Information Center
Doede, Robert
2011-01-01
Polanyi and Transhumanism both place technologies in pivotal roles in bringing about "Homo sapiens"' species transitions. The question is asked whether Polanyi's emphasis on the role of technology in "Homo sapiens"' rise out of mute beasthood indicates that he might have been inclined to embrace the Transhumanist vision of "Homo sapiens"'…
ERIC Educational Resources Information Center
Wang, Yan; Ye, Feifei; Pilarzyk, Tom
2014-01-01
This study used a strategic enrollment management (SEM) approach to studying high school students' transition to a two-year college and their initial college success. Path analyses suggested two important findings: (a) clear career choices among students, family influence, academic preparedness, and college recruitment efforts predicted earlier…
Sørbye, Sveinung Wergeland; Pedersen, Mette Kristin; Ekeberg, Bente; Williams, Merete E Johansen; Sauer, Torill; Chen, Ying
2017-01-01
The Norwegian Cervical Cancer Screening Program recommends screening every 3 years for women between 25 and 69 years of age. There is a large difference in the percentage of unsatisfactory samples between laboratories that use different brands of liquid-based cytology. We wished to examine if inadequate ThinPrep samples could be satisfactory by processing them with the SurePath protocol. A total of 187 inadequate ThinPrep specimens from the Department of Clinical Pathology at University Hospital of North Norway were sent to Akershus University Hospital for conversion to SurePath medium. Ninety-one (48.7%) were processed through the automated "gynecologic" application for cervix cytology samples, and 96 (51.3%) were processed with the "nongynecological" automatic program. Out of 187 samples that had been unsatisfactory by ThinPrep, 93 (49.7%) were satisfactory after being converted to SurePath. The rate of satisfactory cytology was 36.6% and 62.5% for samples run through the "gynecology" program and "nongynecology" program, respectively. Of the 93 samples that became satisfactory after conversion from ThinPrep to SurePath, 80 (86.0%) were screened as normal while 13 samples (14.0%) were given an abnormal diagnosis, which included 5 atypical squamous cells of undetermined significance, 5 low-grade squamous intraepithelial lesion, 2 atypical glandular cells not otherwise specified, and 1 atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion. A total of 2.1% (4/187) of the women got a diagnosis of cervical intraepithelial neoplasia 2 or higher at a later follow-up. Converting cytology samples from ThinPrep to SurePath processing can reduce the number of unsatisfactory samples. The samples should be run through the "nongynecology" program to ensure an adequate number of cells.
Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.
Velez-Vega, Camilo; Gilson, Michael K
2012-03-13
The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.
Pope, L.M.; Mehl, H.E.; Coiner, R.L.
2009-01-01
Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may be caused by cracks or fissures in the confining unit that separates the upper and lower parts of the aquifer, poorly constructed or abandoned wells, or historic mining activities. Analyses of major ions in water from wells along the flow paths indicated a transition from freshwater in the east to saline water in the west. Generally, ground water along flow paths evolved from a calcium magnesium bicarbonate type to a sodium calcium bicarbonate or a sodium calcium chloride bicarbonate type as water moved from recharge areas in Missouri into Kansas. Much of this evolution occurred within the last 20 to 25 miles of the flow paths along a water-quality transition zone near the Kansas-Missouri State line and west. The water quality of the Kansas part of the Ozark aquifer is degraded compared to the Missouri part. Geophysical and well-bore flow information and depth-dependent water-quality samples were collected from a large-capacity (1,900-2,300 gallons per minute) municipal-supply well to evaluate vertical ground-water flow accretion and variability in water-quality characteristics at different levels. Although the 1,050-foot deep supply well had 500 feet of borehole open to the Ozark aquifer, 77 percent of ground-water flow entering the borehole came from two 20-foot thick rock layers above the 1,000-foot level. For the most part, water-quality characteristics changed little from the deepest sample to the well-head sample, and upwelling of saline water from deeper geologic formations below the well was not evident. However, more saline water may be present below the bottom of the well.
Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
Banerjee, Rahul; Cukier, Robert I
2014-03-20
Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis.
Becky K. Kerns; Ayn J. Shlisky; Colin J. Daniel
2012-01-01
The first ever Landscape State-and-Transition Simulation Modeling Conference was held from June 14â16, 2011, in Portland Oregon. The conference brought together over 70 users of state-and-transition simulation modeling toolsâthe Vegetation Dynamics Development Tool (VDDT), the Tool for Exploratory Landscape Analysis (TELSA) and the Path Landscape Model. The goal of the...
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H
2016-12-14
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.
2016-12-01
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
Core self-evaluations and work engagement: Testing a perception, action, and development path.
Tims, Maria; Akkermans, Jos
2017-01-01
Core self-evaluations (CSE) have predictive value for important work outcomes such as job satisfaction and job performance. However, little is known about the mechanisms that may explain these relationships. The purpose of the present study is to contribute to CSE theory by proposing and subsequently providing a first test of theoretically relevant mediating paths through which CSE may be related to work engagement. Based on approach/avoidance motivation and Job Demands-Resources theory, we examined a perception (via job characteristics), action (via job crafting), and development path (via career competencies). Two independent samples were obtained from employees working in Germany and The Netherlands (N = 303 and N = 404, respectively). When taking all mediators into account, results showed that the perception path represented by autonomy and social support played a minor role in the relationship between CSE and work engagement. Specifically, autonomy did not function as a mediator in both samples while social support played a marginally significant role in the CSE-work engagement relationship in sample 1 and received full support in sample 2. The action path exemplified by job crafting mediated the relationship between CSE and work engagement in both samples. Finally, the development path operationalized with career competencies mediated the relationship between CSE and work engagement in sample 1. The study presents evidence for an action and development path over and above the often tested perception path to explain how CSE is related to work engagement. This is one of the first studies to propose and show that CSE not only influences perceptions but also triggers employee actions and developmental strategies that relate to work engagement.
Core self-evaluations and work engagement: Testing a perception, action, and development path
Akkermans, Jos
2017-01-01
Core self-evaluations (CSE) have predictive value for important work outcomes such as job satisfaction and job performance. However, little is known about the mechanisms that may explain these relationships. The purpose of the present study is to contribute to CSE theory by proposing and subsequently providing a first test of theoretically relevant mediating paths through which CSE may be related to work engagement. Based on approach/avoidance motivation and Job Demands-Resources theory, we examined a perception (via job characteristics), action (via job crafting), and development path (via career competencies). Two independent samples were obtained from employees working in Germany and The Netherlands (N = 303 and N = 404, respectively). When taking all mediators into account, results showed that the perception path represented by autonomy and social support played a minor role in the relationship between CSE and work engagement. Specifically, autonomy did not function as a mediator in both samples while social support played a marginally significant role in the CSE–work engagement relationship in sample 1 and received full support in sample 2. The action path exemplified by job crafting mediated the relationship between CSE and work engagement in both samples. Finally, the development path operationalized with career competencies mediated the relationship between CSE and work engagement in sample 1. The study presents evidence for an action and development path over and above the often tested perception path to explain how CSE is related to work engagement. This is one of the first studies to propose and show that CSE not only influences perceptions but also triggers employee actions and developmental strategies that relate to work engagement. PMID:28787464
NASA Astrophysics Data System (ADS)
Vanden-Eijnden, Eric; Venturoli, Maddalena
2009-05-01
An improved and simplified version of the finite temperature string (FTS) method [W. E, W. Ren, and E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688 (2005)] is proposed. Like the original approach, the new method is a scheme to calculate the principal curves associated with the Boltzmann-Gibbs probability distribution of the system, i.e., the curves which are such that their intersection with the hyperplanes perpendicular to themselves coincides with the expected position of the system in these planes (where perpendicular is understood with respect to the appropriate metric). Unlike more standard paths such as the minimum energy path or the minimum free energy path, the location of the principal curve depends on global features of the energy or the free energy landscapes and thereby may remain appropriate in situations where the landscape is rough on the thermal energy scale and/or entropic effects related to the width of the reaction channels matter. Instead of using constrained sampling in hyperplanes as in the original FTS, the new method calculates the principal curve via sampling in the Voronoi tessellation whose generating points are the discretization points along this curve. As shown here, this modification results in greater algorithmic simplicity. As a by-product, it also gives the free energy associated with the Voronoi tessellation. The new method can be applied both in the original Cartesian space of the system or in a set of collective variables. We illustrate FTS on test-case examples and apply it to the study of conformational transitions of the nitrogen regulatory protein C receiver domain using an elastic network model and to the isomerization of solvated alanine dipeptide.
Methane Line Intensities: Near and Far IR
NASA Astrophysics Data System (ADS)
Brown, Linda R.; Devi, V. Malathy; Wishnow, Edward H.; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Predoi-Cross, Adriana; Benner, D. Chris
2014-11-01
Accurate knowledge of line intensities is crucial input for radiance calculations to interpret atmospheric observations of planets and moons. We have therefore undertaken extensive laboratory studies to measure the methane spectrum line-by-line in order to improve theoretical quantum mechanical modeling for molecular spectroscopy databases (e. g. HITRAN and GEISA) used by planetary astronomers. Preliminary results will be presented for selected ro-vibrational transitions in both the near-IR (1.66 and 2.2 - 2.4 microns) and the far-IR (80 - 120 microns) regions. For this, we have recorded high-resolution spectra (instrumental resolving power: 1,300,000 (NIR) and 10,000 (FIR)) with the Bruker 125HR Fourier transform spectrometer at JPL using isotopically-enriched 12CH4 and 13CH4, as well as normal methane samples. For the NIR wavelengths, three different absorption cells have been employed to achieve sample temperatures ranging from 78 K to 299 K: 1) a White cell set to a path length of 13.09 m for room temperature data, 2) a single-pass 0.2038 m cold cell and 3) a new coolable Herriott cell with a fixed 20.941 m optical path and configured for the first time to a FT-IR spectrometer. For the Far-IR, another coolable absorption chamber set to a 52 m optical path has been used. These new experiments and intensity measurements will be presented and discussed.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the University of California, Berkeley, Connecticut College, and NASA Langley under contracts and grants with the National Aeronautics and Space Administration. A. Predoi-Cross and her research group have been supported by the National Science and Engineering Research Council of Canada.
Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.
Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J
2014-02-27
We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.
Mechanisms of passive ion permeation through lipid bilayers
Tepper, Harald L.; Voth, Gregory A.
2008-01-01
Multi-State Empirical Valence Bond and classical Molecular Dynamics simulations were used to explore mechanisms for passive ion leakage through a dimyristoyl phosphatidylcholine (DMPC) lipid bilayer. In accordance with a previous study on proton leakage, it was found that the permeation mechanism must be a highly concerted one, in which ion, solvent and membrane coordinates are coupled. The presence of the ion itself significantly alters the response of those coordinates, suggesting that simulations of transmembrane water structures without explicit inclusion of the ionic solute are insufficient for elucidating transition mechanisms. The properties of H+, Na+, OH-, and bare water molecules in the membrane interior were compared, both by biased sampling techniques and by constructing complete and unbiased transition paths. It was found that the anomalous difference in leakage rates between protons and other cations can be largely explained by charge delocalization effects, rather than the usual kinetic picture (Grotthuss hopping of the proton). Permeability differences between anions and cations through PC bilayers are correlated with suppression of favorable membrane breathing modes by cations. PMID:17048962
Exact transition probabilities in a 6-state Landau–Zener system with path interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinitsyn, Nikolai A.
2015-04-23
In this paper, we identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. Finally, we discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.
Rodríguez, María Soledad; Tinajero, Carolina; Páramo, María Fernanda
2017-11-17
Transition to university is a multifactorial process to which scarce consideration has been given in Spain, despite this being one of the countries with the highest rates of academic failure and attrition within the European Union. The present study proposes an empirical model for predicting Spanish students' academic achievement at university by considering pre-entry characteristics, perceived social support and adaptation to university, in a sample of 300 traditional first-year university students. The findings of the path analysis showed that pre-university achievement and academic and personal-emotional adjustment were direct predictors of academic achievement. Furthermore, gender, parents' education and family support were indirect predictors of academic achievement, mediated by pre-university grades and adjustment to university. The current findings supporting evidence that academic achievement in first-year Spanish students is the cumulative effect of pre-entry characteristics and process variables, key factors that should be taken into account in designing intervention strategies involving families and that establish stronger links between research findings and university policies.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less
Effects of a mutation on the folding mechanism of a beta-hairpin.
Juraszek, Jarek; Bolhuis, Peter G
2009-12-17
The folding mechanism of a protein is determined by its primary sequence. Yet, how the mechanism is changed by a mutation is still poorly understood, even for basic secondary structures such as beta-hairpins. We perform an extensive simulation study of the effects of mutating the GB1 beta-hairpin into Trpzip4 (Y5W, F12W, V14W) on the folding mechanism. While Trpzip4 has a much more stable native state due to very strong hydrophobic interactions of the side chains, its folding rate does not differ significantly from the wild type beta-hairpin. We sample the free-energy landscapes of both hairpins with Replica Exchange Molecular Dynamics (REMD) and identify the four (meta)stable states (U, H, F, and N). Using Transition Path Sampling (TPS), we then harvest ensembles of unbiased pathways between the H and F states and between the F and N states to investigate the unbiased folding mechanisms. In both hairpins, the hydrophobic collapse (U-H) is followed by the middle hydrogen bond formation (H-F), and finally a closing of the strands in a zipper-like fashion (F-N). For the Trpzip4, the path ensembles indicate that the final F-N step is much more difficult than for GB1 and involves partial unfolding, rezipping of hydrogen bonds, and rearrangement of the Trp-14 side chain. For the rate-limiting (H-F) step, the path ensembles show that in GB1 desolvation and strand closure go hand in hand, while in Trpzip4 desolvation is decoupled from strand closure. Nevertheless, likelihood maximization shows that the reaction coordinate for both hairpins remains the interstrand distance. We conclude that the folding mechanism of both hairpins is a combination of hydrophobic collapse and zipping of hydrogen bonds but that the zipper mechanism is more visible in Trpzip4. A major difference between the two hairpins is that in the transition state of the rate-limiting step for Trpzip4 one tryptophan is exposed to the solvent due to steric hindrance, making the folding mechanism more complex and leading to an increased F-N barrier. Thus, our results show in atomistic detail how a mutation leads to a different folding mechanism and results in a more frustrated folding free-energy landscape.
Spring operated accelerator and constant force spring mechanism therefor
NASA Technical Reports Server (NTRS)
Shillinger, G. L., Jr. (Inventor)
1977-01-01
A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.
Study of the De-Icing Properties of the ASDE-3 Rotodome.
1982-04-01
Heat Transfer Coefficients ........................... 3 -18 3.2.3 Prediction of De-Icing Capability ...... 3 -23 3.2.4 Calculation of Mean DIA & PATH...kVA 3 -31 N NUL =ti: :6 i ::p :: %:::::28 -R) [ eN 23,100t Averaged for Laminar & Turbulent Regimes. SAssuming a transition from Laminar to. Turbulent...Calculation of Mean Dia .& Path Length for Roof Mean Path Length for Roof: y 4r 4x 9 3.82 ft 3 x 7 1 2(92 3.8221/2 1 = 2(92 - 3.822 = 8.15 ft x 2 16.3 ft 16.3
The allosteric switching mechanism in bacteriophage MS2
NASA Astrophysics Data System (ADS)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.
2016-07-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
The allosteric switching mechanism in bacteriophage MS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu
2016-07-21
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we usemore » all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.« less
The allosteric switching mechanism in bacteriophage MS2
Perkett, Matthew R.; Mirijanian, Dina T.
2016-01-01
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates. PMID:27448905
It's My Life! Career Paths for Young Women in Transition. Coordinator's Handbook.
ERIC Educational Resources Information Center
Florio, Carol; And Others
This document is the coordinator's handbook for a four-day workshop for young women in transition from high school to two-year colleges. The program covers career information, self-awareness and skills assessment (with special regard for mathematics), the many roles of women, and decision making and planning. It includes large- and small-group…
Suicidal or Self-Harming Ideation in Military Personnel Transitioning to Civilian Life
ERIC Educational Resources Information Center
Mansfield, Alyssa J.; Bender, Randall H.; Hourani, Laurel L.; Larson, Gerald E.
2011-01-01
Suicides have markedly increased among military personnel in recent years. We used path analysis to examine factors associated with suicidal/self-harming ideation among male Navy and Marine Corps personnel transitioning to civilian life. Roughly 7% of men (Sailors = 5.3%, Marines = 9.0%) reported ideation during the previous 30 days. Results…
Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham
2012-01-01
Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...
Lost in Transition: Building a Better Path from School to College and Careers
ERIC Educational Resources Information Center
Bottoms, Gene; Young, Marna
2008-01-01
In 2005 and 2006, the "High Schools That Work" ("HSTW") program of the Southern Regional Education Board (SREB) and the College and Career Transitions Initiative of the League for Innovation in the Community College (League) facilitated a series of 15 state-level forums aimed at identifying ways to foster collaboration between secondary and…
Architecting Technology Transition Pathways: Insights from the Military Tactical Network Upgrade
2015-05-08
effective transition path design...1. Introduction Today’s engineering systems are increasingly complex and interdependent. As part of this trend, the luxury of green‐field design...operations can’t take effect until all or most of the airframes have the new equipment. Since the cost‐burden will be unequally born by airlines
Is History Destiny? Resources, Transitions and Child Education Attainments in Canada. Final Report
ERIC Educational Resources Information Center
Hoddinott, John; Lethbridge, Lynn; Phipps, Shelley
2002-01-01
This paper examines three inter-related issues: whether past levels of resources, context and opportunity structures carry long-term consequences for subsequent child attainments and behaviours; whether shocks, or transition events, alter the path of these outcomes in a positive or negative fashion; and what role can be played by policy…
Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol
2015-01-01
Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Theory of Disk-to-Vesicle Transformation
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Shi, An-Chang
2009-03-01
Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.
Sesé, Luis M; Bailey, Lorna E
2007-04-28
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45
NASA Astrophysics Data System (ADS)
Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.
2017-12-01
Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.
NASA Astrophysics Data System (ADS)
McGibbon, J.; Bretherton, C. S.
2017-06-01
During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons and meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a -0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m-2 in sensible heat flux (SHF). Overall, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.
Optimization of the transition path of the head hardening with using the genetic algorithms
NASA Astrophysics Data System (ADS)
Wróbel, Joanna; Kulawik, Adam
2016-06-01
An automated method of choice of the transition path of the head hardening in heat treatment process for the plane steel element is proposed in this communication. This method determines the points on the path of moving heat source using the genetic algorithms. The fitness function of the used algorithm is determined on the basis of effective stresses and yield point depending on the phase composition. The path of the hardening tool and also the area of the heat affected zone is determined on the basis of obtained points. A numerical model of thermal phenomena, phase transformations in the solid state and mechanical phenomena for the hardening process is implemented in order to verify the presented method. A finite element method (FEM) was used for solving the heat transfer equation and getting required temperature fields. The moving heat source is modeled with a Gaussian distribution and the water cooling is also included. The macroscopic model based on the analysis of the CCT and CHT diagrams of the medium-carbon steel is used to determine the phase transformations in the solid state. A finite element method is also used for solving the equilibrium equations giving us the stress field. The thermal and structural strains are taken into account in the constitutive relations.
Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations
NASA Astrophysics Data System (ADS)
D'Cruz, Noella L.
2012-05-01
Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.
Temporal dynamics of catchment transit times from stable isotope data
NASA Astrophysics Data System (ADS)
Klaus, Julian; Chun, Kwok P.; McGuire, Kevin J.; McDonnell, Jeffrey J.
2015-06-01
Time variant catchment transit time distributions are fundamental descriptors of catchment function but yet not fully understood, characterized, and modeled. Here we present a new approach for use with standard runoff and tracer data sets that is based on tracking of tracer and age information and time variant catchment mixing. Our new approach is able to deal with nonstationarity of flow paths and catchment mixing, and an irregular shape of the transit time distribution. The approach extracts information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution. We first demonstrate proof of concept of the approach with artificial data; the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were >0.9. The model provides very accurate estimates of time variant transit times when the boundary conditions and fluxes are fully known. We then tested the model with real rainfall-runoff flow and isotope tracer time series from the H.J. Andrews Watershed 10 (WS10) in Oregon. Model efficiencies were 0.37 for the 18O modeling for a 2 year time series; the efficiencies increased to 0.86 for the second year underlying the need of long time tracer time series with a long overlap of tracer input and output. The approach was able to determine time variant transit time of WS10 with field data and showed how it follows the storage dynamics and related changes in flow paths where wet periods with high flows resulted in clearly shorter transit times compared to dry low flow periods.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
NASA Astrophysics Data System (ADS)
Ertaş, Mehmet; Keskin, Mustafa
2015-03-01
By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu
In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
Miklós, István; Darling, Aaron E
2009-06-22
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.
Wright, James T.
1986-01-01
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
Wright, J.T.
1984-02-02
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.
Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron
2017-10-21
The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.
Yu, Tang-Qing; Lapelosa, Mauro; Vanden-Eijnden, Eric; Abrams, Cameron F
2015-03-04
We use Markovian milestoning molecular dynamics (MD) simulations on a tessellation of the collective variable space for CO localization in myoglobin to estimate the kinetics of entry, exit, and internal site-hopping. The tessellation is determined by analysis of the free-energy surface in that space using transition-path theory (TPT), which provides criteria for defining optimal milestones, allowing short, independent, cell-constrained MD simulations to provide properly weighted kinetic data. We coarse grain the resulting kinetic model at two levels: first, using crystallographically relevant internal cavities and their predicted interconnections and solvent portals; and second, as a three-state side-path scheme inspired by similar models developed from geminate recombination experiments. We show semiquantitative agreement with experiment on entry and exit rates and in the identification of the so-called "histidine gate" at position 64 through which ≈90% of flux between solvent and the distal pocket passes. We also show with six-dimensional calculations that the minimum free-energy pathway of escape through the histidine gate is a "knock-on" mechanism in which motion of the ligand and the gate are sequential and interdependent. In total, these results suggest that such TPT simulations are indeed a promising approach to overcome the practical time-scale limitations of MD to allow reliable estimation of transition mechanisms and rates among metastable states.
Phase transformation upon cooling path in Ca2SiO4: Possible geological implication
NASA Astrophysics Data System (ADS)
Chang, Yun-Ting; Kung, Jennifer; Hsu, Han
2016-04-01
At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the cooling procedures. Our calculation indicates the enthalpy of beta phase was slightly higher than that of the gamma phase at zero pressure, verifying the metastable β phase observed in the natural. In this meeting we present the detailed experimental results and discuss the potential implication for the thermal history of geological setting using the phase transition path upon cooling of Ca2SiO4.
Sørbye, Sveinung Wergeland; Pedersen, Mette Kristin; Ekeberg, Bente; Williams, Merete E. Johansen; Sauer, Torill; Chen, Ying
2017-01-01
Background: The Norwegian Cervical Cancer Screening Program recommends screening every 3 years for women between 25 and 69 years of age. There is a large difference in the percentage of unsatisfactory samples between laboratories that use different brands of liquid-based cytology. We wished to examine if inadequate ThinPrep samples could be satisfactory by processing them with the SurePath protocol. Materials and Methods: A total of 187 inadequate ThinPrep specimens from the Department of Clinical Pathology at University Hospital of North Norway were sent to Akershus University Hospital for conversion to SurePath medium. Ninety-one (48.7%) were processed through the automated “gynecologic” application for cervix cytology samples, and 96 (51.3%) were processed with the “nongynecological” automatic program. Results: Out of 187 samples that had been unsatisfactory by ThinPrep, 93 (49.7%) were satisfactory after being converted to SurePath. The rate of satisfactory cytology was 36.6% and 62.5% for samples run through the “gynecology” program and “nongynecology” program, respectively. Of the 93 samples that became satisfactory after conversion from ThinPrep to SurePath, 80 (86.0%) were screened as normal while 13 samples (14.0%) were given an abnormal diagnosis, which included 5 atypical squamous cells of undetermined significance, 5 low-grade squamous intraepithelial lesion, 2 atypical glandular cells not otherwise specified, and 1 atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion. A total of 2.1% (4/187) of the women got a diagnosis of cervical intraepithelial neoplasia 2 or higher at a later follow-up. Conclusions: Converting cytology samples from ThinPrep to SurePath processing can reduce the number of unsatisfactory samples. The samples should be run through the “nongynecology” program to ensure an adequate number of cells. PMID:28900466
ERIC Educational Resources Information Center
Lester, Leanne; Waters, Stacey; Cross, Donna
2013-01-01
During the transition from primary to secondary school, students typically experience a new social environment, moving from primary school with small intact classes throughout the day with one main teacher, to a larger secondary school with teachers, classrooms and often classmates changing throughout the day. During this time, students report a…
Tsuzuki, Manabu
2015-03-30
This study investigated types of career choice in high school students and examined the effects of career paths on time perspective development. The participants were 4,756 third grade students from nine public high schools in Tokyo. The high school questionnaire survey was conducted throughout autumn of 2008, 2009, and 2010. One year later, 962 graduates participated in the follow-up questionnaire survey by post. Distinguishing gender difference among career paths was found. Girls tend to choose significantly shorter learning careers (p < .01), for example junior college or vocational school in comparison to boys. Career indecision, i.e., students who could not set a concrete future career in high school, had significantly more negative time perspective than other groups (p < .05), which was caused by a deficiency of their basic cognitive ability. Longitudinal data showed different patterns of fluctuation in time perspective between "school to school transition" and "school to work transition". It is suggested that the "school to work transition" tends to be more critical for adolescents and has negative effects on time perspective. These results suggest that the goal content in careers may promote or inhibit the formation of time perspectives during the graduation transition.
Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H; Nilges, Michael; Francetic, Olivera
2014-05-06
The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H.; Nilges, Michael; Francetic, Olivera
2014-01-01
SUMMARY The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3900 pilus models suggested a transition path towards low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of inter-protomer contacts along this path were tested by site-directed mutagenesis, pilus assembly and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a new model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. PMID:24685147
Traveling salesman problem with a center.
Lipowski, Adam; Lipowska, Dorota
2005-06-01
We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.
Transitioning DARPA Technology
2001-05-01
logo suggests, the Institute’s work reflects the summation of technology’s effects on business and government. With a reputation for fierce objectivity... effective for "customerpull" strategies. b. Products moved along the DIS path 30 percent of the time. This path was particularlysuccessful for small...must often be "waited out." But DARPA ha s few effective mechanisms for continuing to "market" its products after the prog ram is over- particularly
Metastable liquid-liquid transition in a molecular model of water
NASA Astrophysics Data System (ADS)
Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2014-06-01
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Metastable liquid-liquid transition in a molecular model of water.
Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G
2014-06-19
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Characterizing the Global Impact of P2P Overlays on the AS-Level Underlay
NASA Astrophysics Data System (ADS)
Rasti, Amir Hassan; Rejaie, Reza; Willinger, Walter
This paper examines the problem of characterizing and assessing the global impact of the load imposed by a Peer-to-Peer (P2P) overlay on the AS-level underlay. In particular, we capture Gnutella snapshots for four consecutive years, obtain the corresponding AS-level topology snapshots of the Internet and infer the AS-paths associated with each overlay connection. Assuming a simple model of overlay traffic, we analyze the observed load imposed by these Gnutella snapshots on the AS-level underlay using metrics that characterize the load seen on individual AS-paths and by the transit ASes, illustrate the churn among the top transit ASes during this 4-year period, and describe the propagation of traffic within the AS-level hierarchy.
Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol
Kale, Seyit; Sode, Olaseni; Weare, Jonathan; ...
2014-11-07
Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Darling, Aaron E.
2009-01-01
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186
Statistical Symbolic Execution with Informed Sampling
NASA Technical Reports Server (NTRS)
Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco
2014-01-01
Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.
The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone
NASA Astrophysics Data System (ADS)
Kätker, A. K.; Rempe, M.; Renner, J.
2016-12-01
The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural differences observed so far may result from sample-to-sample variability and the proximity of the experimental conditions to the brittle-ductile transition.
Brown, Barbara B.; Werner, Carol M.; Smith, Ken R.; Tribby, Calvin P.; Miller, Harvey J.; Jensen, Wyatt A.; Tharp, Doug
2016-01-01
Understanding who takes advantage of new transit (public transportation) interventions is important for personal and environmental health. We examine transit ridership for residents living near a new light rail construction as part of “complete street,” pedestrian-friendly improvements. Adult residents (n=536) completed surveys and wore accelerometer and GPS units that tracked ridership before and after new transit service started. Transit riders were more physically active. Those from environments rated as more walkable were likely to be continuing transit riders. Place attachment, but not perceived physical incivilities on the path to transit, was associated with those who continued to ride or became new riders of transit. This effect was mediated through pro-city attitudes, which emphasize how the new service makes residents eager to explore areas around transit. Thus, place attachment, along with physical and health conditions, may be important predictors and promoters of transit use. PMID:27672237
NASA Astrophysics Data System (ADS)
Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.
2012-12-01
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
Study on high-resolution representation of terraces in Shanxi Loess Plateau area
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ma, Lei
2008-10-01
A new elevation points sampling method, namely TIN-based Sampling Method (TSM) and a new visual method called Elevation Addition Method (EAM), are put forth for representing the typical terraces in Shanxi loess plateau area. The DEM Feature Points and Lines Classification (DEPLC) put forth by the authors in 2007 is perfected for depicting the main path in the study area. The EAM is used to visualize the terraces and the path in the study area. 406 key elevation points and 15 feature constrained lines sampled by this method are used to construct CD-TINs which can depict the terraces and path correctly and effectively. Our case study shows that the new sampling method called TSM is reasonable and feasible. The complicated micro-terrains like terraces and path can be represented with high resolution and high efficiency successfully by use of the perfected DEPLC, TSM and CD-TINs. And both the terraces and the main path are visualized very well by use of EAM even when the terrace height is not more than 1m.
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
Transitions amongst synchronous solutions in the stochastic Kuramoto model
NASA Astrophysics Data System (ADS)
DeVille, Lee
2012-05-01
We consider the Kuramoto model of coupled oscillators with nearest-neighbour coupling and additive white noise. We show that synchronous solutions which are stable without the addition of noise become metastable and that we have transitions amongst synchronous solutions on long timescales. We compute these timescales and, moreover, compute the most likely path in phase space that transitions will follow. We show that these transition timescales do not increase as the number of oscillators in the system increases, and are roughly constant in the system size. Finally, we show that the transitions correspond to a splitting of one synchronous solution into two communities which move independently for some time and which rejoin to form a different synchronous solution.
Mach stem formation in outdoor measurements of acoustic shocks.
Leete, Kevin M; Gee, Kent L; Neilsen, Tracianne B; Truscott, Tadd T
2015-12-01
Mach stem formation during outdoor acoustic shock propagation is investigated using spherical oxyacetylene balloons exploded above pavement. The location of the transition point from regular to irregular reflection and the path of the triple point are experimentally resolved using microphone arrays and a high-speed camera. The transition point falls between recent analytical work for weak irregular reflections and an empirical relationship derived from large explosions.
Raising the Bar: An Examination of Career Pathways among Women Working in the Child Welfare System
ERIC Educational Resources Information Center
Williams, Vera L.
2013-01-01
In today's society, women who return back to school seeking an advancement within their career is a transition within the lives of women that occurs in various contexts, including the women's ages at the time of their transition, which can define both their expectations and opportunities along their life stages and career paths. In the past, women…
Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.
2011-01-01
Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect to cratonic North America (95 per cent confidence interval).
Minimum free-energy paths for the self-organization of polymer brushes.
Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario
2017-03-22
A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.
High power regenerative laser amplifier
Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.
1994-01-01
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.
High power regenerative laser amplifier
Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.
1994-02-08
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.
A path integral approach to the Hodgkin-Huxley model
NASA Astrophysics Data System (ADS)
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
Method and apparatus for ultrasonic characterization through the thickness direction of a moving web
Jackson, Theodore; Hall, Maclin S.
2001-01-01
A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.
NASA Astrophysics Data System (ADS)
Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.
NASA Astrophysics Data System (ADS)
Karouzos, Marios
2018-01-01
We asked the same five questions to eleven astronomers who now work in different fields in order to understand their career paths, their motivations to leave astronomy and the skills that helped them in their transition.
NASA Astrophysics Data System (ADS)
Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.
2017-12-01
Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.
Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya
2017-01-01
We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877
"Great expectations" of adoptive parents: theory extension through structural equation modeling.
Foli, Karen J; Lim, Eunjung; South, Susan C; Sands, Laura P
2014-01-01
Most of the 2 million adoptive parents in the United States make the transition to parenting successfully. Adoptive parents who do not make the transition easily may put their children at risk for negative outcomes. The aim of this study was to further refine Foli's midrange theory of postadoption depression, which postulates that fulfillment of expectations is a principal contributor to parental emotional health status, aggravation, and bonding. The linked dataset (National Survey of Children's Health and National Survey of Adoptive Parents) was used for structural equation modeling. The sample consisted of 1,426 parents with adopted children who had been placed in the home more than 2 years before survey completion. Special services and child's behaviors were direct determinants of parental expectations, and parental expectations were direct determinants of parental aggravation and parentalbonding. As anticipated, parental expectations served as a mediator between child-related variables and parental outcomes. A path was also found between child's behaviors and special services and parental emotional health status. Child's past trauma was also associated with parental bonding. Parental expectations showed direct relationships with the latent variables of parental aggravation and bonding. Future research should examine factors associated with early transition when children have been in the adoptive home less than 2 years and include specific expectations held by parents.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Quantifying the underlying landscape and paths of cancer
Li, Chunhe; Wang, Jin
2014-01-01
Cancer is a disease regulated by the underlying gene networks. The emergence of normal and cancer states as well as the transformation between them can be thought of as a result of the gene network interactions and associated changes. We developed a global potential landscape and path framework to quantify cancer and associated processes. We constructed a cancer gene regulatory network based on the experimental evidences and uncovered the underlying landscape. The resulting tristable landscape characterizes important biological states: normal, cancer and apoptosis. The landscape topography in terms of barrier heights between stable state attractors quantifies the global stability of the cancer network system. We propose two mechanisms of cancerization: one is by the changes of landscape topography through the changes in regulation strengths of the gene networks. The other is by the fluctuations that help the system to go over the critical barrier at fixed landscape topography. The kinetic paths from least action principle quantify the transition processes among normal state, cancer state and apoptosis state. The kinetic rates provide the quantification of transition speeds among normal, cancer and apoptosis attractors. By the global sensitivity analysis of the gene network parameters on the landscape topography, we uncovered some key gene regulations determining the transitions between cancer and normal states. This can be used to guide the design of new anti-cancer tactics, through cocktail strategy of targeting multiple key regulation links simultaneously, for preventing cancer occurrence or transforming the early cancer state back to normal state. PMID:25232051
Structural phase transition at high temperatures in solid molecular hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.
2001-07-01
We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.
NASA Astrophysics Data System (ADS)
Leighty, Wayne Waterman
California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any one of these scenarios can differ in cumulative emissions by more than 25 percent. Since cumulative emissions are the salient factor for climate change mitigation and the likelihood of success is an important consideration, initiating action immediately to begin the transitions indicated for achieving the 80in50 goal is found to be prudent.
Clark, Allan K.; Journey, Celeste A.
2006-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically.
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Solar Transportation, on the critical path to 100% Renewables
NASA Astrophysics Data System (ADS)
Swenson, R.; Furman, B.
2016-12-01
The path from hydrocarbons and climate change to 100% renewable energy requires a complete transformation of human mobility systems—from oil to solar electricity, and away from personal cars to shared transit. Electric (and autonomous) personal vehicles cannot scale rapidly enough to address CO2 increase and resource depletion. While atmospheric science can characterize the challenge, design science aimed at order of magnitude improvements in energy and resource consumption is needed to achieve carbon free transit that can scale rapidly for urban mobility. An NGO and University engineering team collaboration has led to a multi-disciplinary international program creating prototypes and test tracks to demonstrate the efficacy and economics of solar-powered, automated, non-stop origin-to-destination, elevated on-demand transit systems. With their aptitude for innovation, students in the Solar Skyways challenge have convened from several countries in order to propel development and overcome resistance from the automotive industry incumbency. Innovation has been occurring in lesser developed countries as well as in the industrialized world. An online curriculum has been developed and will be presented to encourage international participation and rapid acceleration for sustainable zero-net-carbon transportation.
Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width
NASA Astrophysics Data System (ADS)
Gold, A.
1991-10-01
Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Tian, Z
Purpose: Monte Carlo (MC) simulation is an important tool to solve radiotherapy and medical imaging problems. Low computational efficiency hinders its wide applications. Conventionally, MC is performed in a particle-by -particle fashion. The lack of control on particle trajectory is a main cause of low efficiency in some applications. Take cone beam CT (CBCT) projection simulation as an example, significant amount of computations were wasted on transporting photons that do not reach the detector. To solve this problem, we propose an innovative MC simulation scheme with a path-by-path sampling method. Methods: Consider a photon path starting at the x-ray source.more » After going through a set of interactions, it ends at the detector. In the proposed scheme, we sampled an entire photon path each time. Metropolis-Hasting algorithm was employed to accept/reject a sampled path based on a calculated acceptance probability, in order to maintain correct relative probabilities among different paths, which are governed by photon transport physics. We developed a package gMMC on GPU with this new scheme implemented. The performance of gMMC was tested in a sample problem of CBCT projection simulation for a homogeneous object. The results were compared to those obtained using gMCDRR, a GPU-based MC tool with the conventional particle-by-particle simulation scheme. Results: Calculated scattered photon signals in gMMC agreed with those from gMCDRR with a relative difference of 3%. It took 3.1 hr. for gMCDRR to simulate 7.8e11 photons and 246.5 sec for gMMC to simulate 1.4e10 paths. Under this setting, both results attained the same ∼2% statistical uncertainty. Hence, a speed-up factor of ∼45.3 was achieved by this new path-by-path simulation scheme, where all the computations were spent on those photons contributing to the detector signal. Conclusion: We innovatively proposed a novel path-by-path simulation scheme that enabled a significant efficiency enhancement for MC particle transport simulations.« less
Do the benefits of family-to-work transitions come at too great a cost?
Carlson, Dawn S; Kacmar, K Michele; Zivnuska, Suzanne; Ferguson, Merideth
2015-04-01
This research examines the impact of role boundary management on the work-family interface, as well as on organizational (job embeddedness) and family (relationship tension) outcomes. First, we integrate conservation of resources theory with crossover theory, to build a theoretical model of work-family boundary management. Second, we extend prior work by exploring positive and negative paths through which boundary management affects work and family outcomes. Third, we incorporate spouse perceptions to create a dynamic, systems-perspective explanation of the work-family interface. Using a matched sample of 639 job incumbents and their spouses, we found that family-to-work boundary transitions was related to the job incumbents' work-to-family conflict, work-to-family enrichment, and job embeddedness as well as the boundary management strain transmitted to the spouse. We also found that the boundary management strain transmitted to the spouse mediated the relationship between family-to-work boundary transitions and both work-to-family conflict and work-to-family enrichment. Finally, we found significant indirect effects between family-to-work boundary transitions and job embeddedness and relationship tension through both the boundary management strain transmitted to the spouse and the incumbent's work-family conflict, but not through work-family enrichment. Thus, family-to-work boundary transitions offer some benefits to the organization by contributing to job embeddedness, but they also come at a cost in that they are associated with work-family conflict and relationship tension. We discuss the study's implications for theory, research, and practice while suggesting new research directions. (c) 2015 APA, all rights reserved).
Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach
NASA Astrophysics Data System (ADS)
Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume
2016-03-01
Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.
Mechanisms of passive ion permeation through lipid bilayers: insights from simulations.
Tepper, Harald L; Voth, Gregory A
2006-10-26
Multistate empirical valence bond and classical molecular dynamics simulations were used to explore mechanisms for passive ion leakage through a dimyristoyl phosphatidylcholine lipid bilayer. In accordance with a previous study on proton leakage (Biophys. J. 2005, 88, 3095), it was found that the permeation mechanism must be a highly concerted one, in which ion, solvent, and membrane coordinates are coupled. The presence of the ion itself significantly alters the response of those coordinates, suggesting that simulations of transmembrane water structures without explicit inclusion of the ionic solute are insufficient for elucidating transition mechanisms. The properties of H(+), Na(+), OH(-), and bare water molecules in the membrane interior were compared, both by biased sampling techniques and by constructing complete and unbiased transition paths. It was found that the anomalous difference in leakage rates between protons and other cations can be largely explained by charge delocalization effects rather than the usual kinetic picture (Grotthuss hopping of the proton). Permeability differences between anions and cations through phosphatidylcholine bilayers are correlated with suppression of favorable membrane breathing modes by cations.
Transition Induced by Fence Geometrics on Shuttle Orbiter at Mach 10
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2010-01-01
Fence-induced transition data simulating a raised gap filler have been acquired on the wing lower surface of a Shuttle Orbiter model in the Langley 31-Inch Mach 10 Tunnel to compare with the Shuttle Boundary Layer Transition Flight and HYTHIRM Experiments, and to provide additional correlation data for the Boundary Layer Transition Tool. In a qualitative assessment, the data exhibit the expected response to all parameter variations; however, it is unclear whether fully effective tripping at the fence was ever realized at any test condition with the present model hardware. A preliminary, qualitative comparison of the ground-based transition measurements with those obtained from the STS-128 HYTHIRM imagery at Mach 15 reveal similar transition-wake response characteristics in terms of the spreading and the path along the vehicle surface.
Weinberg propagator of a massive particle with an arbitrary spin (in Ukrainian)
NASA Astrophysics Data System (ADS)
Zima, V. G.; Fedoruk, S. O.
The transition amplitude is obtained for a free massive particle of an arbitrary spin by calculating the path integral in the index--spinor formulation within the BFV--BRST approach. None renormalizations of the path integral measure were applied. The calculation has given the Weinberg propagator written in the index--free form with the use of an index spinor. The choice of boundary conditions on the index spinor determines holomorphic or antiholomorphic representation for the canonical description of particle/antiparticle spin.
Systems and methods for separating a multiphase fluid
NASA Technical Reports Server (NTRS)
Weislogel, Mark M. (Inventor); Thomas, Evan A. (Inventor); Graf, John C. (Inventor)
2011-01-01
Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2005-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2003-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Biswas, Debabrata; Ghosh, Debarati; Bandyopadhyay, Biswabibek; Kurths, Jürgen
2018-04-01
We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Lüdtke, Oliver; Roberts, Brent W.; Trautwein, Ulrich; Nagy, Gabriel
2013-01-01
This longitudinal study examined the relation between continuity and change in the Big Five personality traits and life events. Approximately 2,000 German students were tracked from high school to university or to vocational training or work, with 3 assessments over 4 years. Life events were reported retrospectively at the 2nd and 3rd assessment. Latent curve analyses were used to assess change in personality traits, revealing 3 main findings. First, mean-level changes in the Big Five factors over the 4 years were in line with the maturity principle, indicating increasing psychological maturity from adolescence to young adulthood. Second, personality development was characterized by substantive individual differences relating to the life path followed; participants on a more vocationally oriented path showed higher increases in conscientiousness and lower increases in agreeableness than their peers at university. Third, initial level and change in the Big Five factors (especially Neuroticism and Extraversion) were linked to the occurrence of aggregated as well as single positive and negative life events. The analyses suggest that individual differences in personality development are associated with life transitions and individual life experiences. PMID:21744977
NASA Astrophysics Data System (ADS)
Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain
2017-06-01
We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.
Path-sum solution of the Weyl quantum walk in 3 + 1 dimensions
NASA Astrophysics Data System (ADS)
D'Ariano, G. M.; Mosco, N.; Perinotti, P.; Tosini, A.
2017-10-01
We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Deufel, Christopher L; Mullins, John P; Zakhary, Mark J
2018-05-17
Nasobiliary high-dose-rate (HDR) brachytherapy has emerged as an effective tool to boost the radiation dose for patients with unresectable perihilar cholangiocarcinoma. This work describes a quality assurance (QA) tool for measuring the HDR afterloader's performance, including the transit dose, when the source wire travels through a tortuous nasobiliary catheter path. The nasobiliary QA device was designed to mimic the anatomical path of a nasobiliary catheter, including the nasal, stomach, duodenum, and bile duct loops. Two of these loops, the duodenum and bile duct loops, have adjustable radii of curvature, resulting in the ability to maximize stress on the source wire in transit. The device was used to measure the performance over time for the HDR afterloader and the differences between intraluminal catheter lots. An upper limit on the transit dose was also measured using radiochromic film and compared with a simple theoretical model. The QA device was capable of detecting performance variations among nasobiliary catheter lots and following radioactive source replacement. The transit dose from a nasobiliary treatment increased by up to one order of magnitude when the source wire encountered higher than normal friction. Three distinct travel speeds of the source wire were observed: 5.2, 17.4, and 54.7 cm/s. The maximum transit dose was 0.3 Gy at a radial distance of 5 mm from a 40.3 kU 192 Ir source. The source wire encounters substantially greater friction when it navigates through the nasobiliary brachytherapy catheter. A QA tool that mimics the nasal, stomach, duodenum, and bile duct loops may be used to evaluate transit dose and the afterloader's performance over time. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Minimum Free Energy Path of Ligand-Induced Transition in Adenylate Kinase
Matsunaga, Yasuhiro; Fujisaki, Hiroshi; Terada, Tohru; Furuta, Tadaomi; Moritsugu, Kei; Kidera, Akinori
2012-01-01
Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme. PMID:22685395
NASA Astrophysics Data System (ADS)
Chand, Atishnal Elvin; Kumar, Sushil
2017-08-01
Very low frequency (VLF) signals from navigational transmitters propagate through the Earth-ionosphere waveguide formed by the Earth and the lower conducting ionosphere and show the pronounced minima during solar terminator transition between transmitter and receiver. Pronounced amplitude minima observed on 19.8 kHz (NWC transmitter) and 24.8 kHz (NLK transmitter) signals recorded at Suva (18.149°S, 178.446°E), Fiji, during 2013-2014, have been used to estimate the VLF modal interference distance (DMS) and nighttime D region VLF reflection height (hN). The NWC transmitter signal propagates mostly in west-east direction, and the NLK transmitter follows a transequatorial path propagating significantly in the east-west direction. The values of DMS calculated using midpath terminator speed are 2103 ± 172 km and 2507 ± 373 km for these paths having west-east and east-west components of VLF subionospheric propagation, respectively, which agree with previously published results and within 10% with theoretical values. We have also compared the DMS estimated using a terminator time method with that calculated using terminator speed for a particular day and found both the values to be consistent. The hN values were found to be maximum during winter of Southern Hemisphere for NWC signal and winter of Northern Hemisphere for NLK signal VLF propagation paths to Suva. The hN also shows significant day-to-day and seasonal variabilities with a maximum of about 10 km and 23 km for NWC and NLK signal propagation paths, respectively, which could be due to the atmospheric gravity waves associated with solar terminator transition, as well as meteorological factors such as strong lightnings.
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-04-17
Impairments in dynamic balance have a detrimental effect in older adults at risk of falls (OARF). Gait initiation (GI) is a challenging transitional movement. Centre of pressure (COP) excursions using force plates have been used to measure GI performance. The Nintendo Wii Balance Board (WBB) offers an alternative to a standard force plate for the measurement of CoP excursion. To determine the reliability of COP excursions using the WBB, and its feasibility within a 4-week strength and balance intervention (SBI) treating OARF. Ten OARF subjects attending SBI and ten young healthy adults, each performed three GI trials after 10 s of quiet stance from a standardised foot position (shoulder width) before walking forward 3 m to pick up an object. Averaged COP mediolateral (ML) and anteroposterior (AP) excursions (distance) and path-length time (GI-onset to first toe-off) were analysed. WBB ML (0.866) and AP COP excursion (0.895) reliability (ICC 3,1 ) was excellent, and COP path-length reliability was fair (0.517). Compared to OARF, healthy subjects presented with larger COP excursion in both directions and shorter COP path length. OARF subjects meaningfully improved their timed-up-and-go and ML COP excursion between weeks 1-4, while AP COP excursions, path length, and confidence-in-balance remained stable. COP path length and excursion directions probably measure different GI postural control attributes. Limitations in WBB accuracy and precision in transition tasks needs to be established before it can be used clinically to measure postural aspects of GI viably. The WBB could provide valuable clinical evaluation of balance function in OARF.
DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks
Tse, Margaret J.; Chu, Brian K.; Roy, Mahua; Read, Elizabeth L.
2015-01-01
Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. PMID:26488666
A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications
NASA Astrophysics Data System (ADS)
Kuehn, Christian
2013-06-01
Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast-subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension-two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.
Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007
McFarland, Randolph E.
2010-01-01
A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater as a result of broad contrasts between sediment permeabilities. Paths of differential flushing are also focused along the inverted zones, which follow stratigraphic and structural trends southeastward into North Carolina and northeastward beneath the chloride mound across the outer impact crater. Brine within the inner impact crater has probably remained unflushed. Regional movement of the saltwater-transition zone takes place over geologic time scales. Localized movement has been induced by groundwater withdrawal, mostly along shallow parts of the saltwater-transition zone. Short-term episodic withdrawals result in repeated cycles of upconing and downconing of saltwater, which are superimposed on longer-term lateral saltwater intrusion. Effective monitoring for saltwater intrusion needs to address multiple and complexly distributed areas of potential intrusion that vary over time. A broad belt of large groundwater fluoride concentrations underlies the city of Suffolk, and thins and tapers northward. Fluoride in groundwater probably originates by desorbtion from phosphatic sedimentary material. The high fluoride belt possibly was formed by initial adsorbtion of fluoride onto sediment oxyhydroxides, followed by desorbtion along the leading edge of the advancing saltwater-transition zone. Large groundwater iron and manganese concentrations are most common to the west along the Fall Zone, across part of the saltwater-transition zone and eastward, and within shallow groundwater far to the east. Iron and manganese initially produced by mineral dissolution along the Fall Zone are adsorbed eastward and with depth by clay and glauconite, and subsequently desorbed along the leading edge of the advancing saltwater-transition zone. Iron and manganese in shallow groundwater far to the east are produced by reaction of sediment organic matter with oxyhydroxides. Large groundwater nitrate and ammonium concentrations are mostly limited to shallow depths. Most nitrate a
NASA Astrophysics Data System (ADS)
Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.
2018-05-01
The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic → paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M = 24 J kg‑1 K‑1 at 298 K) and magnetoresistance (= ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.
The oilspill risk analysis model of the U. S. Geological Survey
Smith, R.A.; Slack, J.R.; Wyant, Timothy; Lanfear, K.J.
1982-01-01
The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method of route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occured), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)
The oilspill risk analysis model of the U. S. Geological Survey
Smith, R.A.; Slack, J.R.; Wyant, T.; Lanfear, K.J.
1980-01-01
The U.S. Geological Survey has developed an oilspill risk analysis model to aid in estimating the environmental hazards of developing oil resources in Outer Continental Shelf (OCS) lease areas. The large, computerized model analyzes the probability of spill occurrence, as well as the likely paths or trajectories of spills in relation to the locations of recreational and biological resources which may be vulnerable. The analytical methodology can easily incorporate estimates of weathering rates , slick dispersion, and possible mitigating effects of cleanup. The probability of spill occurrence is estimated from information on the anticipated level of oil production and method and route of transport. Spill movement is modeled in Monte Carlo fashion with a sample of 500 spills per season, each transported by monthly surface current vectors and wind velocities sampled from 3-hour wind transition matrices. Transition matrices are based on historic wind records grouped in 41 wind velocity classes, and are constructed seasonally for up to six wind stations. Locations and monthly vulnerabilities of up to 31 categories of environmental resources are digitized within an 800,000 square kilometer study area. Model output includes tables of conditional impact probabilities (that is, the probability of hitting a target, given that a spill has occurred), as well as probability distributions for oilspills occurring and contacting environmental resources within preselected vulnerability time horizons. (USGS)
Autogenerator of beams of charged particles
Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.
1986-01-01
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
Autogenerator of beams of charged particles
Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.
1983-10-31
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju
2016-10-01
A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.
Mandatory bundled payment getting into formation for value-based care.
Fink, John
2015-10-01
Succeeding under Medicare's enterprise Comprehensive Care for Joint Replacement Model will require collaboration among caregivers and financial arrangements to align incentives Priorities for most organization's transition to becoming a value-based hospitals will be care redesign, supply-purchasing strategy, and post-acute care provider partnering. Pursuing value for your joint replacement program will chart a path for other service lines and lead your organization's transition to becoming a value-based enterprise.
HIFiRE-5 Flight Test Preliminary Results (Postprint)
2013-11-01
DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test article leading edge...Reference System (DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test...pitch angle relative to earth as measured by IMU , or flight-path elevation angle as measured by GPS or IMU , degrees = body-fixed angular coordinate
Asymmetry and basic pathways in sleep-stage transitions
NASA Astrophysics Data System (ADS)
Lo, Chung-Chuan; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2013-04-01
We study dynamical aspects of sleep micro-architecture. We find that sleep dynamics exhibits a high degree of asymmetry, and that the entire class of sleep-stage transition pathways underlying the complexity of sleep dynamics throughout the night can be characterized by two independent asymmetric transition paths. These basic pathways remain stable under sleep disorders, even though the degree of asymmetry is significantly reduced. Our findings demonstrate an intriguing temporal organization in sleep micro-architecture at short time scales that is typical for physical systems exhibiting self-organized criticality (SOC), and indicates nonequilibrium critical dynamics in brain activity during sleep.
Routing optimization in networks based on traffic gravitational field model
NASA Astrophysics Data System (ADS)
Liu, Longgeng; Luo, Guangchun
2017-04-01
For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
Sunrise effects on VLF signals propagating over a long north-south path
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.
1999-07-01
We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.
Li, Chunhe; Wang, Jin
2013-01-01
Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
α-helix to β-hairpin transition of human amylin monomer
NASA Astrophysics Data System (ADS)
Singh, Sadanand; Chiu, Chi-cheng; Reddy, Allam S.; de Pablo, Juan J.
2013-04-01
The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.
Fratev, Filip
2015-05-28
In recent years, the nuclear receptors (NR) dynamics have been studied extensively by various approaches. However, the transition path of helix 12 (H12) to an agonist or an antagonist conformation and the exchange pathway between these states is not clear yet. A number of accelerated molecular dynamics (aMD) runs were performed on both an ERα monomer and a homodimer with a total length of 2.2 μs. We have been able to sample reasonably well the H12 conformational landscape to reproduce precisely both the agonist and the antagonist conformations, starting from an unfolded position, and to describe the transition path between them, even in the presence of an agonist ligand. These conformations were the most prevalent, suggesting that the extended H12 state is not likely to exist and that the natural ERα H12 position might exist in both the agonist and antagonist states. Remarkably, the H12 transition occurs and is regulated only in a dimer form and the proper agonist or antagonist H12 conformation can be achieved solely in one of the dimer subunits. These results clearly demonstrate that clusters of the two well-known H12 states exist by themselves in the protein free energy landscape, i.e. they are not constituted directly by the ligands, and dimerization favors the switch between them. Conversely, in a monomer, no transitions have been observed. Thus, the dimer formation helps the constitution of populations of discrete H12 conformational states and reshapes the conformational landscape. Further analyses have shown that these observations can be explained by specific interface and long range protein-protein interactions, resulting in conformational fluctuations in helices 5 and 11. Based on these results, a new ERα activation/deactivation mechanism and a sequence of binding events during receptor activity modulation have been suggested according to which ligands control the H12 conformation via alterations of the inter-dimer interactions. These findings agree with the HDX and fluorescence experiments and provide an explanation on a structural basis of these data, demonstrating that the dynamics of H12 are not altered greatly upon ligand binding and large fluctuations at the end of H11 are present.
Optical and Casimir effects in topological materials
NASA Astrophysics Data System (ADS)
Wilson, Justin H.
Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state path integral breaks down for both the single-site Bose-Hubbard model and the spin path integral. Specifically, when the Hamiltonian is quadratic in a generator of the algebra used to construct coherent states, the path integral fails to produce correct results following from an operator approach. We note that the problems do not arise in the time-discretized version of the path integral, as expected.
Positron lifetime spectrometer using a DC positron beam
Xu, Jun; Moxom, Jeremy
2003-10-21
An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.
Re-evaluation of P-T paths across the Himalayan Main Central Thrust
NASA Astrophysics Data System (ADS)
Catlos, E. J.; Harrison, M.; Kelly, E. D.; Ashley, K.; Lovera, O. M.; Etzel, T.; Lizzadro-McPherson, D. J.
2016-12-01
The Main Central Thrust (MCT) is the dominant crustal thickening structure in the Himalayas, juxtaposing high-grade Greater Himalayan Crystalline rocks over the lower-grade Lesser Himalaya Formations. The fault is underlain by a 2 to 12-km-thick sequence of deformed rocks characterized by an apparent inverted metamorphic gradient, termed the MCT shear zone. Garnet-bearing rocks sampled from across the MCT along the Marysandi River in central Nepal contain monazite that decrease in age from Early Miocene (ca. 20 Ma) in the hanging wall to Late Miocene-Pliocene (ca. 7 Ma and 3 Ma) towards structurally lower levels in the shear zone. We obtained high-resolution garnet-zoning pressure-temperature (P-T) paths from 11 of the same rocks used for monazite geochronology using a recently-developed semi-automated Gibbs-free-energy-minimization technique. Quartz-in-garnet Raman barometry refined the locations of the paths. Diffusional re-equilibration of garnet zoning in hanging wall samples prevented accurate path determinations from most Greater Himalayan Crystalline samples, but one that shows a bell-shaped Mn zoning profile shows a slight decrease in P (from 8.2 to 7.6kbar) with increase in T (from 590 to 640ºC). Three MCT shear zone samples were modeled: one yields a simple path increasing in both P and T (6 to 7kbar, 540 to 580ºC); the others yield N-shaped paths that occupy similar P-T space (4 to 5.5 kbar, 500 to 560ºC). Five lower lesser Himalaya garnet-bearing rocks were modeled. One yields a path increasing in both P-T (6 to 7 kbar, 525 to 550ºC) but others show either sharp compression/decompression or N-shape paths (within 4.5-6 kbar and 530-580ºC). The lowermost sample decreases in P (5.5 to 5 kbar) over increasing T (540 to 580°C). No progressive change is seen from one type of path to another within the Lesser Himalayan Formations to the MCT zone. The results using the modeling approach yield lower P-T conditions compared to the Gibbs method and lower core/rim P-T conditions compared to traditional thermometers and barometers. Inclusion barometry suggests that baric estimates from the modeling may be underestimated by 2-4 kbar. Despite uncertainty, path shapes are consistent with a model in which the MCT shear zone experienced a progressive accretion of footwall slivers.
2013-01-01
The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A.2012, 109, 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k0–1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation. PMID:24348206
Banushkina, Polina V; Krivov, Sergei V
2013-12-10
The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A. 2012 , 109 , 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k 0 -1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation.
Testing the paradigms of the glass transition in colloids
NASA Astrophysics Data System (ADS)
Zia, Roseanna; Wang, Jialun; Peng, Xiaoguang; Li, Qi; McKenna, Gregory
2017-11-01
Many molecular liquids freeze upon fast enough cooling. This so-called glass state is path dependent and out of equilibrium, as measured by the Kovacs signature experiments, i.e. intrinsic isotherms, asymmetry of approach and memory effect. The reasons for this path- and time-dependence are not fully understood, due to fast molecular relaxations. Colloids provide a natural way to model such behavior, owing to disparity in colloidal versus solvent time scales that can slow dynamics. To shed light on the ambiguity of glass transition, we study via large-scale dynamic simulation of hard-sphere colloidal glass after volume-fraction jumps, where particle size increases at fixed system volume followed by protocols of the McKenna-Kovacs signature experiments. During and following each jump, the positions, velocities, and particle-phase stress are tracked and utilized to characterize relaxation time scales. The impact of both quench depth and quench rate on arrested dynamics and ``state'' variables is explored. In addition, we expand our view to various structural signatures, and rearrangement mechanism is proposed. The results provide insight into not only the existence of an ``ideal'' glass transition, but also the role of structure in such a dense amorphous system.
A study of electron transfer using a three-level system coupled to an ohmic bath
NASA Technical Reports Server (NTRS)
Takasu, Masako; Chandler, David
1993-01-01
Electron transfer is studied using a multi-level system coupled to a bosonic bath. Two body correlation functions are obtained using both exact enumeration of spin paths and Monte Carlo simulation. It was found that the phase boundary for the coherent-incoherent transition lies at a smaller friction in the asymmetric two-level model than in the symmetric two-level model. A similar coherent-incoherent transition is observed for three-level system.
Line parameters for CO2 broadening in the ν2 band of HD16O
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.
2017-01-01
CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.
Line parameters for CO2- and self-broadening in the ν3 band of HD16O
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.
2017-12-01
Pressure-broadened line shape parameters of transitions in the ν3 band of HDO (ν0 = 3707.4 cm-1) were measured from spectra of HDO and mixtures of HDO and CO2 for application to accurate retrievals of HDO abundances and D/H ratios for CO2-rich planetary atmospheres of Mars and Venus. A few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, but the present study represents the first laboratory measurements of those parameters in the ν3 band; Measurements for nearly 100 transitions in the ν3 band have been made. Room temperature measurements of self-broadened width and shift coefficients for all of these transitions, line mixing via off-diagonal relaxation matrix element coefficients and quadratic speed dependence parameter were measured for the majority of these transitions. All these measurements were made by simultaneously fitting eleven high-resolution spectra of HDO and HDO-CO2 mixtures at various temperatures and pressures recorded with the Bruker Fourier transform spectrometer at the Jet Propulsion Laboratory. Two specially built coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to contain the sample mixtures. Multispectrum nonlinear least squares fitting algorithm was employed in the analysis. Calculations using the Modified Complex Robert-Bonamy formalism (MCRB) were made for the half-width coefficients, their temperature dependences and pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. The calculations were made for all ν3 band transitions in the 1100-4100 cm-1 region on the HITRAN2012 database. Present measurements are compared with the MCRB calculations and other literature values.
Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment
Pereverzev, Sergey
2016-06-14
A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.
NASA Astrophysics Data System (ADS)
Sun, Geng; Jiang, Hong
2015-12-01
A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of thermodynamic and kinetic properties of surface processes. This work clearly demonstrates the importance of considering temperature effects beyond the HO model, for which the AIMD simulation in combination with enhanced sampling techniques like ITS provides a feasible and general approach.
Tunable ion-photon entanglement in an optical cavity.
Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R
2012-05-23
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
Ultrafast photo-induced dynamics across the metal-insulator transition of VO2
NASA Astrophysics Data System (ADS)
Wang, Siming; Ramírez, Juan Gabriel; Jeffet, Jonathan; Bar-Ad, Shimshon; Huppert, Dan; Schuller, Ivan K.
2017-04-01
The transient reflectivity of VO2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
A path-oriented matrix-based knowledge representation system
NASA Technical Reports Server (NTRS)
Feyock, Stefan; Karamouzis, Stamos T.
1993-01-01
Experience has shown that designing a good representation is often the key to turning hard problems into simple ones. Most AI (Artificial Intelligence) search/representation techniques are oriented toward an infinite domain of objects and arbitrary relations among them. In reality much of what needs to be represented in AI can be expressed using a finite domain and unary or binary predicates. Well-known vector- and matrix-based representations can efficiently represent finite domains and unary/binary predicates, and allow effective extraction of path information by generalized transitive closure/path matrix computations. In order to avoid space limitations a set of abstract sparse matrix data types was developed along with a set of operations on them. This representation forms the basis of an intelligent information system for representing and manipulating relational data.
Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.
Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang
2013-04-01
An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.
Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions
Dzierlenga, M.W.; Varga, M.J.
2016-01-01
The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). It was found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. It was found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs, and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics. PMID:27497161
Control and instanton trajectories for random transitions in turbulent flows
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2011-12-01
Many turbulent systems exhibit random switches between qualitatively different attractors. The transition between these bistable states is often an extremely rare event, that can not be computed through DNS, due to complexity limitations. We present results for the calculation of instanton trajectories (a control problem) between non-equilibrium stationary states (attractors) in the 2D stochastic Navier-Stokes equations. By representing the transition probability between two states using a path integral formulation, we can compute the most probable trajectory (instanton) joining two non-equilibrium stationary states. Technically, this is equivalent to the minimization of an action, which can be related to a fluid mechanics control problem.
Angrisani, Marco; Hurd, Michael D.; Meijer, Erik; Parker, Andrew M.; Rohwedder, Susann
2017-01-01
We study whether individuals with different personality traits systematically exhibit different retirement trajectories. We find weak direct associations between personality and employment transitions. On the other hand, personality does contribute indirectly to these transitions by moderating the effects of non-monetary job characteristics. Specifically, workers with different traits are observed to follow different retirement paths when faced with similar physical demands, computer skills requirements, job flexibility and age discrimination in the workplace. Contrary to other economic domains, conscientiousness does not have the strongest association with retirement; the other components of the Big Five personality traits show more salient patterns. PMID:28890652
Adolescent pregnancy and transition to adulthood in young users of the SUS
Vieira, Elisabeth Meloni; Bousquat, Aylene; Barros, Claudia Renata dos Santos; Alves, Maria Cecilia Goi Porto
2017-01-01
ABSTRACT OBJECTIVE The objective of this study is to contextualize adolescent pregnancy from milestones associated with the process of transition from youth to adulthood. METHODS This is a cross-sectional study conducted with 200 adolescents, users of the Brazilian Unified Health System. The sample size for the estimation of proportions has been calculated assuming a population ratio of 0.50 and 95% confidence level. The dependent variables – planned pregnancy, living with a partner, and having left the parents’ house – have been considered as markers of transition from dependence to independence, from youth to adulthood. In the analysis of the associated factors, we have used the Poisson model with robust variance. RESULTS Average age was 17.3 years, and most adolescents lived with a partner; approximately half of the adolescents got pregnant from their first partner and the average age of first sexual intercourse was 14.6 years. Only 19% of the adolescents were studying and most dropped out of school before the beginning of the pregnancy. In the bivariate and multiple analysis, we could see that the relationship with a partner for more than two years was associated with the three dependent variables. CONCLUSIONS The path of transition to adulthood has been the establishment of a link with a partner and consequent pregnancy, suggesting a clear pattern of male guardianship. The changing role of women in society observed in recent decades, which means choosing a professional career, defining the number of children, and choosing their partner(s), has not reached these young persons. PMID:28380206
Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.
Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D
2014-02-24
Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.
Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide
NASA Astrophysics Data System (ADS)
Baranov, Yu. I.
2018-03-01
The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.
Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection
NASA Astrophysics Data System (ADS)
Gianella, Michele; Pinto, Tomas H. P.; Wu, Xia; Ritchie, Grant A. D.
2017-08-01
We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm-1), consisting of a linear cavity (finesse F =6300 ) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of Vmin=4.7 ×10-14 rad cm-1 G-1 H z-1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6 ×10-10 rad Hz-1/2 and a limit of detection of 0.21 ppbv Hz-1/2 NO.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
Markov chains: computing limit existence and approximations with DNA.
Cardona, M; Colomer, M A; Conde, J; Miret, J M; Miró, J; Zaragoza, A
2005-09-01
We present two algorithms to perform computations over Markov chains. The first one determines whether the sequence of powers of the transition matrix of a Markov chain converges or not to a limit matrix. If it does converge, the second algorithm enables us to estimate this limit. The combination of these algorithms allows the computation of a limit using DNA computing. In this sense, we have encoded the states and the transition probabilities using strands of DNA for generating paths of the Markov chain.
Varying rock responses as an indicator of changes in CO2-H2O fluid composition
NASA Technical Reports Server (NTRS)
Friend, C. R. L.
1986-01-01
The formation of the late Archean charnockite zone of southern India was ascribed to dehydration recrystallization due to an influx of CO2. Pressure temperature conditions for the metamorphism were calculated at about 750 C and 7.5 Kbar. The composition of the volatile species presently contained in fluid inclusions in the rocks changes across the transition zone. The transition zone was studied at Kabbaldurga and the paths taken by the fluids were identified.
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Quantum correlation in degenerate optical parametric oscillators with mutual injections
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa
2015-10-01
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
Fonseca, Ana; Nazaré, Bárbara; Canavarro, Maria Cristina
2018-07-01
This study aimed to investigate the effect of one's attachment representations on one's and the partner's caregiving representations. According to attachment theory, individual differences in parenting and caregiving behaviours may be a function of parents' caregiving representations of the self as caregiver, and of others as worthy of care, which are rooted on parents' attachment representations. Furthermore, the care-seeking and caregiving interactions that occur within the couple relationship may also shape individuals' caregiving representations. The sample comprised 286 cohabiting couples who were assessed during pregnancy (attachment representations) and one month post-birth (caregiving representations). Path analyses were used to examine effects among variables. Results showed that for mothers and fathers, their own more insecure attachment representations predicted their less positive caregiving representations of the self as caregiver and of others as worthy of help and more self-focused motivations for caregiving. Moreover, fathers' attachment representations were found to predict mothers' caregiving representations of themselves as caregivers. Secure attachment representations of both members of the couple seem to be an inner resource promoting parents' positive representations of caregiving, and should be assessed and fostered during the transition to parenthood in both members of the couple.
Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Liu, Chongxuan
2013-08-20
Molecular simulation techniques are employed to gain insights into the structural, kinetic, and thermodynamic properties of the uranyl(VI) cation (UO22+) in aqueous solution. The simulations make use of an atomistic potential model (force field) derived in this work and based on the model of Guilbaud and Wipff (Guilbaud, P.; Wipff, G. J. Mol. Struct. (THEOCHEM) 1996, 366, 55-63). Reactive flux and thermodynamic integration calculations show that the derived potential model yields predictions for the water exchange rate and free energy of hydration, respectively, that are in agreement with experimental data. The water binding energies, hydration shell structure, and self-diffusion coefficientmore » are also calculated and discussed. Finally, a combination of metadynamics and transition path sampling simulations is employed to probe the mechanisms of water exchange reactions in the first hydration shell of the uranyl ion. These atomistic simulations indicate, based on two-dimensional free energy surfaces, that water exchanges follow an associative interchange mechanism. The nature and structure of the water exchange transition states are also determined. The improved potential model is expected to lead to more accurate predictions of uranyl adsorption energies at mineral surfaces using potential-based molecular dynamics simulations.« less
Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi
2011-01-31
In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.
Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi
2011-01-01
In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR w-i) through cycle flux algebra. These calculations predicted that CR w-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables. PMID:21304994
Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen
2015-01-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Life-space foam: A medium for motivational and cognitive dynamics
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir; Aidman, Eugene
2007-08-01
General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
NASA Astrophysics Data System (ADS)
Utama, Briandhika; Purqon, Acep
2016-08-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.
Baele, Guy; Lemey, Philippe; Vansteelandt, Stijn
2013-03-06
Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model's marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. We here assess the original 'model-switch' path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model's marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation.
2013-01-01
Background Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model’s marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. Results We here assess the original ‘model-switch’ path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model’s marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. Conclusions We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation. PMID:23497171
Method and apparatus for probing relative volume fractions
Jandrasits, Walter G.; Kikta, Thomas J.
1998-01-01
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.
Method and apparatus for probing relative volume fractions
Jandrasits, W.G.; Kikta, T.J.
1998-03-17
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.
Symmetry limit theory for cantilever beam-columns subjected to cyclic reversed bending
NASA Astrophysics Data System (ADS)
Uetani, K.; Nakamura, Tsuneyoshi
THE BEHAVIOR of a linear strain-hardening cantilever beam-column subjected to completely reversed plastic bending of a new idealized program under constant axial compression consists of three stages: a sequence of symmetric steady states, a subsequent sequence of asymmetric steady states and a divergent behavior involving unbounded growth of an anti-symmetric deflection mode. A new concept "symmetry limit" is introduced here as the smallest critical value of the tip-deflection amplitude at which transition from a symmetric steady state to an asymmetric steady state can occur in the response of a beam-column. A new theory is presented for predicting the symmetry limits. Although this transition phenomenon is phenomenologically and conceptually different from the branching phenomenon on an equilibrium path, it is shown that a symmetry limit may theoretically be regarded as a branching point on a "steady-state path" defined anew. The symmetry limit theory and the fundamental hypotheses are verified through numerical analysis of hysteretic responses of discretized beam-column models.
Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)
NASA Astrophysics Data System (ADS)
Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.
2016-12-01
On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.
Liu, Hanhan; Jia, Qiangqiang; Tettamanti, Gianluca; Li, Sheng
2013-11-01
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25-40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gender Classification Based on Eye Movements: A Processing Effect During Passive Face Viewing
Sammaknejad, Negar; Pouretemad, Hamidreza; Eslahchi, Changiz; Salahirad, Alireza; Alinejad, Ashkan
2017-01-01
Studies have revealed superior face recognition skills in females, partially due to their different eye movement strategies when encoding faces. In the current study, we utilized these slight but important differences and proposed a model that estimates the gender of the viewers and classifies them into two subgroups, males and females. An eye tracker recorded participant’s eye movements while they viewed images of faces. Regions of interest (ROIs) were defined for each face. Results showed that the gender dissimilarity in eye movements was not due to differences in frequency of fixations in the ROI s per se. Instead, it was caused by dissimilarity in saccade paths between the ROIs. The difference enhanced when saccades were towards the eyes. Females showed significant increase in transitions from other ROI s to the eyes. Consequently, the extraction of temporal transient information of saccade paths through a transition probability matrix, similar to a first order Markov chain model, significantly improved the accuracy of the gender classification results. PMID:29071007
Gender Classification Based on Eye Movements: A Processing Effect During Passive Face Viewing.
Sammaknejad, Negar; Pouretemad, Hamidreza; Eslahchi, Changiz; Salahirad, Alireza; Alinejad, Ashkan
2017-01-01
Studies have revealed superior face recognition skills in females, partially due to their different eye movement strategies when encoding faces. In the current study, we utilized these slight but important differences and proposed a model that estimates the gender of the viewers and classifies them into two subgroups, males and females. An eye tracker recorded participant's eye movements while they viewed images of faces. Regions of interest (ROIs) were defined for each face. Results showed that the gender dissimilarity in eye movements was not due to differences in frequency of fixations in the ROI s per se. Instead, it was caused by dissimilarity in saccade paths between the ROIs. The difference enhanced when saccades were towards the eyes. Females showed significant increase in transitions from other ROI s to the eyes. Consequently, the extraction of temporal transient information of saccade paths through a transition probability matrix, similar to a first order Markov chain model, significantly improved the accuracy of the gender classification results.
Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry
NASA Astrophysics Data System (ADS)
Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen
2017-06-01
We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.
NASA Astrophysics Data System (ADS)
Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.
2015-03-01
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH2OO and anti/syn-CH3C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH2OO and anti-CH3C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH3C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C-H bonds. For syn-CH3C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH3 group by the terminal O atom producing CH2C(H)O-OH. At 298 K, the intramolecular insertion process in CH2OO was found to be 600 times faster than the commonly assumed ring-closing reaction.
Branduardi, Davide; Faraldo-Gómez, José D
2013-09-10
The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β -D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.
Branduardi, Davide; Faraldo-Gómez, José D.
2014-01-01
The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID:24729762
Optimal Propellant Maneuver Flight Demonstrations on ISS
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis
2013-01-01
In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic manipulator relative to the ISS. Since 2005 USTO has been used for nominal ISS operations.
Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.
NASA Astrophysics Data System (ADS)
Hur, Sun Hae
The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.
Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang
2015-11-01
Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O-transphosphorylation. For all these applications, we used our recently-developed path-integral method based on the KP theory, called automated integration-free path-integral (AIF-PI) method, to perform ab initio path-integral calculations of isotope effects. As opposed to the conventional path-integral molecular dynamics (PIMD) and Monte Carlo (PIMC) simulations, values calculated from our AIF-PI path-integral method can be as precise as (not as accurate as) the numerical precision of the computing machine. Lastly, comments are made on the general challenges in theoretical modeling of candidates matching the experimental "fingerprints" of RLTS. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
Beentjes, Casper H L; Baker, Ruth E
2018-05-25
Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Peterson, Donald W.; Tilling, Robert I.
1980-01-01
Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
Elastic Backbone Defines a New Transition in the Percolation Model
NASA Astrophysics Data System (ADS)
Sampaio Filho, Cesar I. N.; Andrade, José S.; Herrmann, Hans J.; Moreira, André A.
2018-04-01
The elastic backbone is the set of all shortest paths. We found a new phase transition at peb above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750 ±0.003 , and one obtains a novel set of critical exponents βeb=0.50 ±0.02 , γeb=1.97 ±0.05 , and νeb=2.00 ±0.02 , fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities peb for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.
NASA Astrophysics Data System (ADS)
Richter, Martin; Fingerhut, Benjamin P.
2017-06-01
The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.
NASA Astrophysics Data System (ADS)
Jacq, Thomas S.; Lardizabal, Carlos F.
2017-11-01
In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.
The transition to parenthood and marital quality.
White, L K; Booth, A
1985-12-01
An extensive literature demonstrates a negative correlation between the presence of children and marital quality. Few of these studies are designed to test the reasons for this relationship. This study examines 2 possible paths: that people who choose to have children differ from those who do not in ways that affect marital quality, and that having a child changes marital structure and process. This research is based on a nationwide sample interviewed 1st in 1980 and again in 1983. In 1980, telephone interviews were conducted with 2,033 married individuals. The analysis of the effects of transition to parenthood is restricted to the 220 individuals who met the following conditions: childless in 1980, wife under 35 in 1980, successfully reintterviewed in 1983, and marriage intact between 1980-3. The results of the analysis support neither hypotheses. Prior to the birth of the child, parents and nonparents do not differ in marital interaction, happiness, disagreements, problems, or traditionalism in the division of labor, though future parents are already somewhat more likely to believe that the division of household labor is unfair. In regard to the argument that a new baby causes negative changes in marital structure and process, these data give only weak support. The sharpest difference found in this analysis is in the propensity to divorce or permanently separate, a propensity substantially greater among the nonparents. The greater willingness of childless couples to divorce means that a continuing sample of childless couples is more highly selected for marital happiness than a continuing sample of parents. This selectivity in divorce rather than the direct effect of children seems to be the major reason that cross-sectional comparisons show parents to be somewhat less happy than nonparents.
Piezochromism and structural and electronic properties of benz[a]anthracene under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Weizhao; Zhang, Rong; Yao, Yansun
2017-01-31
We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less
Combustor assembly in a gas turbine engine
Wiebe, David J; Fox, Timothy A
2013-02-19
A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.
Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.
Inferring the background traffic arrival process in the Internet.
Hága, Péter; Csabai, István; Vattay, Gábor
2009-12-01
Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.
A two-beam acoustic system for tissue analysis.
Sachs, T D; Janney, C D
1977-03-01
In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy.
NASA Astrophysics Data System (ADS)
Kim, Tom; Chien, Chih-Chun
2018-03-01
Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.
SSAGES: Software Suite for Advanced General Ensemble Simulations.
Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J
2018-01-28
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
Chernesky, Max; Jang, Dan; Gilchrist, Jodi; Elit, Laurie; Lytwyn, Alice; Smieja, Marek; Dockter, Janel; Getman, Damon; Reid, Jennifer; Hill, Craig
2014-06-01
An APTIMA specimen collection and transportation (SCT) kit was developed by Hologic/Gen-Probe. To compare cervical SCT samples to PreservCyt and SurePath samples and self-collected vaginal samples to physician-collected vaginal and cervical SCT samples. To determine ease and comfort of self-collection with the kit. Each woman (n = 580) self-collected a vaginal SCT, then filled out a questionnaire (n = 563) to determine ease and comfort of self-collection. Colposcopy physicians collected a vaginal SCT and cervical PreservCyt, SCT, and SurePath samples. Samples were tested by APTIMA HPV (AHPV) assay. Agreement between testing of cervical SCT and PreservCyt was 91.1% (κ = 0.82), and that of SurePath samples was 86.7% (κ = 0.72). Agreement of self-collected vaginal SCT to physician-collected SCT was 84.7% (κ = 0.68), and that of self-collected vaginal to cervical SCT was 82.0% (κ = 0.63). For 30 patients with CIN2+, AHPV testing of cervical SCT was 100% sensitive and 59.8% specific compared with PreservCyt (96.6% and 66.2%) and SurePath (93.3% and 70.9%). Vaginal SCT sensitivity was 86.7% for self-collection and 80.0% for physician collection. Most patients found that vaginal self-collection was easy, 5.3% reported some difficulty, and 87.6% expressed no discomfort. Cervical samples collected with the new SCT kit compared well to traditional liquid-based samples tested by AHPV. Although there was good agreement between self-collected and physician-collected samples with the SCT, in a limited number of 30 women, vaginal sampling identified fewer with CIN2+ precancerous cervical lesions than cervical SCT sampling. Comfort, ease of use, and detection of high-risk HPV demonstrated that the kit could be used for cervical and vaginal sampling.
DOT National Transportation Integrated Search
2009-07-01
This is an impact assessment for the Carbon Reduction Strategy for Transport (DfT, 2009), Low Carbon Transport: A Greener Future, which is part of the UK Governments wider UK Low Carbon Transition Plan (DECC, 2009), Britains path to ta...
The Implications of Unstable Yemen on Saudi Arabia
2012-02-28
total illiteracy, overpopulation , poverty, and lawlessness draw quite a gloomy picture. Yemen has a rapidly growing population with limited resources...is a transit path for oil from the Arabian Gulf 21 and goods from Southeastern Asia . The piracy threat in the Gulf of Aden, along with terrorist
NASA Astrophysics Data System (ADS)
Lang, Helen M.; Gilotti, Jane A.
2015-06-01
Pseudosection modeling constrains the pressure-temperature (P-T) exhumation path of partially melted ultrahigh-pressure (UHP) metapelites exposed in the North-East Greenland UHP terrane. A robust peak P and T estimate of 3.6 GPa and 970 °C based on mineral assemblages in nearby kyanite eclogites is the starting point for the P-T path. Although the peak assemblage for the metapelite is not preserved, the calculated modeled peak assemblage contained substantial clinopyroxene, garnet, phengite, K-feldspar and coesite with minor kyanite and rutile. Combining the pseudosection and observed textures, the decompression path crosses the coesite-quartz transition before reaching the dry phengite dehydration melting reaction where phengite is abruptly consumed. In the range of 2.5 to 2.2 GPa, clinopyroxene is completely consumed and garnet grows to its maximum volume and grossular content, matching the high grossular rims of relict megacrysts. Plagioclase joins the assemblage and the pseudosection predicts up to 12-13 vol.% melt in the supersolidus assemblage, which contained garnet, liquid, K-feldspar, plagioclase, kyanite, quartz and rutile. At this stage, the steep decompression path flattened out and became nearly isobaric. The melt crystallization assemblage that formed when the path crossed the solidus with decreasing temperature contains phengite, garnet, biotite, 2 feldspars, kyanite, quartz and rutile. Therefore, the path must have intersected the solidus at approximately 1.2 GPa, 825 °C. The pseudosection predicts that garnet is consumed on the cooling path, but little evidence of late garnet consumption or other retrograde effects is observed. This may be due to partial melt loss from the rock. Isochemical PT-n and PT-X sections calculated along the P-T path display changes in mineral assemblage and composition that are consistent with preserved assemblages.
Suicidal or self-harming ideation in military personnel transitioning to civilian life.
Mansfield, Alyssa J; Bender, Randall H; Hourani, Laurel L; Larson, Gerald E
2011-08-01
Suicides have markedly increased among military personnel in recent years. We used path analysis to examine factors associated with suicidal/self-harming ideation among male Navy and Marine Corps personnel transitioning to civilian life. Roughly 7% of men (Sailors = 5.3%, Marines = 9.0%) reported ideation during the previous 30 days. Results suggest that combat exposure, substance abuse, and resilience are associated with suicidal ideation/self-harming thoughts through the mediation of posttraumatic stress disorder symptoms and/or depression symptoms. Substance abuse plays a moderating role. Resilience had a direct effect only among the Marines. Implications for improving the transition to civilian life are discussed. © 2011 The American Association of Suicidology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed andmore » replaced as needed.« less
Johnson, Margaret E.; Hummer, Gerhard
2012-01-01
We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575
Amoeba-Inspired Heuristic Search Dynamics for Exploring Chemical Reaction Paths.
Aono, Masashi; Wakabayashi, Masamitsu
2015-09-01
We propose a nature-inspired model for simulating chemical reactions in a computationally resource-saving manner. The model was developed by extending our previously proposed heuristic search algorithm, called "AmoebaSAT [Aono et al. 2013]," which was inspired by the spatiotemporal dynamics of a single-celled amoeboid organism that exhibits sophisticated computing capabilities in adapting to its environment efficiently [Zhu et al. 2013]. AmoebaSAT is used for solving an NP-complete combinatorial optimization problem [Garey and Johnson 1979], "the satisfiability problem," and finds a constraint-satisfying solution at a speed that is dramatically faster than one of the conventionally known fastest stochastic local search methods [Iwama and Tamaki 2004] for a class of randomly generated problem instances [ http://www.cs.ubc.ca/~hoos/5/benchm.html ]. In cases where the problem has more than one solution, AmoebaSAT exhibits dynamic transition behavior among a variety of the solutions. Inheriting these features of AmoebaSAT, we formulate "AmoebaChem," which explores a variety of metastable molecules in which several constraints determined by input atoms are satisfied and generates dynamic transition processes among the metastable molecules. AmoebaChem and its developed forms will be applied to the study of the origins of life, to discover reaction paths for which expected or unexpected organic compounds may be formed via unknown unstable intermediates and to estimate the likelihood of each of the discovered paths.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2016-08-01
A study on the bipolar-resistive switching of an Ni/SiN/Si-based resistive random-access memory (RRAM) device shows that the influences of the reset power and the resistance value of the low-resistance state (LRS) on the reset-switching transitions are strong. For a low LRS with a large conducting path, the sharp reset switching, which requires a high reset power (>7 mW), was observed, whereas for a high LRS with small multiple-conducting paths, the step-by-step reset switching with a low reset power (<7 mW) was observed. The attainment of higher nonlinear current-voltage ( I-V) characteristics in terms of the step-by-step reset switching is due to the steep current-increased region of the trap-controlled space charge-limited current (SCLC) model. A multilevel cell (MLC) operation, for which the reset stop voltage ( V STOP) is used in the DC sweep mode and an incremental amplitude is used in the pulse mode for the step-by-step reset switching, is demonstrated here. The results of the present study suggest that well-controlled conducting paths in a SiN-based RRAM device, which are not too strong and not too weak, offer considerable potential for the realization of low-power and high-density crossbar-array applications.
Higher-Than-Ballistic Conduction in Viscous Electron Fluids
NASA Astrophysics Data System (ADS)
Levitov, Leonid
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. This talk will argue that in viscous flows interactions facilitate transport, allowing conductance to exceed the fundamental Sharvin-Landauer quantum-ballistic limit. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum-mechanical ballistic transport at T = 0 but governed by electron hydrodynamics at elevated temperatures. Conductance grows as a square of the constriction width, i.e. faster than the linear width dependence for noninteracting fermions. The crossover between the ballistic and viscous regimes occurs when the mean free path for e-e collisions becomes comparable to the constriction width. Further, we will discuss the negative nonlocal response, a signature effect of viscous transport. This response exhibits an interesting nonmonotonic behavior vs. T at the viscous-to-balistic transition. The response is negative but small in the highly viscous regime at elevated temperatures. The value grows as the temperature is lowered and the system becomes less viscous, reaching the most negative values in the crossover region where the mean free path is comparable to the distance between contacts. Subsequently, it reverses sign at even lower temperatures, becoming positive as the system enters the ballistic regime. This peculiar behavior provides a clear signature of the ballistic-to-viscous transition and enables a direct measurement of the electron-electron collision mean free path.
Runoff sources and flow paths dynamics in the Andean Páramo.
NASA Astrophysics Data System (ADS)
Correa, Alicia; Windhorst, David; Tetzlaff, Doerthe; Silva, Camila; Crespo, Patricio; Celleri, Rolando; Feyen, Jan; Breuer, Lutz
2017-04-01
The dynamics of runoff sources and flow paths in headwater catchments are still poorly understood. This is even more the case for remote areas such as the Páramo (Alpine grasslands) in the Andes, where these ecosystems act as water towers for a large fraction of the society. Temporal dynamics in water source areas, flow paths and relative age were assessed in a small catchment in the Ecuadorian Andes using data from the Zhurucay Ecohydrological Observatory (7.53 km2). We applied End Member Mixing Analysis, Hydrograph Separation and Inverse Transit Time Proxies to a multi-tracer set of solutes, stable isotopes, pH and electrical conductivity sampled from stream and twelve potential sources during two years. Rainfall, spring water and water from the bottom layers of Histosols (located at the foot of the hillslopes and in the riparian zone) and Andosols (located at the hillslopes) represented the dominant sources for runoff generation. Water coming from Histosols was the main contributor to stream water year-round, in line with a hydrological system that is dominated by pre-event water. Rainfall presented a uniform contribution during the year, while in drier conditions the spring water tripled in contribution. In wetter conditions, the relative age of stream water decreases, when the contributing area of the riparian zone expands, increasing the connectivity with lateral flow from hillslopes to the channel network. Being one of the earliest in the region, this multi-method study improved the understanding of the hydrological processes of headwater catchments and allowed to demonstrate that catchments with relatively homogeneous hydro-climatic conditions are characterized by inter-annual varying source contributions.
Wang, Jian; Ben, Weiwei; Yang, Min; Zhang, Yu; Qiang, Zhimin
2016-01-01
Swine feedlots are an important pollution source of antibiotics and antibiotic resistance genes (ARGs) to the environment. This study investigated the dissemination of two classes of commonly-used veterinary antibiotics, namely, tetracyclines (TCs) and sulfonamides (SAs), and their corresponding ARGs along the waste treatment paths from a concentrated swine feedlot located in Beijing, China. The highest total TC and total SA concentrations detected were 166.7mgkg(-1) and 64.5μgkg(-1) in swine manure as well as 388.7 and 7.56μgL(-1) in swine wastewater, respectively. Fourteen tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP), efflux proteins (EFP) and enzymatic inactivation proteins, three sulfonamide resistance genes (SRGs), and two integrase genes were detected along the waste treatment paths with detection frequencies of 33.3-75.0%. The relative abundances of target ARGs ranged from 2.74×10(-6) to 1.19. The antibiotics and ARGs generally declined along both waste treatment paths, but their degree of reduction was more significant along the manure treatment path. The RPP TRGs dominated in the upstream samples and then decreased continuously along both waste treatment paths, whilst the EFP TRGs and SRGs maintained relatively stable. Strong correlations between antibiotic concentrations and ARGs were observed among both manure and wastewater samples. In addition, seasonal temperature, and integrase genes, moisture content and nutrient level of tested samples could all impact the relative abundances of ARGs along the swine waste treatment paths. This study helps understand the evolution and spread of ARGs from swine feedlots to the environment as well as assess the environmental risk arising from swine waste treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
Optical Path Switching Based Differential Absorption Radiometry for Substance Detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2000-01-01
A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Revealing Stellar Surface Structure Behind Transiting Exoplanets
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.
2017-01-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S
2017-08-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
NASA Astrophysics Data System (ADS)
Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Fleckenstein, Jan H.
2017-04-01
Catchment-scale transit time distributions (TTDs) for discharge and residence time distributions of the water in storage (RTDs) are promising tools to characterize the discharge and mixing behavior of a catchment and can help to interpret the associated solute loads to the stream in a spatially implicit way. TTDs and RTDs are dynamic in time, influenced by dynamic rainfall and evapotranspiration forcing, and changing groundwater storage in the catchment. In order to understand the links between the dynamics of TTDs and groundwater mixing in the small agricultural catchment Schäfertal, in central Germany, a 3D hydrological model was set up for the catchment using the fully coupled surface-subsurface numerical model HydroGeoSphere (HGS). The model is calibrated using discharge and groundwater level measurements, and runs transiently for a period of 10 years from 1997 to 2007. A particle tracking tool was implemented in HGS to track the movement of water parcels in the subsurface, outputting TTDs of channel discharge and RTDs of groundwater storage at daily intervals. Results show that the mean age of the discharge water is significantly younger than that of the water in storage, indicating a poorly mixed subsurface. Discharge preferentially samples faster flowing younger water originating from the more conductive top parts of the aquifer. Spatial variations of the age of water in storage are observed, highly influenced by aquifer heterogeneity. Computed StorAge Selection (SAS) functions [Rinaldo et al. 2015] show clear shifts in the discharge sampling preferences between wet and dry states: during wet states in winter and spring, discharge has a preference for younger water because the shallow flow paths are active due to high groundwater levels and low evapotranspiration. Conversely, during dry states in summer and autumn, discharge has a preference for older water because the shallow flow paths are inactive due to low groundwater levels and stronger evapotranspiration. Measured nitrate (NO3) loads in discharge, mainly originating from fertilizer in shallow soils, decrease significantly with decreasing wetness of the catchment. This trend confirms the shifts of discharge sampling preferences between wet and dry states. Reference: Rinaldo, A., P. Benettin, C. J. Harman, M. Hrachowitz, K. J. McGuire, Y. van der Velde, E. Bertuzzo, and G. Botter (2015), Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes, Water Resour. Res., 51, 4840-4847, doi:10.1002/2015WR017273.
Intelligence Transition in the United States Army: Are We On the Right Path
2009-06-06
the main body deployed so that they could complete NSA’s 30 Donald P Wright and Timothy R . Reese. On Point II Transition to the New Campaign: The United...BFSB 1263 Brigade HHC 142 MI Battalion 482 BSTB 334 R &S BN 305 X III II II Original design – 954 personnel 33 Having said that, you need the...FM336/FM336.pdf Wall, Robert, “Know Thine Enemy,” Aviation Week & Space Technology (November 29, 2004). www.AviationNow.com/ awst Fulghum, David A
Judging Acting Ability: The Transition from Novice to Expert.
ERIC Educational Resources Information Center
Myford, Carol M.
The aesthetic judgments of experts (casting directors and high school drama teachers), theater buffs, and novices were compared as they rated high school students' videotaped performances of Shakespearean monologues. It was hypothesized that theater buffs would represent an intermediate stage on the path to developing expertise in judging acting…
Body and Surface Wave Modeling of Observed Seismic Events
1980-09-01
with a deep root of the Sierra Nevada mountains or crustal transitions along the continental oceanic boundaries. These paths can be identified by...suggests that the Adriatic Sea is a separate microplate , the Apulian plate which may move independently of the larger plates. Except for the existence of
Youth in Jordan: Transitions from Education to Employment
ERIC Educational Resources Information Center
Brown, Ryan Andrew; Constant, Louay; Glick, Peter; Grant, Audra K.
2014-01-01
Despite strong economic growth during the last decade, youth unemployment in Jordan remains stubbornly high, and labor-force participation markedly low. Young women in particular face labor??market barriers in access to many career paths, and their job aspirations are often discouraged by their parents. Graduates of secondary and postsecondary…
ERIC Educational Resources Information Center
Pierce, Dennis
2018-01-01
Across the nation, community colleges are serving an increasing number of adults who are trying to learn new skills or return to the workforce. Some of these students offer particular challenges, such as newly released prisoners, older adults and veterans transitioning to civilian life. While each of these nontraditional populations has its own…
McGrath, Kathy
2007-01-01
In this guest editorial, the challenges and pain of childbirth are presented as essential components of important life transitions. The role of pain in childbirth is explored. Childbirth is discussed as a “flow experience,” and recommendations for assisting women to meet the challenges of labor and birth are presented. PMID:18311333
78 FR 27981 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... provisions apply to the Substance Abuse Prevention and Treatment Block Grant (SABG), to the Projects for Assistance in Transition from Homelessness (PATH) formula grant program, and to certain Substance Abuse and... substance abuse treatment and prevention services, not for certain infrastructure and technical assistance...
A Guide to Developing Collaborative School-Community-Business Partnerships
ERIC Educational Resources Information Center
Luecking, Richard; Deschamps, Ann; Allison, Ruth; Hyatt, Jacque; Stuart, Christy
2015-01-01
The "gold standard" of youth outcomes is when they are achieving employment and pursuing a clear career path. The activities transition and employment initiatives, and the partnerships that support them, are most appropriately judged against this standard. This Guide presents approaches and considerations for the development and…
Distributed Pedagogical Leadership in Support of Student Transitions
ERIC Educational Resources Information Center
Jappinen, Aini-Kristiina
2012-01-01
This article examines how, through uncovering collaborative leadership, the whole school staff is able to understand its common endeavours to support heterogeneous students' fluent learning paths. For this, a notion of distributed pedagogical leadership (DPL) is drawn upon. DPL concerns everyone in the school community, not only leaders and…
Back to Work: Expectations and Realizations of Work after Retirement
ERIC Educational Resources Information Center
Maestas, Nicole
2010-01-01
This paper analyzes a puzzling aspect of retirement behavior known as "unretirement." Nearly 50 percent of retirees follow a nontraditional retirement path that involves partial retirement or unretirement, and at least 26 percent of retirees later unretire. I explore two possible explanations: (1) unretirement transitions result from failures in…
Bardack, Sarah; Herbers, Janette E; Obradović, Jelena
2017-09-01
This study investigates the unique contribution of microsocial and global measures of parent-child positive coregulation (PCR) in predicting children's behavioral and social adjustment in school. Using a community sample of 102 children, ages 4-6, and their parents, we conducted nested path analytic models to identify the unique effects of 2 measures of PCR on school outcomes. Microsocial PCR independently predicted fewer externalizing and inattention/impulsive behaviors in school. Global PCR did not uniquely relate to children's behavioral and social adjustment outcomes. Household socioeconomic status was related to both microsocial and global measures of PCR, but not directly associated with school outcomes. Findings illustrate the importance of using dynamic measures of PCR based on microsocial coding to further understand how the quality of parent-child interaction is related to children's self-regulatory and social development during school transition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Givan, A.; Loewenschuss, A.
1990-12-01
Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.
Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection.
Gianella, Michele; Pinto, Tomas H P; Wu, Xia; Ritchie, Grant A D
2017-08-07
We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm -1 ), consisting of a linear cavity (finesse F=6300) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of V min =4.7×10 -14 rad cm -1 G -1 Hz -1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6×10 -10 rad Hz -1/2 and a limit of detection of 0.21 ppbv Hz -1/2 NO.
Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2016-01-01
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185
Sun, Youmin; Wang, Yixuan
2017-01-01
To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165
Sun, Youmin; Wang, Yixuan
2017-03-01
To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
NASA Astrophysics Data System (ADS)
Laurie, J.; Bouchet, F.
2012-04-01
Many turbulent flows undergo sporadic random transitions, after long periods of apparent statistical stationarity. For instance, paths of the Kuroshio [1], the Earth's magnetic field reversal, atmospheric flows [2], MHD experiments [3], 2D turbulence experiments [4,5], 3D flows [6] show this kind of behavior. The understanding of this phenomena is extremely difficult due to the complexity, the large number of degrees of freedom, and the non-equilibrium nature of these turbulent flows. It is however a key issue for many geophysical problems. A straightforward study of these transitions, through a direct numerical simulation of the governing equations, is nearly always impracticable. This is mainly a complexity problem, due to the large number of degrees of freedom involved for genuine turbulent flows, and the extremely long time between two transitions. In this talk, we consider two-dimensional and geostrophic turbulent models, with stochastic forces. We consider regimes where two or more attractors coexist. As an alternative to direct numerical simulation, we propose a non-equilibrium statistical mechanics approach to the computation of this phenomenon. Our strategy is based on large deviation theory [7], derived from a path integral representation of the stochastic process. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable one. Moreover, we also determine the transition rates, and in which cases this most probable trajectory is a typical one. Interestingly, we prove that in the class of models we consider, a mechanism exists for diffusion over sets of connected attractors. For the type of stochastic forces that allows this diffusion, the transition between attractors is not a rare event. It is then very difficult to characterize the flow as bistable. However for another class of stochastic forces, this diffusion mechanism is prevented, and genuine bistability or multi-stability is observed. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1980-01-01
Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.
Combustor assembly in a gas turbine engine
Wiebe, David J; Fox, Timothy A
2015-04-28
A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.
Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines
NASA Astrophysics Data System (ADS)
Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.
2005-12-01
The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.
A challenge to dSph formation models: are the most isolated Local Group dSph galaxies truly old?
NASA Astrophysics Data System (ADS)
Monelli, Matteo
2017-08-01
What is the origin of the different dwarf galaxy types? The classification into dwarf irregular (dIrr), spheroidal (dSph), and transition (dT) types is based on their present-day properties. However, star formation histories (SFHs) reconstructed from deep color-magnitude diagrams (CMDs) provide details on the early evolution of galaxies of all these types, and indicate only two basic evolutionary paths. One is characterized by a vigorous but brief initial star-forming event, and little or no star formation thereafter (fast evolution), and the other one by roughly continuous star formation until (nearly) the present time (slow evolution). These two paths do not map directly onto the dIrr, dT and dSph types. Thus, the present galaxy properties do not reflect their lifetime evolution. Since there are some indications that slow dwarfs were assembled in lower-density environments than fast dwarfs, Gallart et al (2015) proposed that the distinction between fast and slow dwarfs reflects the characteristic density of the environment where they formed. This scenario, and more generally scenarios where dSph galaxies formed through the interaction with a massive galaxy, are challenged by a small sample of extremely isolated dSph/dT in the outer fringes of the Local Group. This proposal targets two of these objects (VV124, KKR25) for which we will infer their SFH - through a novel technique that combines the information from their RR Lyrae stars and deep CMDs sampling the intermediate-age population - in order to test these scenarios. This is much less demanding on observing time than classical SFH derivation using full depth CMDs.
Ionospheric Scintillation Explorer (ISX)
NASA Astrophysics Data System (ADS)
Iuliano, J.; Bahcivan, H.
2015-12-01
NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and potentially, mitigation of phase distortions.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
An evaluation of flight path formats head-up and head-down
NASA Technical Reports Server (NTRS)
Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.
1988-01-01
Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.
Epstein-Barr Virus: The Path from Latent to Productive Infection.
Chiu, Ya-Fang; Sugden, Bill
2016-09-29
The intrinsic properties of different viruses have driven their study. For example, the capacity for efficient productive infection of cultured cells by herpes simplex virus 1 has made it a paradigm for this mode of infection for herpesviruses in general. Epstein-Barr virus, another herpesvirus, has two properties that have driven its study: It causes human cancers, and it exhibits a tractable transition from its latent to its productive cycle in cell culture. Here, we review our understanding of the path Epstein-Barr virus follows to move from a latent infection to and through its productive cycle. We use information from human infections to provide a framework for describing studies in cell culture and, where possible, the molecular resolutions from these studies. We also pose questions whose answers we think are pivotal to understanding this path, and we provide answers where we can.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-06-01
A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.
Efficient evaluation of atom tunneling combined with electronic structure calculations.
Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes
2018-03-14
Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.
NASA Astrophysics Data System (ADS)
Pachov, Dimitar V.
Biomolecules are dynamic in nature and visit a number of states while performing their biological function. However, understanding how they interconvert between functional substates is a challenging task. In this thesis, we employ enhanced computational strategies to reveal in atomistic resolution transition states and molecular mechanism along conformational pathways of the signaling protein Nitrogen Regulatory Protein C (NtrC) and the enzyme Adenylate Kinase (Adk). Targeted Molecular Dynamics (TMD) simulations and NMR experiments have previously found the active/inactive interconversion of NtrC is stabilized by non-native transient contacts. To find where along the conformational pathway they lie and probe the existence of multiple intermediates, a beyond 8mus-extensive mapping of the conformational landscape was performed by a multitude of straightforward MD simulations relaxed from the biased TMD pathway. A number of metastable states stabilized by local interactions was found to underline the conformational pathway of NtrC. Two spontaneous transitions of the last stage of the active-to-inactive conversion were identified and used in path sampling procedures to generate an ensemble of truly dynamic reactive pathways. The transition state ensemble (TSE) and mechanistic descriptors of this transition were revealed in atomic detail and verified by committor analysis. By analyzing how pressure affects the dynamics and function of two homologous Adk proteins - the P.Profundum Adk surviving at 700atm pressure in the deep sea, and the E. coli Adk that lives at ambient pressures - we indirectly obtained atomic information about the TSE of the large-amplitude rate-limiting conformational opening of the Adk lids. Guided by NMR experiments showing significantly decreased activation volumes of the piezophile compared to its mesophilic counterpart, TMD simulations revealed the formation of an extended hydrogen-bonded water network in the transition state of the piezophile that can explain the experimentally measured activation volume differences. The transition state of the conformational change was proposed to lie close to the closed state. Additionally, a number of descriptors were used to characterize the free energy landscape of the mesophile. It was found that the features of landscape are highly sensitive to the binding of different ligands, their protonation states and the presence of magnesium.
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
Method and apparatus for probing relative volume fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandrasits, W.G.; Kikta, T.J.
1996-12-31
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining there between a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirelymore » of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.« less
CFO compensation method using optical feedback path for coherent optical OFDM system
NASA Astrophysics Data System (ADS)
Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki
2017-07-01
We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
NASA Astrophysics Data System (ADS)
Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.
2016-08-01
In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent conducting oxides.
Cesium isotope ratios as indicators of nuclear power plant operations.
Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R
2011-11-01
There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
Precursor to the Matuyama/Brunhes Polarity Transition 0.78 Million Years Ago at Bishop, CA
NASA Astrophysics Data System (ADS)
Kravchinsky, Vadim; Liddicoat, Joseph
2013-04-01
Van Zijl et al.'s 1962 report of a polarity transition in Stormberg lavas was the first of many investigations of the Matuyama/Brunhes polarity transition (MBPT) about 0.78 m.y. ago. Among the earliest of those investigations was a study of bathyal siltstone in the Boso Peninsula in Japan (Niitsuma, 1971; Okada and Niitsuma, 1989). That investigation was preceded by a report that the relative intensity of the palaeomagnetic field as recorded in a marine core is reduced for a longer period of time than is required for the field directions to reverse (Ninkovich et al., 1966), a discovery that was summarized for other reversals in cored marine sediment (Opdyke, 1973). In the U.S., Hillhouse and Cox (1976) documented the field directions and relative intensity during the MBPT using exposed Pleistocene Lake Tecopa sediments in southeastern California. They reported a generally smooth path of the Virtual Geomagnetic Poles (VGPs) as the field changed from reverse to normal that does not coincide with the VGP path for the MBPT in Japan, concluding that the transitional field is predominantly the non-dipole field. At Lake Tecopa, as in the marine record, the reduction in field strength occurred sooner and lasted longer by a factor of at least two the time required for the directions to reverse polarity, which was confirmed by Valet et al. (1988) in a restudy of the Lake Tecopa sediments. The Lake Tecopa study by Hillhouse and Cox (1976) was followed by one of Pleistocene lacustrine sediments exposed beneath the Bishop Tuff (Dalrymple et al., 1965) near Bishop, California (37.4˚ N, 241˚ E) (Liddicoat, 1982, 1993). The data we report are for directional and normalized relative intensity measurements of additional samples from each horizon at the Bishop locality that indicate the time spanned by the reduction in relative intensity for the full transition exceeds by about 20 percent the time during which the palaeomagnetic directions reverse. Although the change in field direction is difficult to establish with much certainty because there is a large scatter of directions for multiple (usually six) samples for each measured horizon (Liddicoat, 1993), it is possible to record a brief interval of opposite polarity near each end of the transition. During the onset of the transition, an estimated 1,000 years of normal polarity occurs at three sites separated along strike by 15 m. The change in polarity is in unweathered siltstone in cubes 2 cm on a side that were either demagnetized in an alternating field to 100 mT or heated to 600˚C. The interval of normal polarity has approximately 0.5 m of reverse polarity above it, which is overlain by 5 m of unconsolidated coarse sand. The time represented by the sand bed is not known, but it is reasonable to expect it could be considerable, but maybe no longer than 10,000 years. On that assumption, the normal polarity at Bishop might be the precursor to the MBPT Hartl and Tauxe (1996) discovered at ODP Hole 804C in the equatorial Pacific Ocean (1.0˚ N, 161.4˚ E.), or is in loess in China (35.7˚ N, 109.4˚ E) and elsewhere as referenced in Jin et al. (2012). In the upper third of the MBPT there is a partial recovery of the relative intensity, and in the Brunhes Normal Chron there is a brief interval of reverse polarity that might be the reverse interval Coe et al. (2004) located in volcanic rocks at Maui, Hawaii (20.8˚ N, 203.7˚ E).
Feasibility of Whole-Body Functional Mouse Imaging Using Helical Pinhole SPECT
Metzler, Scott D.; Vemulapalli, Sreekanth; Jaszczak, Ronald J.; Akabani, Gamal; Chin, Bennett B.
2010-01-01
Purpose Detailed in vivo whole-body biodistributions of radiolabeled tracers may characterize the longitudinal progression of disease, and changes with therapeutic interventions. Small-animal imaging in mice is particularly attractive due to the wide array of well characterized genetically and surgically created models of disease. Single Photon Emission Computed Tomography (SPECT) imaging using pinhole collimation provides high resolution and sensitivity, but conventional methods using circular acquisitions result in severe image truncation and incomplete sampling of data which prevent the accurate determination of whole-body radiotracer biodistributions. This study describes the feasibility of helical acquisition paths to mitigate these effects. Procedures Helical paths of pinhole apertures were implemented using an external robotic stage aligned with the axis of rotation (AOR) of the scanner. Phantom and mouse scans were performed using helical paths and either circular or bi-circular orbits at the same radius of rotation (ROR). The bi-circular orbits consisted of two 360-degree scans separated by an axial shift to increase the axial field of view (FOV) and to improve the complete-sampling properties. Results Reconstructions of phantoms and mice acquired with helical paths show good image quality and are visually free of both truncation and axial-blurring artifacts. Circular orbits yielded reconstructions with both artifacts and a limited effective FOV. The bi-circular scans enlarged the axial FOV, but still suffered from truncation and sampling artifacts. Conclusions Helical paths can provide complete sampling data and large effective FOV, yielding 3D full-body in vivo biodistributions while still maintaining a small distance from the aperture to the object for good sensitivity and resolution. PMID:19521736
Laser-Induced Damage to Thin Film Dielectric Coatings.
1980-10-01
magnify and reimage the laser spot in the diagnostic Path B. Location [5] (see Figure (9)) is the equi- valent focal plane in Path B to that in Path A at...the thin film sample, (3] . The object distance is between the focal plane and the lens at [6) and the image distance is betv en the lens [6] and the...the equivalent focal plane in the diagnostic path and positioned so that the peak of the beam spatial profile falls on the pinhole. The diameter of the
NASA Astrophysics Data System (ADS)
Kroonblawd, Matthew; Goldman, Nir
First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (<10 ps), but the effects on slow chemistry and the free energy surface are not well-known. We present a force matching approach to increase the accuracy of DFTB predictions for free energy surfaces. Accelerated sampling techniques are combined with path collective variables to generate the reference DFT data set and validate fitted DFTB potentials without a priori knowledge of transition states. Accuracy of force-matched DFTB free energy surfaces is assessed for slow peptide-forming reactions by direct comparison to DFT results for particular paths. Extensions to model prebiotic chemistry under shock conditions are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Preserving correlations between trajectories for efficient path sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, Todd R.; Geissler, Phillip L.; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
2015-06-21
Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective onmore » Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.« less
NASA Astrophysics Data System (ADS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio
2017-04-01
The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...
2017-10-26
Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less
The Effects of Barycentric and Asymmetric Transverse Velocities on Eclipse and Transit Times
NASA Astrophysics Data System (ADS)
Conroy, Kyle E.; Prša, Andrej; Horvat, Martin; Stassun, Keivan G.
2018-02-01
It has long been recognized that the finite speed of light can affect the observed time of an event. For example, as a source moves radially toward or away from an observer, the path length and therefore the light travel time to the observer decreases or increases, causing the event to appear earlier or later than otherwise expected, respectively. This light travel time effect has been applied to transits and eclipses for a variety of purposes, including studies of eclipse timing variations and transit timing variations that reveal the presence of additional bodies in the system. Here we highlight another non-relativistic effect on eclipse or transit times arising from the finite speed of light—caused by an asymmetry in the transverse velocity of the two eclipsing objects, relative to the observer. This asymmetry can be due to a non-unity mass ratio or to the presence of external barycentric motion. Although usually constant, this barycentric and asymmetric transverse velocity (BATV) effect can vary between sequential eclipses if either the path length between the two objects or the barycentric transverse velocity varies in time. We discuss this BATV effect and estimate its magnitude for both time-dependent and time-independent cases. For the time-dependent cases, we consider binaries that experience a change in orbital inclination, eccentric systems with and without apsidal motion, and hierarchical triple systems. We also consider the time-independent case which, by affecting the primary and secondary eclipses differently, can influence the inferred system parameters, such as the orbital eccentricity.
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.
Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
NASA Astrophysics Data System (ADS)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos
2017-10-01
The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.
Impacts of Solar-Absorbing Aerosol Layers on the Transition of Stratocumulus to Trade Cumulus Clouds
NASA Technical Reports Server (NTRS)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos
2017-01-01
The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive short-wave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.
NASA Astrophysics Data System (ADS)
Berger, Quentin; Lacoin, Hubert
2011-01-01
We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in (Berger and Toninelli (Electron. J. Probab., to appear) and Birkner and Sun (Ann. Inst. Henri Poincaré Probab. Stat. 46:414-441, 2010; arXiv:0912.1663). Given a fixed realization of a random walk Y on ℤ d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on ℤ d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time Lt(X,Y)=int0t {1}_{Xs=Ys} {d}s: the weight of the path under the new measure is exp ( βL t ( X, Y)), β∈ℝ. As β increases, the system exhibits a delocalization/localization transition: there is a critical value β c , such that if β> β c the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.
Lugez, Elodie; Sadjadi, Hossein; Joshi, Chandra P; Akl, Selim G; Fichtinger, Gabor
2017-04-01
Electromagnetic (EM) catheter tracking has recently been introduced in order to enable prompt and uncomplicated reconstruction of catheter paths in various clinical interventions. However, EM tracking is prone to measurement errors which can compromise the outcome of the procedure. Minimizing catheter tracking errors is therefore paramount to improve the path reconstruction accuracy. An extended Kalman filter (EKF) was employed to combine the nonlinear kinematic model of an EM sensor inside the catheter, with both its position and orientation measurements. The formulation of the kinematic model was based on the nonholonomic motion constraints of the EM sensor inside the catheter. Experimental verification was carried out in a clinical HDR suite. Ten catheters were inserted with mean curvatures varying from 0 to [Formula: see text] in a phantom. A miniaturized Ascension (Burlington, Vermont, USA) trakSTAR EM sensor (model 55) was threaded within each catheter at various speeds ranging from 7.4 to [Formula: see text]. The nonholonomic EKF was applied on the tracking data in order to statistically improve the EM tracking accuracy. A sample reconstruction error was defined at each point as the Euclidean distance between the estimated EM measurement and its corresponding ground truth. A path reconstruction accuracy was defined as the root mean square of the sample reconstruction errors, while the path reconstruction precision was defined as the standard deviation of these sample reconstruction errors. The impacts of sensor velocity and path curvature on the nonholonomic EKF method were determined. Finally, the nonholonomic EKF catheter path reconstructions were compared with the reconstructions provided by the manufacturer's filters under default settings, namely the AC wide notch and the DC adaptive filter. With a path reconstruction accuracy of 1.9 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (2.4 mm) by 21% and the raw EM measurements (3.5 mm) by 46%. Similarly, with a path reconstruction precision of 0.8 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (1.0 mm) by 20% and the raw EM measurements (1.7 mm) by 53%. Path reconstruction accuracies did not follow an apparent trend when varying the path curvature and sensor velocity; instead, reconstruction accuracies were predominantly impacted by the position of the EM field transmitter ([Formula: see text]). The advanced nonholonomic EKF is effective in reducing EM measurement errors when reconstructing catheter paths, is robust to path curvature and sensor speed, and runs in real time. Our approach is promising for a plurality of clinical procedures requiring catheter reconstructions, such as cardiovascular interventions, pulmonary applications (Bender et al. in medical image computing and computer-assisted intervention-MICCAI 99. Springer, Berlin, pp 981-989, 1999), and brachytherapy.
Multi-hop path tracing of mobile robot with multi-range image
NASA Astrophysics Data System (ADS)
Choudhury, Ramakanta; Samal, Chandrakanta; Choudhury, Umakanta
2010-02-01
It is well known that image processing depends heavily upon image representation technique . This paper intends to find out the optimal path of mobile robots for a specified area where obstacles are predefined as well as modified. Here the optimal path is represented by using the Quad tree method. Since there has been rising interest in the use of quad tree, we have tried to use the successive subdivision of images into quadrants from which the quad tree is developed. In the quad tree, obstacles-free area and the partial filled area are represented with different notations. After development of quad tree the algorithm is used to find the optimal path by employing neighbor finding technique, with a view to move the robot from the source to destination. The algorithm, here , permeates through the entire tree, and tries to locate the common ancestor for computation. The computation and the algorithm, aim at easing the ability of the robot to trace the optimal path with the help of adjacencies between the neighboring nodes as well as determining such adjacencies in the horizontal, vertical and diagonal directions. In this paper efforts have been made to determine the movement of the adjacent block in the quad tree and to detect the transition between the blocks equal size and finally generate the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akagi, Sheryl; Burling, Ian R.; Mendoza, Albert
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, U.S. measured during the fall of 2011. The fires were an attempt to simulate high-intensity burns and the fuels included mature pine stands not frequently subjected to prescribed fire that were lit following a sustained period of drought. In this work we focus on the emission factor measurements made using a fixed open-path gas analyzer Fourier transform infrared (FTIR) system. We compare these emission factors with those measured using a roving, point sampling, land-based FTIR and an airborne FTIR that were deployed on the same fires. Wemore » also compare to emission factors measured by a similar open-path FTIR system deployed on savanna fires in Africa. The data suggest that the method in which the smoke is sampled can strongly influence the relative abundance of the emissions that are observed. The airborne FTIR probed the bulk of the emissions, which were lofted in the convection column and the downwind chemistry while the roving ground-based point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The open-path FTIR provided a fixed path-integrated sample of emissions produced directly upwind mixed with emissions that were redirected by wind gusts, or right after ignition and before the adjacent plume achieved significant vertical development. It typically probed two distinct combustion regimes, “flaming-like” (immediately after adjacent ignition) and “smoldering-like”, denoted “early” and “late”, respectively. The calculated emission factors from open-path measurements were closer to the airborne than to the point measurements, but this could vary depending on the calculation method or from fire to fire given the changing MCE and dynamics over the duration of a typical burn. The emission factors for species whose emissions are not highly fuel dependent (e.g. CH4 and CH3OH) from all three systems can be plotted versus modified combustion efficiency and fit to a single consistent trend suggesting that differences between the systems for these species may be mainly due to the unique mix of flaming and smoldering that each system sampled. For other more fuel dependent species, the different fuels sampled also likely contributed to platform differences in emission factors. The path-integrated sample of the ground-level smoke layer adjacent to the fire provided by the open-path measurements is important for estimating fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average exposures.« less
Imaging Optical Frequencies with 100 μHz Precision and 1.1 μm Resolution.
Marti, G Edward; Hutson, Ross B; Goban, Akihisa; Campbell, Sara L; Poli, Nicola; Ye, Jun
2018-03-09
We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.
A qualitative study of early family histories and transitions of homeless youth.
Tyler, Kimberly A
2006-10-01
Using intensive qualitative interviews with 40 homeless youth, this study examined their early family histories for abuse, neglect, and other family problems and the number and types of transitions that youth experienced. Multiple forms of child maltreatment, family alcoholism, drug use, and criminal activity characterized early family histories of many youth. Leaving home because of either running away or being removed by child protective services often resulted in multiple transitions, which regularly included moving from foster care homes to a group home, back to their parents, and then again returning to the streets. Although having experienced family disorganization set youth on trajectories for early independence, there were many unique paths that youth traveled prior to ending up on the streets.
Reduction in leisure activity and well-being during the transition to widowhood.
Janke, Megan C; Nimrod, Galit; Kleiber, Douglas A
2008-01-01
There is relatively little evidence available about how leisure involvement changes with the death of a spouse and even less about how leisure activity is associated with the health and well-being of widows during this transition. Using data from the Americans Changing Lives (ACL) dataset, this study of 154 widows investigated change in leisure involvement during the transition to widowhood and examined the relationship between leisure activity reduction and widows' well-being. Results indicated a majority of widows reduced their involvement in leisure activity. Path models revealed that depressive symptoms and recovery from spousal loss were predictors of activity reduction, providing more support for the causal relationship of well-being influencing activity involvement than for activity influencing well-being.
Kinetics and reaction coordinates of the reassembly of protein fragments via forward flux sampling.
Borrero, Ernesto E; Contreras Martínez, Lydia M; DeLisa, Matthew P; Escobedo, Fernando A
2010-05-19
We studied the mechanism of the reassembly and folding process of two fragments of a split lattice protein by using forward flux sampling (FFS). Our results confirmed previous thermodynamics and kinetics analyses that suggested that the disruption of the critical core (of an unsplit protein that folds by a nucleation mechanism) plays a key role in the reassembly mechanism of the split system. For several split systems derived from a parent 48-mer model, we estimated the reaction coordinates in terms of collective variables by using the FFS least-square estimation method and found that the reassembly transition is best described by a combination of the total number of native contacts, the number of interchain native contacts, and the total conformational energy of the split system. We also analyzed the transition path ensemble obtained from FFS simulations using the estimated reaction coordinates as order parameters to identify the microscopic features that differentiate the reassembly of the different split systems studied. We found that in the fastest folding split system, a balanced distribution of the original-core amino acids (of the unsplit system) between protein fragments propitiates interchain interactions at early stages of the folding process. Only this system exhibits a different reassembly mechanism from that of the unsplit protein, involving the formation of a different folding nucleus. In the slowest folding system, the concentration of the folding nucleus in one fragment causes its early prefolding, whereas the second fragment tends to remain as a detached random coil. We also show that the reassembly rate can be either increased or decreased by tuning interchain cooperativeness via the introduction of a single point mutation that either strengthens or weakens one of the native interchain contacts (prevalent in the transition state ensemble). Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sampling-Based Coverage Path Planning for Complex 3D Structures
2012-09-01
one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal...structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry...iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage con- straints. Third, we propose
Paleomagnetic full vector record of four consecutive Mid Miocene geomagnetic reversals
NASA Astrophysics Data System (ADS)
Linder, J.; Leonhardt, R.
2009-11-01
Seventy Mid Miocene lava flows from flood basalt piles near Neskaupstadur (East Iceland) were sampled, which provide a quasi-continuous record of geomagnetic field variations. Samples were collected along the profile B of Watkins and Walker [Watkins, N., Walker, G.P.L., 1977. Magnetostratigraphy of eastern Iceland. Am. J. Sci. 277, 513-584], which was extended about 250 m farther down in a neighboring stream bed. Published radiometric age determinations [Harrison, C., McDougall, I., Watkins, N., 1979. A geomagnetic field reversal time scale back to 13.0 million years before present. Earth Planet. Sci. Lett. 42, 143-152] range from 12.2 to 12.8 Ma for the sampled sequence. Four reversals were recorded in this profile, with 18 transitional lavas found within or between 17 normal and 30 reversed polarity flows. The large amount of transitional lavas and the large virtual geomagnetic pole dispersion for stable field directions are noteworthy as such features are commonly observed in Icelandic lavas and manifest in a far-sidedness of the average VGP. The reason for this characteristic, which could be related to an anomaly beneath Iceland, a global field phenomenon, local tectonics, and/or non-horizontal flow emplacement, is scrutinized. Non-horizontal flow emplacement is likely in volcanic environments particularly if the sampled lavas are located on the paleoslopes of a central volcano. From the difference of the observed paleomagnetic mean directions to the expected directions assuming a geocentric axial dipole (GAD), a paleoslope which would explain the observed difference was calculated numerically. The obtained dip and dip direction point consistently to a possible volcanic extrusion center of the lavas. The determined paleodip, however, proved to be significantly too high compared to the usual slope of a central volcano, suggesting further reasons for deviations from the GAD. Other datasets of this age from Europe also show enhanced VGP dispersion, suggesting further contributions of geomagnetic origin for this observation. Basically all reversal paths move across the Pacific. Transitions were identified as belonging to C5An.1r-C5Ar.3r based on the Astronomically Tuned Neogene Timescale [Lourens, L., Hilgen, F.J., Laskar, J., Shackleton, N.J., Wilson, D., 2004. A Geological Time Scale. Cambridge University Press]. We selected 122 samples for paleointensity measurements using a modified Thellier method including tests for alteration and multidomain bias. 85 of the measured samples yielded data of sufficient quality to calculate paleointensities for 26 lava flows. The average paleointensity for stable field directions was 23.3 μT, whereas the intensity drops to a minimum of 5.8 μT during field transitions. The stable field intensities represent only about half of the present day field. The saw-tooth pattern of intensities, which is characterized by a sharp increase of intensity directly after a reversal and then followed by a gradual decrease towards the next reversal, was not found in this study.
A concise approach for building the s-T diagram for Mn-Fe-P-Si hysteretic magnetocaloric material
NASA Astrophysics Data System (ADS)
Christiaanse, T. V.; Campbell, O.; Trevizoli, P. V.; Misra, S.; van Asten, D.; Zhang, L.; Govindappa, P.; Niknia, I.; Teyber, R.; Rowe, A.
2017-09-01
The use of first order magnetocaloric materials (FOM’s) in magnetic cycles is of interest for the development of efficient magnetic heat pumps. FOM’s present promising magnetocaloric properties; however, hysteresis reduces the reversible adiabatic temperature change (Δ Tad ) of these materials, and consequently, impacts performance. The present paper evaluates the reversible Δ Tad in a FOM. Six samples of the Mn-Fe-P-Si material with different transition temperatures are examined. The samples are measured for heat capacity, magnetization, and adiabatic temperature change using heating and cooling protocols to characterize hysteresis. After correcting demagnetizing fields, the entropy-temperature (s-T ) diagrams are constructed and used to calculate adiabatic temperature change using four different thermal paths. The post-calculated Δ Tad is compared with experimental data from direct Δ Tad measurements. Most of the samples of Mn-Fe-P-Si show that post-calculated Δ Tad resulting from the heating zero field and cooling in-field entropy curves align best with the Δ Tad measurements. The impact of the demagnetizing field is shown in terms of absolute variation to the post-calculated Δ Tad . A functional representation is used to explain observed data sensitivities in the post-calculated Δ Tad .
Barriers to Policy Change and a Suggested Path for Change
ERIC Educational Resources Information Center
Jing, Yijia
2013-01-01
China's one-child policy has been an unprecedented policy experiment in human history. Despite its significant achievements, the policy has induced equally significant potential problems. As problems of the one-child policy have been widely noticed and suggestions for adjustments are available, the leadership transition of China in 2012 and 2013…
ERIC Educational Resources Information Center
Gilbert, Andrew
2011-01-01
This study chronicled the professional journeys of two beginning science teachers. The focus of the research effort documents what brought them to science teaching and investigated their resulting career paths. Data artifacts for this instrumental case study approach included: interviews, written survey responses, personal communications and…
Arbitrary unitary transformations on optical states using a quantum memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
The Changing Adolescent Experience: Societal Trends and the Transition to Adulthood.
ERIC Educational Resources Information Center
Mortimer, Jeylan T.; Larson, Reed W.
The path adolescents take from childhood to adulthood is a product of social, economic, political, and technological forces. These forces may facilitate youths preparation to become healthy adults, or they may leave youth unprepared for adulthood. Knowledgeable projections are vital in shaping the agenda for research; for alerting educators,…
From Senior to Freshman: Career Paths Workshop for Women Students.
ERIC Educational Resources Information Center
Heller, Barbara R.; D'Lugin, Victor
A career planning workshop program was conducted for New York City twelfth-grade female students intending to enroll in community colleges. Its purpose was to assist them in the transition to college while motivating them to consider nontraditional courses of study. In an attempt to increase participants' interest in male-dominated career…
SSAGES: Software Suite for Advanced General Ensemble Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less
SSAGES: Software Suite for Advanced General Ensemble Simulations
NASA Astrophysics Data System (ADS)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.
2018-01-01
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
Harmonic Fourier beads method for studying rare events on rugged energy surfaces.
Khavrutskii, Ilja V; Arora, Karunesh; Brooks, Charles L
2006-11-07
We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Trong-Nghia; Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi; Putikam, Raghunath
2015-03-28
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} groupmore » by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.« less
Analysis Report for Exascale Storage Requirements for Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruwart, Thomas M.
Over the next 10 years, the Department of Energy will be transitioning from Petascale to Exascale Computing resulting in data storage, networking, and infrastructure requirements to increase by three orders of magnitude. The technologies and best practices used today are the result of a relatively slow evolution of ancestral technologies developed in the 1950s and 1960s. These include magnetic tape, magnetic disk, networking, databases, file systems, and operating systems. These technologies will continue to evolve over the next 10 to 15 years on a reasonably predictable path. Experience with the challenges involved in transitioning these fundamental technologies from Terascale tomore » Petascale computing systems has raised questions about how these will scale another 3 or 4 orders of magnitude to meet the requirements imposed by Exascale computing systems. This report is focused on the most concerning scaling issues with data storage systems as they relate to High Performance Computing- and presents options for a path forward. Given the ability to store exponentially increasing amounts of data, far more advanced concepts and use of metadata will be critical to managing data in Exascale computing systems.« less
Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.
Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus
2014-01-07
The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.
Analysis of self-overlap reveals trade-offs in plankton swimming trajectories
Bianco, Giuseppe; Mariani, Patrizio; Visser, Andre W.; Mazzocchi, Maria Grazia; Pigolotti, Simone
2014-01-01
Movement is a fundamental behaviour of organisms that not only brings about beneficial encounters with resources and mates, but also at the same time exposes the organism to dangerous encounters with predators. The movement patterns adopted by organisms should reflect a balance between these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large overlap at larger scales. Regularities in the observed trajectories make the transition between these two regimes always sharper than in randomized trajectories or as predicted by random walk theory. Thus, real trajectories present a stronger separation between exploration for food and exposure to predators. The specific scale and features of this transition depend on species, gender and local environmental conditions, pointing at adaptation to state and stage-dependent evolutionary trade-offs. PMID:24789560
Suzdalev, Sergej; Gulbinskas, Saulius; Blažauskas, Nerijus
2015-02-01
The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g(-1) of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (<0.063 mm) was significant for most of the stations. The TBT concentration in those sites varies from 1 to 100 ng Sn g(-1). This fact indicates that the most intensive accumulation of tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.
NASA Astrophysics Data System (ADS)
Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.
2016-02-01
This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.