Sample records for transition radiation diagnostics

  1. Zemax simulations describing collective effects in transition and diffraction radiation.

    PubMed

    Bisesto, F G; Castellano, M; Chiadroni, E; Cianchi, A

    2018-02-19

    Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.

  2. Diagnostic Transitions from Childhood to Adolescence to Early Adulthood

    ERIC Educational Resources Information Center

    Copeland, William E.; Adair, Carol E.; Smetanin, Paul; Stiff, David; Briante, Carla; Colman, Ian; Fergusson, David; Horwood, John; Poulton, Richie; Costello, E. Jane; Angold, Adrian

    2013-01-01

    Background: Quantifying diagnostic transitions across development is needed to estimate the long-term burden of mental illness. This study estimated patterns of diagnostic transitions from childhood to adolescence and from adolescence to early adulthood. Methods: Patterns of diagnostic transitions were estimated using data from three prospective,…

  3. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  4. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    PubMed

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  5. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Sun, Y. -E; Maxwell, T. J.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  6. Radiation effects in IFMIF Li target diagnostic systems

    NASA Astrophysics Data System (ADS)

    Molla, J.; Vila, R.; Shikama, T.; Horiike, H.; Simakov, S.; Ciotti, M.; Ibarra, A.

    2009-04-01

    Diagnostics for the lithium target will be crucial for the operation of IFMIF. Several parameters as the lithium temperature, target thickness or wave pattern must be monitored during operation. Radiation effects may produce malfunctioning in any of these diagnostics due to the exposure to high radiation fields. The main diagnostic systems proposed for the operation of IFMIF are reviewed in this paper from the point of view of radiation damage. The main tools for the assessment of the performance of these diagnostics are the neutronics calculations by using specialised codes and the information accumulated during the last decades on the radiation effects in functional materials, components and diagnostics for ITER. This analysis allows to conclude that the design of some of the diagnostic systems must be revised to assure the high availability required for the target system.

  7. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  8. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams

    NASA Astrophysics Data System (ADS)

    Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.

    2018-01-01

    Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.

  9. Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures

    PubMed Central

    Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington

    2012-01-01

    The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864

  10. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

    2011-06-27

    We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  11. The photon-plasmon transitions and diagnostics of the space plasma turbulence

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Glushkov, Alexander; Khetselius, Olga

    We present a new approach to treating the space plasma turbulence, based on using to make diagnostic data regarding the photon-plasmon transitions. The theoretical definition of characteristics for these transitions is caried out within consistent theoretical approach, based on the Gell-Mann and Low formalism (energy approach in QED theory).We apply it to calculation of such transitions (Ps) with emission of photon and Langmuir quanta. It is well known that the hfs states of positronium Ps Ps differ in spin S, life time t and mode of annihilation. As a rule, probabilities of the cascade radiation transitions are more than the annihilation probability. The ortho-Ps atom has a metastable state 23s1 and probability of two-photon radiation transition from this state into 13s1 state (1.8•10(-3) 1/s) is significantly less than probability of the three-photon annihilation directly from 23s1level 8.9•10(5) s(-1), i.e. it is usually supposed that the ortho-Ps annihilates from 23s1state. Another situation may take place in plasma, where it is arisen the competition process of destruction of the metastable level - the photonplasmon transition 23s1-13s1with emission of photon and Langmuir quanta. In this paper we carried out the calculation of the probability of the Ps photon-plasmon transition and propose tu use it for diagnostics of the space plasma (dusty one etc.).Standard S-matrix calculation with using an expression for tensor of dielectric permeability of the isotropic space plasma and dispersion relationships for transverse and Langmuir waves [3] allows getting the corresponding probability P(ph-pl). Numerical value of P(ph-pl) is 5.2•10(6)•UL(s-1), where UL is density of the Langmuir waves energy. Our value is correlated with estimate, available in literature [3]: P(phpl)= 6•10(6)•UL (s-1). Comparison of the obtained probability with the life time t(3) allows getting the condition of predominance of the photon-plasmon transition over three

  12. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  13. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  14. Radiation Protection of the Child from Diagnostic Imaging.

    PubMed

    Leung, Rebecca S

    2015-01-01

    In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.

  15. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Rule, D. W.; Downer, M. C.

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  16. Effects of diagnostic ionizing radiation on pregnancy via TEM

    NASA Astrophysics Data System (ADS)

    Mohammed, W. H.; Artoli, A. M.

    2008-08-01

    In Sudan, X-rays are routinely used at least once for measurements of pelvis during the gestation period, though this is highly prohibited worldwide, except for a few life threatening cases. To demonstrate the effect of diagnostic ionizing radiation on uterus, fetus and neighboring tissues to the ovaries, two independent experiments on pregnant rabbits were conducted. The first experiment was a proof of concept that diagnostic ionizing radiation is hazardous throughout the gestation period. The second experiment was done through Transmission Electron Microscopy (TEM) to elucidate the morphological changes in the ultra structure of samples taken from irradiated pregnant rabbits. This study uses TEM to test the effect of diagnostic radiation of less than 0.6 Gray on the cellular level. Morphological changes have been captured and the images were analyzed to quantify these effects.

  17. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  18. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  19. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    PubMed

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.

  20. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    PubMed

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. REVIEWS OF TOPICAL PROBLEMS: Transition radiation in media with random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Platonov, Konstantin Yu; Fleishman, G. D.

    2002-03-01

    This review analyzes radiation produced by randomly inhomogeneous media excited by fast particles — i.e., polarization bremsstrahlung for thermodynamically equilibrium inhomogeneities or transition radiation for nonthermal ones — taking into account all the effects important for natural sources. Magnetic field effects on both the motion of fast particles and the dispersion of background plasma are considered, and the multiple scattering of fast particles in the medium is examined. Various resonant effects occurring under the conditions of Cherenkov (or cyclotron) emission for a particular eigenmode are discussed. The transition radiation intensity and absorption (amplification) coefficients are calculated for ensembles of fast particles with realistic distributions over momentum and angles. The value of the developed theory of transition radiation is illustrated by applying it to astrophysical objects. Transition radiation is shown to contribute significantly to the radio emission of the Sun, planets (including Earth), and interplanetary and interstellar media. Possible further applications of transition radiation (particularly stimulated) are discussed.

  2. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology.

    PubMed

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N

    2017-01-01

    We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.

  3. Meeting the Needs for Radiation Protection: Diagnostic Imaging.

    PubMed

    Frush, Donald P

    2017-02-01

    Radiation and potential risk during medical imaging is one of the foremost issues for the imaging community. Because of this, there are growing demands for accountability, including appropriate use of ionizing radiation in diagnostic and image-guided procedures. Factors contributing to this include increasing use of medical imaging; increased scrutiny (from awareness to alarm) by patients/caregivers and the public over radiation risk; and mounting calls for accountability from regulatory, accrediting, healthcare coverage (e.g., Centers for Medicare and Medicaid Services), and advisory agencies and organizations as well as industry (e.g., NEMA XR-29, Standard Attributes on CT Equipment Related to Dose Optimization and Management). Current challenges include debates over uncertainty with risks with low-level radiation; lack of fully developed and targeted products for diagnostic imaging and radiation dose monitoring; lack of resources for and clarity surrounding dose monitoring programs; inconsistencies across and between practices for design, implementation and audit of dose monitoring programs; lack of interdisciplinary programs for radiation protection of patients; potential shortages in personnel for these and other consensus efforts; and training concerns as well as inconsistencies for competencies throughout medical providers' careers for radiation protection of patients. Medical care providers are currently in a purgatory between quality- and value-based imaging paradigms, a state that has yet to mature to reward this move to quality-based performance. There are also deficits in radiation expertise personnel in medicine. For example, health physics academic programs and graduates have recently declined, and medical physics residency openings are currently at a third of the number of graduates. However, leveraging solutions to the medical needs will require money and resources, beyond personnel alone. Energy and capital will need to be directed to

  4. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology

    PubMed Central

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C.; Morelli, John N.

    2017-01-01

    PURPOSE We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. METHODS Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed. RESULTS Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). CONCLUSION The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted. PMID:28287072

  5. 78 FR 20103 - Radiation Protection Guidance for Diagnostic and Interventional X-Ray Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... for Diagnostic and Interventional X-Ray Procedures AGENCY: Environmental Protection Agency (EPA... for Diagnostic and Interventional X-Ray Procedures. This document is Federal Guidance Report No. 14. It replaces Federal Guidance Report No. 9, ``Radiation Protection Guidance for Diagnostic X-rays...

  6. Magnetic Field Diagnostics and Spatio-Temporal Variability of the Solar Transition Region

    NASA Astrophysics Data System (ADS)

    Peter, H.

    2013-12-01

    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme-ultraviolet (EUV) spectro-polarimetry. While for the coronal diagnostics techniques already exist in the form of infrared coronagraphy above the limb and radio observations on the disk, one has to investigate EUV observations for the transition region. However, so far the success of such observations has been limited, but various current projects aim to obtain spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect from these observations through realistic forward modeling. We employ a 3D magneto-hydrodynamic (MHD) forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C iv (1548 Å). A signal well above 0.001 in Stokes V can be expected even if one integrates for several minutes to reach the required signal-to-noise ratio, and despite the rapidly changing intensity in the model (just as in observations). This variability of the intensity is often used as an argument against transition region magnetic diagnostics, which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and therefore the degree of (circular) polarization remains rather constant when one integrates in time. Our study shows that it is possible to measure the transition region magnetic field if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.

  7. Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tenenbaum, Peter; Wohler, Bill; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.

    2018-06-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ∼200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  8. Kepler Data Validation I: Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter; hide

    2018-01-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  9. A REVIEW OF THE FUNDAMENTAL PRINCIPLES OF RADIATION PROTECTION WHEN APPLIED TO THE PATIENT IN DIAGNOSTIC RADIOLOGY.

    PubMed

    Moores, B Michael

    2017-06-01

    A review of the role and relevance of the principles of radiation protection of the patient in diagnostic radiology as specified by ICRP has been undertaken when diagnostic risks arising from an examination are taken into account. The increase in population doses arising from diagnostic radiology over the past 20 years has been due to the widespread application of higher dose CT examinations that provide significantly more clinical information. Consequently, diagnostic risks as well as radiation risks need to be considered within the patient radiation protection framework. Justification and optimisation are discussed and the limitations imposed on patient protection by employing only a radiation risk framework is highlighted. The example of radiation protection of the patient in breast screening programmes employing mammography is used to highlight the importance of defined diagnostic outcomes in any effective radiation protection strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Hyperfine Induced Transitions as Diagnostics of Low Density Plasmas and Isotopic Abundance ratios.

    NASA Astrophysics Data System (ADS)

    Brage, T.; Judge, P. G.; Aboussaid, A.; Godefroid, M. R.; Jonsson, P.; Leckrone, D. S.

    1996-05-01

    We propose a new diagnostics of isotope abundance ratios and electron densities for low density plasmas, in the form of J = 0 -> J(') = 0 radiative transitions. These are usually viewed as being allowed only through two-photon decay, but they may also be induced by the hyperfine (HPF) interaction in atomic ions. This predicts a companion line to the E1] and M2 lines in the UV0.01 multiplet of ions isoelectronic to beryllium (e.g. C III, N IV, O V and Fe XXII) or magnesium (e.g. Si II, Ca IX, Fe XV and Ni XVII). As an example the companion line to the well known lambda lambda 1906.7,1908.7 lines in C III will be at 1909.597 Angstroms, but only present in the (13) C isotope (which has nuclear spin different from zero). We present new and accurate decay rates for the nsnp (3P^oJ) -> ns(2) (1S_{J('}=0)) transitions in ions of the Be (n=2) and Mg (n=3) isoelectronic sequences. We show that the HPF induced decay rates for the J = 0 -> J(') = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes and, when present, are typically one or two orders of magnitude smaller than the decay rates of the magnetic quadrupole ( J = 2-> J(') = 0) transitions for these ions. We show that several of these HPF-induced transitions are of potential astrophysical interest, in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV solar and nebular data in the light of these new results and suggest possible cases for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing

  11. Hyperfine Induced Transitions as Diagnostics of Isotopic Composition and Densities of Low-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Brage, Tomas; Judge, Philip G.; Aboussaïd, Abdellatif; Godefroid, Michel R.; Jönsson, Per; Ynnerman, Anders; Froese Fischer, Charlotte; Leckrone, David S.

    1998-06-01

    The J = 0 --> J' = 0 radiative transitions, usually viewed as allowed through two-photon decay, may also be induced by the hyperfine (HPF) interaction in atoms or ions having a nonzero nuclear spin. We compute new and review existing decay rates for the nsnp 3PoJ --> ns2 1SJ'=0 transitions in ions of the Be (n = 2) and Mg (n = 3) isoelectronic sequences. The HPF induced decay rates for the J = 0 --> J' = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes, and when present are typically 1 or 2 orders of magnitude smaller than the decay rates of the magnetic quadrupole (J = 2 --> J' = 0) transitions for these ions. Several HPF induced transitions are potentially of astrophysical interest in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe, and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission-line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV and EUV solar and nebular data in light of these new results and suggest possible applications for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing interesting upper limits. For the planetary nebula SMC N2, we derive an upper limit of 0.1 for 13C/12C from Goddard High-Resolution Spectrograph data obtained by Clegg. It is likely that more stringent limits could be obtained using newer data with higher sensitivities in a variety of objects.

  12. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  13. Evaluation of radiation exposure from diagnostic radiology examination; availability of final recommendations--FDA. Notice.

    PubMed

    1986-02-19

    The Food and Drug Administration (FDA) is announcing the availability of a document entitled "Recommendations for Evaluation of Radiation Exposure from Diagnostic Radiology Examinations". The recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), encourage diagnostic radiology facilities to take voluntary action to: Become aware of the radiation levels experienced by patients undergoing the projections commonly given in the facility; compare their radiation levels to generally accepted levels for these projections; and bring the exposures back into line if their levels fall consistently outside these generally accepted levels.

  14. Sparsely Ionizing Diagnostic and Natural Background Radiations are Likely Preventing Cancer and Other Genomic-Instability-Associated Diseases

    PubMed Central

    Scott, Bobby R.; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apopto-sis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  15. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  16. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  17. Recent progress in the transition radiation detector techniques

    NASA Technical Reports Server (NTRS)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  18. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  19. The IHS diagnostic X-ray equipment radiation protection program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, A.; Byrns, G.; Suleiman, O.

    The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using themore » National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload.« less

  20. Radiated interference in rapid transit systems. volume 2. suggested test procedures.

    DOT National Transportation Integrated Search

    1987-06-30

    The purpose of this report is to present a suggested test procedure for measuring the radiated electromagnetic interference (EMI) emanating from rail transit systems. This report points out that, unlike inductive and conductive EMI, radiated EMI has ...

  1. Pragmatic ethical basis for radiation protection in diagnostic radiology.

    PubMed

    Malone, Jim; Zölzer, Friedo

    2016-01-01

    Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic imaging. This system has the potential to be

  2. Pragmatic ethical basis for radiation protection in diagnostic radiology

    PubMed Central

    Zölzer, Friedo

    2016-01-01

    Objective: Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. Methods: The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. Results and conclusion: A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic

  3. Radiative Transitions in Charmonium from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozef Dudek; Robert Edwards; David Richards

    2006-01-17

    Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we findmore » a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.« less

  4. Exotic and excited-state radiative transitions in charmonium from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2009-05-01

    We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less

  5. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe; Bracke, Adam; Demir, Veysel

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  6. Coherent transition radiation from a self-modulated charged particle beam

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yu, P.; An, W.; Lu, W.; Mori, W. B.

    2012-12-01

    Plasma wakefield accelerator utilizing a TeV proton beam is a promising method to generate a TeV electron beam. However the length of the existing proton beam is too long compared with the proper plasma skin depth. As a result selfmodulation instability takes place after such a long pulse enters into the plasma. The transverse spot size of the long beam changes periodically in the longitudinal direction. Therefor measurement of the coherent transition radiation when the selfmodulated beam leaves the plasma is a possible method to demonstrate the self-modulation instability. In this paper, we analyze the angular spectrum of this coherent transition radiation when the beam comes from plasma to vacuum.

  7. Radiative transition of hydrogen-like ions in quantum plasma

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Chen, Zhanbin; Chen, Wencong

    2016-12-01

    At fusion plasma electron temperature and number density regimes of 1 × 103-1 × 107 K and 1 × 1028-1 × 1031/m3, respectively, the excited states and radiative transition of hydrogen-like ions in fusion plasmas are studied. The results show that quantum plasma model is more suitable to describe the fusion plasma than the Debye screening model. Relativistic correction to bound-state energies of the low-Z hydrogen-like ions is so small that it can be ignored. The transition probability decreases with plasma density, but the transition probabilities have the same order of magnitude in the same number density regime.

  8. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  9. Health transitions, fast and nasty: the case of Marshallese exposure to nuclear radiation.

    PubMed

    Pollock, Nancy J

    2002-09-01

    The concept of health transitions assumes that health status improves with the introduction of western medicine. In this paper I demonstrate that the health of the people of Rongelap, Marshall Islands, has undergone serious damage as a result of nuclear testing, and that women in particular have suffered unduly. Exposure to nuclear radiation over a period of almost fifty years has been recognised by US authorities as a major contributory cause to the high rates of cancers and birth defects suffered by the Rongelap people. Women's reproduction has been severely affected, as evidenced by the many stillbirths and small stature of children born alive. Two generations have been exposed to both background radiation and to radiation ingested with the local foods on which they rely in the absence of other food sources. Clean up has commenced only after this and other communities sought compensation from the United States. The Rongelap people will live with the effects of radiation for generations to come. This transition to ongoing health problems is thus a negative outcome of modern health transition.

  10. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  11. The phase transition in VO 2 probed using x-ray, visible and infrared radiations

    DOE PAGES

    Kumar, Suhas; Strachan, John Paul; Kilcoyne, A. L. David; ...

    2016-02-15

    Vanadium dioxide (VO 2) is a model system that has been used to understand closely occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO 2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here, we use transmission of spatially averaged infrared (λ = 1.5 μm) and visible (λ = 500 nm) radiations followed by spectroscopy andmore » nanoscale imaging using x-rays (λ = 2.25–2.38 nm) to probe the same VO 2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occurs at significantly lower temperatures than the Mott transition, and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.« less

  12. Radiative d–d transitions at tungsten centers in II–VI semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushakov, V. V., E-mail: ushakov@lebedev.ru; Krivobok, V. S.; Pruchkina, A. A.

    2017-03-15

    The luminescence spectra of W impurity centers in II–VI semiconductors, specifically, ZnSe, CdS, and CdSe, are studied. It is found that, if the electron system of 5d (W) centers is considered instead of the electron system of 3d (Cr) centers, the spectral characteristics of the impurity radiation are substantially changed. The electron transitions are identified in accordance with Tanabe–Sugano diagrams of crystal field theory. With consideration for the specific features of the spectra, it is established that, in the crystals under study, radiative transitions at 5d W centers occur between levels with different spins in the region of a weakmore » crystal field.« less

  13. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  14. An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio E.

    2017-11-01

    Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.

  15. Energy levels and radiative rates for transitions in Co XI

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Msezane, A. Z.

    2007-10-01

    Aims: In this paper we report calculations for energy levels and radiative rates for transitions in Co xi. Methods: The General purpose Relativistic Atomic Structure Package (grasp) and the Flexible Atomic Code (fac) have been adopted for the calculations of energy levels and radiative rates. Results: Energies for the lowest 287 levels of Co xi, including those among the (1s^22s^22p^6) 3s^23p^5, 3s3p^6, 3s^23p^43d, 3s3p^53d, 3s^23p^33d^2, and 3s^23p^44s configurations, are reported. Additionally, radiative rates and oscillator strengths are reported for all electric dipole (E1) transitions with f ≥ 10-5 among these levels, and similar results for magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions are reported only for those with f≥10-8. Comparisons are made with the available results in the literature, and the accuracy of the present data is assessed. Finally, lifetimes for all excited levels are also listed, although measurements are presently available for only one of these. Tables 1 and 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/473/995

  16. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents

    PubMed Central

    2013-01-01

    Background The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and

  17. Solar wind diagnostics from Doppler-enhanced scattering

    NASA Technical Reports Server (NTRS)

    Noci, Giancarlo; Kohl, John L.; Withbroe, George L.

    1987-01-01

    Solar wind ions can attain sufficient outflow speed, w, to cause line excitation by chromospheric or transition region radiation in a nearby line. It is shown that this extends the diagnostic possibilities of a coronal EUV line to much larger values of w than would be possible if pumping were limited to radiation from the same spectral line. For the 1037.6 A coronal line of O VI, the pumping effect of the chromospheric C II 1037.0 A line is efficient for w between 100 and 250 km/s. An approximate expression for the line ratio for a doublet of the Li or Na isoelectronic sequences is derived, and the diagnostic capabilities of doublet line ratios, either by themselves or combined with the observation of other quantities, are discussed. In particular, that the determination of doublet line ratios at several heights can be sufficient to yield the solar wind velocity at those heights together with a constraint on other coronal parameters.

  18. Radiative one- and two-electron transitions into the empty K shell of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadrekar, Riddhi; Natarajan, L.

    2011-12-15

    The branching ratios between the single and double electron radiative transitions to empty K shell in He-like ions with 2s2p configuration are evaluated for 15 ions with 4{<=}Z{<=}26 using fully relativistic multiconfiguration Dirac-Fock wavefunctions in the active space approximation. The effects of configuration interaction and Breit contributions on the transition parameters have been analyzed in detail. Though the influence of Breit interaction on the electric dipole allowed one-electron radiative transitions is negligible, it substantially changes the spin-forbidden rates and the two-electron one-photon transition probabilities. Also, while the single electron transition rates are gauge independent, the correlated double-electron probabilities are foundmore » to be gauge sensitive. The probable uncertainties in the computed transition rates have been evaluated by considering the line strengths and the differences between the calculated and experimental transition energies as accuracy indicators. The present results are compared with other available experimental and theoretical data.« less

  19. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{supmore » 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.« less

  20. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  1. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  2. Patterns of diagnostic imaging and associated radiation exposure among long-term survivors of young adult cancer: a population-based cohort study.

    PubMed

    Daly, Corinne; Urbach, David R; Stukel, Thérèse A; Nathan, Paul C; Deitel, Wayne; Paszat, Lawrence F; Wilton, Andrew S; Baxter, Nancy N

    2015-09-03

    Survivors of young adult malignancies are at risk of accumulated exposures to radiation from repetitive diagnostic imaging. We designed a population-based cohort study to describe patterns of diagnostic imaging and cumulative diagnostic radiation exposure among survivors of young adult cancer during a survivorship time period where surveillance imaging is not typically warranted. Young adults aged 20-44 diagnosed with invasive malignancy in Ontario from 1992-1999 who lived at least 5 years from diagnosis were identified using the Ontario Cancer Registry and matched 5 to 1 to randomly selected cancer-free persons. We determined receipt of 5 modalities of diagnostic imaging and associated radiation dose received by survivors and controls from years 5-15 after diagnosis or matched referent date through administrative data. Matched pairs were censored six months prior to evidence of recurrence. 20,911 survivors and 104,524 controls had a median of 13.5 years observation. Survivors received all modalities of diagnostic imaging at significantly higher rates than controls. Survivors received CT at a 3.49-fold higher rate (95% Confidence Interval [CI]:3.37, 3.62) than controls in years 5 to 15 after diagnosis. Survivors received a mean radiation dose of 26 miliSieverts solely from diagnostic imaging in the same time period, a 4.57-fold higher dose than matched controls (95% CI: 4.39, 4.81). Long-term survivors of young adult cancer have a markedly higher rate of diagnostic imaging over time than matched controls, imaging associated with substantial radiation exposure, during a time period when surveillance is not routinely recommended.

  3. Study of radiative bottomonium transitions using converted photons

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-10-01

    We use (111±1) million Υ(3S) and (89±1) million Υ(2S) events recorded by the BABAR detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions between bottomonium states using photons that have been converted to e+e- pairs by the detector material. We observe Υ(3S)→γχb0,2(1P) decay, make precise measurements of the branching fractions for χb1,2(1P,2P)→γΥ(1S) and χb1,2(2P)→γΥ(2S) decays, and search for radiative decay to the ηb(1S) and ηb(2S) states.

  4. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  5. Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.

    PubMed

    Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D

    2016-05-01

    Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.

  6. Mean cerebral blood volume is an effective diagnostic index of recurrent and radiation injury in glioma patients: A meta-analysis of diagnostic test.

    PubMed

    Li, Zhanzhan; Zhou, Qin; Li, Yanyan; Yan, Shipeng; Fu, Jun; Huang, Xinqiong; Shen, Liangfang

    2017-02-28

    We conducted a meta-analysis to evaluate the diagnostic values of mean cerebral blood volume for recurrent and radiation injury in glioma patients. We performed systematic electronic searches for eligible study up to August 8, 2016. Bivariate mixed effects models were used to estimate the combined sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, diagnostic odds ratios and their 95% confidence intervals (CIs). Fifteen studies with a total number of 576 participants were enrolled. The pooled sensitivity and specificity of diagnostic were 0.88 (95%CI: 0.82-0.92) and 0.85 (95%CI: 0.68-0.93). The pooled positive likelihood ratio is 5.73 (95%CI: 2.56-12.81), negative likelihood ratio is 0.15 (95%CI: 0.10-0.22), and the diagnostic odds ratio is 39.34 (95%CI:13.96-110.84). The summary receiver operator characteristic is 0.91 (95%CI: 0.88-0.93). However, the Deek's plot suggested publication bias may exist (t=2.30, P=0.039). Mean cerebral blood volume measurement methods seems to be very sensitive and highly specific to differentiate recurrent and radiation injury in glioma patients. The results should be interpreted with caution because of the potential bias.

  7. [Theoretical grounds of a structural and functional model for quality assurance of radiation diagnostics under conditions of development of the modern health care system in Ukraine].

    PubMed

    Korop, Oleg A; Lenskykh, Sergiy V

    2018-01-01

    Introduction: Modern changes in the health care system of Ukraine are focused on financial support in providing medical and diagnostic care to the population and are based on deep and consistent structural and functional transformations. They are aimed at providing adequate quality care, which is the main target function and a principal criterion for operation of health care system. The urgency of this problem is increasing in the context of reforming the health care system and global changes in the governmental financial guarantees for the provision of medical services to the population. The aim of the work is to provide theoretical grounds for a structural and functional model of quality assurance of radiation diagnostics at all levels of medical care given to the population under the current health care reform in Ukraine. Materials and methods: The object of the study is organizing the operation of the radiation diagnostic service; the information is based on the actual data on the characteristics of radiation diagnosis at different levels of medical care provision. Methods of systematic approach, system analysis and structural and functional analysis of the operating system of radiation diagnostics are used. Review: The basis of the quality assurance model is the cyclical process, which includes the stages of the problem identifition, planning of its solution, organization of the system for implementation of decisions, monitoring the quality management process of the radiation diagnostics, and factors influencing the quality of the radiation diagnostics service. These factors include the quality of the structure, process, results, organization of management and control of current processes and the results of radiation diagnostics management. Conclusions: The advantages of the proposed model for ensuring the quality of the radiation diagnostics service are its systemacy and complexity, elimination of identified defects and deficiencies, and achievement of

  8. ICNIRP Statement on Diagnostic Devices Using Non-ionizing Radiation: Existing Regulations and Potential Health Risks.

    PubMed

    2017-03-01

    Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media.

  9. ICNIRP Statement on Diagnostic Devices Using Non-ionizing Radiation: Existing Regulations and Potential Health Risks

    PubMed Central

    2017-01-01

    Abstract Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media. PMID:28121732

  10. Coherent Transition Radiation Generated from Transverse Electron Density Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.; Tyukhtin, A. V.

    Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.

  11. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

    PubMed

    Warkentin, Matthew; Thorne, Robert E

    2010-10-01

    The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.

  12. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  13. Effects of correlation in transition radiation of super-short electron bunches

    NASA Astrophysics Data System (ADS)

    Danilova, D. K.; Tishchenko, A. A.; Strikhanov, M. N.

    2017-07-01

    The effect of correlations between electrons in transition radiation is investigated. The correlation function is obtained with help of the approach similar to the Debye-Hückel theory. The corrections due to correlations are estimated to be near 2-3% for the parameters of future projects SINBAD and FLUTE for bunches with extremely small lengths (∼1-10 fs). For the bunches with number of electrons about ∼ 2.5 ∗1010 and more, and short enough that the radiation would be coherent, the corrections due to correlations are predicted to reach 20%.

  14. Chromosphere Active Region Plasma Diagnostics Based On Observations Of Millimeter Radiation

    NASA Astrophysics Data System (ADS)

    Loukitcheva, M.; Nagnibeda, V.

    1999-10-01

    In this paper we present the results of millimeter radiation calculations for different elements of chromospheric and transition region structures of the quiet Sun and S-component - elements of chromosphere network, sunspot groups and plages. The calculations were done on the basis of standard optical and UV models ( models by Vernazza et al. (1981,VAL), their modifications by Fontenla et al. (1993,FAL)). We also considered the sunspot model by Lites and Skumanich (1982,LS), S-component model by Staude et al.(1984) and modification of VAL and FAL models by Bocchialini and Vial - models NET and CELL. We compare these model calculations with observed characteristics of components of millimeter Solar radiation for the quiet Sun and S-component obtained with the radiotelescope RT-7.5 MGTU (wavelength 3.4 mm) and radioheliograph Nobeyama (wavelength 17.6 mm). From observations we derived spectral characteristics of millimeter sources and active region source structure. The comparison has shown that observed radio data are clearly in dissagrement with all the considered models. Finally, we propose further improvement of chromospheric and transition region models based on optical and UV observations in order to use for modelling information obtained from radio data.

  15. Energy levels and radiative rates for transitions in Fe V, Co VI and Ni VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2017-03-01

    Energy levels, Landé g-factors and radiative lifetimes are reported for the lowest 182 levels of the 3d4, 3d34s and 3d34p configurations of Fe V, Co VI and Ni VII. Additionally, radiative rates (A-values) have been calculated for the E1, E2 and M1 transitions among these levels. The calculations have been performed in a quasi-relativistic approach (QR) with a very large configuration interaction (CI) wavefunction expansion, which has been found to be necessary for these ions. Our calculated energies for all ions are in excellent agreement with the available measurements, for most levels. Discrepancies among various calculations for the radiative rates of E1 transitions in Fe V are up to a factor of two for stronger transitions (f ≥ 0.1), and larger (over an order of magnitude) for weaker ones. The reasons for these discrepancies have been discussed and mainly are due to the differing amount of CI and methodologies adopted. However, there are no appreciable discrepancies in similar data for M1 and E2 transitions, or the g-factors for the levels of Fe V, the only ion for which comparisons are feasible.

  16. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  17. Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces

    NASA Astrophysics Data System (ADS)

    Tsarev, M. V.; Baum, P.

    2018-03-01

    We consider analytically and numerically the emission of coherent transition radiation by few-femtosecond and attosecond electron pulses. With optimized geometries based on tilted surfaces we avoid the influences of the beam diameter and velocity mismatch for sub-relativistic pulses. We predict the emission of visible and ultraviolet optical radiation that characterizes few-femtosecond or attosecond electron pulses in time. The total amount of radiation depends on the source’ repetition rate and number of electrons per macro/microbunch and is in many cases sufficient for pulse length characterization in the emerging experiments.

  18. [X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of preneoplastic gastric mucosa changes].

    PubMed

    Akberov, R F; Gorshkov, A N

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology.

  19. The transition radiation detector of the PAMELA space mission

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  20. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.

  1. 30-kW class Arcjet Advanced Technology Transition Demonstration (ATTD) flight experiment diagnostic package

    NASA Astrophysics Data System (ADS)

    Kriebel, M. M.; Stevens, N. J.

    1992-07-01

    TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.

  2. MO-C-BRB-01: Introduction [Diagnostic radiology and radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, J.

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic

  3. Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; O’Connell, Avice M.; Conover, David L.

    2013-01-01

    lower than diagnostic mammography, the median MGD from dedicated breast CT was approximately 13.5% higher than that from diagnostic mammography. The MGD for breast CT is based on a 1.45 mm skin layer and that for diagnostic mammography is based on a 4 mm skin layer; thus, favoring a lower estimate for MGD from diagnostic mammography. The median MGD from dedicated breast CT corresponds to the median MGD from 4 to 5 diagnostic mammography views. In comparison, for the same 133 breasts, the mean and the median number of views per breast during diagnostic mammography were 4.53 and 4, respectively. Paired analysis showed that there was approximately equal likelihood of receiving lower MGD from either breast CT or diagnostic mammography. Future work will investigate methods to reduce and optimize radiation dose from dedicated breast CT. PMID:24165162

  4. Diagnostic reference level: an important tool for reducing radiation doses in adult and pediatric nuclear medicine procedures in Brazil.

    PubMed

    Willegaignon, José; Braga, Luis F E F; Sapienza, Marcelo T; Coura-Filho, George B; Cardona, Marissa A R; Alves, Carlos E R; Gutterres, Ricardo F; Buchpiguel, Carlos A

    2016-05-01

    This study aimed to establish a concise method for determining a diagnostic reference level (DRL) for adult and pediatric nuclear medicine patients on the basis of diagnostic procedures and administered radioisotope as a means of controlling medical exposure. A screening was carried out in all Brazilian Nuclear Medicine Service (NMS) establishments to support this study by collecting the average activities administered during adult diagnostic procedures and the rules applied to adjust these according to the patient's age and body mass. Percentile 75 was used in all the activities administered as a means of establishing DRL for adult patients, with additional correction factors for pediatric patients. Radiation doses from nuclear medicine procedures on the basis of average administered activity were calculated for all diagnostic exams. A total of 107 NMSs in Brazil agreed to participate in the project. From the 64 nuclear medicine procedures studied, bone, kidney, and parathyroid scans were found to be used in more than 85% of all the NMSs analyzed. There was a large disparity among the activities administered, when applying the same procedures, this reaching, in some cases, more than 20 times between the lowest and the highest. Diagnostic exams based on Ga, Tl, and I radioisotopes proved to be the major exams administering radiation doses to patients. On introducing the DRL concept into clinical routine, the minimum reduction in radiation doses received by patients was about 15%, the maximum was 95%, and the average was 50% compared with the previously reported administered activities. Variability in the available diagnostic procedures as well as in the amount of activities administered within the same procedure was appreciable not only in Brazil, but worldwide. Global efforts are needed to establish a concise DRL that can be applied in adult and pediatric nuclear medicine procedures as the application of DRL in clinical routine has been proven to be an important

  5. Diagnostics of dust content in spiral galaxies: Numerical simulations of radiative transfer

    NASA Technical Reports Server (NTRS)

    Byun, Y. I.; Freeman, K. C.; Kylafis, N. D.

    1994-01-01

    In order to find the best observable diagnostics for the amount of internal extinction within spiral galaxies, we have constructed realistic models for disk galaxies with immersed dust layers. The radiative transfer including both scattering and absorption has been computed for a range of model galaxies in various orientations. Standard galaxy surface photometry techniques were then applied to the numerical data to illustrate how different observables such as total magnitude, color and luminosity distribution behave under given conditions of dust distribution. This work reveals a set of superior diagnostics for the dust in the disk. These include not only the integrated parameters, but also the apparent disk structural parameters, the amplitude of the asymmetry between the near and far sides of the galaxy as divided by the apparent major axis and their dependence on the orientation of the galaxy with respect to the observer. Combining the above diagnostics with our impressions of real galaxies, we arrive at the qualitative conclusion that galaxy disks are generally optically thin. Quantitative conclusions will appear in subsequent work.

  6. J/psi and psi(2S) Radiative Transitions to eta_{c}.

    PubMed

    Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J

    2009-01-09

    Using 2.45x10;{7} psi(2S) decays collected with the CLEO-c detector at the Cornell Electron Storage Ring we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(psi(2S)-->gammaeta_{c})=(4.32+/-0.16+/-0.60)x10;{-3}, B(J/psi-->gammaeta_{c})/B(psi(2S)-->gammaeta_{c})=4.59+/-0.23+/-0.64, and B(J/psi-->gammaeta_{c})=(1.98+/-0.09+/-0.30)%. We observe a distortion in the eta_{c} line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the eta_{c} mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the eta_{c} mass in radiative transitions and other production mechanisms.

  7. Radiation safety.

    PubMed

    Skinner, Sarah

    2013-06-01

    Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.

  8. Radiation torque on nonspherical particles in the transition matrix formalism

    NASA Astrophysics Data System (ADS)

    Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Iatì, Maria A.

    2006-10-01

    The torque exerted by radiation on small particles is recognized to have a considerable relevance, e.g., on the dynamics of cosmic dust grains and for the manipulation of micro and nanoparticles under controlled conditions. In the present paper we derive, in the transition matrix formalism, the radiation torque applied by a plane polarized wave on nonspherical particles. In case of circularly polarized waves impinging on spherical particles our equations reproduce the findings of Marston and Crichton [Phys. Rev. A 30, 2508 2516 (1984)]. Our equations were applied to calculate the torque on a few model particles shaped as aggregates of identical spheres, both axially symmetric and lacking any symmetry, and the conditions for the stability of the induced rotational motion are discussed.

  9. Challenges associated with transition to caregiver role following diagnostic disclosure of Alzheimer disease: a descriptive study.

    PubMed

    Ducharme, Francine; Lévesque, Louise; Lachance, Lise; Kergoat, Marie-Jeanne; Coulombe, Renée

    2011-09-01

    The prevalence of Alzheimer's disease is rising. The large number of new cases identified each year means that many new families will set upon a long trajectory of caring for a relative with dementia. Diagnostic disclosure of Alzheimer's disease marks the official transition to the caregiver role, yet this early period of the caregiver career have rarely been studied. Based on Meleis's theoretical framework for role transition, the objectives of this study were to document the characteristics of the caregiving context during the transition to the caregiver role following diagnostic disclosure of Alzheimer's disease and to compare these characteristics by caregiver gender and kinship tie to the relative. A descriptive design was used. Data were collected using standardized measures selected in accordance with the role transition theoretical framework. The sample recruited in Quebec (Canada) cognition clinics comprised 122 caregivers of an elderly relative diagnosed with Alzheimer's disease in the past nine months. Findings reveal the context of care to be marked by several challenges for caregivers. The majority of caregivers receives little informal support, has poor knowledge of available formal services, and has difficulty planning ahead for the relative's future care needs. Caregivers themselves report a lack of preparedness to provide care. Compared with men caregivers, women seem to have more problems controlling disturbing thoughts about their new caregiver role and to experience more family conflicts and psychological distress. Compared with offspring caregivers, spouse caregivers are less able to respond to the relative's disruptive behaviors, make less use of problem-solving strategies, and report fewer family conflicts. The challenges faced by caregivers during the transition to the caregiver role are sensitive to nursing interventions. Pro-active interventions from the outset of the caregiving career, such as early assessment of caregiver needs for

  10. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Use of an Online Education Platform to Enhance Patients' Knowledge About Radiation in Diagnostic Imaging.

    PubMed

    Steele, Joseph R; Jones, A Kyle; Clarke, Ryan K; Shiao, Sue J; Wei, Wei; Shoemaker, Stowe; Parmar, Simrit

    2017-03-01

    The aim of this study was to compare the impact of a digital interactive education platform and standard paper-based education on patients' knowledge regarding ionizing radiation. Beginning in January 2015, patients at a tertiary cancer center scheduled for diagnostic imaging procedures were randomized to receive information about ionizing radiation delivered through a web-based interactive education platform (interactive education group), the same information in document format (document education group), or no specialized education (control group). Patients who completed at least some education and control group patients were invited to complete a knowledge assessment; interactive education patients were invited to provide feedback about satisfaction with their experience. A total of 2,226 patients participated. Surveys were completed by 302 of 745 patients (40.5%) participating in interactive education, 488 of 993 (49.1%) participating in document education, and 363 of 488 (74.4%) in the control group. Patients in the interactive education group were significantly more likely to say that they knew the definition of ionizing radiation, outperformed the other groups in identifying which imaging examinations used ionizing radiation, were significantly more likely to identify from a list which imaging modality had the highest radiation dose, and tended to perform better when asked about the tissue effects of radiation in diagnostic imaging, although this difference was not significant. In the interactive education group, 84% of patients were satisfied with the experience, and 79% said that they would recommend the program. Complex information on a highly technical subject with personal implications for patients may be conveyed more effectively using electronic platforms, and this approach is well accepted. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  13. MO-C-BRB-03: RSNA President [Diagnostic radiology and radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenson, R.

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic

  14. MO-C-BRB-02: ASTRO President [Diagnostic radiology and radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsky, B.

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic

  15. J/ψ and ψ(2S) Radiative Transitions to ηc

    NASA Astrophysics Data System (ADS)

    Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.

    2009-01-01

    Using 2.45×107 ψ(2S) decays collected with the CLEO-c detector at the Cornell Electron Storage Ring we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(ψ(2S)→γηc)=(4.32±0.16±0.60)×10-3, B(J/ψ→γηc)/B(ψ(2S)→γηc)=4.59±0.23±0.64, and B(J/ψ→γηc)=(1.98±0.09±0.30)%. We observe a distortion in the ηc line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the ηc mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the ηc mass in radiative transitions and other production mechanisms.

  16. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, P; Holder, J; Young, B

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less

  17. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  18. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators

  19. Dental flat panel conebeam CT in the evaluation of patients with inflammatory sinonasal disease: Diagnostic efficacy and radiation dose savings.

    PubMed

    Leiva-Salinas, C; Flors, L; Gras, P; Más-Estellés, F; Lemercier, P; Patrie, J T; Wintermark, M; Martí-Bonmatí, L

    2014-01-01

    CT is the imaging modality of choice to study the paranasal sinuses; unfortunately, it involves significant radiation dose. Our aim was to assess the diagnostic validity, image quality, and radiation-dose savings of dental conebeam CT in the evaluation of patients with suspected inflammatory disorders of the paranasal sinuses. We prospectively studied 40 patients with suspected inflammatory disorders of the sinuses with dental conebeam CT and standard CT. Two radiologists analyzed the images independently, blinded to clinical information. The image quality of both techniques and the diagnostic validity of dental conebeam CT compared with the reference standard CT were assessed by using 3 different scoring systems. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were calculated for both techniques. The absorbed radiation dose to the lenses and thyroid and parotid glands was measured by using a phantom and dosimeter chips. The effective radiation dose for CT was calculated. All dental conebeam CT scans were judged of diagnostic quality. Compared with CT, the conebeam CT image noise was 37.3% higher (P < .001) and the SNR of the bone was 75% lower (P < .001). The effective dose of our conebeam CT protocol was 23 μSv. Compared with CT, the absorbed radiation dose to the lenses and parotid and thyroid glands with conebeam CT was 4%, 7.8%, and 7.3% of the dose delivered to the same organs by conventional CT (P < .001). Dental conebeam CT is a valid imaging procedure for the evaluation of patients with inflammatory sinonasal disorders. © 2014 by American Journal of Neuroradiology.

  20. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  1. Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media

    NASA Astrophysics Data System (ADS)

    Burshtein, Zeev

    2010-09-01

    We present and discuss in a comprehensive, deductive, and simplified manner, issues of nonradiative transitions involvement in fluorescence of ions embedded in dielectric solid matrices. The semiclassical approach is favored over a full quantum description, and empiric quantities are introduced from the start. One issue is nonradiative single-phonon transitions when the energy gap between the adjacent electronic ion states is smaller than the cutoff matrix phonon energy. Another issue is transitions in a complex energy scheme, where some visible and near-visible transitions are radiative and others are nonradiative. A refined Füchtbauer-Ladenburg recipe for calculation of the stimulated emission spectrum on the basis of measurable absorption and fluorescence emission spectra is worked out. The last issue is multiphonon nonradiative transitions occurring when the energy gap between adjacent electronic ion states is larger than the cutoff matrix phonon energy. Transition probabilities were calculated on the basis of anharmonicity of the effective potential supporting the internal atomic basis vibrations. An expression in a closed form is obtained, similar to the empiric ``energy gap'' law, however, with parameters related to specific host material properties and the actual transition in the ion. Comparison to existing experimental evidence is presented and discussed in detail.

  2. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  3. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy 229Th Nuclear Isomeric Transition

    NASA Astrophysics Data System (ADS)

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; Rellergert, Wade G.; Mirzadeh, Saed; Cassanho, A.; Jenssen, H. P.; Tkalya, Eugene V.; Hudson, Eric R.

    2015-06-01

    We report the results of a direct search for the 229Th (Iπ=3 /2+←5 /2+ ) nuclear isomeric transition, performed by exposing 229Th -doped LiSrAlF6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s ≲τ ≲(2000 - 5600 ) s . This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  4. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy Th 229 Nuclear Isomeric Transition

    DOE PAGES

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; ...

    2015-06-23

    We report the results of a direct search for the 229Tn (I π = 3/2 + ← 5/2 +) nuclear isomeric transition, performed by exposing 229Tn-doped LiSrAlF 6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1–2) s≲τ≲ (2000-5600) s. Lastly, this measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  5. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    PubMed

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  6. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    NASA Astrophysics Data System (ADS)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  7. Molecular diagnostics of Galactic star-formation regions

    NASA Astrophysics Data System (ADS)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  8. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  9. Transition Probabilities of Emissions and Rotationless Radiative Lifetimes of Vibrational Levels for the PO Radical

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-06-01

    This work investigates the transition dipole moments (TDMs) and transition probabilities of electric dipole emissions between the X2Π, B2Σ+, B‧2Π, D‧2Π, C2Σ‑, C‧2Δ, F2Σ+, and P2Π states of the PO radical. The TDMs of 23 pairs of states are calculated by the internally contracted multireference configuration method with the aug-cc-pV6Z basis set. The vibrational band origins, Franck–Condon factors, and Einstein coefficients of all the spontaneous emissions are evaluated. The rotationless radiative lifetimes of the vibrational levels are approximately 10‑7–10‑8 s for the B2Σ+, C2Σ‑, C‧2Δ, P2Π, and F2Σ+ states; 10‑4–10‑5 s for the B‧2Π state; and 10‑1–10‑2 s for the D‧2Π state. The Einstein coefficients of many emissions are large for the B2Σ+–X2Π, B‧2Π–X2Π, C‧2Δ–X2Π, C2Σ‑–X2Π, F2Σ+–X2Π, P2Π–X2Π, P2Π–B‧2Π, and P2Π–D‧2Π systems. Almost all the spontaneous emissions arising from the D‧2Π state are very weak. The vibrational band origins of these emissions extend from the UV into the far-infrared spectra. The radiative lifetimes and vibrational band origins are compared with available experimental and theoretical values. According to the radiative lifetimes and transition probabilities obtained in this paper, some guidelines for detecting these states spectroscopically are proposed. The TDMs and transition probabilities reported here are considered to be reliable and can be used as guidelines for detecting similar transitions, especially those in interstellar space.

  10. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with openingmore » angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.« less

  11. Tuning near field radiative heat flux through surface excitations with a metal insulator transition.

    PubMed

    van Zwol, P J; Ranno, L; Chevrier, J

    2012-06-08

    The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experimentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field. In all cases the Derjaguin approximation correctly predicted radiative heat transfer in near field, but it underestimated the far field limit. Our results indicate that heat flow contrasts can be realized in near field that can be larger than those obtained in far field.

  12. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  13. Radiation-based near-field thermal rectification with phase transition materials

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Basu, Soumyadipta; Wang, Liping

    2013-10-01

    The capability of manipulating heat flow has promising applications in thermal management and thermal circuits. In this Letter, we report strong thermal rectification effect based on the near-field thermal radiation between silicon dioxide (SiO2) and a phase transition material, vanadium dioxide (VO2), separated by nanometer vacuum gaps under the framework of fluctuational electrodynamics. Strong coupling of surface phonon polaritons between SiO2 and insulating VO2 leads to enhanced near-field radiative transfer, which on the other hand is suppressed when VO2 becomes metallic, resulting in thermal rectification. The rectification factor is close to 1 when vacuum gap is at 1 μm and it increases to almost 2 at sub-20-nm gaps when emitter and receiver temperatures are set to 400 and 300 K, respectively. Replacing bulk SiO2 with a thin film of several nanometers, rectification factor of 3 can be achieved when the vacuum gap is around 100 nm.

  14. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  15. Ages and transit times as important diagnostics of model performance for predicting C allocation in ecosystem models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos

    2017-04-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments

  16. Monochromatic coherent transition and diffraction radiation from a relativistic electron bunch train

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Potylitsyn, A.; Shevelev, M.; Karataev, P.; Shipulya, M.; Bleko, V.

    2018-04-01

    Electron beams of most accelerators have a bunched structure and are synchronized with the accelerating RF field. Due to modulation of the electron beam with frequency ν RF one can expect to observe resonances with frequencies ν k=kṡ ν RF in radiation spectrum generated via any spontaneous emission mechanism (k is an integer and the resonance order). In this paper we present the results of spectral measurements of coherent transition radiation (CTR) generated by an electron bunch train from the Tomsk microtron with ν RF=2.63GHz in the spectral frequency range from 8 to 35 GHz. We also measured the spectrum of coherent diffraction radiation and demonstrated that the observed spectra in both cases consist of monochromatic lines. For spectral measurements the Martin-Puplett interferometer with spectral resolution of 800 MHz (FWMH) was employed. Using a waveguide frequency cut-off we were able to exclude several spectral lines to observe higher resonance orders of up to k =7.

  17. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonwook, E-mail: wwlee@kaeri.re.kr; Kwon, Duck-Hee; Park, Kyungdeuk

    2016-06-15

    Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded.more » The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.« less

  18. COST–RISK–BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT

    PubMed Central

    Moores, B. Michael

    2016-01-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost–benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V−(P+X+Y). This article presents a theoretical cost–risk–benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358

  19. COST-RISK-BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT.

    PubMed

    Moores, B Michael

    2016-06-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: [Formula: see text] This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. © The Author 2015. Published by Oxford University Press.

  20. The ALICE Transition Radiation Detector: Construction, operation, and performance

    NASA Astrophysics Data System (ADS)

    Alice Collaboration

    2018-02-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/ c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

  1. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma.

    PubMed

    Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T

    2018-02-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.

  2. Displaying radiation exposure and cost information at order entry for outpatient diagnostic imaging: a strategy to inform clinician ordering.

    PubMed

    Kruger, Jenna F; Chen, Alice Hm; Rybkin, Alex; Leeds, Kiren; Guzman, David; Vittinghoff, Eric; Goldman, L Elizabeth

    2016-12-01

    Displaying radiation exposure and cost information at electronic order entry may encourage clinicians to consider the value of diagnostic imaging. An urban safety-net health system displayed radiation exposure information for CT and cost information for CT, MRI and ultrasound on an electronic referral system for outpatient ordering. We assessed whether there were differences in numbers of outpatient CT scans and MRIs per month relative to ultrasounds before and after the intervention, and evaluated primary care clinicians' responses to the intervention. There were 23 171 outpatient CTs, 15 052 MRIs and 43 266 ultrasounds from 2011 to 2014. The ratio of CTs to ultrasounds decreased by 15% (95% CI 9% to 21%), from 58.2 to 49.6 CTs per 100 ultrasounds; the ratio of MRIs to ultrasounds declined by 13% (95% CI 7% to 19%), from 37.5 to 32.5 per 100. Of 300 invited, 190 (63%) completed the web-based survey in 17 clinics. 154 (81%) noticed the radiation exposure information and 158 (83.2%) noticed the cost information. Clinicians believed radiation exposure information was more influential than cost information: when unsure clinically about ordering a test (radiation=69.7%; cost=46.4%), when a patient wanted a test not clinically indicated (radiation=77.5%; cost=54.8%), when they had a choice between imaging modalities (radiation=77.9%; cost=66.6%), in patient care discussions (radiation=71.9%; cost=43.2%) and in trainee discussions (radiation=56.5%; cost=53.7%). Resident physicians and nurse practitioners were more likely to report that the cost information influenced them (p<0.05). Displaying radiation exposure and cost information at order entry may improve clinician awareness about diagnostic imaging safety risks and costs. More clinicians reported the radiation information influenced their clinical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK).

    PubMed

    Pijpe, Anouk; Andrieu, Nadine; Easton, Douglas F; Kesminiene, Ausrele; Cardis, Elisabeth; Noguès, Catherine; Gauthier-Villars, Marion; Lasset, Christine; Fricker, Jean-Pierre; Peock, Susan; Frost, Debra; Evans, D Gareth; Eeles, Rosalind A; Paterson, Joan; Manders, Peggy; van Asperen, Christi J; Ausems, Margreet G E M; Meijers-Heijboer, Hanne; Thierry-Chef, Isabelle; Hauptmann, Michael; Goldgar, David; Rookus, Matti A; van Leeuwen, Flora E

    2012-09-06

    To estimate the risk of breast cancer associated with diagnostic radiation in carriers of BRCA1/2 mutations. Retrospective cohort study (GENE-RAD-RISK). Three nationwide studies (GENEPSO, EMBRACE, HEBON) in France, United Kingdom, and the Netherlands, 1993 female carriers of BRCA1/2 mutations recruited in 2006-09. Risk of breast cancer estimated with a weighted Cox proportional hazards model with a time dependent individually estimated cumulative breast dose, based on nominal estimates of organ dose and frequency of self reported diagnostic procedures. To correct for potential survival bias, the analysis excluded carriers who were diagnosed more than five years before completion of the study questionnaire. In carriers of BRCA1/2 mutations any exposure to diagnostic radiation before the age of 30 was associated with an increased risk of breast cancer (hazard ratio 1.90, 95% confidence interval 1.20 to 3.00), with a dose-response pattern. The risks by quarter of estimated cumulative dose <0.0020 Gy, ≥ 0.0020-0.0065 Gy, ≥ 0.0066-0.0173 Gy, and ≥ 0.0174 Gy were 1.63 (0.96 to 2.77), 1.78 (0.88 to 3.58), 1.75 (0.72 to 4.25), and 3.84 (1.67 to 8.79), respectively. Analyses on the different types of diagnostic procedures showed a pattern of increasing risk with increasing number of radiographs before age 20 and before age 30 compared with no exposure. A history of mammography before age 30 was also associated with an increased risk of breast cancer (hazard ratio 1.43, 0.85 to 2.40). Sensitivity analysis showed that this finding was not caused by confounding by indication of family history. In this large European study among carriers of BRCA1/2 mutations, exposure to diagnostic radiation before age 30 was associated with an increased risk of breast cancer at dose levels considerably lower than those at which increases have been found in other cohorts exposed to radiation. The results of this study support the use of non-ionising radiation imaging techniques (such as

  4. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso-Medina, A.; Colon, C., E-mail: cristobal.colon@upm.e; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in thesemore » calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.« less

  5. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  6. Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yuhchyau; Hyrien, Ollivier; Williams, Jacqueline

    2005-05-01

    Purpose: To explore the application of interleukin (IL)-1{alpha} and IL-6 measurements in the predictive diagnostic testing for symptomatic radiation pneumonitis (RP). Methods and materials: In a prospective protocol investigating RP and cytokines, IL-1{alpha} and IL-6 values were analyzed by enzyme-linked immunosorbent assay from serial weekly blood samples of patients receiving chest radiation. We analyzed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) over selected threshold values for both cytokines in the application to diagnostic testing. Results: The average coefficient of variation was 51% of the weekly mean IL-1{alpha} level and 39% of the weekly mean IL-6 value.more » Interleukin 1{alpha} and IL-6 became positively correlated with time. Specificity for both cytokines was better than sensitivity. IL-6 globally outperformed IL-1{alpha} in predicting RP, with higher PPV and NPV. Conclusions: Our data demonstrate the feasibility of applying IL-1{alpha} and IL-6 measurements of blood specimens to predict RP. Interleukin-6 measurements offer stronger positive predictive value than IL-1{alpha}. This application might be further explored in a larger sample of patients.« less

  7. Estimation of the Lyman-α signal of the EFILE diagnostic under static or radiofrequency electric field in vacuum

    NASA Astrophysics Data System (ADS)

    Carlo, POGGI; Théo, GUILLAUME; Fabrice, DOVEIL; Laurence, CHÉRIGIER-KOVACIC

    2018-07-01

    The electric field induced Lyman-α emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-α radiation, which is collected by a photomultiplier. The 2s\\to 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around 1 GHz). By measuring the intensity of the Lyman-α radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.

  8. Spectrum of coherent transition radiation generated by a modulated electron beam

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.

    2017-07-01

    The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.

  9. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance.

    PubMed

    Guggenberger, Roman; Ulbrich, Erika J; Dietrich, Tobias J; Scholz, Rosemarie; Kaelin, Pascal; Köhler, Christoph; Elsässer, Thilo; Le Corroller, Thomas; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav

    2017-02-01

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between к = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. • FPCT shoulder arthrography is feasible with fluoroscopy and CT in one workflow. • A 5-s FPCT protocol applies a lower radiation dose than MDCT. • A 20-s FPCT protocol is moderately sensitive for cartilage and tendon pathology.

  10. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE PAGES

    Acharya, S; Adam, J; Adamova, D; ...

    2017-09-21

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  11. The ALICE Transition Radiation Detector: Construction, operation, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S; Adam, J; Adamova, D

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this article, the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction.more » The triggering capability is demonstrated both for jet, light nuclei, and electron selection.« less

  12. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man

    2014-07-01

    Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  13. Coherent radiation of relativistic electrons in dielectric fibers in the millimeter wavelength range

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Bleko, V. V.; Soboleva, V. V.

    2015-02-01

    The generation of visible light by a relativistic electron beam in dielectric fibers was considered in X. Artru and C. Ray, Nucl. Inst. Meth. B 309, 4 (2013), where the characteristics of radiation induced in a fiber by the electromagnetic field of a relativistic charged particle were studied and it was emphasized that they differ from those in the traditional mechanisms of radiation such as transition and diffraction. We have experimentally studied the characteristics of such a radiation in the millimeter wavelength range. It has been shown that radiation can be generated through different mechanisms depending on the geometry of the position of a fiber with respect to the trajectory of the charged particle. Fibers have been shown to be promising for nondestructive diagnostics of accelerator beams.

  14. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  15. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  16. FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; et al.

    2006-11-01

    aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.

  17. [Craniopharyngioma and Klinefelter syndrome during the pubertal transition: A diagnostic challenge].

    PubMed

    Mocarbel, Yamile; Arébalo de Cross, Graciela; Lebrethon, Marie C; Thiry, Albert; Beckersd, Albert; Valdes-Socin, Hernan

    2017-04-01

    Craniopharyngioma is the most common pituitary tumor in childhood. It can compromise the pubertal development because of its evolution or treatment. Syndrome of Klinefelter is the most common cause of hipergonadotrophic hypogonadism in males. The concomitant presentation of both entities is extremely low (1/109) and the pathophysiological association is questionned. We present the case of a 18-year-old Belgian patient. He had a diagnosis of craniopharyngioma in childhood and he presented with panhypopituitarism after radiotherapy and surgical treatment. At the age of 14, he started pubertal induction with gonadotropin therapy without clinical response. Asociación de craneofaringioma y síndrome de Klinefelter en la transición puberal: un desafío diagnóstico Craniopharyngioma and Klinefelter syndrome during the pubertal transition: A diagnostic challenge A genetic evaluation confirmed a homogeneous 47, XXY karyotype. Failure of exogenous gonadotropin therapy revealed the hidden association of primary and secondary hypogonadism, demonstrating the importance of the followup and a multidisciplinary approach in these patients. Sociedad Argentina de Pediatría.

  18. Diagnostic transitions in mild cognitive impairment subtypes.

    PubMed

    Forlenza, Orestes Vicente; Diniz, Breno Satler; Nunes, Paula Villela; Memória, Claudia Maia; Yassuda, Monica Sanches; Gattaz, Wagner Farid

    2009-12-01

    At least for a subset of patients, the clinical diagnosis of mild cognitive impairment (MCI) may represent an intermediate stage between normal aging and dementia. Nevertheless, the patterns of transition of cognitive states between normal cognitive aging and MCI to dementia are not well established. In this study we address the pattern of transitions between cognitive states in patients with MCI and healthy controls, prior to the conversion to dementia. 139 subjects (78% women, mean age, 68.5 +/- 6.1 years; mean educational level, 11.7 +/- 5.4 years) were consecutively assessed in a memory clinic with a standardized clinical and neuropsychological protocol, and classified as cognitively healthy (normal controls) or with MCI (including subtypes) at baseline. These subjects underwent annual reassessments (mean duration of follow-up: 2.7 +/- 1.1 years), in which cognitive state was ascertained independently of prior diagnoses. The pattern of transitions of the cognitive state was determined by Markov chain analysis. The transitions from one cognitive state to another varied substantially between MCI subtypes. Single-domain MCI (amnestic and non-amnestic) more frequently returned to normal cognitive state upon follow-up (22.5% and 21%, respectively). Among subjects who progressed to Alzheimer's disease (AD), the most common diagnosis immediately prior conversion was multiple-domain MCI (85%). The clinical diagnosis of MCI and its subtypes yields groups of patients with heterogeneous patterns of transitions between one given cognitive state to another. The presence of more severe and widespread cognitive deficits, as indicated by the group of multiple-domain amnestic MCI may be a better predictor of AD than single-domain amnestic or non-amnestic deficits. These higher-risk individuals could probably be the best candidates for the development of preventive strategies and early treatment for the disease.

  19. Transition properties of the Be-like Kα X-ray from Mg IX

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Zhang, Shufang; Sun, Yan; Mei, Maofei; Sang, Cuicui; Yang, Jiamin

    2017-12-01

    Energy levels among the lowest 40 fine-structure levels in Be-like Mg IX are calculated using grasp2K code. The wavelengths, oscillator strengths, radiative rates and lifetimes for all possible Kα transitions have been calculated using the multiconfiguration Dirac-Fock method. The accuracy of the results is determined through extensive comparisons with the existing laboratory measurements and theoretical results. The present data can be used reliably for many purposes, such as the line identification of the observed spectra, and modelling and diagnostics of magnesium plasma.

  20. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  1. Transition moments, radiative transition probabilities, and radiative lifetimes for the band systems A 2Π-X 2Σ+, B 2Σ+-X 2Σ+, and A 2Π-A´ 2Δ of scandium monosulfide, ScS

    NASA Astrophysics Data System (ADS)

    Romeu, João Gabriel Farias; Belinassi, Antonio Ricardo; Ornellas, Fernando R.

    2018-05-01

    A manifold of electronic states of ScS was investigated with special emphasis on the low-lying states X 2Σ+, A´ 2Δ, A 2Π, and B 2Σ+. For all states, potential energy curves were constructed covering internuclear distances from the equilibrium region through the dissociation limit. For the above states, besides providing the most accurate set of theoretical spectroscopic parameters to date, we have also computed dipole moment functions, transitions dipole moment functions, the associated radiative transition probabilities, and radiative lifetimes. For the states known experimentally, X 2Σ+, A 2Π, and B 2Σ+, our results significantly expand our present knowledge of the energetic profile of these states thus providing a new perspective for understanding the limited spectral data for this species known so far. For the new state, A´ 2Δ, yet unobserved experimentally, our results are sufficiently reliable and accurate to guide spectroscopists on further studies of this species.

  2. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  3. Submucosal nerve diameter of greater than 40 μm is not a valid diagnostic index of transition zone pull-through.

    PubMed

    Kapur, Raj P

    2016-10-01

    Submucosal nerve hypertrophy is a feature of the transition zone in Hirschsprung disease and has been used as a primary diagnostic feature of transition zone pull-through for patients with persistent obstructive symptoms after their initial surgery. Most published criteria for identification of hypertrophy rely on a nerve diameter of greater than 40μm, based primarily on data from a relatively small number of infants with Hirschsprung disease and controls. The validity of these objective measures has not been validated in appropriate controls for post-pull-through patients. The primary pull-through specimens and post pull-through biopsies +/- redo pull-through resections from a series of 9 patients with Hirschsprung disease were reviewed to assess the prevalence of submucosal nerves >40μm in diameter and 400× microscopic fields containing two or more such nerves. Similar data from multiple colonic locations were collected from a series of 40 non-Hirschsprung autopsy and surgical controls. The overwhelming majority of Hirschsprung patients harbored submucosal nerves >40μm in their post-pull-through specimens independent of other features of transition zone pathology, and despite normal innervation at the proximal margins of their initial resections. Measurement of submucosal nerve diameters in autopsy and surgical non-Hirschsprung control samples indicated that nerves >40μm are normal in the distal rectum after 1year of age and are found in more proximal colon at older ages. These results suggest that diagnostic criteria currently used to recognize submucosal nerve hypertrophy in the neorectum after a pull-through for Hirschsprung disease are not justified and should not be regarded as definitive evidence for transition zone pull-through. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca

    2017-09-01

    The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

  5. Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model

    NASA Astrophysics Data System (ADS)

    Lü, Qi-Fang; Wang, Kai-Lei; Xiao, Li-Ye; Zhong, Xian-Hui

    2017-12-01

    We study the mass spectra and radiative decays of doubly heavy baryons within the diquark picture in a relativized quark model. The mass of the JP=1 /2+ Ξc c ground state is predicted to be 3606 MeV, which is consistent with the mass of Ξcc ++(3621 ) newly observed by the LHCb Collaboration. The predicted mass gap between two S -wave states, Ξcc * (JP=3 /2+) and Ξc c (JP=1 /2+), is 69 MeV. Furthermore, the radiative transitions of doubly heavy baryons are also estimated by using the realistic wave functions obtained from relativized quark model. The radiative decay widths of Ξcc *++→Ξcc ++γ and Ξcc *+→Ξcc +γ are predicted to be about 7 and 4 keV, respectively. These predictions of doubly heavy baryons can provide helpful information for future experimental searches.

  6. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    NASA Astrophysics Data System (ADS)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  7. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  8. Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms

    PubMed Central

    Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.

    2015-01-01

    Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR

  9. Comparison of diagnostic performance between single- and multiphasic contrast-enhanced abdominopelvic computed tomography in patients admitted to the emergency department with abdominal pain: potential radiation dose reduction.

    PubMed

    Hwang, Shin Hye; You, Je Sung; Song, Mi Kyong; Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun

    2015-04-01

    To evaluate feasibility of radiation dose reduction by optimal phase selection of computed tomography (CT) in patients who visited the emergency department (ED) for abdominal pain. We included 253 patients who visited the ED for abdominal pain. They underwent multiphasic CT including precontrast, late arterial phase (LAP), and hepatic venous phase (HVP). Three image sets (HVP, precontrast + HVP, and precontrast + LAP + HVP) were reviewed. Two reviewers determined the most appropriate diagnosis with five-point confidence scale. Diagnostic performances were compared among image sets by weighted-least-squares method or DeLong's method. Linear mixed model was used to assess changes of diagnostic confidence and radiation dose. There was no difference in diagnostic performance among three image sets, although diagnostic confidence level was significantly improved after review of triphasic images compared with both HVP images only or HVP with precontrast images (confidence scale, 4.64 ± 0.05, 4.66 ± 0.05, and 4.76 ± 0.04 in the order of the sets; overall P = 0.0008). Similar trends were observed in the subgroup analysis for diagnosis of pelvic inflammatory disease and cholecystitis. There is no difference between HVP-CT alone and multiphasic CT for the diagnosis of causes of abdominal pain in patients admitted to the ED without prior chronic disease or neoplasia. • There was no difference in diagnostic performance of HVP CT and multiphasic CT. • The diagnostic confidence level was improved after review of the LAP images. • HVP CT can achieve diagnostic performance similar to that of multiphasic CT, while minimizing radiation.

  10. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD).

    PubMed

    Ehresmann, Bent; Hassler, Donald M; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  11. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  12. Occupational and diagnostic exposure to ionizing radiation and leukemia risk among German uranium miners.

    PubMed

    Möhner, Matthias; Gellissen, Johannes; Marsh, James W; Gregoratto, Demetrio

    2010-09-01

    Lung cancer is a well-known effect of radon exposure in uranium mines. However, little is known about the induction of leukemia by radiation exposure in mines. Moreover, miners usually have occupational medical checkup programs that include chest x-ray examinations. Therefore, the aim of the present study was to re-examine leukemia risk among miners, taking into account exposure to x rays for diagnostic purposes. The data used were from a previously analyzed individually matched case-control study of former uranium miners in East Germany with 377 cases and 980 controls. Additionally, data on x-ray examinations were taken from medical records for most of the subjects. Finally, the absorbed dose to red bone marrow was calculated considering both occupational and diagnostic exposures. Using conditional logistic regression models, a moderately but not statistically significant elevated risk was seen in the dose category above 200 mGy for the combined dose from both sources [odds ratio (OR) = 1.33, 90% confidence interval (CI): (0.82-2.14)]. Ignoring the dose accumulated in the recent 20 y, the risk in the highest dose category (>105 mGy) was higher [OR = 1.77, 90% CI: (1.06-2.95)]. Ignoring diagnostic exposure yielded similar results. For the highest dose category (absorbed dose lagged by 20 y) the risk was more than doubled [OR = 2.64, 90% CI: (1.60-4.35)].

  13. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  14. Reversed Cherenkov-transition radiation in a waveguide partly filled with a left-handed medium

    NASA Astrophysics Data System (ADS)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.

    2018-04-01

    We analyze the electromagnetic field of a charged particle that moves uniformly in a circular waveguide and crosses a boundary between a vacuum area and an area filled with a left-handed medium exhibiting resonant frequency dispersion. The investigation of the waveguide mode components is performed analytically and numerically. The reversed Cherenkov radiation in the filled area of the waveguide and the reversed Cherenkov-transition radiation (RCTR) in the vacuum area are analyzed. The conditions for the excitation of RCTR are obtained. It is shown that the number of modes of RCTR is always finite; in particular, under certain conditions, the RCTR is composed of the first waveguide mode only. Plots of the typical fields of the excited waveguide mode are presented.

  15. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  16. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells

    PubMed Central

    Nagarajan, Devipriya; Wang, Lei; Zhao, Weiling; Han, Xiaochen

    2017-01-01

    Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling. PMID:29254201

  17. Demand for CT scans increases during transition from paediatric to adult care: an observational study from 2009 to 2015.

    PubMed

    Thurley, Pete; Crookdake, Jonathan; Norwood, Mark; Sturrock, Nigel; Fogarty, Andrew W

    2018-02-01

    Avoiding unnecessary radiation exposure is a clinical priority in children and young adults. We aimed to explore demand for CT scans in a busy general hospital with particular interest in the period of transition from paediatric to adult medical care. We used an observational epidemiological study based in a teaching hospital. Data were obtained on numbers and rates of CT scans from 2009 to 2015. The main outcome was age-stratified rates of receiving a CT scan. There were a total of 262,221 CT scans. There was a large step change in the rate of CT scans over the period of transition from paediatric to adult medical care. Individuals aged 10-15 years experienced 6.7 CT scans per 1000 clinical episodes, while those aged 19-24 years experienced 19.8 CT scans per 1000 clinical episodes (p < 0.001). This difference remained significant for all sensitivity analyses. There is almost a threefold increase in rates of CT scans in the two populations before and after the period of transition from paediatric to adult medical care. While we were unable to adjust for case mix or quantify radiation exposure, paediatricians' diagnostic strategies to minimize radiation exposure may have clinical relevance for adult physicians, and hence enable reductions in ionizing radiation to patients. Advances in knowledge: A large increase in rates of CT scans occurs during adolescence, and considering paediatricians' strategies to minimize radiation exposure may enable reductions to all patients.

  18. Mobile diagnostics: next-generation technologies for in vitro diagnostics.

    PubMed

    Shin, Joonchul; Chakravarty, Sudesna; Choi, Wooseok; Lee, Kyungyeon; Han, Dongsik; Hwang, Hyundoo; Choi, Jaekyu; Jung, Hyo-Il

    2018-03-26

    The emergence of a wide range of applications of smartphones along with advances in 'liquid biopsy' has significantly propelled medical research particularly in the field of in vitro diagnostics (IVD). Herein, we have presented a detailed analysis of IVD, its associated critical concerns and probable solutions. It also demonstrates the transition in terms of analytes from minimally invasive (blood) to non-invasive (urine, saliva and sweat) and depicts how the different features of a smartphone can be integrated for specific diagnostic purposes. This review basically highlights recent advances in the applications of smartphone-based biosensors in IVD taking into account the following factors: accuracy and portability; quantitative and qualitative analysis; and centralization and decentralization tests. Furthermore, the critical concerns and future direction of diagnostics based on smartphones are also discussed.

  19. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    PubMed

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2017-11-01

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP) + /vimentin + and EGFP + /α-smooth muscle actin (SMA) + coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium.

  20. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries-Image quality, diagnostic accuracy and radiation exposure.

    PubMed

    Schreiner, Markus M; Platzgummer, Hannes; Unterhumer, Sylvia; Weber, Michael; Mistelbauer, Gabriel; Loewe, Christian; Schernthaner, Ruediger E

    2017-08-01

    To investigate radiation exposure, objective image quality, and the diagnostic accuracy of a BMI-adjusted ultra-low-dose CT angiography (CTA) protocol for the assessment of peripheral arterial disease (PAD), with digital subtraction angiography (DSA) as the standard of reference. In this prospective, IRB-approved study, 40 PAD patients (30 male, mean age 72 years) underwent CTA on a dual-source CT scanner at 80kV tube voltage. The reference amplitude for tube current modulation was personalized based on the body mass index (BMI) with 120 mAs for [BMI≤25] or 150 mAs for [2570%) was assessed by two readers independently and compared to subsequent DSA. Radiation exposure was assessed with the computed tomography dose index (CTDIvol) and the dosis-length product (DLP). Objective image quality was assessed via contrast- and signal-to-noise ratio (CNR and SNR) measurements. Radiation exposure and image quality were compared between the BMI groups and between the BMI-adjusted ultra-low-dose protocol and the low-dose institutional standard protocol (ISP). The BMI-adjusted ultra-low-dose protocol reached high diagnostic accuracy values of 94% for Reader 1 and 93% for Reader 2. Moreover, in comparison to the ISP, it showed significantly (p<0.001) lower CTDIvol (1.97±0.55mGy vs. 4.18±0.62 mGy) and DLP (256±81mGy x cm vs. 544±83mGy x cm) but similar image quality (p=0.37 for CNR). Furthermore, image quality was similar between BMI groups (p=0.86 for CNR). A CT protocol that incorporates low kV settings with a personalized (BMI-adjusted) reference amplitude for tube current modulation and iterative reconstruction enables very low radiation exposure CTA, while maintaining good image quality and high diagnostic accuracy in the assessment of PAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Awareness and Knowledge of Ionizing Radiation Risks Between Prescribed and Self-Presenting Patients for Common Diagnostic Radiological Procedures in Bahrain

    PubMed Central

    Al-Mallah, Adel; Vaithinathan, Asokan G.; Al-Sehlawi, Mahdi; Al-Mannai, Mariam

    2017-01-01

    Objectives Between 20 to 50% of medical imaging examinations are considered inappropriate, and unnecessary ionizing radiation exposures may lead to cancer. We hypothesized that Bahraini patients who self-present for ionizing radiation procedures are not aware of, and lack the requisite knowledge of, the inherent risks associated with their use than patients prescribed for diagnostic purposes. We attempted to examine and compare the awareness and knowledge of the associated risks of ionizing radiation in common diagnostic radiological procedures between prescribed and self-presenting patients in Bahrain. Methods A cross-sectional survey was carried out among 416 Bahraini patients attending the radiology department of the Salmaniya Medical Complex (SMC), a secondary health care center, who had been referred by primary care physicians or self-presented to the center. Data was collected via face-to-face interviews. Results Prescribed patients (n = 358) had a better awareness than self-presenting (n = 58) patients on all ionizing radiation awareness statements (i.e., risks, permissible levels, willingness to undergo the procedure, and preference for a clinical examination over a radiological procedure) (p < 0.050). Of the 10 knowledge statements, the prescribed patients agreed on four statements than the self-presenting patients: preventing or minimizing exposure improves health, people can prevent or minimize exposure, a lifelong health concern, and radiological procedures offer best diagnoses compared to medical tests or procedures (p <  0.050). Conclusions Bahraini patients who reported to SMC lack awareness and knowledge on ionizing radiation. The proportion of appropriate responses to awareness and knowledge questions were paltry for self-presenting patients and deficient for the prescribed patients in the knowledge segment alone. PMID:29026468

  2. SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Patel, B; Syh, J

    2015-06-15

    Purpose: Several vendors of diagnostic lead apron used routinely in radiology/fluoroscopy claim to manufacture 0.5 mm lead equivalent shielding. The purpose of this investigation was to address the concern of the weight of lead aprons versus the radiation protection they provide. Methods: Seven diagnostic lead aprons were measured and compared for their radiation transmission and attenuation characteristics. The measurements were performed on a Philips Integris. Two settings were used, normal (76 kVp, 14.3 mA) and high (110 kVp, 12.3 mA) to represent typical patient and large patient thickness. Plastic water was placed on the table to represent patient scatter. Amore » Capintec PM-500 ion chamber was placed at approximate chest height where hospital personnel would stand. An uncovered, i.e. lead-unhindered, ion chamber reading was taken to establish the baseline reading of an unprotected personnel. The ion chamber was then wrapped with 0.5mm 99.9% pure Pb material to establish the measurement reading when a diagnostic lead apron attenuates as adequately as 0.5mm Pb. The lead aprons were measured one at a time with the ion chamber fully covered and enclosed within the aprons. Results: On Normal fluoroscopy setting, the 0.5mm pure Pb showed a transmission of 0.4%. No aprons showed a transmission value as low as 0.5mm Pb. The lowest transmission value measured from the aprons was 2.0%, having a 1.5% higher transmission than pure lead. On High fluoroscopy setting, the lowest apron transmission measurement was at 2.8%, which was comparable to the 0.5mm pure Pb which gave a transmission of 3.0%. Conclusion: At Normal fluoroscopy setting, the 0.5mm Pb provided an attenuation that could not be matched by any apron measured. At High fluoroscopy setting, only one apron exhibited comparable transmission values as 0.5mm pure Pb.« less

  3. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  4. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  5. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE PAGES

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...

    2017-12-07

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  6. Diagnostic radiation exposure in pediatric trauma patients.

    PubMed

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (p<0.0001). Burn injuries had the lowest radiation dose [1.2 (±2.6) mSv], whereas motor vehicle collision victims had the highest dose [18.8 (±14.7) mSv]. When the use of radiologic imaging is considered essential, cumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  7. Transitional lumbosacral vertebrae and low back pain: diagnostic pitfalls and management of Bertolotti's syndrome.

    PubMed

    Almeida, Daniel Benzecry de; Mattei, Tobias Alécio; Sória, Marília Grando; Prandini, Mirto Nelso; Leal, André Giacomelli; Milano, Jerônimo Buzzeti; Ramina, Ricardo

    2009-06-01

    Bertolotti's syndrome is a spine disorder characterized by the occurrence of a congenital lumbar transverse mega-apophysis in a transitional vertebral body that usually articulates with the sacrum or the iliac bone. It has been considered a possible cause of low back pain. We analyzed the cases of Bertolotti's syndrome that failed clinical treatment and reviewed the literature concerning this subject. Five patients in our series had severe low back pain due to the neo-articulation and two of them were successfully submitted to surgical resection of the transverse mega-apophysis. Taking into account the clinical and surgical experience acquired with these cases, we propose a diagnostic-therapeutic algorithm. There is still no consensus about the most appropriate therapy for Bertolotti's syndrome. In patients in whom the mega-apophysis itself may be the source of back pain, surgical resection may be a safe and effective procedure.

  8. Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak

    DOE PAGES

    Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke; ...

    2017-10-04

    Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.

  9. Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke

    Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.

  10. Resonant Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Apanasevich, P. A.; Timofeeva, G. I.

    2018-05-01

    We have developed a theory for a two-photon transition when the frequencies of the absorbed or emitted radiation are in resonance with transitions to the same intermediate level in the medium. We have determined the conditions under which such resonant two-photon transitions can play an important role.

  11. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Linlong; Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122; Du, Jinglei, E-mail: dujl@scu.edu.cn

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  12. Tangeretin enhances radiosensitivity and inhibits the radiation-induced epithelial-mesenchymal transition of gastric cancer cells.

    PubMed

    Zhang, Xukui; Zheng, Luming; Sun, Yinggang; Wang, Tianxiao; Wang, Baocheng

    2015-07-01

    Irradiation has been reported to increase radioresistance and epithelial-mesenchymal transition (EMT) in gastric cancer (GC) cells. The Notch pathway is critically implicated in cancer EMT and radioresistance. In the present study, we investigated the use of a Notch-1 inhibiting compound as a novel therapeutic candidate to regulate radiation-induced EMT in GC cells. According to previous screening, tangeretin, a polymethoxylated flavonoid from citrus fruits was selected as a Notch-1 inhibitor. Tangeretin enhanced the radiosensitivity of GC cells as demonstrated by MTT and colony formation assays. Tangeretin also attenuated radiation-induced EMT, invasion and migration in GC cells, accompanied by a decrease in Notch-1, Jagged1/2, Hey-1 and Hes-1 expressions. Tangeretin triggered the upregulation of miR-410, a tumor-suppressive microRNA. Furthermore, re-expression of miR-410 prevented radiation-induced EMT and cell invasion. An in vivo tumor xenograft model confirmed the antimetastasis effect of tangeretin as we observed in vitro. In nude mice, tumor size was considerably diminished by radiation plus tangeretin co-treatment. Tangeretin almost completely inhibited lung metastasis induced by irradiation. Tangeretin may be a novel antimetastatic agent for radiotherapy.

  13. Radiative Ignition and the Transition to Flame Spread Investigated in the Japan Microgravity Center's 10-sec Drop Shaft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Radiative Ignition and Transition to Spread Investigation (RITSI) is a shuttle middeck Glovebox combustion experiment developed by the NASA Lewis Research Center, the National Institute for Standards and Technology (NIST), and Aerospace Design and Fabrication (ADF). It is scheduled to fly on the third United States Microgravity Payload (USMP-3) mission in February 1996. The objective of RITSI is to experimentally study radiative ignition and the subsequent transition to flame spread in low gravity in the presence of very low speed air flows in two- and three-dimensional configurations. Toward this objective, a unique collaboration between NASA, NIST, and the University of Hokkaido was established to conduct 15 science and engineering tests in Japan's 10-sec drop shaft. For these tests, the RITSI engineering hardware was mounted in a sealed chamber with a variable oxygen atmosphere. Ashless filter paper was ignited during each drop by a tungsten-halogen heat lamp focused on a small spot in the center of the paper. The flame spread outward from that point. Data recorded included fan voltage (a measure of air flow), radiant heater voltage (a measure of radiative ignition energy), and surface temperatures (measured by up to three surface thermocouples) during ignition and flame spread.

  14. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch.

    PubMed

    Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin

    2016-07-01

    Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.

  15. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs

  16. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, T. F.; Chen, Z. J.; Peng, X. Y.

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less

  17. Regimes of radiative and nonradiative transitions in transport through an electronic system in a photon cavity reaching a steady state

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-01-01

    We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  18. Highly Physical Solar Radiation Pressure Modeling During Penumbra Transitions

    NASA Astrophysics Data System (ADS)

    Robertson, Robert V.

    Solar radiation pressure (SRP) is one of the major non-gravitational forces acting on spacecraft. Acceleration by radiation pressure depends on the radiation flux; on spacecraft shape, attitude, and mass; and on the optical properties of the spacecraft surfaces. Precise modeling of SRP is needed for dynamic satellite orbit determination, space mission design and control, and processing of data from space-based science instruments. During Earth penumbra transitions, sunlight is passing through Earth's lower atmosphere and, in the process, its path, intensity, spectral composition, and shape are significantly affected. This dissertation presents a new method for highly physical SRP modeling in Earth's penumbra called Solar radiation pressure with Oblateness and Lower Atmospheric Absorption, Refraction, and Scattering (SOLAARS). The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. This dissertation aims to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects due to solar radiation passing through the troposphere and stratosphere are modeled, and the results are tabulated to significantly reduce computational cost. SOLAARS includes new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the spatial and temporal variability in lower atmospheric conditions. A new approach to modeling the influence of Earth's polar flattening draws on past work to provide a relatively simple but accurate method for this important effect. Previous penumbra SRP models tend to lie at two extremes of complexity and computational cost, and so the significant improvement in accuracy provided by the complex

  19. Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.

    PubMed

    Gray, J E; Orton, C G

    2000-12-01

    Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff.

  20. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  1. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Diagnostic yield of 90-kVp low-tube-voltage carotid and intracerebral CT-angiography: effects on radiation dose, image quality and diagnostic performance for the detection of carotid stenosis.

    PubMed

    Leithner, Doris; Wichmann, Julian L; Mahmoudi, Scherwin; Martin, Simon S; Albrecht, Moritz H; Vogl, Thomas J; Scholtz, Jan-Erik

    2018-06-01

    To investigate the impact of low-tube-voltage 90-kVp acquisition combined with advanced modeled iterative reconstruction algorithm (Admire) on radiation exposure, image quality, artifacts, and assessment of stenosis in carotid and intracranial CT angiography (CTA). Dual-energy CTA studies of 43 patients performed on a third-generation 192-slice dual-source CT were retrospectively evaluated. Intraindividual comparison of 90-kVp and linearly blended 120-kVp equivalent image series (M_0.6, 60% 90-kVp, 40% Sn-150-kVp) was performed. Contrast-to-noise and signal-to-noise ratios of common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery were calculated. Qualitative image analysis included evaluation of artifacts and suitability for angiographical assessment at shoulder level, carotid bifurcation, siphon, and intracranial by three independent radiologists. Detection and quantification of carotid stenosis were performed. Radiation dose was expressed as dose-length product (DLP). Contrast-to-noise values of all arteries were significantly increased in 90-kVp compared to M_0.6 (p < 0.001). Suitability for angiographical evaluation was rated excellent with low artifacts for all levels in both image series. Both 90-kVp and M_0.6 showed excellent accordance for detection and grading of carotid stenosis with almost perfect interobserver agreement (carotid stenoses in 32 of 129 segments; intraclass correlation coefficient, 0.94). dose-length product was reduced by 40.3% in 90-kVp (110.6 ± 32.1 vs 185.4 ± 47.5 mGy·cm, p < 0.001). 90-kVp carotid and intracranial CTA with Admire provides increased quantitative and similarly good qualitative image quality, while reducing radiation exposure substantially compared to M_0.6. Diagnostic performance for arterial stenosis detection and quantification remained excellent. Advances in knowledge: 90-kVp carotid and intracranial CTA with an advanced iterative reconstruction algorithm results in

  3. Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O

    NASA Astrophysics Data System (ADS)

    Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.

    2006-03-01

    Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.

  4. Low-dose CT in clinical diagnostics.

    PubMed

    Fuentes-Orrego, Jorge M; Sahani, Dushyant V

    2013-09-01

    Computed tomography (CT) has become key for patient management due to its outstanding capabilities for detecting disease processes and assessing treatment response, which has led to expansion in CT imaging for diagnostic and image-guided therapeutic interventions. Despite these benefits, the growing use of CT has raised concerns as radiation risks associated with radiation exposure. The purpose of this article is to familiarize the reader with fundamental concepts of dose metrics for assessing radiation exposure and weighting radiation-associated risks. The article also discusses general approaches for reducing radiation dose while preserving diagnostic quality. The authors provide additional insight for undertaking protocol optimization, customizing scanning techniques based on the patients' clinical scenario and demographics. Supplemental strategies are postulated using more advanced post-processing techniques for achieving further dose improvements. The technologic offerings of CT are integral to modern medicine and its role will continue to evolve. Although, the estimated risks from low levels of radiation of a single CT exam are uncertain, it is prudent to minimize the dose from CT by applying common sense solutions and using other simple strategies as well as exploiting technologic innovations. These efforts will enable us to take advantage of all the clinical benefits of CT while minimizing the likelihood of harm to patients.

  5. Plasma plume diagnostics of low power stationary plasma thruster (SPT-20M8) with collisional radiative model

    NASA Astrophysics Data System (ADS)

    Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.

    2017-03-01

    Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.

  6. Cyclosporin A inhibits UV-radiation-induced membrane damage but is unable to inhibit carboxyatractyloside-induced permeability transition.

    PubMed

    García, Noemí; Zazueta, Cecilia; El-Hafidi, Mohammed; Pavón, Natalia; Martínez-Abundis, Eduardo; Hernández-Esquivel, Luz; Chávez, Edmundo

    2009-11-01

    This work was undertaken to gain further information on the chemical characteristics of the membrane entity involved in the formation of the nonspecific pore. Mitochondria were subjected to oxidative stress by exposure to UV radiation. The results indicate that ultraviolet C radiation induces structural modifications in the adenine nucleotide translocase that lead to membrane permeability transition. Membrane leakage was assessed by measuring mitochondrial Ca2+ transport, the transmembrane electric gradient, and mitochondrial swelling. UV-irradiated mitochondria were unable to retain matrix Ca2+ or to maintain a high level of membrane potential when Ca2+ was added; furthermore, UV-irradiated mitochondria underwent large amplitude swelling. Release of cytochrome c and formation of malondialdehyde, owing to lipid peroxidation, were also seen. Structural modifications of the translocase were revealed by an increase in the binding of the fluorescent probe eosin-5-maleimide to thiol residues of the ADP/ATP carrier. These modifications, taken together with findings indicating that cyclosporin resulted unable to inhibit carboxyatractyloside-induced permeability transition, prompted us to conclude that the translocase could constitute the nonspecific pore or at least be an important modulator of it.

  7. Radiation exposure from diagnostic imaging in young patients with testicular cancer.

    PubMed

    Sullivan, C J; Murphy, K P; McLaughlin, P D; Twomey, M; O'Regan, K N; Power, D G; Maher, M M; O'Connor, O J

    2015-04-01

    Risks associated with high cumulative effective dose (CED) from radiation are greater when imaging is performed on younger patients. Testicular cancer affects young patients and has a good prognosis. Regular imaging is standard for follow-up. This study quantifies CED from diagnostic imaging in these patients. Radiological imaging of patients aged 18-39 years, diagnosed with testicular cancer between 2001 and 2011 in two tertiary care centres was examined. Age at diagnosis, cancer type, dose-length product (DLP), imaging type, and frequency were recorded. CED was calculated from DLP using conversion factors. Statistical analysis was performed with SPSS. In total, 120 patients with a mean age of 30.7 ± 5.2 years at diagnosis had 1,410 radiological investigations. Median (IQR) surveillance was 4.37 years (2.0-5.5). Median (IQR) CED was 125.1 mSv (81.3-177.5). Computed tomography accounted for 65.3 % of imaging studies and 98.3 % of CED. We found that 77.5 % (93/120) of patients received high CED (>75 mSv). Surveillance time was associated with high CED (OR 2.1, CI 1.5-2.8). Survivors of testicular cancer frequently receive high CED from diagnostic imaging, mainly CT. Dose management software for accurate real-time monitoring of CED and low-dose CT protocols with maintained image quality should be used by specialist centres for surveillance imaging. • CT accounted for 98.3 % of CED in patients with testicular cancer. • Median CED in patients with testicular cancer was 125.1 mSv • High CED (>75 mSv) was observed in 77.5 % (93/120) of patients. • Dose tracking and development of low-dose CT protocols are recommended.

  8. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2008-05-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  9. The Far Infrared Lines of OH as Molecular Cloud Diagnostics

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.

    2004-01-01

    Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.

  10. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    NASA Astrophysics Data System (ADS)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  11. Demonstration of artificial intelligence technology for transit railcar diagnostics

    DOT National Transportation Integrated Search

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  12. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  13. Diagnostic accuracy of ultrasonic histogram features to evaluate radiation toxicity of the parotid glands: a clinical study of xerostomia following head-and-neck cancer radiotherapy.

    PubMed

    Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J; Yu, David S; Chen, Zhengjia; Kim, Sungjin; Bruner, Deborah W; Curran, Walter J; Liu, Tian

    2014-10-01

    To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)-the most common and debilitating side effect after head-and-neck radiotherapy (RT). Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled. Radiation-induced xerostomia was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity scale. Ultrasound scans were performed on each patient's parotids bilaterally. The 34 patients were stratified into the acute-toxicity groups (16 patients, ≤ 3 months after treatment) and the late-toxicity group (18 patients, > 3 months after treatment). A separate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were compared to a radiologist's clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the receiver operating characteristic (ROC) curve. With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute and late toxicity of parotid glands. We demonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment. Copyright © 2014 AUR

  14. Development of Radiated Power Diagnostics for NSTX-U

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team

    2016-10-01

    New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.

  15. Debris characterization diagnostic for the NIF

    NASA Astrophysics Data System (ADS)

    Miller, M. C.; Celeste, J. R.; Stoyer, M. A.; Suter, L. J.; Tobin, M. T.; Grun, J.; Davis, J. F.; Barnes, C. W.; Wilson, D. C.

    2001-01-01

    Generation of debris from targets and by x-ray ablation of surrounding materials will be a matter of concern for experimenters and National Ignition Facility (NIF) operations. Target chamber and final optics protection, for example debris shield damage, drive the interest for NIF operations. Experimenters are primarily concerned with diagnostic survivability, separation of mechanical versus radiation induced test object response in the case of effects tests, and radiation transport through the debris field when the net radiation output is used to benchmark computer codes. In addition, radiochemical analysis of activated capsule debris during ignition shots can provide a measure of the ablator <ρr>. Conceptual design of the Debris Monitor and Rad-Chem Station, one of the NIF core diagnostics, is presented. Methods of debris collection, particle size and mass analysis, impulse measurement, and radiochemical analysis are given. A description of recent experiments involving debris collection and impulse measurement on the OMEGA and Pharos lasers is also provided.

  16. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  17. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  18. The Downside of Diagnostic Imaging

    Cancer.gov

    An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.

  19. The radiative decays of excited states of transition elements located inside and near core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Pukhov, Konstantin K.

    2017-12-01

    Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.

  20. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  1. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    NASA Astrophysics Data System (ADS)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  2. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  3. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  4. Transition Dipole Moments and Transition Probabilities of the CN Radical

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-04-01

    This paper studies the transition probabilities of electric dipole transitions between 10 low-lying states of the CN radical. These states are X2Σ+, A2Π, B2Σ+, a4Σ+, b4Π, 14Σ‑, 24Π, 14Δ, 16Σ+, and 16Π. The potential energy curves are calculated using the CASSCF method, which is followed by the icMRCI approach with the Davidson correction. The transition dipole moments between different states are calculated. To improve the accuracy of potential energy curves, core–valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are included. The Franck–Condon factors and Einstein coefficients of emissions are calculated. The radiative lifetimes are determined for the vibrational levels of the A2Π, B2Σ+, b4Π, 14Σ‑, 24Π, 14Δ, and 16Π states. According to the transition probabilities and radiative lifetimes, some guidelines for detecting these states spectroscopically are proposed. The spin–orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The splitting energy in the A2Π state is determined to be 50.99 cm‑1, which compares well with the experimental ones. The potential energy curves, transition dipole moments, spectroscopic parameters, and transition probabilities reported in this paper can be considered to be very reliable. The results obtained here can be used as guidelines for detecting these transitions, in particular those that have not been measured in previous experiments or have not been observed in the Sun, comets, stellar atmospheres, dark interstellar clouds, and diffuse interstellar clouds.

  5. Higher-order multipole amplitudes in charmonium radiative transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artuso, M.; Blusk, S.; Khalil, S.

    2009-12-01

    Using 24x10{sup 6} {psi}{sup '}{identical_to}{psi}(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions {psi}{sup '}{yields}{gamma}{chi}{sub c1,c2} and {chi}{sub c1,c2}{yields}{gamma}J/{psi}, in striking contrast to some previous measurements. Let b{sub 2}{sup J} and a{sub 2}{sup J} denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript J refers to the angular momentum of the {chi}{sub cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we found the following values ofmore » M2 admixtures for J{sub {chi}}=1: a{sub 2}{sup J={sup 1}}=(-6.26{+-}0.63{+-}0.24)x10{sup -2} and b{sub 2}{sup J={sup 1}}=(2.76{+-}0.73{+-}0.23)x10{sup -2}, which agree well with theoretical expectations for a vanishing anomalous magnetic moment of the charm quark. For J{sub {chi}}=2, if we fix the electric octupole (E3) amplitudes to zero as theory predicts for transitions between charmonium S states and P states, we find a{sub 2}{sup J={sup 2}}=(-9.3{+-}1.6{+-}0.3)x10{sup -2} and b{sub 2}{sup J={sup 2}}=(1.0{+-}1.3{+-}0.3)x10{sup -2}. If we allow for E3 amplitudes we find, with a four-parameter fit, a{sub 2}{sup J={sup 2}}=(-7.9{+-}1.9{+-}0.3)x10{sup -2}, b{sub 2}{sup J={sup 2}}=(0.2{+-}1.4{+-}0.4)x10{sup -2}, a{sub 3}{sup J={sup 2}}=(1.7{+-}1.4{+-}0.3)x10{sup -2}, and b{sub 3}{sup J={sup 2}}=(-0.8{+-}1.2{+-}0.2)x10{sup -2}. We determine the ratios a{sub 2}{sup J={sup 1}}/a{sub 2}{sup J={sup 2}}=0.67{sub -0.13}{sup +0.19} and a{sub 2}{sup J={sup 1}}/b{sub 2}{sup J={sup 1}}=-2.27{sub -0.99}{sup +0.57}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a{sub 2}{sup J={sup 1}}/a{sub 2}{sup J={sup 2}}=0.676{+-}0.071 and a{sub 2}{sup J={sup 1}}/b{sub 2}{sup

  6. Microwave-assisted synthesis of transition metal phosphide

    DOEpatents

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  7. Total and segmental colon transit time in constipated children assessed by scintigraphy with 111In-DTPA given orally.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Messina, M; Meucci, D; Tota, G

    1993-12-01

    Serial colon scintigraphy using 111In-DTPA (2 MBq) given orally was performed in 39 children referred for constipation, and the total and segmental colon transit times were measured. The bowel movements during the study were recorded and the intervals between defecations (ID) were calculated. This method proved able to identify children with normal colon morphology (no. = 32) and those with dolichocolon (no. = 7). Normal children were not included for ethical reasons and we used the normal range determined by others using x-ray methods (29 +/- 4 hours). Total and segmental colon transit times were found to be prolonged in all children with dolichocolon (TC: 113.55 +/- 41.20 hours; RC: 39.85 +/- 26.39 hours; LC: 43.05 +/- 18.30 hours; RS: 30.66 +/- 26.89 hours). In the group of children with a normal colon shape, 13 presented total and segmental colon transit times within the referred normal value (TC: 27.79 +/- 4.10 hours; RC: 9.11 +/- 2.53 hours; LC: 9.80 +/- 3.50 hours; RS: 8.88 +/- 4.09 hours) and normal bowel function (ID: 23.37 +/- 5.93 hours). In the remaining children, 5 presented prolonged retention in the rectum (RS: 53.36 +/- 29.66 hours), and 14 a prolonged transit time in all segments. A good correlation was found between the transit time and bowel function. From the point of view of radiation dosimetry, the most heavily irradiated organs were the lower large intestine and the ovaries, and the level of radiation burden depended on the colon transit time. We can conclude that the described method results safe, accurate and fully diagnostic.

  8. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria.

    PubMed

    Pearson, Blake E; Markert, James M; Fisher, Winfield S; Guthrie, Barton L; Fiveash, John B; Palmer, Cheryl A; Riley, Kristen

    2008-01-01

    The World Health Organization (WHO) reclassified atypical meningiomas in 2000, creating a more clear and broadly accepted definition. In this paper, the authors evaluated the pathological and clinical transition period for atypical meningiomas according to the implementation of the new WHO grading system at their institution. A total of 471 meningiomas occurring in 440 patients between 1994 and 2006 were retrospectively reviewed to determine changes in diagnostic rates, postoperative treatment trends, and early outcomes. Between 1994 and 2000, the incidence of the atypical meningiomas ranged from 0 to 3/year, or 4.4% of the meningiomas detected during the entire period. After 2002, the annual percentage of atypical meningiomas rose over a 2-year period, leveling off at between 32.7 and 35.5% between 2004 and 2006. The authors also found a recent trend toward increased use of adjuvant radiation therapy for incompletely resected atypical meningiomas. Prior to 2003, 18.7% were treated with this therapy; after 2003, 34.4% of lesions received this treatment. Incompletely resected tumors were treated with some form of radiation 76% of the time. In cases of complete resection, most patients were not given adjuvant therapy but were expectantly managed by close monitoring using serial imaging and by receiving immediate treatment for tumor recurrence. The overall recurrence rate for expectantly managed tumors was 9% over 28.2 months, and 75% of recurrences responded to delayed radiation therapy. The authors documented a significant change in the proportion of meningiomas designated as atypical during a transition period from 2002 to 2004, and propose a conservative strategy for the use of radiation therapy in atypical meningiomas.

  9. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  10. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated onmore » days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.« less

  11. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorce, C.; Schein, J.; Weber, F.

    2006-10-15

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant,more » radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed.« less

  12. Radiation dose in coronary angiography and intervention: initial results from the establishment of a multi-centre diagnostic reference level in Queensland public hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowhurst, James A, E-mail: jimcrowhurst@hotmail.com; School of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland; Whitby, Mark

    Radiation dose to patients undergoing invasive coronary angiography (ICA) is relatively high. Guidelines suggest that a local benchmark or diagnostic reference level (DRL) be established for these procedures. This study sought to create a DRL for ICA procedures in Queensland public hospitals. Data were collected for all Cardiac Catheter Laboratories in Queensland public hospitals. Data were collected for diagnostic coronary angiography (CA) and single-vessel percutaneous intervention (PCI) procedures. Dose area product (P{sub KA}), skin surface entrance dose (K{sub AR}), fluoroscopy time (FT), and patient height and weight were collected for 3 months. The DRL was set from the 75th percentilemore » of the P{sub KA.} 2590 patients were included in the CA group where the median FT was 3.5 min (inter-quartile range = 2.3–6.1). Median K{sub AR} = 581 mGy (374–876). Median P{sub KA} = 3908 uGym{sup 2} (2489–5865) DRL = 5865 uGym{sup 2}. 947 patients were included in the PCI group where median FT was 11.2 min (7.7–17.4). Median K{sub AR} = 1501 mGy (928–2224). Median P{sub KA} = 8736 uGym{sup 2} (5449–12,900) DRL = 12,900 uGym{sup 2}. This study established a benchmark for radiation dose for diagnostic and interventional coronary angiography in Queensland public facilities.« less

  13. Radiation biodosimetry: Applications for spaceflight

    NASA Astrophysics Data System (ADS)

    Blakely, W. F.; Miller, A. C.; Grace, M. B.; McLeland, C. B.; Luo, L.; Muderhwa, J. M.; Miner, V. L.; Prasanna, P. G. S.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.

  14. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  15. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    PubMed

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  16. Transition to turbulence and noise radiation in heated coaxial jet flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloor, Michael, E-mail: gloor@ifd.mavt.ethz.ch; Bühler, Stefan; Kleiser, Leonhard

    2016-04-15

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperaturemore » and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35{sup ∘}. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for r{sub mic} > 40R{sub 1}, where r{sub mic} is the distance from the end of the potential core and R{sub 1} is the core-jet radius, a perfect 1/r{sub mic} decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.« less

  17. Case Report of Myeloid Sarcoma Masquerading as In-Transit Metastasis at a Previous Melanoma Site: Avoiding a Diagnostic Pitfall.

    PubMed

    Curry, Jonathan L; Tetzlaff, Michael T; Wang, Sa A; Landon, Gene; Alouch, Nail; Patel, Sapna P; Nagarajan, Priyadharsini; Gupta, Shiva; Aung, Phyu P; Devine, Catherine E; Khoury, Joseph D; Loghavi, Sanam; Prieto, Victor G; DiNardo, Courtney D; Gershenwald, Jeffrey E

    2018-06-01

    Myeloid sarcoma is a rare extramedullary hematologic malignancy. Accurate and timely diagnosis may be challenging because myeloid sarcoma is known to mimic solid tumors, including hepatobiliary, nasopharyngeal, and breast carcinomas. We report a case of myeloid sarcoma that developed in the primary tumor lymphatic drainage field of a previously treated intermediate-thickness cutaneous melanoma, clinically and radiographically mimicking an in-transit metastasis, in a patient with myelodysplastic syndrome. The diagnosis of myeloid sarcoma was achieved after surgical excision of the mass and pathological examination that included extensive immunohistochemical studies. Awareness of such an unusual clinical presentation can help reduce diagnostic delay and ensure that adequate tissue is obtained for pathological examination and ancillary studies that are critical for accurate diagnosis and appropriate patient management.

  18. Dante soft x-ray power diagnostic for National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E.L.; Campbell, K.M.; Turner, R.E.

    2004-10-01

    Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less

  19. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation.

    PubMed

    He, Enhui; Pan, Fei; Li, Guangchao; Li, Jingjing

    2015-01-01

    In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT) accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN), and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR) esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR) treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.

  20. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  1. Radiation effect on implanted pacemakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhamidi, A.H.

    1983-10-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.

  2. An international comparative family medicine study of the Transition Project data from the Netherlands, Malta and Serbia. Is family medicine an international discipline? Comparing diagnostic odds ratios across populations.

    PubMed

    Soler, Jean K; Okkes, Inge; Oskam, Sibo; van Boven, Kees; Zivotic, Predrag; Jevtic, Milan; Dobbs, Frank; Lamberts, Henk

    2012-06-01

    This is an international study of the epidemiology of family medicine (FM) in three practice populations from the Netherlands, Malta and Serbia. Diagnostic associations between common reasons for encounter (RfEs) and episodes titles are compared and similarities and differences are described and analysed. Participating family doctors (FDs) recorded details of all their patient contacts in an 'episode of care (EoC)' structure using the International Classification of Primary Care (ICPC). RfEs presented by the patient and episode titles (diagnostic labels of EoCs) were classified with ICPC. The relationships between RfEs and episode titles were studied with Bayesian methods. Distributions of diagnostic odds ratios (ORs) from the three population databases are presented and compared. ICPC, the RfE and the EoC data model are appropriate tools to study the process of diagnosis in FM. Distributions of diagnostic associations between RfEs and episode titles in the Transition Project international populations show remarkable similarities and congruencies in the process of diagnosis from both the RfE and the episode title perspectives. The congruence of diagnostic associations between populations supports the use of such data from one population to inform diagnostic decisions in another. Differences in the magnitude of such diagnostic associations are significant, and population-specific data are therefore desirable. We propose that both an international (common) and a local (health care system specific) content of FM exist and that the empirical distributions of diagnostic associations presented in this paper are a reflection of both these effects. We also observed that the frequency of exposure to such diagnostic challenges had a strong effect on the confidence intervals of diagnostic ORs reflecting these diagnostic associations. We propose that this constitutes evidence that expertise in FM is associated with frequency of exposure to diagnostic challenges.

  3. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    NASA Astrophysics Data System (ADS)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  4. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  5. Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill

    2018-06-01

    Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  6. The diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients: A systematic review and diagnostic meta-analysis.

    PubMed

    Yoon, Hee Mang; Suh, Chong Hyun; Cho, Young Ah; Kim, Jeong Rye; Lee, Jin Seong; Jung, Ah Young; Kim, Jung Heon; Lee, Jeong-Yong; Kim, So Yeon

    2018-06-01

    To evaluate the diagnostic performance of reduced-dose CT for suspected appendicitis. A systematic search of the MEDLINE and EMBASE databases was carried out through to 10 January 2017. Studies evaluating the diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients were selected. Pooled summary estimates of sensitivity and specificity were calculated using hierarchical logistic regression modelling. Meta-regression was performed. Fourteen original articles with a total of 3,262 patients were included. For all studies using reduced-dose CT, the summary sensitivity was 96 % (95 % CI 93-98) with a summary specificity of 94 % (95 % CI 92-95). For the 11 studies providing a head-to-head comparison between reduced-dose CT and standard-dose CT, reduced-dose CT demonstrated a comparable summary sensitivity of 96 % (95 % CI 91-98) and specificity of 94 % (95 % CI 93-96) without any significant differences (p=.41). In meta-regression, there were no significant factors affecting the heterogeneity. The median effective radiation dose of the reduced-dose CT was 1.8 mSv (1.46-4.16 mSv), which was a 78 % reduction in effective radiation dose compared to the standard-dose CT. Reduced-dose CT shows excellent diagnostic performance for suspected appendicitis. • Reduced-dose CT shows excellent diagnostic performance for evaluating suspected appendicitis. • Reduced-dose CT has a comparable diagnostic performance to standard-dose CT. • Median effective radiation dose of reduced-dose CT was 1.8 mSv (1.46-4.16). • Reduced-dose CT achieved a 78 % dose reduction compared to standard-dose CT.

  7. Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas

    2015-08-01

    Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler

  8. Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee Task Group 190

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Pei-Jan P., E-mail: Pei-Jan.Lin@vcuhealth.org; Schueler, Beth A.; Balter, Stephen

    2015-12-15

    Due to the proliferation of disciplines employing fluoroscopy as their primary imaging tool and the prolonged extensive use of fluoroscopy in interventional and cardiovascular angiography procedures, “dose-area-product” (DAP) meters were installed to monitor and record the radiation dose delivered to patients. In some cases, the radiation dose or the output value is calculated, rather than measured, using the pertinent radiological parameters and geometrical information. The AAPM Task Group 190 (TG-190) was established to evaluate the accuracy of the DAP meter in 2008. Since then, the term “DAP-meter” has been revised to air kerma-area product (KAP) meter. The charge of TGmore » 190 (Accuracy and Calibration of Integrated Radiation Output Indicators in Diagnostic Radiology) has also been realigned to investigate the “Accuracy and Calibration of Integrated Radiation Output Indicators” which is reflected in the title of the task group, to include situations where the KAP may be acquired with or without the presence of a physical “meter.” To accomplish this goal, validation test protocols were developed to compare the displayed radiation output value to an external measurement. These test protocols were applied to a number of clinical systems to collect information on the accuracy of dose display values in the field.« less

  9. TU-F-213AB-01: Diagnostic Workforce and Manpower Survey.

    PubMed

    Mills, M; Nickoloff, E

    2012-06-01

    Since AAPM Report No. 33 on Diagnostic Radiology Physics staffing is more than 20 years old, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) of the Professional Council was formed to conduct a new study and update the data. The intent of the DWWSS study has two goals. First, it wanted to assess the number of FTE diagnostic physicists needed to support the QC, acceptance tests, radiation safety and other clinical functions for various imaging modalities, such as: CT scanners, MRI units, angiography rooms, ultrasound units, nuclear medicine imagers and other equipment. For example, the preliminary results indicate that the median annual physics support for one CT scanner is 0.007 FTE or 12.6 hours per unit. Second, the study wanted to provide an estimate of the cost of these physics services in terms of a fraction of a dollar per patient examination performed. For example, the cost for physics support of CT would be $0.27 for each CT procedure. This information would be similar to the Abt study conducted in Radiation Oncology. Radiation therapy physicists have utilized the Abt studies to generate re-imbursement for physics services and to justify financially the cost of their work efforts. Appropriate recognition for physics efforts in Diagnostic Radiology has never been properly quantified nor appreciated. With all the current and future changes occurring in healthcare, the information from the DWWSS survey could be important to the future of diagnostic physicists. Although diagnostic physicists are involved with many other activities such as teaching of residents and research, information about the clinical equipment support effort could be used to assess diagnostic physics staffing needs. The goals of the DWWSS study and the preliminary findings will be presented. 1. Present the goals of the DWWSS Diagnostic Physicist Survey.2. Present potential benefits to the AAPM members from this survey.3. Present findings from the preliminary analysis of the

  10. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  11. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  12. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  13. Advanced Diagnostics for Reacting Flows

    DTIC Science & Technology

    2006-06-01

    TECHNICAL DISCUSSION: 1. Infrared-PLIF Imaging Diagnostics using Vibrational Transitions IR-PLIF allows for imaging a group of molecular species important...excitation of IR-active vibrational modes with imaging of the subsequent vibrational fluorescence. Quantitative interpretation requires knowledge of...the vibrational energy transfer processes, and hence in recent years we have been developing models for infrared fluorescence. During the past year

  14. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  15. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  16. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  17. Transition States and transition state analogue interactions with enzymes.

    PubMed

    Schramm, Vern L

    2015-04-21

    Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but

  18. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, Alla

    needed for describing the ionization balance of plasmas, which in turn determines the lines contributing to the spectral emission and the radiative power loss. In particular, we have calculated relativistic atomic data and corresponding dielectronic satellite spectra of highly ionized W ions, such as, for example, Li-like W (with the shortest wavelength of x-ray radiation of about 0.2 Å) that might exist in ITER core plasmas at very high temperatures of 30-40 keV. In addition, we have completed relativistic calculations of low ionized W ions from Lu-like (W3+) to Er-like (W6+) and for Sm-like(W12+) and Pm-like (W13+) that cover a spectral range from few hundred to thousand Å and are more relevant to the edge plasma diagnostics in tokamak.« less

  19. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  20. Diagnostics development for E-beam excited air channels

    NASA Astrophysics Data System (ADS)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  1. Diagnostic value of coustic radiation force impulse for BI-RADS category 4 breast lesions of different sizes.

    PubMed

    Wu, Rong

    2018-04-14

    To determine the diagnostic value of combined conventional ultrasound (US) and acoustic radiation force impulse (ARFI) imaging for the differential diagnosis of BI-RADS category 4 breast lesions of different sizes. From April 2013 to January 2015, 283 patients (with a total of 292 breast lesions) who underwent US and ARFI examination were included in this retrospective study. The SWV for the lesion and adjacent normal breast tissue were measured and the SWV ratio was calculated. VTI grade was also assessed. The lesions were separated into three groups on the basis of size, and two combinations of ARFI parameters (SWV + VTI and SWV ratio + VTI) were applied to reassess the BI-RADS categories. Diagnoses were confirmed by pathological examination after biopsy or surgery. ROC analysis was performed to assess the diagnostic efficiency of each method. The Z test was used to compare the difference between AUC of the two methods. Significant improvement was seen in the diagnostic performance of US with the use of the ARFI parameters SWV + VTI (77/179 [43.0%] of BI-RADS category 4A breast lesions were downgraded) and SWV ratio + VTI (64/179 [35.8%] of BI-RADS category 4A breast lesions were downgraded, including two malignant cases that were misdiagnosed as benign) (P < 0.01). The difference between the performances of the two combinations-SWV + VTI and SWV ratio + VTI-was significant only in breast lesions <10 mm in size, where the AUC of SWV ratio + VTI was significantly greater than the AUC of SWV + VTI (0.929 vs. 0.874; P < 0.01). Combination of US with ARFI can improve diagnostic performance and help avoid unnecessary biopsy in BI-RADS category 4 breast lesions. The combination of SWV ratio + VTI can improve BI-RADS classification of small lesions (<10 mm size).

  2. An ARM data-oriented diagnostics package to evaluate the climate model simulation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xie, S.

    2016-12-01

    A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.

  3. Resource utilization in lung cancer diagnostic procedures: Current use and budget consequences.

    PubMed

    Brinkhof, Sander; Groen, Harry J M; Siesling, Sabine S; IJzerman, Maarten J

    2017-01-01

    The main objective of this study is to determine the current use of lung cancer diagnostic procedures in two large hospitals in the Netherlands, to explore deviations in guideline adherence between the hospitals, and to estimate the budget impact of the diagnostic work-up as well as the over- and underutilization. A state transition model for the diagnostic pathway for lung cancer patients was developed using existing clinical practice guidelines (CPG) combined with a systematic literature. In addition to the CPGs depicting current practice, diagnostic utilization was gathered in two large hospitals representing an academic tertiary care hospital and a large regional teaching hospital for patients, who were selected from the Netherlands cancer registry. The total population consisted of 376 patients with lung cancer. Not in all cases the guideline was followed, for instance in the usage of MR brain with stage III lung cancer patients (n = 70). The state-transition model predicts an average budget impact for the diagnostic pathway per patient estimated of € 2496 in the academic tertiary care hospital and € 2191 in the large regional teaching hospital. The adherence to the CPG's differed between hospitals, which questions the adherence to CPG's in general. Adherence to CPG's could lead to less costs in the diagnostic pathway for lung cancer patients.

  4. Pregnancy and Radiation Protection

    NASA Astrophysics Data System (ADS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  5. Pregnancy and Radiation Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation ofmore » the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient

  6. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum

  7. Exoplanet phase curves at large phase angles. Diagnostics for extended hazy atmospheres

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Cabrera, J.

    2018-01-01

    At optical wavelengths, Titan's brightness for large Sun-Titan-observer phase angles significantly exceeds its dayside brightness. The brightening that occurs near back-illumination is due to moderately large haze particles in the moon's extended atmosphere that forward scatters the incident sunlight. Motivated by this phenomenon, here we investigate the forward scattering from currently known exoplanets, its diagnostics possibilities, the observational requirements to resolve it and potential implications. An analytical expression is derived for the amount of starlight forward scattered by an exponential atmosphere that takes into account the finite angular size of the star. We use this expression to tentatively estimate how prevalent this phenomenon may be. Based on numerical calculations that consider exoplanet visibility, we identify numerous planets with predicted out-of-transit forward-scattering signals of up to tens of parts per million provided that aerosols of ≳1 μm size form over an extended vertical region near the optical radius level. We propose that the interpretation of available optical phase curves should be revised to constrain the strength of this phenomenon that might provide insight into aerosol scale heights and particle sizes. For the relatively general atmospheres considered here, forward scattering reduces the transmission-only transit depth by typically less than the equivalent to a scale height. For short-period exoplanets, the finite angular size of the star severely affects the amount of radiation scattered towards the observer at mid-transit.

  8. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  9. Angular distribution and polarization of X-ray radiation in highly charged He-like ions: hyperfine-induced transition

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong

    2018-06-01

    The angular distribution and polarization properties of the X-rays produced by the hyperfine-induced transition are investigated within a fully relativistic distorted-wave approximation. The calculations are performed for the 1 s2 p 3/2 3P2 F i = 3/2 → 1 s 2 1S0 F f = 1/2 component of the Kα 1 decay for highly charged He-like 119Sn48+ and 207Tl79+ ions with nuclear spin I = 1/2 following impact excitations by an un-polarized and a completely longitudinally-polarized electron beam, respectively. The Breit interaction and mutipole mixing between the leading M2 decay and the hyperfine-induced E1 decay corrections to both linear and circular polarizations of the emitted X-ray radiations are evaluated. All these effects are found to be significant and may potentially explain the disagreement between the theories and experiments related to the polarization properties of the X-ray radiation.

  10. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  11. An overview of ITER diagnostics (invited)

    NASA Astrophysics Data System (ADS)

    Young, Kenneth M.; Costley, A. E.; ITER-JCT Home Team; ITER Diagnostics Expert Group

    1997-01-01

    The requirements for plasma measurements for operating and controlling the ITER device have now been determined. Initial criteria for the measurement quality have been set, and the diagnostics that might be expected to achieve these criteria have been chosen. The design of the first set of diagnostics to achieve these goals is now well under way. The design effort is concentrating on the components that interact most strongly with the other ITER systems, particularly the vacuum vessel, blankets, divertor modules, cryostat, and shield wall. The relevant details of the ITER device and facility design and specific examples of diagnostic design to provide the necessary measurements are described. These designs have to take account of the issues associated with very high 14 MeV neutron fluxes and fluences, nuclear heating, high heat loads, and high mechanical forces that can arise during disruptions. The design work is supported by an extensive research and development program, which to date has concentrated on the effects these levels of radiation might cause on diagnostic components. A brief outline of the organization of the diagnostic development program is given.

  12. Direct radiative effect by multicomponent aerosol over China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xin; Song, Yu; Zhao, Chun

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO 2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM 10 and its components, andmore » aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m -2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m -2. BC was the leading radiative-heating component (+8.7 W m -2), followed by mineral aerosol (+1.1 W m -2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m -2), followed by sulfate (-1.4 W m -2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.« less

  13. Test beam studies of possibilities to separate particles with gamma factors above 103 with straw based Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.

    2017-12-01

    Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.

  14. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    NASA Astrophysics Data System (ADS)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  15. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  16. Rifle Marksmanship Diagnostic and Training Guide

    DTIC Science & Technology

    2011-05-01

    there any techniques you use to help prepare Soldiers to transition to firing with aiming lights (PEQ-2 or PAQ -4) and night vision goggles (ARM 1)? If...firing skills with the PAQ -4? A‐5    15. Are there any other diagnostic techniques you use that we haven’t discussed? a. Think back on your

  17. Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, T. J.; Behrens, C.; Ding, Y.

    2013-10-28

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less

  18. [Diagnostic imaging of urolithiais. Current recommendations and new developments].

    PubMed

    Thalgott, M; Kurtz, F; Gschwend, J E; Straub, M

    2015-07-01

    Prevalence of urolithiasis is increasing in industrialized countries--in both adults and children, representing a unique diagnostic and therapeutic challenge. Risk-adapted diagnostic imaging currently means assessment with maximized sensitivity and specificity together with minimal radiation exposure. In clinical routine, imaging is performed by sonography, unenhanced computed tomography (NCCT) or intravenous urography (IVU) as well as plain kidney-ureter-bladder (KUB) radiographs. The aim of the present review is a critical guideline-based and therapy-aligned presentation of diagnostic imaging procedures for optimized treatment of urolithiasis considering the specifics in children and pregnant women.

  19. Noise level measurements on the UMTA Mark I Diagnostic Car (R42 MODEL)

    DOT National Transportation Integrated Search

    1971-10-01

    The R42 Model mass transit car currently operating on the "N" line of the new York City Transit System was selected for experimentation and tests. For this purpose, the car was instrumented and designated as the UMTA Mark I Diagnostic Car. Noise leve...

  20. Novel uses of detonator diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John R.; Wilde, Zakary Robert; Tasker, Douglas George

    A novel combination of diagnostics is being used to research the physics of detonator initiation. The explosive PETN (Pentaerythritol tetranitrate) commonly used in detonators, is also a piezo-electric material that, when sufficiently shocked, emits an electromagnetic field in the radio frequency (RF) range, along crystal fracture planes. In an effort to capture this RF signal, a new diagnostic was created. A copper foil, used as an RF antenna, was wrapped around a foam fixture encompassing a PETN pellet. Rogowski coils were used to obtain the change in current with respect to time (di/dt) the detonator circuit, in and polyvinylidene difluoridemore » (PVDF) stress sensors were used to capture shockwave arrival time. The goal of these experiments is to use these diagnostics to study the reaction response of a PETN pellet of known particle size to shock loading with various diagnostics including an antenna to capture RF emissions. Our hypothesis is that RF feedback may signify the rate of deflagration to detonation transition (DDT) or lack thereof. The new diagnostics and methods will be used to determine the timing of start of current, bridge burst, detonator breakout timing and RF generated from detonation. These data will be compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography, optical initiation and use of magnetic field sensors.« less

  1. FOREWORD: IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS-2011)

    NASA Astrophysics Data System (ADS)

    Potylitsyn, Alexander; Karataev, Pavel

    2012-05-01

    interplay or combined effects, and to find successful applications for them. Every kind of radiation reflects specific processes of fundamental atomic physics, classical and quantum electrodynamics with a broad range of applications in accelerator physics, nuclear physics, material science and medicine. During the symposium the general properties of electromagnetic radiation were discussed. A few reports were devoted to Cherenkov radiation. Such a renewed interest in this problem is related to possible applications in wakefield accelerators and beam diagnostics. Transition radiation appeared as a well-known subject but wide use of it requires a detailed investigation of its characteristics. New prospective schemes for generating intense radiation beams were proposed. During the last few years electromagnetic radiation has been intensively studied as a potential tool for non-invasive charged particle beam diagnostics. In the symposium a few presentations were devoted to both transverse beam size measurements, using optical diffraction radiation and longitudinal beam dynamics monitoring the use of coherent diffraction and synchrotron radiation techniques. The generation of intense THz and soft x-ray beams was a very popular topic. A few presentations were devoted to the development of compact x-ray sources which might be used as an alternative to large central facilities such as third or fourth generation light sources. An application of crystal targets for radiation generation attracted the attention of all RREPS'11 participants. Parametric x-rays may be used for low-emittance beam diagnostics, and channeling radiation and coherent bremsstrahlung are being studied as a possible mechanism for an intense gamma source for positron production. Traditionally the RREPS symposium includes the following topics: General Properties of Radiation from Relativistic Particles; Cherenkov Radiation Transition Radiation Parametric X-ray Radiation Diffraction Radiation and the Smith

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of amplified spontaneous radiation in an expanding laser plasma allowing for refraction

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Terskikh, A. O.; Yakovlenko, Sergei I.

    1990-06-01

    Calculations are made of the divergence of amplified spontaneous radiation in a laser plasma allowing for refraction by free electrons. An analysis is made of the divergence of the radiation generated due to a 3p→3s' transition in neon-like ions. Calculations are made of the divergence of the radiation due to the 4→3 transition in the O VIII ion allowing for refraction during expansion of a Formvar plasma.

  3. Noise Prediction Models for Elevated Rail Transit Structures

    DOT National Transportation Integrated Search

    1975-08-01

    The report presents the theoretical development of a model for the prediction of noise radiated by elevated structures on rail transit lines. In particular it deals with noise and vibration control for urban rail transit track and elevated noise and ...

  4. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    NASA Astrophysics Data System (ADS)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  5. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  6. Optical diagnostic techniques in tribological analysis: Applications to wear film characterization, solid lubricant chemical transition, and electrical sliding contacts

    NASA Astrophysics Data System (ADS)

    Windom, Bret C.

    Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high

  7. Energy levels, wavelengths, and radiative transition probabilities for the Na-like ions with 38 [le] Z [le] 45

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying Zhang; Qiren Zhu; Shoufu Pan

    1992-11-01

    The investigation by Z.-Q Zhang et al. (Acta Optica Sinica 11, 193, 1991) shows that it is possible to realize soft X-ray lasing in the water window 23.3-43.8 [Angstrom] with the Na-like recombination scheme, which requires a lower pumping power at a high-power laser facility than that with other schemes. The fine-structure levels with n [le] 15 and l [le] 6 in Na-like ions with 38 [le] Z [le] 45 and the probabilities for radiative transitions between these levels are calculated using the multiconfiguration Dirac-Fock approach. The calculations show that the wavelengths of the anticipated laser transitions 6 f-4d andmore » 6g-4f in the Na-like ions with 38 [le] Z [le] 43 and 5f-4d and 5g-4f in the Na-like ions with 40 [le] Z [le] 45 lie in the region of the water window.« less

  8. Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak

    NASA Astrophysics Data System (ADS)

    Petrov, S. Ya.; Afanasyev, V. I.; Melnik, A. D.; Mironov, M. I.; Navolotsky, A. S.; Nesenevich, V. G.; Petrov, M. P.; Chernyshev, F. V.; Kedrov, I. V.; Kuzmin, E. G.; Lyublin, B. V.; Kozlovski, S. S.; Mokeev, A. N.

    2017-12-01

    The control of the deuterium-tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10-200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1-4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.

  9. Molecular Diagnostics of Diffusive Boundary Layers

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Hartquist, T. W.

    1997-10-01

    We have examined the chemistry in thin (<~0.01 pc) boundary layers between dark star-forming cores and warm, shocked T Tauri winds on the assumption that turbulence-driven diffusion occurs within them. The results indicate that emissions from C+, CH, OH, H2O and the J = 6 --> 5 transition of CO, among others, may serve as diagnostics of the boundary layers.

  10. Patient Dose In Diagnostic Radiology: When & How?

    NASA Astrophysics Data System (ADS)

    Lassen, Margit; Gorson, Robert O.

    1980-08-01

    Different situations are discussed in which it is of value to know radiation dose to the patient in diagnostic radiology. Radiation dose to specific organs is determined using the Handbook on Organ Doses published by the Bureau of Radiological Health of the Food and Drug Administration; the method is applied to a specific case. In this example dose to an embryo is calculated in examinations involving both fluoroscopy and radiography. In another example dose is determined to a fetus in late pregnancy using tissue air ratios. Patient inquiries about radiation dose are discussed, and some answers are suggested. The reliability of dose calculations is examined.

  11. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity bymore » increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.« less

  12. Cyclotron transitions of bound ions

    NASA Astrophysics Data System (ADS)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  13. Evidence for gain on the C VI 182 A transition in a radiation-cooled selenium/Formvar plasma

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Brown, C. M.; Feldman, U.; Richardson, M.; Behring, W. E.

    1985-01-01

    Thin plastic foils coated with selenium have been irradiated using from 4 to 8 beams of the OMEGA laser in a line focus configuration. Spectra were recorded using a 3 meter spectrograph that viewed the plasma along the line focus. Based on a comparison of the intensities of the spectral lines from plasmas with lengths of 1.7, 3.4, 6.8, and 13.6 mm, the C VI n = 3 to 2 transition at 182 A was anomalously intense in the spectra from the longer plasmas. Calculations indicate that the carbon plasma was cooled by radiation from the highly-charged selenium plasma in a time that was smaller than the expansion time of the plasma. These plasma conditions are favorable for the occurrence of population inversions between the n = 2 and 3 levels of C VI resulting from recombination and cascading from higher levels. The measured gain coefficient for the C VI 182 A transition is 3/cm, and this corresponds to a gain-length product of 4 in the longest plasma.

  14. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Huang, Y.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Pugliese, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Ugolotti, D.; Vakili, M.; Walter, C. W.; Webb, R.

    1999-01-01

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  15. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  16. Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.

    PubMed

    Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku

    2017-01-01

    The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.

  17. Update on the biological effects of ionizing radiation, relative dose factors and radiation hygiene.

    PubMed

    White, Stuart C; Mallya, S M

    2012-03-01

    Diagnostic imaging is an indispensable part of contemporary medical and dental practice. Over the last few decades there has been a dramatic increase in the use of ionizing radiation for diagnostic imaging. The carcinogenic effects of high-dose exposure are well known. Does diagnostic radiation rarely cause cancer? We don't know but we should act as if it does. Accordingly, dentists should select patients wisely - only make radiographs when there is patient-specific reason to believe there is a reasonable expectation the radiograph will offer unique information influencing diagnosis or treatment. Low-dose examinations should be made: intraoral imaging - use fast film or digital sensors, thyroid collars, rectangular collimation; panoramic and lateral cephalometric imaging - use digital systems or rare-earth film screen combinations; and cone beam computed tomography - use low-dose machines, restrict field size to region of interest, reduce mA and length of exposure arc as appropriate. © 2012 Australian Dental Association.

  18. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  19. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.

    2016-06-15

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy unitsmore » that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.« less

  20. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  1. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  2. Simulation of UV atomic radiation for application in exhaust plume spectrometry

    NASA Astrophysics Data System (ADS)

    Wallace, T. L.; Powers, W. T.; Cooper, A. E.

    1993-06-01

    Quantitative analysis of exhaust plume spectral data has long been a goal of developers of advanced engine health monitoring systems which incorporate optical measurements of rocket exhaust constituents. Discussed herein is the status of present efforts to model and predict atomic radiation spectra and infer free-atom densities from emission/absorption measurements as part of the Optical Plume Anomaly Detection (OPAD) program at Marshall Space Flight Center (MSFC). A brief examination of the mathematical formalism is provided in the context of predicting radiation from the Mach disk region of the SSME exhaust flow at nominal conditions during ground level testing at MSFC. Computational results are provided for Chromium and Copper at selected transitions which indicate a strong dependence upon broadening parameter values determining the absorption-emission line shape. Representative plots of recent spectral data from the Stennis Space Center (SSC) Diagnostic Test Facility (DTF) rocket engine are presented and compared to numerical results from the present self-absorbing model; a comprehensive quantitative analysis will be reported at a later date.

  3. Growth of a Lightly Doped Pr^3+:LaCl3 Crystal to Determine Radiative Transition Rates

    NASA Astrophysics Data System (ADS)

    Watters, J. Michael; Ganem, Joseph; Shaw, L. B.; Bowman, S. R.; Feldman, B. J.

    1996-03-01

    The recent demontration of 5.2 and 7.2 micron lasers using Pr^3+:LaCl3 ,(S. R. Bowman, Joseph Ganem, B. J. Feldman and A. W. Kueny, IEEE J. Quant. Elect. 30, 2925(1994).)^,(S. R. Bowman, L. B. Shaw, B. J. Feldman and Joseph Ganem, postdeadline paper CPD 26 at CLEO(1995).) the longest known wavelengths for any rare earth solid-state laser, has motivated further studies of this material. Design of mid-infrared lasers that use Pr^3+:LaCl3 would benefit from the ability to model population dynamics under different pumping conditions of the lower levels of the Pr^3+ ion. The lower levels, that are the basis for the new mid-infrared lasers, have many energetic overlaps resulting in several competing energy transfer processes when Pr^3+ concentrations approach 1 percent or higher. To minimize these processes we have grown and studied a lightly doped Pr^3+:LaCl3 crystal in order to determine the underlying radiative transition rates. We report how knowledge of the radiative rates can be incorporated into a model describing energy transfer processes in more heavily doped crystals.

  4. Radiation protection and safety in medical use of ionising radiation in Republic of Bulgaria--harmonization of the national legislation with Euratom directives.

    PubMed

    Ingilizova, K; Vassileva, J; Rupova, I; Pavlova, A

    2005-01-01

    From February 2002 to November 2003 the National Centre of Radiobiology and Radiation Protection conducted a PHARE twinning project 'Radiation Protection and Safety at Medical Use of Ionising Radiation'. The main purposes of the project were the harmonization of Bulgarian legislation in the field of radiation protection with EC Directives 96/29 and 97/43 Euratom, and the establishment of appropriate institutional infrastructure and administrative framework for their implementation. This paper presents the main results of the project: elaboration of Ordinance for Protection of Individuals from Medical Exposure; performance of a national survey of distribution of patient doses in diagnostic radiology and of administered activities in nuclear medicine and establishment of national reference levels for the most common diagnostic procedures.

  5. Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-05-03

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton-proton, proton-lead and lead-lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. Furthermore, these studies show that the tracking performance of the TRT is similar for themore » two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities.« less

  6. Overuse of Diagnostic Imaging for Work-Related Injuries.

    PubMed

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  7. Radiation-damage-induced transitions in zircon: Percolation theory applied to hardness and elastic moduli as a function of density

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.

    2018-05-01

    Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.

  8. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  9. Diagnostics and structure

    NASA Technical Reports Server (NTRS)

    Vial, J. C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation.

  10. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Loesser, G.; Smith, M.

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses weremore » performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.« less

  11. Analysis of applicability of triplet-state emission of molecular hydrogen for spectral diagnostics of a DC discharge

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2017-10-01

    The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360-600 K, specific absorbed powers of 0.8-4.25 W/cm, gas pressures of p = 0.3-15.0 Torr, reduced fields of E/N = 30-130 Td, and electron densities of n e = 4.0 × 109-6.5 × 1010 cm-3 is analyzed by using an advanced level-based semi-empirical collisional-radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g → a 3Σ+ g , f 3Σ+ g → a 3Σ+ g , g 3Σ+ g and k 3Π u → a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.

  12. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    DTIC Science & Technology

    2010-10-28

    experiment. Many of these experiments involve a diagnostic of a plasma which while different from strictly particles, still provides insight into the...investigate the properties of small plasma objects. Their study developed a method that could be used as a diagnostic for small scale plasmas such...as laser sparks, avalanche-streamer transitions, and resonance-enhanced multi- photon ionizations processes. They treated a plasma as a source of

  13. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  14. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited).

    PubMed

    Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  15. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  16. SU-F-T-427: Utilization and Evaluation of Diagnostic CT Imaging with MAR Technique for Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M; Foster, R; Parks, H

    Purpose: The objective was to utilize and evaluate diagnostic CT-MAR technique for radiation therapy treatment planning. Methods: A Toshiba-diagnostic-CT acquisition with SEMAR(Single-energy-MAR)-algorism was performed to make the metal-artifact-reduction (MAR) for patient treatment planning. CT-imaging datasets with and without SEMAR were taken on a Catphan-phantom. Two sets of CT-numbers were calibrated with the relative electron densities (RED). A tissue characterization phantom with Gammex various simulating material rods was used to establish the relationship between known REDs and corresponding CT-numbers. A GE-CT-sim acquisition was taken on the Catphan for comparison. A patient with bilateral hip arthroplasty was scanned in the radiotherapy CT-simmore » and the diagnostic SEMAR-CT on a flat panel. The derived SEMAR images were used as a primary CT dataset to create contours for the target, critical-structures, and for planning. A deformable registration was performed with VelocityAI to track voxel changes between SEMAR and CT-sim images. The SEMAR-CT images with minimal artifacts and high quality of geometrical and spatial integrity were employed for a treatment plan. Treatment-plans were evaluated based on deformable registration of SEMAR-CT and CT-sim dataset with assigned CT-numbers in the metal artifact regions in Eclipse v11 TPS. Results: The RED and CT-number relationships were consistent for the datasets in CT-sim and CT’s with and without SEMAR. SEMAR datasets with high image quality were used for PTV and organ delineation in the treatment planning process. For dose distribution to the PTV through the DVH analysis, the plan using CT-sim with the assigned CT-number showed a good agreement to those on deformable CT-SEMAR. Conclusion: A diagnostic-CT with MAR-algorithm can be utilized for radiotherapy treatment planning with CT-number calibrated to the RED. Treatment planning comparison and DVH shows a good agreement in the PTV and critical organs

  17. Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2012-05-01

    The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.

  18. Radiation biodosimetry: applications for spaceflight

    NASA Astrophysics Data System (ADS)

    Blakely, W.; Miller, A.; Grace, M.; Prasanna, P.; Muderhwa, J.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a dose assessment software application, a portable blood cell counter, and molecular biodosimetry using miniaturized equipment. The Biodosimetry Assessment Tool (BAT) software application calculates radiation dose based on a patient's physical signs and symptoms and blood analysis, annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. The dry reagent centrifuge-based blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins), once dose-dependent targets are identified, optimized, and validated, will make use of miniaturized diagnostic equipment for nucleic acid sequence and antigen-based biosensor detection technologies. These radiation assessment diagnostic technologies can have dual use for other medical related applications. [The Armed Forces Radiobiology Research Institute, under work unit AFRRI-01-3, and the Defense Threat Reduction Agency, under contract GG4661, supported this research.

  19. Definitions and outlook targeting x-ray exposure of patients in diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Regulla, Dieter F.

    2011-03-01

    Computer tomography (CT) is vital and currently irreplaceable in diagnostic radiology. But CT operates with ionizing radiation which may cause cancer or non-cancer diseases in humans. The degree of radiation impact depends on the dose administered by an investigation. And this is the core issue: Even CT exams executed lege artis, administer doses to patients which by magnitude are far beyond the level of hitherto known doses of conventional film-screen techniques. Patients undergoing one or multiple CT examinations, digital angiographies or interventions will be exposed to effective doses between roughly several mSv and several 100 mSv depending on type and frequency of the diagnostic investigations. From the radiation protection point of view, there is therefore the worldwide problem of formulating firm rules for the control of these high-dose investigations, as dose limits can not be established for reasons of the medical benefit. This makes the difference compared with radiation protection for occupationally exposed persons. What remains is "software", namely "justification" and "optimization". Justification requires balancing the interests between the health benefit and the potential harm of an exam which has to be responsibly executed by the physician himself; therefore the radiologists' associations are in the duty to prepare practicable rules for justification. Optimization again needs a cooperative solution, and that is the establishment of reference doses for diagnostic examinations, to be checked by the technical service of the producers' companies. Experts and authorities have been aware of the high-dose dilemma in diagnostic imaging since long. It is time for the reflection of active solutions and their implementation into practice.

  20. Inactivation of rabies diagnostic reagents by gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  1. Clinical application of a gadolinium-based capsule as an MRI contrast agent in slow transit constipation diagnostics.

    PubMed

    Zhi, M; Zhou, Z; Chen, H; Xiong, F; Huang, J; He, H; Zhang, M; Su, M; Gao, X; Hu, P

    2017-06-01

    As a traditional method for the assessment of colon dynamics, radio-opaque markers (ROMs) are limited in clinical use because of their ionizing radiation. We compared the accuracy and applicability of gadolinium-based capsules with ROMs in the measurement of colon dynamics in healthy controls and slow transit constipation (STC) patients. Seven patients with STC and nine healthy controls under a normal diet orally consumed ROMs and gadolinium-based capsules simultaneously. All subjects underwent X-ray and magnetic resonance imaging (MRI). Healthy control images were acquired at 12, 24, and 48 h, and STC patient images were acquired at 24, 48, and 72 h. The scores based on the position of the labeling capsules and ROMs in the colon and the colon transit times (CTTs) in the two groups were compared. The CTTs obtained via the ROMs were 34.7±17.4 and 67.3±6.5 h in the healthy controls and STC patients, respectively (P<.05). The CTTs obtained via MRI were 30.9±15.9 and 74.1±7.2 h in the healthy controls and STC patients, respectively (P<.05). The CTTs of the STC patients were significantly longer than the healthy controls. The correlation (r s ) between the scores based on the position of the labeling capsule and ROMs in the healthy group and the STC patients was .880 (P<.05) and .889 (P<.05), respectively. As a MRI contrast label, gadolinium-based capsules exhibit results comparable to ROMs in colon motility measurements. © 2017 John Wiley & Sons Ltd.

  2. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for theirmore » potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.« less

  3. Assessment of medical radiation exposure to patients and ambient doses in several diagnostic radiology departments

    NASA Astrophysics Data System (ADS)

    Sulieman, A.; Elhadi, T.; Babikir, E.; Alkhorayef, M.; Alnaaimi, M.; Alduaij, M.; Bradley, D. A.

    2017-11-01

    In many countries diagnostic medical exposures typically account for a very large fraction of the collective effective dose that can be assigned to anthropological sources and activities. This in part flags up the question of whether sufficient steps are being taken in regard to potential dose saving from such medical services. As a first step, one needs to survey doses to compare against those of best practice. The present study has sought evaluation of the radiation protection status and patient doses for certain key radiological procedures in four film-based radiology departments within Sudan. The radiation exposure survey, carried out using a survey meter and quality control test tools, involved a total of 299 patients their examinations being carried out at one or other of these four departments. The entrance surface air kerma (ESAK) was determined from exposure settings using DosCal software and an Unfors -Xi-meter. The mean ESAK for x-ray examination of the chest was 0.30±0.1 mGy, for the skull it was 0.96±0.7 mGy, for the abdomen 0.85±0.01 mGy, for spinal procedures 1.30±0.6 mGy and for procedures involving the limbs it was 0.43±0.3 mGy. Ambient dose-rates in the reception area, at the closed door of the x-ray room, recorded instantaneous values of up to 100 μSv/h. In regard to protection, the associated levels were found to be acceptable in three of the four departments, corrective action being required for one department, regular quality control also being recommended.

  4. Influence of the Doppler effect on radiative transfer in a spherical plasma under macroscopic motion of substance

    NASA Astrophysics Data System (ADS)

    Kosarev, N. I.

    2018-03-01

    The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.

  5. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle.

    PubMed

    Akbari, Kamran; Mišković, Zoran L; Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene's Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  6. Compact endocavity diagnostic probes for nuclear radiation detection

    DOEpatents

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  7. CAD-Based Shielding Analysis for ITER Port Diagnostics

    NASA Astrophysics Data System (ADS)

    Serikov, Arkady; Fischer, Ulrich; Anthoine, David; Bertalot, Luciano; De Bock, Maartin; O'Connor, Richard; Juarez, Rafael; Krasilnikov, Vitaly

    2017-09-01

    Radiation shielding analysis conducted in support of design development of the contemporary diagnostic systems integrated inside the ITER ports is relied on the use of CAD models. This paper presents the CAD-based MCNP Monte Carlo radiation transport and activation analyses for the Diagnostic Upper and Equatorial Port Plugs (UPP #3 and EPP #8, #17). The creation process of the complicated 3D MCNP models of the diagnostics systems was substantially accelerated by application of the CAD-to-MCNP converter programs MCAM and McCad. High performance computing resources of the Helios supercomputer allowed to speed-up the MCNP parallel transport calculations with the MPI/OpenMP interface. The found shielding solutions could be universal, reducing ports R&D costs. The shield block behind the Tritium and Deposit Monitor (TDM) optical box was added to study its influence on Shut-Down Dose Rate (SDDR) in Port Interspace (PI) of EPP#17. Influence of neutron streaming along the Lost Alpha Monitor (LAM) on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) of EPP#8. For the UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), an excessive neutron streaming along the CXRS shutter, which should be prevented in further design iteration.

  8. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  9. Extrapolation of radiation thermometry scales for determining the transition temperature of metal-carbon points. Experiments with the Co-C

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Girard, F.; Florio, M.

    2009-02-01

    Four independent radiation temperature scales approximating the ITS-90 at 900 nm, 950 nm and 1.6 µm have been realized from the indium point (429.7485 K) to the copper point (1357.77 K) which were used to derive by extrapolation the transition temperature T90(Co-C) of the cobalt-carbon eutectic fixed point. An INRIM cell was investigated and an average value T90(Co-C) = 1597.20 K was found with the four values lying within 0.25 K. Alternatively, thermodynamic approximated scales were realized by assigning to the fixed points the best presently available thermodynamic values and deriving T(Co-C). An average value of 1597.27 K was found (four values lying within 0.25 K). The standard uncertainties associated with T90(Co-C) and T(Co-C) were 0.16 K and 0.17 K, respectively. INRIM determinations are compatible with recent thermodynamic determinations on three different cells (values lying between 1597.11 K and 1597.25 K) and with the result of a comparison on the same cell by an absolute radiation thermometer and an irradiance measurement with filter radiometers which give values of 1597.11 K and 1597.43 K, respectively (Anhalt et al 2006 Metrologia 43 S78-83). The INRIM approach allows the determination of both ITS-90 and thermodynamic temperature of a fixed point in a simple way and can provide valuable support to absolute radiometric methods in defining the transition temperature of new high-temperature fixed points.

  10. MHD Modeling of Coronal Loops: the Transition Region Throat

    NASA Technical Reports Server (NTRS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-01-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods. We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 millikelvin. Results. We find that the area can change substantially with the quasi-steady heating rate, e.g., by approx. 40% at 0.5 millikelvin as the loop temperature varies between 1 millikelvin and 4 millikelvin, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves.

  11. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  12. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  13. Radiation Safety in Nuclear Medicine Procedures.

    PubMed

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  14. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  15. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  16. Inversion of radiation data in biophysics

    NASA Technical Reports Server (NTRS)

    Twersky, V.

    1972-01-01

    Topics in biophysics are summarized in which radiation data inversion problems occur. The topics fall into two main categories. The first relates to information acquired about the distance environment through seeing, hearing, etc. The second relates to the use of electromagnetic, acoustic, or other radiation for diagnostic purposes, either at a bulk or a molecular level.

  17. Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility.

    PubMed

    Bukari, Bakhtiar A; Citartan, Marimuthu; Ch'ng, Ewe Seng; Bilibana, Mawethu P; Rozhdestvensky, Timofey; Tang, Thean-Hock

    2017-05-01

    Antibodies have been the workhorse for diagnostic immunohistochemistry to specifically interrogate the expression of certain protein to aid in histopathological diagnosis. This review introduces another dimension of histochemistry that employs aptamers as the core tool, the so-called aptahistochemistry. Aptamers are an emerging class of molecular recognition elements that could recapitulate the roles of antibodies. The many advantageous properties of aptamers suited for this diagnostic platform are scrutinized. An in-depth discussion on the technical aspects of aptahistochemistry is provided with close step-by-step comparison to the more familiarized immunohistochemical procedures, namely functionalization of the aptamer as a probe, antigen retrieval, optimization with emphasis on incubation parameters and visualization methods. This review offers rationales to overcome the anticipated challenges in transition from immunohistochemistry to aptahistochemistry, which is deemed feasible for an average diagnostic pathology laboratory.

  18. Radiative transitions in highly doped and compensated chalcopyrites and kesterites: The case of Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Teixeira, J. P.; Sousa, R. A.; Sousa, M. G.; da Cunha, A. F.; Fernandes, P. A.; Salomé, P. M. P.; Leitão, J. P.

    2014-12-01

    The theoretical models of radiative recombinations in both CuIn1 -xGaxSe2 chalcopyrite and Cu2ZnSnS4 kesterite, and related compounds, were revised. For heavily doped materials, electrons are free or bound to large donor agglomerates which hinders the involvement of single donors in the radiative recombination channels. In this work, we investigated the temperature and excitation power dependencies of the photoluminescence of Cu2ZnSnS4-based solar cells in which the absorber layer was grown through sulphurization of multiperiod structures of precursor layers. For both samples the luminescence is dominated by an asymmetric band with peak energy at ˜1.22 eV, which is influenced by fluctuating potentials in both conduction and valence bands. A value of ˜60 meV was estimated for the root-mean-square depth of the tails in the conduction band. The radiative transitions involve the recombination of electrons captured by localized states in tails of the conduction band with holes localized in neighboring acceptors that follow the fluctuations in the valence band. The same acceptor level with an ionization energy of ˜280 meV was identified in both absorber layers. The influence of fluctuating potentials in the electrical performance of the solar cells was discussed.

  19. THE FORMATION OF IRIS DIAGNOSTICS. VIII. IRIS OBSERVATIONS IN THE C ii 133.5 nm MULTIPLET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Bhavna; Pereira, Tiago M. D.; Carlsson, Mats

    The C ii 133.5 nm multiplet has been observed by NASA’s Interface Region Imaging Spectrograph (IRIS) in unprecedented spatial resolution. The aims of this work are to characterize these new observations of the C ii lines, place them in context with previous work, and to identify any additional value the C ii lines bring when compared with other spectral lines. We make use of wide, long exposure IRIS rasters covering the quiet Sun and an active region. Line properties such as velocity shift and width are extracted from individual spectra and analyzed. The lines have a variety of shapes (mostlymore » single-peak or double-peak), are strongest in active regions and weaker in the quiet Sun. The ratio between the 133.4 and 133.5 nm components is always less than 1.8, indicating that their radiation is optically thick in all locations. Maps of the C ii line widths are a powerful new diagnostic of chromospheric structures, and their line shifts are a robust velocity diagnostic. Compared with earlier quiet Sun observations, we find similar absolute intensities and mean line widths, but smaller redshifts; this difference can perhaps be attributed to differences in spectral resolution and spatial coverage. The C ii intensity maps are somewhat similar to those of transition region lines, but also share some features with chromospheric maps such as those from the Mg ii k line, indicating that they are formed between the upper chromosphere and transition region. C ii intensity, width, and velocity maps can therefore be used to gather additional information about the upper chromosphere.« less

  20. SU-E-T-62: A Preliminary Experience of Using EPID Transit Dosimetry for Monitoring Daily Dose Variations in Radiation Treatment Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, R; Chisela, W

    2015-06-15

    Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less

  1. Development of PETAL diagnostics: PETAPhys project

    NASA Astrophysics Data System (ADS)

    Raffestin, D.; Boutoux, G.; Baggio, J.; Batani, D.; Blanchot, N.; Bretheau, D.; Hulin, S.; D'Humieres, E.; Granet, F.; Longhi, Th.; Meyer, Ch.; Moreno, Q.; Nuter, R.; Rault, J.; Tikhonchuk, V.; Universite de Bordeaux/Celia Team; CEA. DAM/Cesta Team

    2017-10-01

    Beginning of autumn 2017, PETAL, a Petawatt laser beam, will be operated for experiments on the LMJ facility at the CEA/ Cesta research center. The PETAPhys project provides a support to the qualification phase of the PETAL laser operation. Within the PETAPhys project, we are developing two simple and robust diagnostics permitting both to characterize the focal spot of the PETAL beam and to measure the hard X-ray spectrum at each shot. The first diagnostic consists in optical imaging of the PETAL beam focal spot in the spectral range of the second and third harmonic radiation emitted from the target. The second diagnostic is a hard X-ray dosimeter consisting in a stack of imaging plates (IP) and filters, either placed inside a re-entrant tube or inserted close to target. Numerical simulations as well as experiments on small scale facilities have been performed to design these diagnostics. If available, preliminary results from PETAL experiments will be discussed. We acknowledge the financial support from the French National Research Agency (ANR) in the framework of ``the investments for the future'' Programme IdEx Bordeaux-LAPHIA (ANR-10-IDEX-03-02).

  2. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.

    PubMed

    Gomes, Mafalda; Matias, Alexandra; Macedo, Filipe

    2015-12-01

    Every day, medical practitioners face the dilemma of exposing pregnant or possibly pregnant patients to radiation from diagnostic examinations. Both doctors and patients often have questions about the risks of radiation. The most vulnerable period is between the 8th and 15th weeks of gestation. Deterministic effects like pregnancy loss, congenital malformations, growth retardation and neurobehavioral abnormalities have threshold doses above 100-200 mGy. The risk is considered negligible at 50 mGy and in reality no diagnostic examination exceeds this limit. The risk of carcinogenesis is slightly higher than in the general population. Intravenous iodinated contrast is discouraged, except in highly selected patients. Considering all the possible noxious effects of radiation exposure, measures to diminish radiation are essential and affect the fetal outcome. Nonionizing procedures should be considered whenever possible and every radiology center should have its own data analysis on fetal radiation exposure. In this review, we analyze existing literature on fetal risks due to radiation exposure, producing a clinical protocol to guide safe radiation use in a clinical setting.

  4. Optical diagnostics in the oral cavity: an overview.

    PubMed

    Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A

    2010-11-01

    As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.

  5. Progress in diagnostics of the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  6. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  7. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  8. Clarification of radiation-control regulations for diagnostic x-ray equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Office of Compliance and Surveillance of the Center for Devices and Radiological Health (CDRH) has received many requests for interpretation of the Federal regulations that relate to diagnostic x-ray equipment. Responses to these requests were originally issued as FDA Compliance Policy Guides, industry-wide letters, and letters to individuals. The document is a compilation of those responses that remain applicable. Guides or opinions that have been withdrawn or are now obsolete because they have been incorporated into the regulations are not included. The document consists of two sections: the General section, which contains information of a general nature; and themore » Specific section, which contains information specific to particular sections of the Federal Performance Standard for Diagnostic X-ray Equipment (21 CFR 1020.30-32). When the term 'Revised Language' appears in an item heading, it indicates English grammar correction; the term 'Revised' indicates an updated version of the original clarification.« less

  9. Radiation hazards in scoliosis management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, D.; Ranallo, F.; Lonstein, J.

    1983-10-01

    Safe radiography in scoliosis management is based on a sound knowledge of 1) the radiographic imaging process, 2) the degree of risk to the patient from radiation exposure, and 3) the radiographic requirements to both evaluate and follow patients with spine deformity. This paper is a current review of the subject and work done at the authors' centers. It includes recommendations for reducing the radiation risk while maintaining necessary diagnostic information.

  10. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  11. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE PAGES

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...

    2016-08-30

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  12. ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics

    NASA Astrophysics Data System (ADS)

    Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.

    2017-04-01

    The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.

  13. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure

    PubMed Central

    Miller, Douglas L.

    2016-01-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustic radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds, and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiological conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. PMID:27649878

  14. An evaluation of the rate of absorption of solar radiation in the O2(X3Sigma-g - b1Sigma-g) transition

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1993-01-01

    The rate at which molecular oxygen absorbs radiation in the O2(X3Sigma-g - b1Sigma-g) transition is calculated using a line-by-line radiative transfer model. This rate is critical to the determination of the population of the O2(b1Sigma-g) state required for studies of the O2(b1Sigma-g - X3Sigma-g) dayglow, the O2(a1Delta-g - X3Sigma-g) dayglow, and possibly the rates of oxidation of H2 and N2O. Previous evaluations of this rate (which is sometimes called the g-factor) have significantly overestimated its value. The rate is tabulated as a function of altitude, pressure, and solar zenith angle.

  15. Collisional excitation and radiative properties of N II - The strong intercombination (1D - 3P0) transition at 748 A

    NASA Technical Reports Server (NTRS)

    Tripp, T. M.; Shemansky, D. E.; James, G. K.; Ajello, J. M.

    1991-01-01

    Laboratory measurements of EUV emission from electron-excited N2 have been obtained at medium resolution, providing N II EUV emission cross section measurements and allowing the confirmation of recent calculations by Fawcett (1987) indicating the presence of a strong intercombination line in N II at 748.37 A. The most recently available data are used to predict the basic collisional and radiative properties of N II, the plasma diagnostic properties are briefly explored, and radiative cooling coefficients are given. Some basic properties of electron-excited N II and N2 are examined in the EUV in order to diagnose emission spectra of the earth and Titan. The N II emissions in the earth dayglow, particularly at 916 A, are much brighter than current estimates of source rates. The N II 1085 A line in the dayglow contains a significant component from dissociative photoionization excitation. The N II 1085 A, 916 A, and 670 A lines in the Titan dayglow spectrum appear to be compatible with direct electron excitation of N2.

  16. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less

  17. Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids.

    PubMed

    Liu, Zhao; Bhatt, R N

    2016-11-11

    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.

  18. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  19. Radiation in medicine: Origins, risks and aspirations

    PubMed Central

    Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H.

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies. PMID:25780797

  20. Radiation in medicine: Origins, risks and aspirations.

    PubMed

    Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies.

  1. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer

    PubMed Central

    Hendry, Jolyon H.

    2017-01-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with “spontaneous” processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7–96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0–16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of

  2. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.

    PubMed

    Little, Mark P; Hendry, Jolyon H

    2017-02-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of

  3. Increase in Efficiency of Use of Pedestrian Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    Most international airports in the world use radiation portal monitors (RPM) for primary radiation control organization. During the exploitation pedestrian radiation portal monitors operators (in the Russian Federation it is a special subdivision of customs officials) have certain problems related to the search of an ionizing radiation source causing the alarm signal of a radiation monitor. Radiation portal monitors at standard (factory) settings have to find out the illegal moving of the radioisotopes moved by physical persons passing through a controlled zone and having a steady radiation by the gamma or neutron channel. The problem is that recently the number of the ownerships who underwent treatment or medical diagnostics with the use of radio pharmaceuticals considerably increased, i.e,. ownerships represent such an ionizing radiation source. The operator of the radiation portal monitor has to define very quickly whether the ownership is a violator (takes unsolved radioisotopes illegally) or is just a patient of the clinic who underwent treatment/diagnostics with the use of radio pharmaceuticals. The research showing the radioisotopes which are most often used in the medical purposes are given in article, it is offered to use the new software developed by the authors allowing the operator of the radiation portal monitor to define the location of the ownership which has such ionizing radiation source by the activity of radiation similar to the radiation from radio pharmaceuticals.

  4. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy.

    PubMed

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-08-15

    To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7-149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. © 2015 American Academy of Sleep Medicine.

  5. The energy balance and pressure in the solar transition zone for network and active region features

    NASA Technical Reports Server (NTRS)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  6. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    PubMed

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  7. Studies on the foundation and development of diagnostic ultrasound

    PubMed Central

    Wagai, Toshio

    2007-01-01

    In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150

  8. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  9. Antenna-coupled transition-edge hot-electron microbolometers

    NASA Astrophysics Data System (ADS)

    Ali, Shafinaz; Timbie, Peter T.; Malu, Siddharth; McCammon, Dan; Nelms, Kari L.; Pathak, Rashmi; van der Weide, Daniel W.; Allen, Christine A.; Abrahams, J.; Chervenak, James A.; Hsieh, Wen-Ting; Miller, Timothy M.; Moseley, S. H., Jr.; Stevenson, Thomas R.; Wollack, Edward J.

    2004-10-01

    We are developing a new type of detector for observational cosmology and astrophysical research. Incoming radiation from the sky is coupled to a superconducting microstrip transmission line that terminates in a thin film absorber. At sub-Kelvin temperature, the thermal isolation between the electrons and the lattice makes it possible for the electrons in the small absorber (100's of cubic micro-meter) and superconducting bilayer (Transition Edge Sensor) to heat up by the radiation absorbed by the electrons of the normal absorbing layer. We call this detector a Transition-edge Hot-electron Micro-bolometer (THM). THMs can be fabricated by photo lithography, so it is relatively easy to make matched detectors for a large focal plane array telescope. We report on the thermal properties of Mo/Au THMs with Bi/Au absorbers.

  10. A novel interaction of PAK4 with PPARγ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma.

    PubMed

    Kesanakurti, D; Maddirela, D; Banasavadi-Siddegowda, Y K; Lai, T-H; Qamri, Z; Jacob, N K; Sampath, D; Mohanam, S; Kaur, B; Puduvalli, V K

    2017-09-14

    Tumor recurrence in glioblastoma (GBM) is, in part, attributed to increased epithelial-to-mesenchymal transition (EMT) and enhanced tumor cell dissemination in adjacent brain parenchyma after ionizing radiation (IR). EMT is associated with aggressive behavior, increased stem-like characteristics and treatment resistance in malignancies; however, the underlying signaling mechanisms that regulate EMT are poorly understood. We identified grade-dependent p21-activated kinases 4 (PAK4) upregulation in gliomas and further determined its role in mesenchymal transition and radioresistance. IR treatment significantly elevated expression and nuclear localization of PAK4 in correlation with induction of reactive oxygen species (ROS) and mesenchymal transition in GBM cells. Stable PAK4 overexpression promoted mesenchymal transition by elevating EMT marker expression in these cells. Of note, transcription factor-DNA-binding arrays and chromatin immunoprecipitation experiments identified the formation of a novel nuclear PAK4/PPARγ complex which was recruited to the promoter of Nox1, a peroxisome proliferator-activated receptor gamma (PPARγ) target gene. In addition, IR further elevated PAK4/PPARγ complex co-recruitment to Nox1 promoter, and increased Nox1 expression and ROS levels associated with mesenchymal transition in these cells. Conversely, specific PAK4 downregulation decreased PPARγ-mediated Nox1 expression and suppressed EMT in IR-treated cells. In vivo orthotopic tumor experiments showed inhibition of growth and suppression of IR-induced PPARγ and Nox1 expression by PAK4 downregulation in tumors. Our results provide the first evidence of a novel role for PAK4 in IR-induced EMT and suggest potential therapeutic efficacy of targeting PAK4 to overcome radioresistance in gliomas.

  11. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  12. Revealing Stellar Surface Structure Behind Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.

  13. Investigation of terahertz radiation influence on rat glial cells

    PubMed Central

    Borovkova, Mariia; Serebriakova, Maria; Fedorov, Viacheslav; Sedykh, Egor; Vaks, Vladimir; Lichutin, Alexander; Salnikova, Alina; Khodzitsky, Mikhail

    2016-01-01

    We studied an influence of continuous terahertz (THz) radiation (0.12 – 0.18 THz, average power density of 3.2 mW/cm2) on a rat glial cell line. A dose-dependent cytotoxic effect of THz radiation is demonstrated. After 1 minute of THz radiation exposure a relative number of apoptotic cells increased in 1.5 times, after 3 minutes it doubled. This result confirms the concept of biological hazard of intense THz radiation. Diagnostic applications of THz radiation can be restricted by the radiation power density and exposure time. PMID:28101417

  14. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  15. Experimental investigation of commercially available lead composite aprons used for diagnostic X-rays

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Rabie, N.; Hassan, G. M.

    2011-12-01

    One of the principal diagnostic methods used in all fields of medical services is radiographic examination. To keep the radiation dose received by hospital personnel under normal working conditions as low as reasonably achievable, lead composite apron shields are provided as valuable aids. Intensive use of these accessories could lead to softening and surface defects due to poor handling and being worn-out over time, giving rise to multiple defects across the entire apron. Without routine control, these lead aprons will, within time, contribute significantly to the over-radiation burden to the wearer. However, local defects are highly likely to lead to gross changes in the radiation dose received by the wearer. For this reason, we evaluate the exposure dose resulting from diagnostic X-ray radiation during different imaging procedures. In this study, we used TLD LiF-700 chips to measure the attenuation percentage for four groups of commercial lead composite aprons and to calculate the effective doses to different organs during diagnostic radiological procedures. The results show the importance of lead composite aprons in minimizing effective doses, and the attenuation percentage varied for different vendors; this is due to variations in the constituent material. The average attenuation for lead composite aprons varies from 93.3% to 96.7%, and the average attenuation (%)/weight varies from 16.7% to 20.5%. Acceptance testing of lead composite aprons is essential to ensure that lead composite aprons meet their manufacturers' specifications and provide the necessary radiation protection for their intended use. The combined and expanded uncertainties accompanying these measurements are 2.78% and 5.57%, respectively.

  16. The Near-Earth Space Radiation for Electronics Environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  17. Radiation effects on the Gaia CCDs after 30 months at L2

    NASA Astrophysics Data System (ADS)

    Crowley, Cian; Abreu, Asier; Kohley, Ralf; Prod'homme, Thibaut; Beaufort, Thierry

    2016-07-01

    Since the launch of ESA's Gaia satellite in December 2013, the 106 large-format scientific CCDs onboard have been operating at L2. Due to a combination of the high-precision measurement requirements of the mission and the predicted proton environment at L2, the effect of non-ionizing radiation damage on the detectors was early identified pre-launch as potentially imposing a major limitation on the scientific value of the data. In this paper we compare pre-flight radiation-induced Charge Transfer Inefficiency (CTI) predictions against in-flight measurements, focusing especially on charge injection diagnostics, as well as correlating these CTI diagnostic results with solar proton event data. We show that L2-directed solar activity has been relatively low since launch, and radiation damage (so far) is less than originally expected. Despite this, there are clear cases of correlation between earth-directed solar coronal mass ejection events and abrupt changes in CTI diagnostics over time. These sudden jumps are lying on top of a rather constant increase in CTI which we show is primarily due to the continuous bombardment of the devices by high-energy Galactic Cosmic Rays. We examine the possible reasons for the lower than expected levels of CTI as well as examining the effect of controlled payload heating events on the CTI diagnostics. Radiation-induced CTI in the CCD serial registers and effects of ionizing radiation are also correspondingly lower than expected, however these topics are not examined here in detail.

  18. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  19. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics.

  20. Implanted medical devices in the radiation environment of commercial spaceflight.

    PubMed

    Reyes, David P; McClure, Steven S; Chancellor, Jeffery C; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2014-11-01

    Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment. A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs. The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function. Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.

  1. Pilot study of parathyroid glands in adult and pediatric subjects exposed to ionizing radiation after the ChNPP accident, methodology of parathyroid diagnostic ultrasound.

    PubMed

    Kaminskyi, O V; Kopylova, O V; Afanasyev, D Ye; Mazurenko, O V; Berezovskyi, S Ya

    2017-12-01

    Estimation of the parathyroid hyperplasia prevalence after the ChNPP accident in adults exposed to ion izing radiation and their descendants using the diagnostic ultrasound and its methodology elaboration. The pilot prospective study of the prevalence of parathyroid hyperplasia among the Chornobyl Nuclear Power Plant (ChNPP) accident adult survivors (n=686) and their descendants (54 children) was performed using diagnostic ultrasound examination of thyroid and parathyroids. Among the study subjects there were 339 ChNPP accident clean up workers (ACUW), 32 persons were evacuated from the 30 km exclusion zone and 224 ones were included to the control group. Diagnostic ultrasound of thyroid and parathyroids was performed according to the standard method. Additionally, in children with parathyroid hyperplasia an additional assay of 25 hydroxyvitamin D levels in serum was performed. In calculating the statistical significance, its level p < 0.05 was considered statistically significant. Parathyroids are a few small but critically important endocrine glands that synthesize parathyroid hormone, regulating mainly phosphoric calcium metabolism. Insufficient (hypoparathyroidism) or excessive (hyperparathy roidism) function of parathyroids is harmful to the patients affecting the state of nervous and cardiovascular sys tem. Parathyroidss can accumulate isotopes of cesium, strontium and radioactive iodine. The available data testify to an increased incidence of clinically significant hyperplasia of parthyroids (more than 9 mm in adults and more than 5 mm in children) among persons exposed toionizng radiation as a result of the accident at the ChNPP (28.64%) and their descendants (23.8-70.6%). First of all are concerned those adults who live in contaminated areas in comparison with the control group (24.15% in not irradiated). Evacuees from the 30 km exclusion zone being the category of people who were exposed to the absorbed iodine isotopes in the first days of the Chernobyl

  2. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy

    PubMed Central

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-01-01

    Objectives: To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. Methods: To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. Results: The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7–149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Conclusions: Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. Citation: Liu Y, Zhang J, Lam V, Ho CK, Zhou J, Li SX, Lam SP, Yu MW, Tang X, Wing YK. Altered sleep stage transitions of REM sleep: a novel and stable biomarker of narcolepsy. J Clin Sleep Med 2015

  3. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. High-order multipole radiation from quantum Hall states in Dirac materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael J.; Taylor, Jacob M.; Imamoǧlu, Ataç; Ghaemi, Pouyan; Hafezi, Mohammad

    2017-06-01

    We investigate the optical response of strongly disordered quantum Hall states in two-dimensional Dirac materials and find qualitatively different effects in the radiation properties of the bulk versus the edge. We show that the far-field radiation from the edge is characterized by large multipole moments (>50 ) due to the efficient transfer of angular momentum from the electrons into the scattered light. The maximum multipole transition moment is a direct measure of the coherence length of the edge states. Accessing these multipole transitions would provide new tools for optical spectroscopy and control of quantum Hall edge states. On the other hand, the far-field radiation from the bulk appears as random dipole emission with spectral properties that vary with the local disorder potential. We determine the conditions under which this bulk radiation can be used to image the disorder landscape. Such optical measurements can probe submicron-length scales over large areas and provide complementary information to scanning probe techniques. Spatially resolving this bulk radiation would serve as a novel probe of the percolation transition near half filling.

  5. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    NASA Astrophysics Data System (ADS)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  6. A new transition radiation detector to detect heavy nuclei around the knee

    NASA Astrophysics Data System (ADS)

    Boyle, Patrick J.; Swordy, Simon P.; Wakely, Scott P.

    2003-02-01

    The overall cosmic ray intensity spectrum falls as a constant power law over at least 11 decades of particle energy. One of the only features in this spectrum is the slight change in power law index near 1015 eV, often called the ‘knee" of the spectrum. Accurate measurements of cosmic ray elemental abundances into this energy region are expected to reveal the origin of this feature, and possibly the nature of cosmic ray sources. The extremely low intensity of particles at these energies (a few per m2 per year) makes the detection challenging. Since only direct measurements have so far proved reliable for the accurate determination of elemental composition, a large-area, light weight, device is needed to achieve long exposures above the atmosphere either on high-altitude balloons or spacecraft. Here we report on a detector which uses the x-ray transition radiation yield from plastic foams to provide a response into the knee region for heavy elements. We use individual xenon-filled gas proportional tubes as detectors, combined with Amplex ASIC chip electronics for readout. The construction of this type of detector, and its implementation in the upcoming NASA CREAM 100 day high-altitude balloon payload is described. Also discussed is the calibration of the detector in an accelerator beam at CERN and a comparison with GEANT4 Monet Carlo simulations.

  7. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    PubMed

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition

    NASA Astrophysics Data System (ADS)

    Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.

    1981-12-01

    An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.

  9. SU-E-P-10: Establishment of Local Diagnostic Reference Levels of Routine Exam in Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, M; Wang, Y; Weng, H

    Introduction National diagnostic reference levels (NDRLs) can be used as a reference dose of radiological examination can provide radiation dose as the basis of patient dose optimization. Local diagnostic reference levels (LDRLs) by periodically view and check doses, more efficiency to improve the way of examination. Therefore, the important first step is establishing a diagnostic reference level. Computed Tomography in Taiwan had been built up the radiation dose limit value,in addition, many studies report shows that CT scan contributed most of the radiation dose in different medical. Therefore, this study was mainly to let everyone understand DRL’s international status. Formore » computed tomography in our hospital to establish diagnostic reference levels. Methods and Materials: There are two clinical CT scanners (a Toshiba Aquilion and a Siemens Sensation) were performed in this study. For CT examinations the basic recommended dosimetric quantity is the Computed Tomography Dose Index (CTDI). Each exam each different body part, we collect 10 patients at least. Carried out the routine examinations, and all exposure parameters have been collected and the corresponding CTDIv and DLP values have been determined. Results: The majority of patients (75%) were between 60–70 Kg of body weight. There are 25 examinations in this study. Table 1 shows the LDRL of each CT routine examination. Conclusions: Therefore, this study would like to let everyone know DRL’s international status, but also establishment of computed tomography of the local reference levels for our hospital, and providing radiation reference, as a basis for optimizing patient dose.« less

  10. First results from protective ECRH diagnostics for Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Marsen, S.; Corre, Y.; Laqua, H. P.; Moncada, V.; Moseev, D.; Niemann, H.; Preynas, M.; Stange, T.; The W7-X Team

    2017-08-01

    Wendelstein 7-X (W7-X) is a steady state capable optimised stellarator. The main heating system is electron cyclotron resonance heating (ECRH) operating at 140 GHz providing up to 9 MW microwave power. The power is launched into the machine by front steerable quasi-optical launchers in X- or O-mode. While in X-mode the first pass absorption is 99%, it is only 40... 70% in O-mode. O2-mode heating is forseen for high density operation above the X2 cutoff density of 1.2\\centerdot {{10}20} m-3. A set of diagnostics has been developed to protect the machine from non absorbed ECRH power which can easily damage in vessel components. The non absorbed power hitting the inner wall is measured by waveguides embedded in the first wall (ECA diagnostic). In order to prevent the inner wall from overheating or arcing, a near-infra red sensitive video diagnostic with a dynamic range of 450...1200 °C was integrated in the ECRH launchers. Thermal calculations for the carbon tiles predict a temperature increase above the detection threshold for scenarios of plasma start-up failure or poor absorption on a time scale of 50 ms. However, the temperature increase measured by an IR camera in experiments with failed break down, i.e. no ECRH absorption for up to 50 ms, was only Δ T≈ 70{{~}\\circ} C. In discharges with ≈ 5% transmission the measured temperature increase was comparable. The stray radiation level inside the machine is measured by so called sniffer probes resembling microwave diode detectors which were designed to collect all radiation approaching the probing surface independent of incident angle and polarization. Five sniffer probes are installed at different toroidal positions. They were integrated in the ECRH interlock system. During the first operational phase of W7-X this was the only available plasma interlock system. The signal quality proofed to be high enough for a reliable termination in case of poor absorption. After a breakdown phase of 10 ms, the sniffer

  11. Dose rate, mitotic cycle duration, and sensitivity of cell transitions from G1 $Yields$ S and G2 $Yields$ M to protracted gamma radiation in root meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.S.; Hof, J.V.

    1975-11-01

    Experiments were designed to determine the relative radiosensitivity of the cell transition points of G1 $Yields$ S and G2 $Yields$ M in root meristems of several plant species. Label and mitotic indices and microspectrophotometry were used to measure the proportions of cells in each mitotic cycle stage in root meristems after protracted gamma radiation. The criterion of radiosensitivity was the dose rate needed to produce a tissue with less than 1 percent cells in S and none in M after 3 days of continuous exposure. The results show that DNA is the primary radiation target in proliferative root meristems andmore » that the cycle duration stipulates the time interval of vulnerability. In each species, nonrandom reproducible cell proportions were established with 2C:4C:8C amounts of nuclear DNA after 3 days of exposure. Roots of Helianthus annuus, Crepis capillaris, and Tradescantia clone 02 had 80 percent cells with a 2C amount of DNA and 20 percent had a 4C amount of DNA. In these species the transition point of G1 $Yields$ S was more radiosensitive than G2 $Yields$ M. Roots of Pisum sativum and Triticum aestivum had cell proportions at 2C:4C:8C amounts of DNA in frequencies of 0.10 to 0.20:0.40 to 0.60:0.30 to 0.40. In these two species 0.30 to 0.40 cells underwent radiation-induced endoreduplication that resulted from a rapid inhibition of cell transit from G2 $Yields$ M and a slower impairment of G1 $Yields$ S. Cells increased from 2C to 4C and from 4C to 8C amounts of DNA during irradiation. The proportions of nuclei with 2C:4C:8C amounts of DNA were dependent in part upon the relative radiosensitivity of the G1 $Yields$ S and G2 $Yields$ M control points. The data show the relative radiosensitivity of the transition points from G1 $Yields$ S and from G2 $Yields$ M was species specific and unrelated to the cycle duration and mean nuclear DNA content of the plant species. (auth)« less

  12. Image storage in radiation oncology: What did we learn from diagnostic radiology?

    NASA Astrophysics Data System (ADS)

    Blodgett, Kurt; Luick, Marc; Colonias, Athanasios; Gayou, Olivier; Karlovits, Stephen; Werts, E. Day

    2009-02-01

    The Digital Imaging and Communications in Medicine (DICOM) standard was developed by the National Electrical Manufacturers Association (NEMA) and the American College of Radiology (ACR) for medical image archiving and retrieval. An extension to this implemented a standard named DICOM-RT for use in Radiation Oncology. There are currently seven radiotherapy-specific DICOM objects which include: RT Structure Set, RT Plan, RT Dose, RT Image, RT Beams Treatment Record, RT Brachy Treatment Record, and RT Treatment Summary Record. The type of data associated with DICOM-RT includes (1) Radiation treatment planning datasets (CT, MRI, PET) with radiation treatment plans showing beam arrangements, isodose distributions, and dose volume histograms of targets/normal tissues and (2) Image-guided radiation modalities such as Siemens MVision mega-voltage cone beam CT (MV-CBCT). With the advent of such advancing technologies, there has been an exponential increase in image data collected for each patient, and the need for reliable and accessible image storage has become critical. A potential solution is a Radiation Oncology specific picture archiving and communication systems (PACS) that would allow data storage from multiple vendor devices and support the storage and retrieval needs not only of a single site but of a large, multi-facility network of radiation oncology clinics. This PACS system must be reliable, expandable, and cost-effective to operate while protecting sensitive patient image information in a Health Insurance Portability and Accountability Act (HIPAA) compliant environment. This paper emphasizes the expanding DICOM-RT storage requirements across our network of 8 radiation oncology clinics and the initiatives we undertook to address the increased volume of data by using the ImageGrid (CANDELiS Inc, Irvine CA) server and the IGViewer license (CANDELiS Inc, Irvine CA) to create a DICOM-RT compatible PACS system.

  13. On the reversibility of transitions between closed and open cellular convection

    DOE PAGES

    Feingold, G.; Koren, I.; Yamaguchi, T.; ...

    2015-07-08

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed- to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed–open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapidmore » drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator–prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large

  14. MHD modeling of coronal loops: the transition region throat

    NASA Astrophysics Data System (ADS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  15. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  16. Assessment of radiation protection practices among radiographers in Lagos, Nigeria.

    PubMed

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-11-01

    Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.

  17. Spectroscopic diagnostics of tungsten-doped CH plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.; Lehecka, T.

    1998-11-01

    Spectra of CH with different concentrations of W dopant and laser intensities ( 2.5-10 x10^12 W/cm^2 ) were obtained at NRL with the Nike Laser. They were recorded in the 100-500 eV range with an XUV grating spectrometer. The hydrodynamic simulations are performed with the 1D code FAST1D(J. H. Gardner et al., Phys. Plasmas, 5, May (1998).) where non LTE effects are introduced by Busquet's model( M. Busquet, Phys. Fluids B, 5, 4191 (1993); M. Klapisch, A. Bar-Shalom, J. Oreg and D. Colombant, Phys. Plasmas, 5, May (1998).). They are then post-processed with TRANSPEC( O. Peyrusse, J. Quant. Spectrosc. Radiat. Transfer, 51, 281 (1994)), a time dependent collisional radiative code with radiation coupling. The necessary atomic data are obtained from the HULLAC code( M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transfer, 58, 687 (1997).). The post processing and diagnostics were performed on carbon lines and the results are compared with the experimental data.

  18. Regular transition zone biopsy during active surveillance for prostate cancer may improve detection of pathological progression.

    PubMed

    Wong, Lih-Ming; Toi, Ants; Van der Kwast, Theodorus; Trottier, Greg; Alibhai, Shabbir M H; Timilshina, Narhari; Evans, Andrew; Zlotta, Alexandre; Fleshner, Neil; Finelli, Antonio

    2014-10-01

    We investigated the frequency of cancer and pathological progression in transition zone biopsies in men undergoing multiple rebiopsies while on active surveillance. Eligibility criteria of the active surveillance prostate cancer database (1997 to 2012) at our tertiary center includes prostate specific antigen 10 ng/ml or less, cT2 or less, no Gleason grade 4 or 5, 3 or fewer positive cores, no core with greater than 50% involvement, patient age 75 years or less and 1 or more biopsies after initial diagnostic biopsy. We excluded from analysis men with fewer than 10 cores at diagnostic biopsy and/or confirmatory biopsy greater than 24 months after diagnostic biopsy. Multiparametric magnetic resonance imaging was performed selectively to investigate incongruity between prostate specific antigen and biopsy findings. Pathological progression was defined by grade and/or volume (greater than 50% of core involved). Transition zone progression was subdivided into exclusively transition zone and combined transition zone (transition and peripheral zones). A multivariate Cox proportional hazards model was used to determine predictors of transition zone progression. A total of 392 men were considered in analysis. Median followup was 45.5 months. At each biopsy during active surveillance (confirmatory biopsy to biopsy 5+) there were transition zone positive cores in 18.6% to 26.7% of cases, all transition zone progression in 5.9% to 11.1% and exclusively transition zone progression in 2.7% to 6.7%. Volume related progression was noted more frequently than grade related progression (24 vs 9 cases). Predictors of only transition zone progression were the maximum percent in a single core (HR 1.99, 95% CI 1.30-3.04, p = 0.002) and cancer on magnetic resonance imaging (HR 3.19, 95% CI 1.23-8.27, p = 0.02). Across multiple active surveillance biopsies 2.7% to 6.7% of men had only transition zone progression. We recommend that transition zone biopsy be considered in all men at

  19. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less

  20. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  1. RTGs on Transit

    NASA Astrophysics Data System (ADS)

    Dassoulas, John; McNutt, Ralph L.

    2007-01-01

    Transit, the US Navy's Navigation Satellite System was conceived at the Applied Physics Laboratory in 1957 by observing the Doppler shift while tracking Sputnik I. As spacecraft development proceeded there was concern about the ability of batteries to maintain the hermetic seal over a 5-year operational life requirement; therefore, alternate energy sources were investigated. The radioisotope thermoelectric generator (RTG) concept was pursued and resulted in the launch of SNAP 3s, providing partial power on both Transit 4A and 4B. SNAP 9s provided full power on three Transit 5BNs. All launches occurred in the early 1960s. When the U.S. conducted the high altitude nuclear test from Johnson Island, several spacecraft were lost due to artificial enhancement of charged particles in the Earth's magnetosphere resulting in rapid degradation of solar cell power production. This led to the decision to have both an RTG and Solar cell/battery design for Transit power systems; hence, a new RTG design, with a separable heat source and radiative coupling to the thermoelectric elements, was flown on TRIAD. This pioneering effort provided the impetus for future RTGs on interplanetary spacecraft. This paper describes the origin and purpose of the Transit program and provides details on the five satellites in that program that were powered by the first American RTGs used in space. The rationale and some of the challenges inherent in that use are also described.

  2. 1 D analysis of Radiative Shock damping by lateral radiative losses.

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Colombier, Jean-Philippe; Stehle, Chantal

    2007-11-01

    It has been shown theoretically and experimentally [1] that the radiative precursor in front of a strong shock in hi-Z material is slowed down by lateral radiative losses. The 2D simulation showed that the shock front and the precursor front remain planar, with an increase of density and a decrease of temperature close to the walls. The damping of the precursor is obviously sensitive to the fraction of self-emitted radiation reflected by the walls (the albedo). In order to perform parametric studies we include the albedo controlled lateral radiative losses in the 1D hydro-code MULTI (created by Ramis et al [2]) both in terms of energy balance and of spectral diagnostic. [1] Gonzales et al, Laser Part. Beams 24, 1-6 (2006) ; Busquet et al, High Energy Density Physics (2007), doi: 10.1016/j.hedp.2007.01.002 [2] Ramis et al, Comp. Phys. Comm., 49 (1988), 475

  3. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  4. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, Joel

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied inmore » high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W 55+ through Ne-like W 64+, and intershell transitions in Zn-like W 44+ through Co-like W 47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W 64+ through Li-like W 71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W 6+ could be useful for plasma diagnostics.« less

  5. Gender incongruence: a comparative study using ICD-10 and DSM-5 diagnostic criteria.

    PubMed

    Soll, Bianca M; Robles-García, Rebeca; Brandelli-Costa, Angelo; Mori, Daniel; Mueller, Andressa; Vaitses-Fontanari, Anna M; Cardoso-da-Silva, Dhiordan; Schwarz, Karine; Abel-Schneider, Maiko; Saadeh, Alexandre; Lobato, Maria-Inês-Rodrigues

    2018-01-01

    To compare the presence of criteria listed in the DSM-5 and ICD-10 diagnostic manuals in a Brazilian sample of transgender persons seeking health services specifically for physical transition. This multicenter cross-sectional study included a sample of 103 subjects who sought services for gender identity disorder in two main reference centers in Brazil. The method involved a structured interview encompassing the diagnostic criteria in the two manuals. The results revealed that despite theoretical disagreement about the criteria, the manuals overlap regarding diagnosis confirmation; the DSM-5 was more inclusive (97.1%) than the ICD-10 (93.2%) in this population. Although there is no consensus on diagnostic criteria on transgenderism in the diversity of social and cultural contexts, more comprehensive diagnostic criteria are evolving due to society's increasing inclusivity.

  6. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  7. Phase transitions in huddling emperor penguins

    NASA Astrophysics Data System (ADS)

    Richter, S.; Gerum, R.; Winterl, A.; Houstin, A.; Seifert, M.; Peschel, J.; Fabry, B.; Le Bohec, C.; Zitterbart, D. P.

    2018-05-01

    Emperor penguins (Aptenodytes forsteri) are highly adapted to the harsh conditions of the Antarctic winter: they are able to fast for up to 134 days during breeding. To conserve energy, emperor penguins form tight groups (huddles), which is key for their reproductive success. The effect of different meteorological factors on the huddling behaviour, however, is not well understood. Using time-lapse image recordings of an emperor penguin colony, we show that huddling can be described as a phase transition from a fluid to a solid state. We use the colony density as order parameter, and an apparent temperature that is perceived by the penguins as the thermodynamic variable. We approximate the apparent temperature as a linear combination of four meteorological parameters: ambient temperature, wind speed, global radiation and relative humidity. We find a wind chill factor of  ‑2.9 , a humidity chill factor of  ‑0.5 rel. humidity, and a solar radiation heating factor of 0.3 . In the absence of wind, humidity and solar radiation, the phase transition temperature (50% huddling probability) is  ‑48.2 °C for the investigated time period (May 2014). We propose that higher phase transition temperatures indicate a shrinking thermal insulation and thus can serve as a proxy for lower energy reserves of the colony, integrating pre-breeding foraging success at sea and energy expenditure at land due to environmental conditions. As current global change is predicted to have strong detrimental effects on emperor penguins within the next decades, our approach may thus contribute towards an urgently needed long-term monitoring system for assessing colony health.

  8. Convergence between DSM-IV-TR and DSM-5 diagnostic models for personality disorder: evaluation of strategies for establishing diagnostic thresholds.

    PubMed

    Morey, Leslie C; Skodol, Andrew E

    2013-05-01

    The Personality and Personality Disorders Work Group for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) recommended substantial revisions to the personality disorders (PDs) section of DSM-IV-TR, proposing a hybrid categorical-dimensional model that represented PDs as combinations of core personality dysfunctions and various configurations of maladaptive personality traits. Although the DSM-5 Task Force endorsed the proposal, the Board of Trustees of the American Psychiatric Association (APA) did not, placing the Work Group's model in DSM-5 Section III ("Emerging Measures and Models") with other concepts thought to be in need of additional research. This paper documents the impact of using this alternative model in a national sample of 337 patients as described by clinicians familiar with their cases. In particular, the analyses focus on alternative strategies considered by the Work Group for deriving decision rules, or diagnostic thresholds, with which to assign categorical diagnoses. Results demonstrate that diagnostic rules could be derived that yielded appreciable correspondence between DSM-IV-TR and proposed DSM-5 PD diagnoses-correspondence greater than that observed in the transition between DSM-III and DSM-III-R PDs. The approach also represents the most comprehensive attempt to date to provide conceptual and empirical justification for diagnostic thresholds utilized within the DSM PDs.

  9. A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line

    NASA Astrophysics Data System (ADS)

    Shchukina, N. G.; Sukhorukov, A. V.; Trujillo Bueno, J.

    2017-07-01

    Aims: The Si I 10 827 Å line is commonly used for spectropolarimetric diagnostics of the solar atmosphere. First, we aim at quantifying the sensitivity of the Stokes profiles of this line to non-local thermodynamic equilibrium (NLTE) effects. Second, we aim at facilitating NLTE diagnostics of the Si I 10 827 Å line. To this end, we propose the use of a relatively simple silicon model atom, which allows a fast and accurate computation of Stokes profiles. The NLTE Stokes profiles calculated using this simple model atom are very similar to those obtained via the use of a very comprehensive silicon model atom. Methods: We investigate the impact of the NLTE effects on the Si I 10 827 Å line by means of multilevel radiative transfer calculations in a three-dimensional (3D) model atmosphere taken from a state-of-the-art magneto-convection simulation with small-scale dynamo action. We calculate the emergent Stokes profiles for this line at the solar disk center and for every vertical column of the 3D snapshot model, neglecting the effects of horizontal radiative transfer. Results: We find significant departures from LTE in the Si I 10 827 Å line, not only in the intensity but also in the linearly and circularly polarized profiles. At wavelengths around 0.1 Å, where most of the Stokes Q, U, and V peaks of the Si I 10 827 Å line occur, the differences between the NLTE and LTE profiles are comparable with the Stokes amplitudes themselves. The deviations from LTE increase with increasing Stokes Q, U, and V signals. Concerning the Stokes V profiles, the NLTE effects correlate with the magnetic field strength in the layers where such circular polarization signals are formed. Conclusions: The NLTE effects should be taken into account when diagnosing the emergent Stokes I profiles as well as the Stokes Q, U, and V profiles of the Si I 10 827 Å line. The sixteen-level silicon model atom proposed here, with six radiative bound-bound transitions, is suitable to account for the

  10. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  11. Excitation and Diagnostics of Optical Contamination in the Spacecraft Environment

    DTIC Science & Technology

    1988-07-01

    principal atmospheric- 10 recombination species 3.1 Distribution of population in vibrational states and 41 radiative lifetimes of NO(X) 4.1 Nadir spectral...the radiative transition is populated , but also on the lifetime in this state and desorption velocity of the excited species and, obviously, the...directly with later-arriving incident gas, in * so-called Rideal- Eiey prucesses. S, , II As the rate coefficients of most of the gas-phase exothermic

  12. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  13. Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Alpeggiani, Filippo; Gong, Su-Hyun; Kuipers, L.

    2018-05-01

    The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials extremely promising for optical and optoelectronic applications. When the excitons interact with the electromagnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while being confined in the out-of-plane direction. In this work, we derive the characteristic equations that determine both radiative and polaritonic modes in TMDC monolayers and we analyze the dispersion and decay rate of the modes. The condition for the existence of exciton-polaritons can be described in terms of a strong-coupling regime for the interaction between the exciton and the three-dimensional continuum of free-space electromagnetic modes. We show that the threshold for the strong-coupling regime critically depends on the interplay between nonradiative losses and the dielectric function imbalance at the two sides of the monolayer. Our results illustrate that a fine control of the dielectric function of the embedding media is essential for realizing exciton-polaritons in the strong-coupling regime.

  14. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Sereno, N. S.

    2009-04-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  15. Radiative corrections to the η(') Dalitz decays

    NASA Astrophysics Data System (ADS)

    Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan

    2018-05-01

    We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.

  16. Solar wind radiation damage effects in lunar material

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Cohen, A. J.; Cassidy, W. A.

    1971-01-01

    The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites.

  17. Diagnostic reasoning strategies and diagnostic success.

    PubMed

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  18. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVpmore » and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.« less

  19. Intense terahertz radiation from relativistic laser–plasma interactions

    DOE PAGES

    Liao, G. Q.; Li, Y. T.; Li, C.; ...

    2016-11-02

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This study presents our measurements of intense THz radiation from relativistic laser–plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. Finally, the results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  20. Nested Case-control Study of Occupational Radiation Exposure and Breast and Esophagus Cancer Risk among Medical Diagnostic X Ray Workers in Jiangsu of China.

    PubMed

    Wang, Fu-Ru; Fang, Qiao-Qiao; Tang, Wei-Ming; Xu, Xiao-San; Mahapatra, Tanmay; Mahapatra, Sanchita; Liu, Yu-Fei; Yu, Ning-Le; Sun, Quan-Fu

    2015-01-01

    Medical diagnostic X-ray workers are one occupational group that expose to the long-term low-dose external radiation over their working lifetime, and they may under risk of different cancers. This study aims to determine the relationship between the occupational X-ray radiation exposure and cancer risk among these workers in Jiangsu, China. We conducted Nested case-control study to investigate the occupational X-ray radiation exposure and cancer risk. Data were collected through self-administered questionnaire, which includes but not limits to demographic data, personal behaviors and family history of cancer. Retrospective dose reconstruction was conducted to estimate the cumulative doses of the x-ray workers. Inferential statistics, t-test and 2 tests were used to compare the differences between each group. We used the logistic regression model to calculate the odds ratio (OR) and 95% confidence interval (CI) of cancer by adjusting the age, gender. All 34 breast cancer cases and 45 esophageal cancer cases that detected in a cohort conducted among health workers between 1950~2011 were included in this presented study, and 158 cancer-free controls were selected by frequency-matched (1:2). Our study found that the occupational radiation exposure was associated with a significantly increased cancer risk compared with the control, especially in breast cancer and esophageal cancer (adjusted OR=2.90, 95% CI: 1.19-7.04 for breast cancer; OR=4.19, 95% CI: 1.87-9.38 for esophageal cancer, and OR=3.43, 95% CI: 1.92-6.12 for total cancer, respectively). The occupational X-ray radiation exposure was associated with increasing cancer risk, which indicates that proper intervention and prevention strategies may be needed in order to bring down the occupational cancer risk.

  1. Simulated transition from RCP8.5 to RCP4.5 through three different Radiation Management techniques

    NASA Astrophysics Data System (ADS)

    Muri, H.; Kristjansson, J. E.; Adakudlu, M.; Grini, A.; Lauvset, S. K.; Otterå, O. H.; Schulz, M.; Tjiputra, J. F.

    2016-12-01

    Scenario studies have shown that in order to limit global warming to 2°C above pre-industrial levels, negative CO2 emissions are required. Currently, no safe and well-established technologies exist for achieving such negative emissions. Hence, although carbon dioxide removal may appear less risky and controversial than Radiation Management (RM) techniques, the latter type of climate engineering (CE) techniques cannot be ruled out as a future policy option. The EXPECT project, funded by the Norwegian Research Council, explores the potential and risks of RM through Earth System Model Simulations. We here describe results from a study that simulates a 21st century transition from an RCP8.5 to a RCP4.5 scenario through Radiation Management. The study uses the Norwegian Earth System Model (NorESM) to compare the results from the following three RM techniques: a) Stratospheric Aerosol Injections (SAI); b) Marine Sky Brightening (MSB); c) Cirrus Cloud Thinning (CCT). All three simulations start from the year 2020 and run until 2100. Whereas both SAI and MSB successfully simulate the desired negative radiative forcing throughout the 21st century, the CCT simulations have a +0.5 W m-2 residual forcing (on top of RCP4.5) at the end of the century. Although all three techniques obtain approximately the same global temperature evolution, precipitation responses are very different. In particular, the CCT simulation has even more globally averaged precipitation at year 2100 than RCP8.5, whereas both SAI and MSB simulate less precipitation than RCP4.5. In addition, there are significant differences in geographical patterns of precipitation. Natural variability in the Earth System also exhibits sensitivity to the choice of RM technique: Both the Atlantic Meridional Overturning Circulation and the Pacific Decadal Oscillation respond differently to the choice of SAI, MSB or CCT. We will present a careful analysis, as well as a physical interpretation of the above results.

  2. LDRD Final Review: Radiation Transport Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goorley, John Timothy; Morgan, George Lake; Lestone, John Paul

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  3. Radiation Standards: The Last Word or at Least a Definitive One

    ERIC Educational Resources Information Center

    Gillette, Robert

    1972-01-01

    Discusses the report of the National Academy of Science Committee on the Biological Effects of Ionizing Radiation, with particular reference to the possibilities for lowering maximum permissible standards for exposure to man-made radiation. The excessive use of diagnostic X-rays is considered. (AL)

  4. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  5. Diagnostics of boundary layer transition by shear stress sensitive liquid crystals

    NASA Astrophysics Data System (ADS)

    Shapoval, E. S.

    2016-10-01

    Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.

  6. Radiation- and pair-loaded shocks

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  7. Infrared Rydberg Transitions in B Stars.

    NASA Astrophysics Data System (ADS)

    Sigut, Thomas Allan Aaron

    1995-01-01

    The infrared solar spectrum exhibits emission lines near 12 μm from the Mg scI high-l Rydberg transitions 6g - 7h and 6h - 7i. Chang et al. (1991) demonstrated that the emission arises from small deviations in the populations of these Rydberg levels from their thermodynamic equilibrium values. In this thesis, the possible operation of this emission mechanism is investigated in the B stars by performing non-LTE radiative transfer calculations for the high-l Rydberg transitions of Mg scII and O scI. Highly realistic atomic models are employed, complete in energy levels and radiative transitions far into the Rydberg regime. For Mg scII, the collisional excitation rates are improved by computing collision strengths in a 10 state close-coupling approximation using the R-matrix method. The collisional excitation rates derived from these collisions strengths include the full effects of autoionizing resonances and have an expected accuracy of +/-10% for transitions between levels lying low in energy in the close-coupling expansion. For Mg scII, wide-ranging infrared emission is found, spanning the entire range of B spectral types. The emission is caused by the same mechanism operative in the Rydberg levels of Mg scI in the sun. Small divergences between the Rydberg departure coefficients produce rising monochromatic source functions and emission. Flux profiles of the Mg scII high-l ( Delta n = +1) transitions from n = 4 and 5 show an emission peak superposed on wider absorption trough, similar in form to the solar Mg scI lines, while for higher n, the profiles are in full emission. The strongest emission is predicted for transitions from n = 5, 6, and 7 and strongly increases for lower surface gravities where the rates of thermalizing collisions are lower. The emission strengths reach maxima of Flambda /Fc ~ 1.15 and Wlambda ~ -0.1 A. Transitions from higher n exhibit progressively lower continuum contrasts due to the steep rise with wavelength of the continuous opacity

  8. Radiation dose produced by patients during radiopharmaceutical incorporation in nuclear medicine diagnostic procedures.

    PubMed

    Morán, V; Prieto, E; García-García, B; Barbés, B; Ribelles, M J; Richter, J Á; Martí-Climent, J M

    2016-01-01

    The aim of this study was to assess the dose received by members of the public due to close contact with patients undergoing nuclear medicine procedures during radiopharmaceutical incorporation, and comparing it with the emitted radiation dose when the test was complete, in order to establish recommendations. A prospective study was conducted on 194 patients. H*(10) dose rates were measured at 0.1, 0.5, and 1.0m after the radiopharmaceutical administration, before the image acquisition, and at the end of the nuclear medicine procedure. Effective dose for different close contact scenarios were calculated, according to 95th percentile value (bone scans) and the maximum value (remaining tests). During the radiopharmaceutical incorporation, a person who stays with another injected patient in the same waiting room may receive up to 0.59 mSv. If the patient had a medical appointment, or went to a restaurant or a coffee shop, members of the public could receive 23, 43, and 22 μSv, respectively. After finishing the procedure, these doses are reduced by a factor 3. In most of the studies, the use of private instead of public transport may reduce the dose by more than a factor 6. It is recommended to increase the distance between the patients during the radiopharmaceutical incorporation and to distribute them according to the diagnostic procedure. Patients should be encouraged to use private instead of public transport. Depending on the number of nuclear medicine outpatients per year attended by a physician, it could be necessary to apply restrictions. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  9. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    PubMed

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  10. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less

  11. Motor onset and diagnosis in Huntington disease using the diagnostic confidence level.

    PubMed

    Liu, Dawei; Long, Jeffrey D; Zhang, Ying; Raymond, Lynn A; Marder, Karen; Rosser, Anne; McCusker, Elizabeth A; Mills, James A; Paulsen, Jane S

    2015-12-01

    Huntington disease (HD) is a neurodegenerative disorder characterized by motor dysfunction, cognitive deterioration, and psychiatric symptoms, with progressive motor impairments being a prominent feature. The primary objectives of this study are to delineate the disease course of motor function in HD, to provide estimates of the onset of motor impairments and motor diagnosis, and to examine the effects of genetic and demographic variables on the progression of motor impairments. Data from an international multisite, longitudinal observational study of 905 prodromal HD participants with cytosine-adenine-guanine (CAG) repeats of at least 36 and with at least two visits during the followup period from 2001 to 2012 was examined for changes in the diagnostic confidence level from the Unified Huntington's Disease Rating Scale. HD progression from unimpaired to impaired motor function, as well as the progression from motor impairment to diagnosis, was associated with the linear effect of age and CAG repeat length. Specifically, for every 1-year increase in age, the risk of transition in diagnostic confidence level increased by 11% (95% CI 7-15%) and for one repeat length increase in CAG, the risk of transition in diagnostic confidence level increased by 47% (95% CI 27-69%). Findings show that CAG repeat length and age increased the likelihood of the first onset of motor impairment as well as the age at diagnosis. Results suggest that more accurate estimates of HD onset age can be obtained by incorporating the current status of diagnostic confidence level into predictive models.

  12. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE PAGES

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; ...

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  13. Effectiveness of Fluorography versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography

    PubMed Central

    Shah, Binita; Mai, Xingchen; Tummala, Lakshmi; Kliger, Chad; Bangalore, Sripal; Miller, Louis H.; Sedlis, Steven P.; Feit, Frederick; Liou, Michael; Attubato, Michael; Coppola, John; Slater, James

    2014-01-01

    Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference <45 inches and glomerular filtration rate >60mL/min were randomized to the Fluorography (n=25) or Cineangiography (n=25) group. Patients in the Fluorography group underwent coronary angiography using retrospectively-stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator’s discretion. Patients in the Cineangiography group underwent coronary angiography using routine cineangiography. The primary endpoint was patient radiation exposure measured by radiochromic film. Secondary endpoints included the radiation output measurement of kerma-area product (KAP) and air kerma at the interventional reference point (Ka,r), and operator radiation exposure measured by dosimeter. Patient radiation exposure (158.2mGy [76.5–210.2] vs 272.5mGy [163.3–314.0], p=0.001), KAP (1323μGy m2 [826–1765] vs 3451μGy m2 [2464–4818], p<0.001), and Ka,r (175 mGy [112–252] vs 558 mGy [313–621], p<0.001)was significantly lower in the Fluorography compared with Cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction though statistically non-significant (Fluorography 2.35 μGy [1.24–6.30] vs Cineangiography 5.03μGy [2.48–7.80], p=0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography with repeat injection under cineangiography only when needed was efficacious at reducing patient radiation exposure. PMID:24513469

  14. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.

    PubMed

    Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh

    2008-04-04

    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.

  15. Aerothermodynamic radiation studies

    NASA Technical Reports Server (NTRS)

    Donohue, K.; Reinecke, W. G.; Rossi, D.; Marinelli, W. J.; Krech, R. H.; Caledonia, G. E.

    1991-01-01

    We have built and made operational a 6 in. electric arc driven shock tube which alloys us to study the non-equilibrium radiation and kinetics of low pressure (0.1 to 1 torr) gases processed by 6 to 12 km/s shock waves. The diagnostic system allows simultaneous monitoring of shock radiation temporal histories by a bank of up to six radiometers, and spectral histories with two optical multi-channel analyzers. A data set of eight shots was assembled, comprising shocks in N2 and air at pressures between 0.1 and 1 torr and velocities of 6 to 12 km/s. Spectrally resolved data was taken in both the non-equilibrium and equilibrium shock regions on all shots. The present data appear to be the first spectrally resolved shock radiation measurements in N2 performed at 12 km/s. The data base was partially analyzed with salient features identified.

  16. Noise Rating Criteria for Elevated Rapid Transit Structures

    DOT National Transportation Integrated Search

    1980-05-01

    The purpose of this report is to recommend criteria for rating the noise radiated from elevated rapid transit structures during train passages, so that different types of structures can be inter-compared with respect to their noise impact on the imme...

  17. Evolution of the Preliminary Clinical Year and the Case for a Categorical Diagnostic Radiology Residency.

    PubMed

    Pfeifer, Cory M

    2016-07-01

    While other specialties traditionally utilizing a segregated clinical internship year have slowly progressed toward integrated training curricula, diagnostic radiology has been slow to adopt this path. The aim of this study was to analyze the trends in stand-alone preliminary clinical years as well as the shift toward categorical residencies currently being undertaken in other specialties. Advantages of mimicking the trends of other specialties and current integrated radiology programs are discussed. The perception of diagnostic radiology as a competitive specialty is explored, and the prospect of change as a recruiting tool is examined. Data assimilated by the NRMP from 1994 through 2016 were processed and analyzed. The total number of postgraduate year (PGY) 1 preliminary year programs has remained relatively constant over the past 10 years despite a gradual increase in overall NRMP applicants. The proportion of these programs offered as a transitional year declined from 31% in 1994 to 20% in 2016. The proportion of categorical anesthesiology positions gradually rose from 43% in 2007 to 70% in 2016. The fraction of categorical neurology positions increased from 30% in 2007 to 59% in 2016. The percentage of diagnostic radiology programs beginning at the PGY 1 level has been relatively constant at 12% to 14% since 2007. Dermatology has increased advanced (PGY 2) positions while decreasing categorical (PGY 1) positions. Those matching in diagnostic radiology have performed at a high level compared with the composite NRMP average since 2007. In the 2015 match, there were 65 diagnostic radiology programs that did not fill all of their offered positions. Of the institutions housing these programs, only 22% of them had preliminary internal medicine or transitional year positions available after the match. In response to the evolving nature of health care and graduate medical education, other specialties are gradually shifting toward curricular structures that begin at

  18. Suppression of Allowed Transitions in Al-like Krypton (Kr23+) Due to the Presence of a Magnetic Dipole Transition in the 3s23p 2P Ground Term

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Podpaly, Yuri; Ralchenko, Yuri; Gillaspy, John

    2013-05-01

    Extreme ultraviolet spectra of highly charged krypton atoms were produced with an electron beam ion trap (EBIT) and recorded with a flat-field grazing-incidence spectrometer. The wavelength range was 3-18 nm. Wavelength calibration was provided by known lines of highly ionized Kr as well as spectra of C, O, Xe, and Ba. The observed spectra were interpreted with the aid of collisional-radiative modeling of the EBIT plasma. For the Al-like ion Kr23+ the allowed resonance lines 3s23p 2P-3s23d 2D exhibited extreme deviation from the normal ratios for lines of this multiplet. In particular, the 2P3/2-2D5/2 transition, normally the strongest, was observed to be the weakest. This effect was explained by the fact that in the low electron density environment of EBIT the 2D5/2 level is primarily populated by electron excitation from 2P3/2. However, the presence of a magnetic dipole M1 transition 3s23p 2P1/2-2P3/2 reduces the population of 2P3/2 and hence the population of 2D5/2. We are conducting further modeling with varying electron density to try to reproduce the observed line ratios. This could serve as a diagnostic tool for determining electron density in EBIT and fusion energy devices. Supported by Office of Fusion Energy Sciences of Dept. of Energy.

  19. REDUCTION OF DOSES IN DIAGNOSTIC USES OF RADIOISOTOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.

    1960-03-01

    > A moderately low-level counting technique with anticoincidence gas- flow counter was developed for use in metabolic and diagnostic tracer studies with radioisotopes. Several important experiments and results were reported which have been carried out with reduced doses of tracer isotopes. A reduction of the tracer dose of ahout 1/30th of the present conventional doses was achieved which helps to minimize the chances of radiation hazards. (auth)

  20. Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry Applications

    DTIC Science & Technology

    2005-01-01

    radiation protein biomarker studies using an in vivo murine radiation model. Male BALB/c mice were exposed to 25-cGy 60Co- gamma radiation. Dosimetry ...Csoke, I. Hejja, An on-board TLD system for dose monitor- ing on the International Space Station, Radiation Protection Dosimetry , 84(1-4 Pt1): 321-323...diagnostic information after exposure. Using an ex vivo model system of human peripheral lymphocytes as well as an in vivo murine model, we demonstrated

  1. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  2. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides.

    PubMed

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2016-07-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding.

  3. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides

    PubMed Central

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2017-01-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding. PMID:28890600

  4. Radiation exposure in gastroenterology: improving patient and staff protection.

    PubMed

    Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  5. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  6. On stimulated resonance radiation by channeled particles

    NASA Astrophysics Data System (ADS)

    Dabagov, S. B.; Kalashnikov, N. P.

    2017-07-01

    The channeled particles undergo quasiperiodic transverse bound motion along main crystallographic directions at either 1D planar or 2D axial channeling. This motion is accompanied by spontaneous radiation known as channeling radiation due to projectile's transmission between discrete quantum states. In this work we have presented preliminary evaluation of the processes of resonance scattering of external electromagnetic field when the external frequency becomes close to the channeled particle transition energies that might be of the source for induced radiation at channeling.

  7. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics.

    PubMed

    Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V

    2008-10-01

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  8. NMR Metabolomics in Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.

    Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as amore » chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.« less

  9. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  10. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, B R; Harris, J R

    2011-03-07

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam linemore » operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.« less

  11. Atomic Resonance Radiation Energetics Investigation as a Diagnostic Method for Non-Equilibrium Hypervelocity Flows

    NASA Technical Reports Server (NTRS)

    Meyer, Scott A.; Bershader, Daniel; Sharma, Surendra P.; Deiwert, George S.

    1996-01-01

    Absorption measurements with a tunable vacuum ultraviolet light source have been proposed as a concentration diagnostic for atomic oxygen, and the viability of this technique is assessed in light of recent measurements. The instrumentation, as well as initial calibration measurements, have been reported previously. We report here additional calibration measurements performed to study the resonance broadening line shape for atomic oxygen. The application of this diagnostic is evaluated by considering the range of suitable test conditions and requirements, and by identifying issues that remain to be addressed.

  12. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  13. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine. Positron emission tomography, PET, is...be visualized at a relevant stage., largely because most imaging is based upon structures and not molecular functions. But there are no tools to...system suitable for imaging signals from in small animals on the standard radiation therapy tools. (3) To evaluate the limits on structural , metabolic

  14. Study of performance of the ATLAS transition radiation tracker in run 1 of the LHC: Tracking characteristics

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Krasnopevtsev, D.; Smirnov, N.

    2018-01-01

    The ATLAS Transition Radiation Tracker (TRT) contains more than 350000 large straw tubes and it is the outermost of the three subsystems of the ATLAS Inner Detector (ID). The TRT contributes substantially to the ATLAS ID resolution for the tracks of high-energy particles, providing excellent particle identification capabilities and electron-pion separation. Basic performance parameters of the TRT related to its tracking function are described in this paper. The data used in this study were collected during the first period of the Large Hadron Collider (LHC) operation in 2012 with a proton collision energy of 8 TeV. The tracking performance of the TRT has been studied in the case of operating with a Xe-based gas mixture and as a function of the straw occupancy. Special attention was paid to investigation of tracking parameters inside hadronic jets. The experimental data and simulation are in reasonable agreement, even within the dense cores of the most energetic jets.

  15. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  16. 47 CFR 15.124 - DTV transition notices by manufacturers of televisions and related devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false DTV transition notices by manufacturers of televisions and related devices. 15.124 Section 15.124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.124 DTV transition notices by manufacturers...

  17. Pump-probe studies of radiation induced defects and formation of warm dense matter with pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.

    2014-10-01

    We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of <0.1% displacements per atom. We will report results from damage evolution studies in thin silicon crystals with Li + and K + beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.

  18. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  19. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies.

    PubMed

    Kovalchuk, Anna; Kolb, Bryan

    2017-07-03

    Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.

  20. Knowledge of medical imaging radiation dose and risk among doctors.

    PubMed

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  1. Intelligent transient transitions detection of LRE test bed

    NASA Astrophysics Data System (ADS)

    Zhu, Fengyu; Shen, Zhengguang; Wang, Qi

    2013-01-01

    Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.

  2. ARM Data-Oriented Metrics and Diagnostics Package for Climate Model Evaluation Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chengzhu; Xie, Shaocheng

    A Python-based metrics and diagnostics package is currently being developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Infrastructure Team at Lawrence Livermore National Laboratory (LLNL) to facilitate the use of long-term, high-frequency measurements from the ARM Facility in evaluating the regional climate simulation of clouds, radiation, and precipitation. This metrics and diagnostics package computes climatological means of targeted climate model simulation and generates tables and plots for comparing the model simulation with ARM observational data. The Coupled Model Intercomparison Project (CMIP) model data sets are also included in the package to enable model intercomparison as demonstratedmore » in Zhang et al. (2017). The mean of the CMIP model can serve as a reference for individual models. Basic performance metrics are computed to measure the accuracy of mean state and variability of climate models. The evaluated physical quantities include cloud fraction, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, and radiative fluxes, with plan to extend to more fields, such as aerosol and microphysics properties. Process-oriented diagnostics focusing on individual cloud- and precipitation-related phenomena are also being developed for the evaluation and development of specific model physical parameterizations. The version 1.0 package is designed based on data collected at ARM’s Southern Great Plains (SGP) Research Facility, with the plan to extend to other ARM sites. The metrics and diagnostics package is currently built upon standard Python libraries and additional Python packages developed by DOE (such as CDMS and CDAT). The ARM metrics and diagnostic package is available publicly with the hope that it can serve as an easy entry point for climate modelers to compare their models with ARM data. In this report, we first present the input data

  3. Dose and risk in diagnostic radiology: How big How little Lecture Number 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, E.W.

    1992-01-01

    This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancermore » after diagnostic dose of I-131.« less

  4. [Applications of electromagnetic radiation in medicine].

    PubMed

    Miłowska, Katarzyna; Grabowska, Katarzyna; Gabryelak, Teresa

    2014-05-08

    Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.

  5. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING... for the radiographic visualization and measurement of the dimensions of the human head. Coefficient of...

  6. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING... for the radiographic visualization and measurement of the dimensions of the human head. Coefficient of...

  7. Thermodynamic phase transition of a black hole in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen; Yang, Shu-Zheng

    2017-09-01

    In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.

  8. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  9. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Wu, C. R.; Yao, X. J.

    2016-11-15

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including D{sub α} (656.1 nm), D{sub γ} (433.9 nm), He II (468.5 nm), Li I (670.8 nm), Li II (548.3 nm), C III (465.0 nm), O II (441.5 nm), Mo I (386.4 nm), W I (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucialmore » role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.« less

  10. Characterization of the Goubau line for testing beam diagnostic instruments

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  11. Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.

    2014-06-01

    We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and

  12. The diagnostic performance of shear-wave elastography for liver fibrosis in children and adolescents: A systematic review and diagnostic meta-analysis.

    PubMed

    Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young

    2018-03-01

    To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.

  13. Nucleic acid-functionalized transition metal nanosheets for biosensing applications

    PubMed Central

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-01-01

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066

  14. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    PubMed Central

    Cordova-Fraga, Teodoro; Sosa, Modesto; Wiechers, Carlos; la Roca-Chiapas, Jose Maria De; Moreles, Alejandro Maldonado; Bernal-Alvarado, Jesus; Huerta-Franco, Raquel

    2008-01-01

    AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI). METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright, fowler, and supine positions; 90º, 45º and 0º, respectively). RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90º, 45º and 0º, respectively. Pearson correlation results were r = -0.716 and P < 0.001 by subjects’ anatomical position, and r = -0.024 and P > 0.05 according the subject’s BMI. CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT. PMID:18837088

  15. Multielectron transitions in x-ray absorption of krypton

    NASA Astrophysics Data System (ADS)

    Ito, Yoshiaki; Nakamatsu, Hirohide; Mukoyama, Takeshi; Omote, Kazuhiko; Yoshikado, Shinzo; Takahashi, Masao; Emura, Shuichi

    1992-11-01

    The photoabsorption cross section near the K edge in krypton gas has been measured using synchro- tron radiation. Several features for simultaneous multielectron excitations were detected and analyzed by the use of the shakeup and shakeoff probabilities and their dependence on the photon energy. Previous observations of the [1s3p], [1s3d], and [1s4p] transitions have been confirmed. A transition is found between [1s3p] and [1s3d] multiple excitations and identified as a three-electron excitation [1s3d4p].

  16. Spatially resolved speckle-correlometry of sol-gel transition

    NASA Astrophysics Data System (ADS)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  17. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  18. Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2011-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  19. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  20. Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.

    2011-07-15

    In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8)more » are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good

  1. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup

    During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of

  2. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    PubMed

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  3. A two photon absorption laser induced fluorescence diagnostic for fusion plasmasa)

    NASA Astrophysics Data System (ADS)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm2), narrow bandwidth (0.1 cm-1) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  4. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  5. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  6. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.

  7. Asymptotic normalization coefficients and radiative widths

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Pang, D. Y.

    2015-07-01

    The asymptotic normalization coefficient (ANC) is an important quantity in the calculation of radiative width amplitudes, providing limits on the radiative width. Here we present some examples showing the connection between the ANC and radiative width. In particular, the radiative width of the E 1 transition 17F(1 /2-,Ex=3.104 MeV ) to 17F(1 /2+,Ex=0.495 MeV ) reported by Rolfs [Nucl. Phys. A 217, 29 (1973), 10.1016/0375-9474(73)90622-2] is (1.2 ±0.2 ) ×10-2 eV. Meanwhile the ANC for the first excited state in 17F puts a lower limit on the radiative width, which is (3.4 ±0.50 ) ×10-2 eV. Such a strong disagreement between the measured radiative width and the lower limit imposed by the ANC calls for a new measurement of this radiative width. Other examples are also considered.

  8. Diagnostic Yield of Computed Tomography Scan for Pediatric Hearing Loss: A Systematic Review

    PubMed Central

    Chen, Jenny X.; Kachniarz, Bart; Shin, Jennifer J.

    2015-01-01

    Background Computed tomography (CT) has been used in the assessment of pediatric hearing loss, but concern regarding radiation risk and increased utilization of magnetic resonance imaging (MRI) have prompted us toward a more quantitative and sophisticated understanding of CT’s potential diagnostic yield. Objective To perform a systematic review to analyze the diagnostic yield of CT for pediatric hearing loss, including subgroup evaluation according to impairment severity and laterality, as well as the specific findings of enlarged vestibular aqueduct and narrow cochlear nerve canal. Data Sources PubMed, EMBASE, and the Cochrane Library were assessed from the date of their inception to December 2013. In addition, manual searches of bibliographies were performed and topic experts were contacted. Review Methods Data from studies describing the use of CT in the diagnostic evaluation of pediatric patients with hearing loss of unknown etiology were evaluated, according to a priori inclusion/exclusion criteria. Two independent evaluators corroborated the extracted data. Heterogeneity was evaluated according to the I2 statistic. Results In 50 criteria-meeting studies, the overall diagnostic yield of CT ranged from 7% to 74%, with the strongest and aggregate data demonstrating a point estimate of 30%. This estimate corresponded to a number needed to image of 4 (range, 2–15). The most commonly identified findings were enlarged vestibular aqueduct and cochlear anomalies. The largest studies showed a 4% to 7% yield for narrow cochlear nerve canal. Conclusion These data, along with similar analyses of radiation risk and risks/benefits of sedated MRI, may be used to help guide the choice of diagnostic imaging. PMID:25186339

  9. The importance of protection glasses during neuroangiographies: A study on radiation exposure at the lens of the primary operator.

    PubMed

    Tavares, J B; Sacadura-Leite, E; Matoso, T; Neto, L L; Biscoito, L; Campos, J; Sousa-Uva, A

    2016-06-01

    In interventional neuroradiology, few operators routinely use radiation protection glasses. Moreover, in most centers, radiation dose data only accounts for whole body dose without specific information on lens dose. In 2012, the International Commission on Radiological Protection advised that the threshold limit value for the lens should be 20 mSv/year instead of the previous 150 mSv/year limit. The purpose of this study was to compare the radiation dose in the operator's lens during real diagnostic and interventional neuroangiographies, either using or without lead protection glasses. Using the Educational Direct Dosimeter (EDD30 dosimeter), accumulated radiation dose in the lens was measured in 13 neuroangiographies: seven diagnostic and six interventional. Operators with and without radiation protection glasses were included and the sensor was placed near their left eye, closest to the radiation beam. Without glasses, the corrected mean dose of radiation in the lens was 8.02 µSv for diagnostic procedures and 168.57 µSv for interventional procedures. Using glasses, these values were reduced to 1.74 µSv and 33.24 µSv, respectively. Considering 20 mSv as the suggested annual limit of equivalent dose in the lens, neuroradiologists may perform up to 2,494 diagnostic procedures per year without protecting glasses, a number that increases to 11,494 when glasses are used consistently. Regarding intervention, a maximum of 119 procedures per year is advised if glasses are not used, whereas up to 602 procedures/year may be performed using this protection. Therefore, neuroradiologists should always wear radiation protection glasses. © The Author(s) 2016.

  10. Health effects of prenatal radiation exposure.

    PubMed

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  11. Diagnostic value of MRI signs in differentiating Ewing sarcoma from osteomyelitis.

    PubMed

    Kasalak, Ömer; Overbosch, Jelle; Adams, Hugo Ja; Dammann, Amelie; Dierckx, Rudi Ajo; Jutte, Paul C; Kwee, Thomas C

    2018-01-01

    Background The value of magnetic resonance imaging (MRI) signs in differentiating Ewing sarcoma from osteomyelitis has not be thoroughly investigated. Purpose To investigate the value of various MRI signs in differentiating Ewing sarcoma from osteomyelitis. Material and Methods Forty-one patients who underwent MRI because of a bone lesion of unknown nature with a differential diagnosis that included both Ewing sarcoma and osteomyelitis were included. Two observers assessed several MRI signs, including the transition zone of the bone lesion, the presence of a soft-tissue mass, intramedullary and extramedullary fat globules, and the penumbra sign. Results Diagnostic accuracies for discriminating Ewing sarcoma from osteomyelitis were 82.4% and 79.4% for the presence of a soft-tissue mass, and 64.7% and 58.8% for a sharp transition zone of the bone lesion, for readers 1 and 2 respectively. Inter-observer agreement with regard to the presence of a soft-tissue mass and the transition zone of the bone lesion were moderate (κ = 0.470) and fair (κ = 0.307), respectively. Areas under the receiver operating characteristic curve of the diameter of the soft-tissue mass (if present) were 0.829 and 0.833, for readers 1 and 2 respectively. Mean inter-observer difference in soft-tissue mass diameter measurement ± limits of agreement was 35.0 ± 75.0 mm. Diagnostic accuracies of all other MRI signs were all < 50%. Conclusion Presence and size of a soft-tissue mass, and sharpness of the transition zone, are useful MRI signs to differentiate Ewing sarcoma from osteomyelitis, but inter-observer agreement is relatively low. Other MRI signs are of no value in this setting.

  12. Slow transit constipation: a review of a colonic functional disorder.

    PubMed

    Frattini, Jared C; Nogueras, Juan J

    2008-05-01

    Constipation is a common gastrointestinal complaint that can cause significant physical and psychosocial problems. It has been categorized as slow transit constipation, normal transit constipation, and obstructed defecation. Both the definition and pathophysiology of constipation are unclear, but attempts to describe each of the three types have been made. Slow transit constipation, a functional colonic disorder represents approximately 15 to 30% of constipated patients. The theorized etiologies are disorders of the autonomic and enteric nervous system and/or a dysfunctional neuroendocrine system. Slow transit constipation can be diagnosed with a complete history, physical exam, and a battery of specific diagnostic studies. Once the diagnosis is affirmed and medical management has failed, there are several treatment options. Biofeedback, sacral nerve stimulation, segmental colectomy, and subtotal colectomy with various anastomoses have all been used. Of those treatment options, a subtotal colectomy with ileorectal anastomosis is the most efficacious with the data to support its use.

  13. Diagnostics of Plasma Propulsion Devices

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark A.

    1998-11-01

    Plasma rockets are rapidly emerging as critical technologies in future space flight. These devices take on various forms, ranging from electro-thermal to electromagnetic accelerators, generally categorized by the method in which electrical energy is converted to thrust. As is the case in many plasma devices, non-intrusive optical (emission, or laser-based) diagnostics is an essential element in the characterization of these plasma sources, as access to the discharges in these plasma engines is often limited. Furthermore, laser-based diagnostics offer additional benefits, including improved spatial resolution, and can provide state-specific measurements of species densities, velocities and energy distributions. In recent years, we have developed and applied a variety of emission and laser-based diagnostics strategies to the characterization of arcjet plasma and closed-drift xenon Hall plasma accelerators. Both of these types of plasma propulsion devices are of immediate interest to the space propulsion community, and are under varying stages of development. Arcjet thrusters have unique properties, with strong plasma density, temperature and velocity gradients, which enhance the coupling between the gasdynamic and plasma physics. Closed-drift Hall plasma thrusters are low density electrostatic devices that are inherently turbulent, and exhibit varying degrees of anomalous cross-field electron transport. Our most extensive, collective effort has been to apply laser-induced fluorescence, Doppler-free laser absorption, and Raman scattering to the characterization of hydrogen and helium arcjet flows. Detailed measurements of velocity, temperatures, and electron densities are compared to the results of magneto-hydrodynamic flowfield simulations. The results show that while the simulations capture many aspects of the flow, there are still some unresolved discrepancies. The database established for Hall thrusters is less extensive, as the laser absorption spectroscopy of

  14. Synchrotron radiation topography studies of the phase transition in LaGaO 3 crystals

    NASA Astrophysics Data System (ADS)

    Yao, G.-D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R. C.

    1991-05-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145°C in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers.

  15. Methods and compositions for protection of cells and tissues from computed tomography radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grdina, David J.

    Described are methods for preventing or inhibiting genomic instability and in cells affected by diagnostic radiology procedures employing ionizing radiation. Embodiments include methods of preventing or inhibiting genomic instability and in cells affected by computed tomography (CT) radiation. Subjects receiving ionizing radiation may be those persons suspected of having cancer, or cancer patients having received or currently receiving cancer therapy, and or those patients having received previous ionizing radiation, including those who are approaching or have exceeded the recommended total radiation dose for a person.

  16. Formation of AlCl by radiative association

    NASA Astrophysics Data System (ADS)

    Andreazza, C. M.; de Almeida, A. A.; Vichietti, R. M.

    2018-06-01

    The rate coefficient for the formation of aluminium monochloride, AlCl, from the radiative association of aluminium and chlorine atoms is estimated as a function of temperature. The coupling of the Al and Cl atoms through the A1Π molecular electronic state, which undergoes radiative transition to the X1Σ+ ground state, is the most efficient transition to form AlCl. The rate constant was found to vary with temperature according to the expressions k(T) = 1.22 × 10-16(T/300)0.40exp (-748/T) cm3 s-1 for temperatures between 300 and 1000 K, and k(T) = 2.20 × 10-16(T/300)0.175exp (-1067/T) cm3 s-1 for temperatures between 1000 and 14 000 K.

  17. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  18. Radiative bistability and thermal memory.

    PubMed

    Kubytskyi, Viacheslav; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2014-08-15

    We predict the existence of a thermal bistability in many-body systems out of thermal equilibrium which exchange heat by thermal radiation using insulator-metal transition materials. We propose a writing-reading procedure and demonstrate the possibility to exploit the thermal bistability to make a volatile thermal memory. We show that this thermal memory can be used to store heat and thermal information (via an encoding temperature) for arbitrary long times. The radiative thermal bistability could find broad applications in the domains of thermal management, information processing, and energy storage.

  19. Radiationless Transitions and Excited-State Absorption in Tunable Laser Materials

    DTIC Science & Technology

    1992-09-01

    chromium - doped halide elpasolites K2 NaGaF 6 , K2 NaScF6 and Cs2NaYCl 6 , and on the laser-active TI0 (l) color center in KCI. Luminescence lifetime...Non-radiative transitions, transition metals, chromium , ¶SLWmER o E tunable lasers, high pressure, luminescence, color centers ൙. SECURITY O...quenching and excited-state absorption are major loss mechanisms. Low-crystal-field chromium complexes in ordered perovskites of cubic elpasolite structure

  20. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900more » K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.« less

  1. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  2. SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne

    2016-02-10

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4–3)/HCO{sup +}(4–3) and/or HCN(4–3)/CS(7–6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of themore » high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO{sup +} and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral–neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.« less

  3. Submillimeter-HCN Diagram for Energy Diagnostics in the Centers of Galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne; Espada, Daniel; Fathi, Kambiz; Harada, Nanase; Hatsukade, Bunyo; Hsieh, Pei-Ying; Imanishi, Masatoshi; Krips, Melanie; Martín, Sergio; Matsushita, Satoki; Meier, David S.; Nakai, Naomasa; Nakanishi, Kouichiro; Schinnerer, Eva; Sheth, Kartik; Terashima, Yuichi; Turner, Jean L.

    2016-02-01

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4-3)/HCO+(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO+ and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.

  4. Overview of the Martian radiation environment experiment

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.; Badhwar, G.

    2004-01-01

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Overview of the Martian radiation environment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Cleghorn, T.F.; Cucinotta, F.A.

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001more » Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.« less

  6. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions usingmore » the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.« less

  7. Synchronization behaviors of coupled neurons under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Wang, Chunni

    2017-01-01

    Based on an improved neuronal model, in which the effect of magnetic flux is considered during the fluctuation and change of ion concentration in cells, the transition of synchronization is investigated by imposing external electromagnetic radiation on the coupled neurons, and networks, respectively. It is found that the synchronization degree depends on the coupling intensity and the intensity of external electromagnetic radiation. Indeed, appropriate intensity of electromagnetic radiation could be effective to realize intermittent synchronization, while stronger intensity of electromagnetic radiation can induce disorder of coupled neurons and network. Neurons show rhythm synchronization in the electrical activities by increasing the coupling intensity under electromagnetic radiation, and spatial patterns can be formed in the network under smaller factor of synchronization.

  8. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1990-01-01

    The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.

  9. Statistical physics of medical diagnostics: Study of a probabilistic model.

    PubMed

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  10. Statistical physics of medical diagnostics: Study of a probabilistic model

    NASA Astrophysics Data System (ADS)

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  11. Diagnosing Appendicitis: Evidence-Based Review of the Diagnostic Approach in 2014

    PubMed Central

    Shogilev, Daniel J.; Duus, Nicolaj; Odom, Stephen R.; Shapiro, Nathan I.

    2014-01-01

    Introduction Acute appendicitis is the most common abdominal emergency requiring emergency surgery. However, the diagnosis is often challenging and the decision to operate, observe or further work-up a patient is often unclear. The utility of clinical scoring systems (namely the Alvarado score), laboratory markers, and the development of novel markers in the diagnosis of appendicitis remains controversial. This article presents an update on the diagnostic approach to appendicitis through an evidence-based review. Methods We performed a broad Medline search of radiological imaging, the Alvarado score, common laboratory markers, and novel markers in patients with suspected appendicitis. Results Computed tomography (CT) is the most accurate mode of imaging for suspected cases of appendicitis, but the associated increase in radiation exposure is problematic. The Alvarado score is a clinical scoring system that is used to predict the likelihood of appendicitis based on signs, symptoms and laboratory data. It can help risk stratify patients with suspected appendicitis and potentially decrease the use of CT imaging in patients with certain Alvarado scores. White blood cell (WBC), C-reactive protein (CRP), granulocyte count and proportion of polymorphonuclear (PMN) cells are frequently elevated in patients with appendicitis, but are insufficient on their own as a diagnostic modality. When multiple markers are used in combination their diagnostic utility is greatly increased. Several novel markers have been proposed to aid in the diagnosis of appendicitis; however, while promising, most are only in the preliminary stages of being studied. Conclusion While CT is the most accurate mode of imaging in suspected appendicitis, the accompanying radiation is a concern. Ultrasound may help in the diagnosis while decreasing the need for CT in certain circumstances. The Alvarado Score has good diagnostic utility at specific cutoff points. Laboratory markers have very limited

  12. Diagnostic Biodosimetry Response for Radiation Disasters: Current Research and Service Activities at AFRRI

    DTIC Science & Technology

    2004-06-01

    address the need for triage, based on early physical assessments, bioindicators , and biological assessments, in order to aid clinical management of... bioindicator for radiation exposure, Strahlentherapy Onkol., 166: 688-95. [IAEA] Cytogenetic analysis for radiation dose assessment. A manual...Name: Dr Rios-Tejada (SP) Question: Is there relevance of biodosimetry in air crews who fly high and at high latitudes? Author’s Reply: The

  13. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  15. RADIATION THERAPY COMMUNICATION-REIRRADIATION OF A NASAL TUMOR IN A BRACHYCEPHALIC DOG USING INTENSITY MODULATED RADIATION THERAPY.

    PubMed

    Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M

    2016-09-01

    A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.

  16. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  17. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    PubMed

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  18. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  19. Molecular diagnostics of FUV and accretion-related heating in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; Najita, Joan R.

    2017-10-01

    Emission lines from the terrestrial planet forming regions of disks are diagnostic of both the physical processes that heat the gas and the chemistry that determines the inventory of nebular material available during the epoch of planet formation. Interpreting emission spectra is informed by models of radiative, thermal, physical, and chemical processes, such as: (i) the radiation transfer of X-rays and FUV --- both continuum and Ly-alpha, (ii) direct and indirect heating processes such as the photoelectric effect and photochemical heating, (iii) heating related to turbulent processes and viscous dissipation, and (iv) gas phase chemical reaction kinetics. Many of these processes depend on a the spatial distribution of dust grains and their properties, which temporally evolve during the lifetime of the disk and the formation of planets. Studies of disks atmospheres often predict a layered structure of hot (a few thousand K) atomic gas overlying warm (a few hundred K) molecular gas, which is generally consistent with the isothermal slab emission models that are used to interpret emission spectra. However, detailed comparison between observed spectra and models (e.g., comparing the total columns and the radial extent of warm emitting species) is rare.We present results including the implementation of Ly-alpha scattering, which is an important part of the photochemical heating and FUV heating radiation budget. By including these processes we find a new component of the disk atmosphere; hot molecular gas at ~2000K within radial distances of ~0.5AU, which is consistent with observations of UV-fluorescent H2 emission (Ádámkovics, Najita & Glassgold, 2016). Constraining the most optimistic contribution of radiative heating mechanisms via X-rays and FUV together with a favorable comparison to observations, allows us to explore and evaluate additional heating mechanisms. We find that the total columns of warm (90-400K) emitting molecules such as CO, arising directly below

  20. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.