Lee, Michael S; Olson, Mark A
2011-06-28
Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
Experimental study of 2-layer regenerators using Mn-Fe-Si-P materials
NASA Astrophysics Data System (ADS)
Christiaanse, T. V.; Trevizoli, P. V.; Misra, Sumohan; Carroll, Colman; van Asten, David; Zhang, Lian; Teyber, R.; Govindappa, P.; Niknia, I.; Rowe, A.
2018-03-01
This work describes an experimental study of a two layer active magnetic regenerator with varying transition temperature spacing. The transition temperature of the materials is based on the specific heat peak of the materials. A transition temperature based on the average of the heating and cooling curves at zero Tesla field value is used to refer to the materials throughout this paper. This study uses five Mn-Fe-Si-P materials with transition temperatures of 294.6 K, 292.3 K, 290.7 K, 282.5 K and 281.4 K. Six different regenerators are tested. A reference configuration is tested using the 294.6 K material a hot side layer and with a second passive layer of lead spheres as cold side layer. Followed by four configurations that use the same 294.6 K material as hot side layer, but where each configuration uses a different cold side material. For the second active layer the materials are used in sequence; 292.3 K, 290.7 K, 282.5 K and 281.4K. Lastly, a sixth configuration uses the 292.3 K and 282.5 K materials. For each configuration, the temperature span is measured for rejection temperatures from 40 °C to 9 °C and at 0 W and 2 W applied load. Experimental results for temperature span and exergetic cooling power are compared based on the differences from the reference configuration. Materials are analysed based on material performance metrics such as peak adiabatic temperature change, peak entropy change and RCP(s) values. For the cases considered, a closer transition temperature spacing generally gives a greater temperature span and exergetic cooling power than further spaced materials, even when the combined materials have comparatively lower performance metrics. When two materials with higher RCP(s) values with large transition temperature spacing are compared to materials with lower RCP(s) values but, closer transition temperature spacing a higher exergetic cooling power and temperature span is found for the latter.
Jiang, Qi; Zeng, Huidan; Liu, Zhao; Ren, Jing; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Zhao, Donghui
2013-09-28
Sodium borophosphate glasses exhibit intriguing mixed network former effect, with the nonlinear compositional dependence of their glass transition temperature as one of the most typical examples. In this paper, we establish the widely applicable topological constraint model of sodium borophosphate mixed network former glasses to explain the relationship between the internal structure and nonlinear changes of glass transition temperature. The application of glass topology network was discussed in detail in terms of the unified methodology for the quantitative distribution of each coordinated boron and phosphorus units and glass transition temperature dependence of atomic constraints. An accurate prediction of composition scaling of the glass transition temperature was obtained based on topological constraint model.
NASA Astrophysics Data System (ADS)
Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Jin Kim, Min; Min Baik, Jeong; Kim, Gil-Ho
2013-11-01
Rapid thermal annealing of VO2 nanobeams in an ambient argon environment has been carried out at various temperatures after device fabrication. Our analysis revealed that increasing the annealing temperature from 200 °C to 400 °C results in the reduction of both ohmic and nanobeam resistances with an appreciable decrease in joule-heating based transition voltage and transition temperature, while samples annealed at 500 °C exhibited a conducting rutile-phase like characteristics at room temperature. In addition, these variation trends were explored using a physical model and the results were found to be in agreement with the observed results, thus verifying the model.
Phase transition of aragonite in abalone nacre
NASA Astrophysics Data System (ADS)
An, Yuanlin; Liu, Zhiming; Wu, Wenjian
2013-04-01
Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.
Traiphol, Nisanart; Faisadcha, Kunruethai; Potai, Ruttayapon; Traiphol, Rakchart
2015-02-01
An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature. Copyright © 2014 Elsevier Inc. All rights reserved.
Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation
NASA Astrophysics Data System (ADS)
Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang
2007-02-01
High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.
Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...
2015-04-27
Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe 2 As 2 and SrFe 2 As 2 . We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less
Influence of specimen dimensions on ductile-to-brittle transition temperature in Charpy impact test
NASA Astrophysics Data System (ADS)
Rzepa, S.; Bucki, T.; Konopík, P.; Džugan, J.; Rund, M.; Procházka, R.
2017-02-01
This paper discusses the correlation between specimen dimensions and transition temperature. Notch toughness properties of Standard Charpy-V specimens are compared to samples with lower width (7.5 mm, 5 mm, 2.5 mm) and sub-size Charpy specimens with cross section 3×4. In this study transition curves are correlated with lateral ductile part of fracture related ones for 5 considered geometries. Based on the results obtained, correlation procedure for transition temperature determination of full size specimens defined by fracture appearance of sub-sized specimens is proposed.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-04-01
Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.
Shock temperatures in anorthite glass
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.; Mitchell, A. C.
1983-01-01
Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases.
The electrical properties and glass transition of some dental materials after temperature exposure.
Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw
2017-10-17
The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
2016-12-21
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
NASA Astrophysics Data System (ADS)
Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.
2017-02-01
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K
2017-02-15
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Single diode laser sensor for wide-range H2O temperature measurements.
Gharavi, Mohammadreza; Buckley, Steven G
2004-04-01
A single diode laser absorption sensor (near 1477 nm) useful for simultaneous temperature and H2O concentration measurements is developed. The diode laser tunes approximately 1.2 cm(-1) over three H2O absorption transitions in each measurement. The line strengths of the transitions are measured over a temperature range from 468 to 977 K, based on high-resolution absorption measurements in a heated static cell. The results indicate that the selected transitions are suitable for sensitive temperature measurements in atmospheric pressure combustion systems using absorption line ratios. Comparing the results with HITRAN 96 data, it appears that these transitions will be sensitive over a wide range of temperatures (450-2000 K), suggesting applicability for combustion measurements.
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature
NASA Astrophysics Data System (ADS)
Trushin, Egor; Görling, Andreas
2018-04-01
We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.
Polymeric nanoparticles - Influence of the glass transition temperature on drug release.
Lappe, Svenja; Mulac, Dennis; Langer, Klaus
2017-01-30
The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.
Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.
2012-04-01
We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
On the classification of exoplanets according to Safronov number
NASA Astrophysics Data System (ADS)
Öztürk, O.; Erdem, A.
2018-02-01
We reexamine the classification of transiting exoplanets proposed by Hansen & Barman (2007) based on equilibrium temperatures and Safronov numbers. We used more sensitive data, namely, photometric and spectroscopic orbital solutions, of 263 well-known planets given in The Exoplanet Data Explorer, while Hansen & Barman (2007) used data on 18 transiting planets. Diagrams of the planet gravity vs. orbital period, planet gravity vs. equilibrium temperature, and Safronov number vs. equilibrium temperature of the 263 transiting planets show that the division of planets into two classes is indistinct.
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2018-04-01
A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.
Dislocation dynamics modelling of the ductile-brittle-transition
NASA Astrophysics Data System (ADS)
Hennecke, Thomas; Hähner, Peter
2009-07-01
Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Linlong; Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122; Du, Jinglei, E-mail: dujl@scu.edu.cn
We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.
NASA Astrophysics Data System (ADS)
Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.
1994-03-01
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.
Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D
1994-03-04
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.
Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap
Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; ...
2016-01-26
Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.
Zhang, Weihong; Chen, Jianhan
2013-06-11
Temperature-based replica exchange (RE) is now considered a principal technique for enhanced sampling of protein conformations. It is also recognized that existence of sharp cooperative transitions (such as protein folding/unfolding) can lead to temperature exchange bottlenecks and significantly reduce the sampling efficiency. Here, we revisit two adaptive temperature-based RE protocols, namely, exchange equalization (EE) and current maximization (CM), that were previously examined using atomistic simulations (Lee and Olson, J. Chem. Physics2011, 134, 24111). Both protocols aim to overcome exchange bottlenecks by adaptively adjusting the simulation temperatures, either to achieve uniform exchange rates (in EE) or to maximize temperature diffusion (CM). By designing a realistic yet computationally tractable coarse-grained protein model, one can sample many reversible folding/unfolding transitions using conventional constant temperature molecular dynamics (MD), standard REMD, EE-REMD, and CM-REMD. This allows rigorous evaluation of the sampling efficiency, by directly comparing the rates of folding/unfolding transitions and convergence of various thermodynamic properties of interest. The results demonstrate that both EE and CM can indeed enhance temperature diffusion compared to standard RE, by ∼3- and over 10-fold, respectively. Surprisingly, the rates of reversible folding/unfolding transitions are similar in all three RE protocols. The convergence rates of several key thermodynamic properties, including the folding stability and various 1D and 2D free energy surfaces, are also similar. Therefore, the efficiency of RE protocols does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational rearrangements. This is particularly true considering that virtually all RE simulations of proteins in practice involve exchange attempt frequencies (∼ps(-1)) that are several orders of magnitude faster than the slowest protein motions (∼μs(-1)). Our results also suggest that the efficiency of RE will not likely be improved by other protocols that aim to accelerate exchange or temperature diffusion. Instead, protocols with some types of guided tempering will likely be necessary to drive faster large-scale conformational transitions.
Enhanced power factor via the control of structural phase transition in SnSe
Yu, Hulei; Dai, Shuai; Chen, Yue
2016-01-01
Tin selenide has attracted much research interest due to its unprecedentedly high thermoelectric figure of merit (ZT). For real applications, it is desirable to increase the ZT value in the lower-temperature range, as the peak ZT value currently exists near the melting point. It is shown in this paper that the structural phase transition plays an important role in boosting the ZT value of SnSe in the lower-temperature range, as the Cmcm phase is found to have a much higher power factor than the Pnma phase. Furthermore, hydrostatic pressure is predicted to be extremely effective in tuning the phase transition temperature based on ab-initio molecular dynamic simulations; a remarkable decrease in the phase transition temperature is found when a hydrostatic pressure is applied. Dynamical stabilities are investigated based on phonon calculations, providing deeper insight into the pressure effects. Accurate band structures are obtained using the modified Becke-Johnson correction, allowing reliable prediction of the electrical transport properties. The effects of hydrostatic pressure on the thermal transport properties are also discussed. Hydrostatic pressure is shown to be efficient in manipulating the transport properties via the control of phase transition temperature in SnSe, paving a new path for enhancing its thermoelectric efficiency. PMID:27193260
Anomalous metastability in a temperature-driven transition
NASA Astrophysics Data System (ADS)
Ibáñez Berganza, M.; Coletti, P.; Petri, A.
2014-06-01
The Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic-field-driven transition in ferromagnets and the chemical-potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as the one exhibited by the two-dimensional Potts model. For this model, a study based on the analytical continuation of the free energy (Meunier J. L. and Morel A., Eur. Phys. J. B, 13 (2000) 341) predicts the anomalous vanishing of the metastable temperature range in the large-system-size limit, an issue that has been controversial since the eighties. By a GPU algorithm we compare the Monte Carlo dynamics with the theory. For temperatures close to the transition we obtain agreement and characterize the dependence on the system size, which is essentially different with respect to the Ising case. For smaller temperatures, we observe the onset of stationary states with non-Boltzmann statistics, not predicted by the theory.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
Non-equilibrium phase transitions in a liquid crystal
NASA Astrophysics Data System (ADS)
Dan, K.; Roy, M.; Datta, A.
2015-09-01
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the anisotropy, goes to zero from nematic to isotropic phase. To a point below the transition temperature, the order parameter is constant but decreases linearly with increase in temperature below that indicating the dependence of nematic ordering on the initial temperature during heating consistent with the non-equilibrium nature of nematic-isotropic phase transition.
Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Nizam, A; Samsudin, A R
2004-05-01
The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.
NASA Astrophysics Data System (ADS)
Luo, Qiang; Schwarz, Björn; Swarbrick, Janine C.; Bednarčik, Jozef; Zhu, Yingcai; Tang, Meibo; Zheng, Lirong; Li, Ran; Shen, Jun; Eckert, Jürgen
2018-02-01
With increasing temperature, metallic glasses (MGs) undergo first glass transition without pronounced structural change and then crystallization with distinct variation in structure and properties. The present study shows a structural change of short-range order induced by an electron-delocalization transition, along with an unusual large-volume shrinkage in Ce-based MGs. An f -electron localization-delocalization transition with thermal hysteresis is observed from the temperature dependence of x-ray absorption spectroscopy and resonant inelastic x-ray scattering spectra, indicating an inheritance of the 4 f configuration of pure Ce. However, the delocalization transition becomes broadened due to the local structural heterogeneity and related fluctuation of 4 f levels in the Ce-based MGs. The amorphous structure regulated 4 f delocalization of Ce leads to bond shortening and abnormal structure change of the topological and chemical short-range orders. Due to the hierarchical bonding nature, the structure should change in a similar manner on different length scales (but not isostructurally like the Ce metal) in Ce-based MGs.
2014-01-01
We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877
Raman studies of phase transitions in ferroelectric [C2H5NH3]2ZnCl4
NASA Astrophysics Data System (ADS)
Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2017-03-01
The present paper accounted for the synthesis, differential scanning calorimetric and vibrational spectroscopy of [C2H5NH3]2ZnCl4grown at room temperature. Differential scanning calorimetric (DSC) disclosed five phase transitions at T1=231 K, T2=234 K, T3=237 K, T4=247 K and T5=312 K. The temperature dependence of the dielectric constant at different temperatures proved that this compound is ferroelectric below 238 K. Raman spectra as function temperature have been used to characterize these transitions and their nature, which indicates a change of the some peak near the transitions phase. The analysis of the wavenumber and the line width based on the order-disorder model allowed to obtain information relative to the thermal coefficient and the activation energy near the transitions phase.
Glass transition of anhydrous starch by fast scanning calorimetry.
Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson
2017-10-01
By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.
CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL
A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...
NASA Astrophysics Data System (ADS)
Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.
2018-06-01
Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature ( T) interval, results in sharp changes of the Seebeck coefficient ( S), the electrical resistivity ( ρ), and the thermal conductivity ( κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ( T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ( T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ( T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.
Room temperature ferromagnetism in a phthalocyanine based carbon material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.
2014-02-07
We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.
NASA Astrophysics Data System (ADS)
Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos
2007-09-01
Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.
NASA Astrophysics Data System (ADS)
Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu
2011-02-01
1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.
JPRS Report, Science & Technology, Europe & Latin America.
1987-08-28
Rhine Westfalia) has recently agreed to purchase a new high performance laser which is supposed to • prepare the ground for new processing and...Transition Temperature Lies Within a Very Limited Area"] [Excerpts] VDI-N, Bochum, 15/5/87— High temperature, high current superconductors with a transition...applications of superconductive materials. Dr Kahn was able to produce a high temperature superconductor with high current flow based on the known oxide
NASA Astrophysics Data System (ADS)
Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.; Viyuela, Oscar
2018-03-01
We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature, the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we apply the previous results to two representative models of topological insulators in one and two dimensions.
On the use of the energy probability distribution zeros in the study of phase transitions
NASA Astrophysics Data System (ADS)
Mól, L. A. S.; Rodrigues, R. G. M.; Stancioli, R. A.; Rocha, J. C. S.; Costa, B. V.
2018-04-01
This contribution is devoted to cover some technical aspects related to the use of the recently proposed energy probability distribution zeros in the study of phase transitions. This method is based on the partial knowledge of the partition function zeros and has been shown to be extremely efficient to precisely locate phase transition temperatures. It is based on an iterative method in such a way that the transition temperature can be approached at will. The iterative method will be detailed and some convergence issues that has been observed in its application to the 2D Ising model and to an artificial spin ice model will be shown, together with ways to circumvent them.
Modeling dynamic beta-gamma polymorphic transition in Tin
NASA Astrophysics Data System (ADS)
Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration
2015-06-01
Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.
We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.
Body Temperature-Related Structural Transitions of Monotremal and Human Hemoglobin
Digel, I.; Maggakis-Kelemen, Ch.; Zerlin, K. F.; Linder, Pt.; Kasischke, N.; Kayser, P.; Porst, D.; Temiz Artmann, A.; Artmann, G. M.
2006-01-01
In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature Tb = 31–33°C), and echidna (Tachyglossus aculeatus, body temperature Tb = 32–33°C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (Rh) and fractional (normalized) change in the ellipticity (Fobs) at 222 ± 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25°C to 45°C. The existence of a structural transition of human hemoglobin at the critical temperature Tc between 36–37°C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at Tc. In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32–33°C, which are close to the species' body temperature Tb. The data suggest that the correlation of the structural transition's critical temperature Tc and the species' body temperature Tb is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins. PMID:16844747
Body temperature-related structural transitions of monotremal and human hemoglobin.
Digel, I; Maggakis-Kelemen, Ch; Zerlin, K F; Linder, Pt; Kasischke, N; Kayser, P; Porst, D; Temiz Artmann, A; Artmann, G M
2006-10-15
In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins.
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Zhu, Y.; Luo, X.
2018-07-01
The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.
Landau theory for magnetic and structural transitions in CeCo0.85Fe0.15Si.
Carreras, William Gabriel; Correa, Víctor Félix; Sereni, Julian G; García, Daniel J; Cornaglia, Pablo S
2018-06-05
We present a phenomenological analysis of the magnetoelastic properties of CeCo<sub>0.85</sub>Fe<sub>0.15</sub>Si at temperatures close to the Néel transition temperature T<sub>N</sub>. Using a Landau functional we provide a qualitative description of the thermal expansion, magnetostriction, magnetization and specific heat data. We show that the available experimental results [Journal of Physics: Condensed Matter <b>28</b> 346003 (2016)] are consistent with the presence of a structural transition at T<sub>s</sub>≧ T<sub>N</sub> and a strong magnetoelastic coupling. The magnetoelastic coupling presents a Janus-faced effect: while the structural transition is shifted to higher temperatures as the magnetic field is increased, the resulting striction at low temperatures decreases. The strong magnetoelastic coupling and the proximity of the structural transition to the onset temperature for magnetic fluctuations, suggest that the transition could be an analogue of the tetragonal to orthorhombic observed in Fe-based pcnictides. . © 2018 IOP Publishing Ltd.
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
NASA Astrophysics Data System (ADS)
Fan, L. L.; Chen, S.; Liao, G. M.; Chen, Y. L.; Ren, H.; Zou, C. W.
2016-06-01
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
Fan, L L; Chen, S; Liao, G M; Chen, Y L; Ren, H; Zou, C W
2016-06-29
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong-Qiang, E-mail: chenjzxy@126.com; Tian, Yuan
2017-03-15
Three Pb(II) complexes ([Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Pb{sub 4}(BOABA){sub 2}(µ{sub 4}-O)(H{sub 2}O){sub 2}]·H{sub 2}O){sub n} (2), and [Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]{sub n} (3) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb{sub 4}(µ{sub 4}-O)(COO){sub 6} SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1–3 have been investigated. - Graphicalmore » abstract: Three Pb(II) coordination polymers were obtained under the same reaction systems with different temperatures. Both of complexes 1 and 2 are 2D network. 3 presents a 3D framework based on Pb–O–C rods SBUs. The 2D to 3D structures transition between three complexes was achieved successfully by temperature control. - Highlights: • Three Pb(II) complexes were obtained under the same reaction systems with different temperatures. • Structural transition of the crystallization products is largely dependent on the reaction temperature. • The luminescence properties studies reveal that three complexes exhibit yellow fluorescence emission behavior, which might be good candidates for obtaining photoluminescent materials.« less
NASA Astrophysics Data System (ADS)
Rinkevich, A. B.; Korolev, A. V.; Samoilovich, M. I.; Perov, D. V.; Nemytova, O. V.
2018-02-01
The magnetic properties of metamaterials based on an opal matrix with transition-metal (iron, nickel, cobalt) particles have been studied. Magnetization curves and magnetic hysteresis loops have been measured and the dependences of real and imaginary parts of magnetization have been determined using the dynamic ac susceptibility measuring procedure. Structural studies of metamaterials have been performed. The saturation magnetization and coercive force of the studied metamaterials have been found to depend weakly on the temperature. The temperature dependence of magnetic susceptibility at a temperature above 30 K can be described adequately by Curie-Weiss law and, at lower temperature, deviates from the law.
Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K
2017-11-01
The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.
Impacts of land cover transitions on surface temperature in China based on satellite observations
NASA Astrophysics Data System (ADS)
Zhang, Yuzhen; Liang, Shunlin
2018-02-01
China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.
NASA Astrophysics Data System (ADS)
Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.
1996-02-01
Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.
NASA Astrophysics Data System (ADS)
Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-04-01
We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T
2017-07-26
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-01-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures. PMID:27604551
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism.
Seifitokaldani, Ali; Gheribi, Aïmen E; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-08
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Thermal and ac electrical properties of N-methylanthranilic acid below room temperature
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.
2018-06-01
In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.
Low-temperature softening in body-centered cubic alloys
NASA Technical Reports Server (NTRS)
Pink, E.; Arsenault, R. J.
1979-01-01
In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.
Photo-induced Low Temperature Structural Transition in the "114" YbaFe 4O 7 oxide
Duffort, V.; Caignaert, Vincent; Pralong, V.; ...
2013-11-11
Synchrotron irradiation of the oxide YBaFe 4O 7.0 below 190 K converts the low temperature monoclinic structure to a higher symmetry tetragonal form analogous to the room temperature structure. This photo-induced metastable tetragonal form is stable even in the absence of irradiation over the range 4-60 K, however, above 60 K the photo-transition is reversible. These structural phenomena are correlated to the magnetic behaviour of this system, suggesting possible spin-lattice coupling. Lastly, a scenario explaining the low temperature photo-induced transition is proposed, based on the different distributions of the valence electrons in the iron sub-lattice of the monoclinic and tetragonalmore » phases.« less
NASA Astrophysics Data System (ADS)
Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun
2017-10-01
In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.
NASA Astrophysics Data System (ADS)
Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu
2018-03-01
There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.
Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2012-07-03
The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pressure calibrants in the hydrothermal diamond-anvil cell
Chou, I.-Ming
2007-01-01
Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.
Vacuum ellipsometry as a method for probing glass transition in thin polymer films.
Efremov, Mikhail Yu; Soofi, Shauheen S; Kiyanova, Anna V; Munoz, Claudio J; Burgardt, Peter; Cerrina, Franco; Nealey, Paul F
2008-04-01
A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200 nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10(-6)-10(-8) torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge--the standard accessory of any high vacuum system--can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.
Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piazza, Francesco, E-mail: francesco.piazza@ph.tum.de; Strack, Philipp; Zwerger, Wilhelm
We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to themore » coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.« less
Kang, Wen-Bin; He, Chuan; Liu, Zhen-Xing; Wang, Jun; Wang, Wei
2018-05-16
Previous studies based on bioinformatics showed that there is a sharp distinction of structural features and residue composition between the intrinsically disordered proteins and the folded proteins. What induces such a composition-related structural transition? How do various kinds of interactions work in such processes? In this work, we investigate these problems based on a survey on peptides randomly composed of charged residues (including glutamic acids and lysines) and the residues with different hydrophobicity, such as alanines, glycines, or phenylalanines. Based on simulations using all-atom model and replica-exchange Monte Carlo method, a coil-globule transition is observed for each peptide. The corresponding transition temperature is found to be dependent on the contents of the hydrophobic and charged residues. For several cases, when the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vise versa. These thresholds of hydrophobicity and net charge are quantitatively consistent with the border line observed from the study of bioinformatics. These results outline the basic physical reasons for the compositional distinction between the intrinsically disordered proteins and the folded proteins. Furthermore, the contributions of various interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our observations imply that the hydrophobicity contributes essentially to such composition-related transitions. Thus, we achieve a better understanding on composition-structure relation of the natural proteins and the underlying physics.
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude
2017-07-01
We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.
NASA Astrophysics Data System (ADS)
Guo, Jing; Zu, Fangqiu; Chen, Zhihao; Zheng, Shubin; Yuan, Yuan
2005-07-01
Based on a brief retrospect of the method in establishing Tg of the bulk metallic glasses (BMGs), some perplexities concerning this are pointed out. With the experimental results of Zr-Al-Ni-Cu-X (Nb,Ti) BMGs, a electrical resistivity method is proposed to determine the glass transition temperature of BMGs. With the method, we define two kinds of characteristic temperature related to the glass transition, Tg-dep and Tg-int, respectively. By comparing Tg-dep and Tg-int with Tg determined by the DSC method, we have found that, for the same alloy at the same heating rate, Tg-dep is very close to Tg-onset while Tg-int is approximate to Tg-mid. As a method to determine the glass transition temperature, the electrical resistivity method has proved to be more convenient and practical in comparison with the DSC method, especially when the DSC curve cannot show the glass transition character of BMGs. In addition, we would emphasize that when we refer to Tg, it is necessary to expatiate on the way of denoting the glass transition temperature, such as Tg-dep or Tg-int ( Tg-onset or Tg-mid), and on the heating rate, in order to avoid ambiguity.
Quantifying Seepage Flux using Sediment Temperatures
This report provides a demonstration of different modeling approaches that use sediment temperatures to estimate the magnitude and direction of water flux across the groundwater-surface water transition zone. Analytical models based on steady-state or transient temperature solut...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmowski, W.; Gierlotka, S.; Wang, Z.
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...
2015-08-07
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin
2017-06-28
Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.
Field induced metastable ferroelectric phase in Pb 0.97La 0.03(Zr 0.90Ti 0.10) 0.9925O 3 ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuchi, I. V.; Chung, C. C.; Fancher, C. M.
2017-11-06
Pb 0.97La 0.03(Zr 0.9T i0.1)0.9925O3 (PLZT 3/90/10) ceramics prepared by solid-state reaction with the compositions near the antiferroelectric/ferroelectric (FE/AFE) phase boundary were studied. From the polarization–electric field P(E) dependence and ex situ X-ray study, an irreversible electric field induced AFE-to-FE phase transition is verified at room temperature. Dielectric and in situ temperature dependent X-ray analysis evidence that the phase transition sequence in PLZT 3/90/10-based ceramics can be readily altered by poling. A first order antiferroelectric-paraelectric (AFE-to-PE) transition occurred at ~190 °C in virgin sample and at ~180 °C in poled sample. In addition, a FE-to-AFE transition occurs in the poledmore » ceramic at much lower temperatures (~120 °C) with respect to the Curie range (~190 °C). The temperature-induced FE-to-AFE transition is diffuse and takes place in a broad temperature range of 72–135 °C. Lastly, the recovery of AFE is accompanied by an enhancement in the piezoelectric properties.« less
On the Phase Transition of N-Isopropylcarbazole.
1986-05-01
vacinity of the phase transition (ca. T 137 + 40 K). We propose a semiquantitative interpretation of the phase transition in NIPC based on this assumption...the order parameter fluctuations in the vacinity of TO . V. Conclusions. The elastic properties of NIPC in the temperature range 90 K - 295 K have
Configurational entropy of polar glass formers and the effect of electric field on glass transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushov, Dmitry V., E-mail: dmitrym@asu.edu
2016-07-21
A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data formore » excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.« less
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)
2014-01-01
Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.
Prevosto, Daniele; Capaccioli, Simone; Ngai, K L
2014-02-21
From ellipsometry measurements, Pye and Roth [Phys. Rev. Lett. 107, 235701 (2011)] presented evidence of the presence of two glass transitions originating from two distinctly different and simultaneous mechanisms to reduce the glass transition temperature within freestanding polystyrene films with thickness less than 70 nm. The upper transition temperature T(u)(g)(h) is higher than the lower transition temperature T(l)(g)(h) in the ultrathin films. After comparing their data with the findings of others, using the same or different techniques, they concluded that new theoretical interpretation is needed to explain the two transitions and the different dependences of T(u)(g)(h) and T(l)(g)(h) on film thickness and molecular weight. We address the problem based on advance in delineating the different viscoelastic mechanisms in the glass-rubber transition zone of polymers. Theoretical considerations as well as experiments have shown in time-scales immediately following the segmental α-relaxation are the sub-Rouse modes with longer length scale but shorter than that of the Rouse modes. The existence of the sub-Rouse modes in various polymers including polystyrene has been repeatedly confirmed by experiments. We show that the sub-Rouse modes can account for the upper transition and the properties observed. The segmental α-relaxation is responsible for the lower transition. This is supported by the fact that the segmental α-relaxation in ultrathin freestanding PS films had been observed by dielectric relaxation measurements and photon correlation spectroscopy. Utilizing the temperature dependence of the segmental relaxation times from these experiments, the glass transition temperature T(α)(g)associated with the segmental relaxation in the ultrathin film is determined. It turns out that T(α)(g) is nearly the same as T(l)(g)(h) of the lower transition, and hence definitely segmental α-relaxation is the mechanism for the lower transition. Since it is unlikely that the segmental α-relaxation can give rise to two very different transitions simultaneously, a new mechanism for the upper transition is needed, and the sub-Rouse modes provide the mechanism.
NASA Astrophysics Data System (ADS)
Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir
2017-11-01
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
NASA Astrophysics Data System (ADS)
Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher
2013-03-01
We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.
L to H mode transition: Parametric dependencies of the temperature threshold
Bourdelle, C.; Chone, L.; Fedorczak, N.; ...
2015-06-15
The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T th). They are based on the stabilization of the underlying turbulence by a mean radialmore » electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T th are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular T th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.« less
Ideal glass transitions in thin films: An energy landscape perspective
NASA Astrophysics Data System (ADS)
Truskett, Thomas M.; Ganesan, Venkat
2003-07-01
We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperature of thin films, suggesting the utility of landscape-based approaches for studying the behavior of confined fluids.
Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1972-01-01
The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdontceva, Margarita S.; Zolotarev, Andrey A.; Krivovichev, Sergey V., E-mail: s.krivovichev@spbu.ru
High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, has been studied by high-temperature X-ray powder and single-crystal diffraction. The temperature of the phase transition can be estimated as 112.5±12.5 °C. The low-temperature phase, α-Na{sub 3}SO{sub 4}F, at 293 K, is monoclinic, P2{sub 1}/m, a=18.065(3), b=6.958(1), c=11.446(1) Å, β=107.711(1)°, Z=12. The structure contains thirteen symmetrically independent Na sites with coordination numbers varying from 6 to 8, and six independent S sites. The high-temperature β-phase at 423 K is rhombohedral, R-3m, a=6.94(1), c=24.58(4) Å, Z=9. The crystal structure of both polymorphs of Na{sub 3}SO{sub 4}F can be described as a 9Rmore » antiperovskite polytype based upon triplets of face-sharing [FNa{sub 6}] octahedra linked into a three-dimensional framework by sharing corners. In the α-modification, the SO{sub 4} tetrahedra are completely ordered and located in the framework cavities. In the β-modification, there are only two symmetrically independent Na atoms in the structure. The main difference between the structures of the α- and β-phases is the degree of ordering of the SO{sub 4} tetrahedra: in the α-modification, they are completely ordered, whereas, in the β-modification, the complete disorder is observed, which is manifested in a number of low-occupied O sites around fully occupied S sites. The phase transition is therefore has an order–disorder character and is associated with the decrease of structural complexity measured as an information content per unit cell [577.528 bits for the low- (α) and 154.830 bits for the high- (β) temperature modifications]. - Graphical abstract: High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, revealed the existence of the monoclinic-to-rhombohedral phase transition at 112.5±12.5 °C. The phase transition has an order–disorder character and is associated with the decrease of structural complexity. - Highlights: • Phase transition in Na{sub 3}SO{sub 4}F (kogarkoite) has an order–disorder character. • Antiperovskite framework of F-centered octahedra has a high stability. • Information-based structural complexity decreases across the phase transition.« less
Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions
NASA Astrophysics Data System (ADS)
Sanders, Scott T.; Wang, Jian; Jeffries, Jay B.; Hanson, Ronald K.
2001-08-01
Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities ( >1.7 nm ~ 30 cm-1 ) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200 -700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response ( ~30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.
Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys
NASA Astrophysics Data System (ADS)
Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.
2018-04-01
Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.
Non-Conventional Techniques for the Study of Phase Transitions in NiTi-Based Alloys
NASA Astrophysics Data System (ADS)
Nespoli, Adelaide; Villa, Elena; Passaretti, Francesca; Albertini, Franca; Cabassi, Riccardo; Pasquale, Massimo; Sasso, Carlo Paolo; Coïsson, Marco
2014-07-01
Differential scanning calorimetry and electrical resistance measurements are the two most common techniques for the study of the phase transition path and temperatures of shape memory alloys (SMA) in stress-free condition. Besides, it is well known that internal friction measurements are also useful for this purpose. There are indeed some further techniques which are seldom used for the basic characterization of SMA transition: dilatometric analysis, magnetic measurements, and Seebeck coefficient study. In this work, we discuss the attitude of these techniques for the study of NiTi-based phase transition. Measurements were conducted on several fully annealed Ni50- x Ti50Cu x samples ranging from 3 to 10 at.% in Cu content, fully annealed at 850 °C for 1 h in vacuum and quenched in water at room temperature. Results show that all these techniques are sensitive to phase transition, and they provide significant information about the existence of intermediate phases.
Dielectric determination of the glass transition temperature (T sub g)
NASA Technical Reports Server (NTRS)
Ries, Heidi R.
1990-01-01
The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.
Structural relaxation driven increase in elastic modulus for a bulk metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep, E-mail: sundeep.mukherjee@unt.edu
2015-01-07
The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast tomore » elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.« less
Giant field-induced adiabatic temperature changes in Ni-Mn-In-based Heusler alloys
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Blinov, Mikhail; Prudnikov, Valerii; Rodionov, Igor; Granovsky, Alexander; Stadler, Shane; Ali, Naushad
Direct measurements of the adiabatic temperature change (ΔTAD) of Ni50Mn35In14.5B0.5 have been done using an adiabatic magnetocalorimeter in a temperature range of 250-350 K, and with magnetic field changes up to ΔH =1.8 T. The initial susceptibility in the low magnetic field region drastically increases with temperature starting at about 300 K. Magnetocaloric effects (MCE) parameters were found to be a linear function of H2 / 3 in the vicinity of the second order transitions (SOT), whereas the first order transitions (FOT) do not obey the H2 / 3 law due to the discontinuity of the transition. The relative cooling power (RCP) based on the adiabatic temperature change for a magnetic field change of 1.8 T has been estimated. Maximum values of ΔTAD = -2.6 K and 1.7 K were observed at FOT and SOT for ΔH =1.8 T, respectively. Acknowledgement: This work was supported by the Office of Basic Energy Sciences, Material Science Division of the U.S. Department of Energy, DOE Grant No. DE-FG02-06ER46291 (SIU) and DE-FG02-13ER46946 (LSU).
Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature
NASA Astrophysics Data System (ADS)
Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.
2018-01-01
Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.
Low-temperature elastic properties of YbSbPt probed by ultrasound measurements
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.
2018-03-01
The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.
NASA Astrophysics Data System (ADS)
Feng, D. Y.; Zhao, L. Z.; Liu, Z. W.
2016-04-01
A magnetic-field-induced irreversible metamagnetic phase transition from antiferro- to ferromagnetism, which leads to an anomalous initial-magnetization curve lying outside the magnetic hysteresis loop, is reported in arc-melted SmCo7-xSix alloys. The transition temperatures are near room temperature, much higher than other compounds with similar initial curves. Detailed investigation shows that this phenomenon is dependent on temperature, magnetic field and Si content and shows some interesting characteristics. It is suggested that varying interactions between the Sm and Co layers in the crystal are responsible for the formation of a metastable AFM structure, which induces the anomalous phenomenon in as-cast alloys. The random occupation of 3g sites by Si and Co atoms also has an effect on this phenomenon.
Superconductivity in electron-doped arsenene
NASA Astrophysics Data System (ADS)
Kong, Xin; Gao, Miao; Yan, Xun-Wang; Lu, Zhong-Yi; Xiang, Tao
2018-04-01
Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the $p_z$-like electrons of arsenic atoms and the $A_1$ phonon mode around the $K$ point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12\\% applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1974-01-01
The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.
New insights into designing metallacarborane based room temperature hydrogen storage media.
Bora, Pankaj Lochan; Singh, Abhishek K
2013-10-28
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.
New insights into designing metallacarborane based room temperature hydrogen storage media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Pankaj Lochan; Singh, Abhishek K.
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of chargemore » transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.« less
2016-01-01
We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402934
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
Landau-de Gennes theory of surface-enhanced ordering in smectic films.
Shalaginov, A N; Sullivan, D E
2001-03-01
A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.
NASA Astrophysics Data System (ADS)
Huang, M.; Bazurto, R.; Camparo, J.
2018-01-01
The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.
Micellization and phase transitions in a triblock copolymer-D2O system
NASA Astrophysics Data System (ADS)
Odhner, Hosanna; Huff, Alison; Patton, Kelly; Jacobs, D. T.; Clover, Bryna; Greer, Sandra
2011-03-01
The triblock copolymer (``unimer'') of PPO-PEO-PPO (commercially known as 17R4) has hydrophobic ends and a hydrophilic center. When placed in D2 O at lower concentrations and temperatures, only a network of unimers exists. However, at higher concentrations or temperatures, micelles of different geometries can form. We have measured the micellization line marking the transition from only unimers to some micelles, as well as a one- to two-phase transition at higher temperatures. This second transition is an Ising-like, LCST critical point, based on the shape of the coexistence curve. We find the LCST to not correspond to the minimum of the cloud point curve, which indicates polydispersity as described by Sollich. We acknowledge the support from Research Corporation, NSF-REU grant DMR 0649112, The College of Wooster, and (for BC and SG) to the donors of the Petroleum Research Fund, administered by the American Chemical Society.
NASA Astrophysics Data System (ADS)
Ullah, Aman; Gul, Hafiza Bushra; Ullah, Amir; Sheeraz, Muhammad; Bae, Jong-Seong; Jo, Wook; Ahn, Chang Won; Kim, Ill Won; Kim, Tae Heon
2018-01-01
A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as "morphotropic approach"). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to "metrically" cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.
Codoping of Sb2Te3 thin films with V and Cr
NASA Astrophysics Data System (ADS)
Duffy, L. B.; Figueroa, A. I.; van der Laan, G.; Hesjedal, T.
2017-11-01
Magnetically doped topological insulators (TIs) are key to realizing the quantum anomalous Hall (QAH) effect, with the prospect of enabling dissipationless electronic devices in the future. Doping of the well-established three-dimensional TIs of the (Bi,Sb) 2(Se,Te) 3 family with the transition metals Cr and V is now an established approach for observing the QAH state at very low temperatures. While the magnetic transition temperatures of these materials are on the order of tens of degrees Kelvin, full quantization of the QAH state is achieved below ˜100 mK, governed by the size of the magnetic gap and thus the out-of-plane magnetic moment. In an attempt to raise the size of the magnetic moment and transition temperature, we carried out a structural and magnetic investigation of codoped (V,Cr):Sb2Te3 thin films. Starting from singly doped Cr:Sb2Te3 films, free of secondary phases and with a transition temperature of ˜72 K, we introduced increasing fractions of V and found a doubling of the transition temperature, while the magnetic moment decreases. In order to separate the properties and contributions of the two transition metals in the complex doping scenario independently, we employed spectroscopic x-ray techniques. Surprisingly, already small amounts of V lead to the formation of the secondary phase Cr2Te3 . No V was detectable in the Sb2Te3 matrix. Instead, it acts as a surfactant and can be found in the near-surface layers at the end of the growth. Our paper highlights the importance of x-ray-based studies for the doping of van der Waals systems, for which the optimization of magnetic moment or transition temperature alone is not necessarily a good strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prevosto, Daniele, E-mail: ngai@df.unipi.it, E-mail: Prevosto@df.unipi.it; Capaccioli, Simone; Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa
2014-02-21
From ellipsometry measurements, Pye and Roth [Phys. Rev. Lett. 107, 235701 (2011)] presented evidence of the presence of two glass transitions originating from two distinctly different and simultaneous mechanisms to reduce the glass transition temperature within freestanding polystyrene films with thickness less than 70 nm. The upper transition temperature T{sub g}{sup u}(h) is higher than the lower transition temperature T{sub g}{sup l}(h) in the ultrathin films. After comparing their data with the findings of others, using the same or different techniques, they concluded that new theoretical interpretation is needed to explain the two transitions and the different dependences of T{submore » g}{sup u}(h) and T{sub g}{sup l}(h) on film thickness and molecular weight. We address the problem based on advance in delineating the different viscoelastic mechanisms in the glass-rubber transition zone of polymers. Theoretical considerations as well as experiments have shown in time-scales immediately following the segmental α-relaxation are the sub-Rouse modes with longer length scale but shorter than that of the Rouse modes. The existence of the sub-Rouse modes in various polymers including polystyrene has been repeatedly confirmed by experiments. We show that the sub-Rouse modes can account for the upper transition and the properties observed. The segmental α-relaxation is responsible for the lower transition. This is supported by the fact that the segmental α-relaxation in ultrathin freestanding PS films had been observed by dielectric relaxation measurements and photon correlation spectroscopy. Utilizing the temperature dependence of the segmental relaxation times from these experiments, the glass transition temperature T{sub g}{sup α} associated with the segmental relaxation in the ultrathin film is determined. It turns out that T{sub g}{sup α} is nearly the same as T{sub g}{sup l}(h) of the lower transition, and hence definitely segmental α-relaxation is the mechanism for the lower transition. Since it is unlikely that the segmental α-relaxation can give rise to two very different transitions simultaneously, a new mechanism for the upper transition is needed, and the sub-Rouse modes provide the mechanism.« less
Horn, Gavin P; Kesler, Richard M; Kerber, Steve; Fent, Kenneth W; Schroeder, Tad J; Scott, William S; Fehling, Patricia C; Fernhall, Bo; Smith, Denise L
2018-03-01
Firefighters' thermal burden is generally attributed to high heat loads from the fire and metabolic heat generation, which may vary between job assignments and suppression tactic employed. Utilising a full-sized residential structure, firefighters were deployed in six job assignments utilising two attack tactics (1. Water applied from the interior, or 2. Exterior water application before transitioning to the interior). Environmental temperatures decreased after water application, but more rapidly with transitional attack. Local ambient temperatures for inside operation firefighters were higher than other positions (average ~10-30 °C). Rapid elevations in skin temperature were found for all job assignments other than outside command. Neck skin temperatures for inside attack firefighters were ~0.5 °C lower when the transitional tactic was employed. Significantly higher core temperatures were measured for the outside ventilation and overhaul positions than the inside positions (~0.6-0.9 °C). Firefighters working at all fireground positions must be monitored and relieved based on intensity and duration. Practitioner Summary: Testing was done to characterise the thermal burden experienced by firefighters in different job assignments who responded to controlled residential fires (with typical furnishings) using two tactics. Ambient, skin and core temperatures varied based on job assignment and tactic employed, with rapid elevations in core temperature in many roles.
Shape-Memory Wires Switch Rotary Actuator
NASA Technical Reports Server (NTRS)
Brudnicki, Myron J.
1992-01-01
Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.
NASA Technical Reports Server (NTRS)
Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,
2012-01-01
We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.
Horava-Lifshitz cosmology, entropic interpretation and quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Kheyri, F.; Khodadi, M.; Sepangi, Hamid Reza
2013-05-01
Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava-Lifshitz cosmology. The Friedmann equation for the deformed Horava-Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ω appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data.
NASA Astrophysics Data System (ADS)
Hagiwara, Manabu; Ehara, Yoshitaka; Novak, Nikola; Khansur, Neamul H.; Ayrikyan, Azatuhi; Webber, Kyle G.; Fujihara, Shinobu
2017-07-01
The temperature evolution of polar order in an A -site complex perovskite (B i1 /2K1 /2)Ti O3 (BKT) has been investigated by measurements of dielectric permittivity, depolarization current, and stress-stain curves at elevated temperatures. Upon cooling from high temperatures, BKT first enters a relaxor state and then spontaneously transforms into a ferroelectric state. The analyses of temperature and frequency dependence of permittivity have revealed that polar nanoregions of the relaxor phase appear at temperatures higher than 560°C, and also that their freezing at 296°C triggers the spontaneous relaxor-ferroelectric transition. We discuss the key factors determining the development of long-range polar order in A -site complex perovskites through a comparison with the relaxor (B i1 /2N a1 /2)Ti O3 . We also show that application of biasing electric fields and compressive stresses to BKT favors its ferroelectric phase, resulting in a significant shift of the relaxor-ferroelectric transition temperature towards higher temperatures. Based on the obtained results, electric field-temperature and stress-temperature phase diagrams are firstly determined for BKT.
Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts
NASA Technical Reports Server (NTRS)
Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul
2004-01-01
The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at several stations on the 15 deg total-angle conical nose of a rocket-propelled model in free flight at Mach numbers up to 5.2. Data are presented for a range of local Mach number just outside the boundary layer from 1.40 to 4.65 and a range of local Reynolds number from 3.8 x 10(exp 6) to 46.5 x 10(exp 6), based on length from the nose tip to a measurement station. Laminar, transitional, and turbulent heat-transfer coefficients were measured. The laminar data were in agreement with laminar theory for cones, and the turbulent data agreed well with turbulent theory for cones using Reynolds number based on length from the nose tip. At a nearly constant ratio of wall to local static temperature of 1.2 the Reynolds number of transition increased from 14 x 10(exp 6) to 30 x 10(exp 6) as Mach number increased from 1.4 to 2.9 and then decreased to 17 x 10(exp 6) as Mach number increased to 3.7. At Mach numbers near 3.5, transition Reynolds numbers appeared to be independent of skin temperature at skin temperatures very cold with respect to adiabatic wall temperature. The transition Reynolds number was 17.7 x 10(exp 6) at a condition of Mach number and ratio of wall to local static temperature near that for which three-dimensional disturbance theory has been evaluated and has predicted laminar boundary-layer stability to very high Reynolds numbers (approximately 10(exp 12)).
NASA Astrophysics Data System (ADS)
Woodward, C. A.; Shulmeister, J.
2007-01-01
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications
NASA Technical Reports Server (NTRS)
Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.
2000-01-01
Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.
Pronounced pre-martensitic anomaly in the magnetization on Ni2MnGa thin films
NASA Astrophysics Data System (ADS)
Neckel, I. T.; Müller, C.; Nobrega, K. Z.; Dartora, C. A.; Schreiner, W. H.; Mosca, D. H.
2018-05-01
We have prepared [110]-textured Ni2MnGa thin films exhibiting an unusual pre-martensitic transition accompanied by an extremely large magnetization change. The thin films were grown by molecular beam epitaxy directly on epi-ready GaAs(111)B. Crystalline structure was investigated in situ by reflection high-energy electron diffraction (RHEED) and ex situ by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the film exhibits cubic crystalline structure (L2 1) at room temperature with lattice parameter a = 5.88 Å which undergoes martensitic transition. Magnetic characterization shows ferromagnetic behavior at room temperature with Curie temperature higher than room temperature. Martensitic transformation occurs at TM ∼ 185 K. A phenomenological model based on Landau theory of phase transformation was developed to explain the anomalous pre-martensitic transition at ∼285 K.
O'Donnell, Kevin P; Woodward, W H Hunter
2015-06-01
The purpose of this study was to evaluate analytical techniques for the measurement of the glass transition temperature of HPMC and formulated solid dispersions thereof. Unmodified samples of various grades of HPMC and solid dispersions of HPMC and itraconazole produced by hot melt extrusion were analyzed by thermomechanical analysis, differential scanning calorimetry, thermally stimulated depolarization current and dielectric spectroscopy. It was found that dielectric spectroscopy offers the best accuracy and reproducibility for analysis of the base HPMC powders regardless of the substitution type or viscosity grade and that the obtained results were not frequency dependent. The results of dielectric measurements of solid dispersions prepared by hot melt extrusion were compared with predicted values of the Gordon-Taylor equation. It was found that time-temperature superposition effects and small molecule frequency dependence makes broadly applying determination of the glass transition temperature in drug dispersions by dielectric spectroscopy prohibitively difficult.
Application of global kinetic models to HMX beta-delta transition and cookoff processes.
Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L
2007-03-08
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; ...
2016-11-09
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
An Exploration and Optimization of the Metal Insulator Transition in Vanadium Dioxide Thin Films
2009-12-02
Executive summary Vanadium dioxide ( VO2 ) is an archetypal strongly correlated oxide and could offer many opportunities for new paradigms of information...experimental understanding of the metal-insulator transition in VO2 and explored the various ways to control the transition temperature and hysteresis...Beyond attempts to understand the strong correlation phenomena in VO2 , we hope to demonstrate a phase transition switch based on the electrically
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Suresh, K. G.
2017-01-01
The detailed magnetic study of complex 3d-electron based Fe3Ga4 is reported. It undergoes paramagnetic to antiferromagnetic (TN) and antiferromagnetic to ferromagnetic (TC) transitions respectively around 380 and 70 K. The thermal hysteresis of field-cooled cooling (FCC) and field-cooled warming (FCW) hints at first order phase transition below Curie temperature. A weak phase coexistence of ferro and antiferromagnetic phases is suggested by exploring the arrest-like first-order phenomenon. In the intermediate temperature range, field-driven metamagnetic transition from antiferro to ferromagnetic phase is confirmed. Further bringing the system very near to TN, field-induced transitions disappear and above TN predominant paramagnetic contribution is evident. The magnetic H-T phase diagram distinguishing different magnetic phases of Fe3Ga4 is obtained.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1980-01-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-front contours. Measurements of surface roughness, surface temperature, average transition-front location, and freestream environment were combined with calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies. Of the available correlating techniques, only one, based on the concept of a constant (critical) roughness Reynolds number for transition, wasmore » found to successfully describe both the wind-tunnel and ballistics-range data, thereby validating the extrapolation of this concept to actual reentry-vehicle materials and environments.« less
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
NASA Astrophysics Data System (ADS)
Morozov, M. I.; Kungl, H.; Hoffmann, M. J.
2011-03-01
Li-, Ta-, and Mn-modified (K,Na)NbO3 ceramics with various compositional homogeneity have been prepared by conventional and precursor methods. The homogeneous ceramic has demonstrated a sharper peak in temperature dependent piezoelectric response. The dielectric and piezoelectric properties of the homogeneous ceramics have been characterized at the experimental subcoercive electric fields near the temperature of the orthorhombic-tetragonal phase transition with respect to poling in both phases. Poling in the tetragonal phase is shown to enhance the low-signal dielectric and piezoelectric properties in the orthorhombic phase.
Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films
NASA Technical Reports Server (NTRS)
Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.
2014-01-01
We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.
Schelhas, L. T.; Stone, K. H.; Harvey, S. P.; ...
2017-07-25
We report that the interest in Cu 2ZnSn(S,Se) 4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se 2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a V oc deficit, where the V oc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. Tomore » directly determine the level of Cu/Zn ordering, we have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. Finally, to understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less
Stationary to nonstationary transition in crossed-field devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato
2016-03-15
The previous results based on numerical simulations showed that a cold electron beam injected in a crossed field gap does not reach a time independent stationary state in the space charge limited regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of finite injection temperature in the transition from stationary to nonstationary states is investigated. A fully kinetic model for the electron flow is derived and used to determine the possible stationary states of the system. It is found that although there is always a stationary solution for any set ofmore » parameters, depending on the injection temperature the electron flow becomes very sensitive to fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a characteristic electron, a theory based on a single free parameter is constructed to predict when the transition between stationary and nonstationary states occurs. In agreement with the previous numerical results, the theory indicates that for vanishing temperatures the system never reaches the time independent stationary state in the space charge limited regime. Nevertheless, as the injection temperature is raised it is found a broad range of system parameters for which the stationary state is indeed attained. By properly adjusting the free parameter in the theory, one can be able to describe, to a very good accuracy, when the transition occurs.« less
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
NASA Astrophysics Data System (ADS)
Minissale, Marco; Pardanaud, Cedric; Bisson, Régis; Gallais, Laurent
2017-11-01
The knowledge of optical properties of tungsten at high temperatures is of crucial importance in fields such as nuclear fusion and aerospace applications. The optical properties of tungsten are well known at room temperature, but little has been done at temperatures between 300 K and 1000 K in the visible and near-infrared domains. Here, we investigate the temperature dependence of tungsten reflectivity from the ambient to high temperatures (<1000 K) in the 500-1050 nm spectral range, a region where interband transitions make a strong contribution. Experimental measurements, performed via a spectroscopic system coupled with laser remote heating, show that tungsten’s reflectivity increases with temperature and wavelength. We have described these dependences through a Fresnel and two Lorentz-Drude models. The Fresnel model accurately reproduces the experimental curve at a given temperature, but it is able to simulate the temperature dependency of reflectivity only thanks to an ad hoc choice of temperature formulae for the refractive indexes. Thus, a less empirical approach, based on Lorentz-Drude models, is preferred to describe the interaction of light and charge carriers in the solid. The first Lorentz-Drude model, which includes a temperature dependency on intraband transitions, fits experimental results only qualitatively. The second Lorentz-Drude model includes in addition a temperature dependency on interband transitions. It is able to reproduce the experimental results quantitatively, highlighting a non-trivial dependence of interband transitions as a function of temperature. Eventually, we use these temperature dependent Lorentz-Drude models to evaluate the total emissivity of tungsten from 300 K to 3500 K, and we compare our experimental and theoretical findings with previous results.
Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan
2012-11-01
The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.
NASA Astrophysics Data System (ADS)
Dearing Crampton-Flood, Emily; Peterse, Francien; Munsterman, Dirk; Sinninghe Damsté, Jaap S.
2018-05-01
The Pliocene is often regarded as a suitable analogue for future climate, due to an overall warmer climate (2-3 °C) coupled with atmospheric CO2 concentrations largely similar to present values (∼400 ppmv). Numerous Pliocene sea surface temperature (SST) records are available, however, little is known about climate in the terrestrial realm. Here we generated a Pliocene continental temperature record for Northwestern Europe based on branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids stored in a marine sedimentary record from the western Netherlands. The total organic carbon (TOC) content of the sediments and its stable carbon isotopic composition (δ13Corg) indicate a strong transition from primarily marine derived organic matter (OM) during the Pliocene, to predominantly terrestrially derived OM after the transition into the Pleistocene. This trend is supported by the ratio of branched and isoprenoid tetraethers (BIT index). The marine-terrestrial transition indicates a likely change in brGDGT sources in the core, which may complicate the applicability of the brGDGT paleotemperature proxy in this setting. Currently, the application of the brGDGT-based paleothermometer on coastal marine sediments has been hampered by a marine overprint. Here, we propose a method to disentangle terrestrial and marine sources based on the degree of cyclization of tetramethylated brGDGTs (#rings) using a linear mixing model based on the global soil calibration set and a newly developed coastal marine temperature transfer function. Application of this method on our brGDGT record resulted in a 'corrected' terrestrial temperature record (MATterr). This latter record indicates that continental temperatures were ∼12-14 °C during the Early Pliocene, and 10.5-12 °C during the Mid Pliocene, confirming other Pliocene pollen based terrestrial temperature estimates from Northern and Central Europe. Furthermore, two colder (Δ 5-7 °C) periods in the Pliocene MATterr record show that the influence of Pliocene glacials reached well into NW Europe.
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Physical properties of new binary antiferroelectric liquid crystal mixtures
NASA Astrophysics Data System (ADS)
Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika
2018-02-01
Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.
High temperature performance of soy-based adhesives
Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart
2013-01-01
We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...
Phase Transitions of KIO3 Ferroelectrics in Al2O3-Based Nanoporous Matrices
NASA Astrophysics Data System (ADS)
Milinskii, A. Yu.; Baryshnikov, S. V.
2018-03-01
Temperature dependences of the linear permittivity ɛ' and the third harmonic amplitude γ3ω of composites prepared by introducing ferroelectrics KIO3 into matrices of porous aluminum oxide Al2O3 with pore sizes of 240 nm were studied. It is found that the IV → III and III → II structural transition temperatures of potassium iodide in Al2O3 pores decrease by 5 K and 24 K, respectively, with respect to bulk KIO3. The measurements of the dielectric properties do not reveal V → IV and II → I phase transitions in the composite samples.
Xiao, Chong; Xu, Jie; Li, Kun; Feng, Jun; Yang, Jinlong; Xie, Yi
2012-03-07
Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Lee, Eunsang; Paul, Wolfgang
2018-02-01
A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.
Yibole, H.; Pathak, A. K.; Mudryk, Y.; ...
2018-05-24
A first-order magnetoelastic transition (FOMT) is found near the triple point between ferromagnetic, antiferromagnetic and paramagnetic phases in the magneto-chemical phase diagram of (Hf1-xNbx)Fe2 Laves phase system. We show that bringing different magnetic states to the edge of stability, both as a function of the chemical composition and under the influence of external stimuli, such as temperature, pressure and magnetic field, is essential to obtain and control FOMTs. Temperature dependent X-ray diffraction experiments reveal a discontinuity in the lattice parameter a and the unit cell volume without the change in the crystal symmetry at the FOMT. Under applied pressure, themore » transition temperature drastically shifts downward at a remarkable rate of –122 K/GPa. It is this first-order magnetic transition that leads to a negative thermal expansion (NTE) with average ΔV/(VΔT) ≈ –15 × 10 –6 K –1 observed over a 90 K broad temperature range, which is uncommon for magnetoelastic NTE materials. Density functional theory calculations and microstructural analyses demonstrate that the unusual broadness of the FOMT originates from phase separation between ferro- and antiferromagnetic phases, which in turn is rooted in partial segregation of Hf and Nb and a peculiar microstructure. In conclusion, this new understanding of the composition-structure-property relationships in transition metal based Laves phases is an essential step toward a better control and more precise tailoring of rich functionalities in this group of material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yibole, H.; Pathak, A. K.; Mudryk, Y.
A first-order magnetoelastic transition (FOMT) is found near the triple point between ferromagnetic, antiferromagnetic and paramagnetic phases in the magneto-chemical phase diagram of (Hf1-xNbx)Fe2 Laves phase system. We show that bringing different magnetic states to the edge of stability, both as a function of the chemical composition and under the influence of external stimuli, such as temperature, pressure and magnetic field, is essential to obtain and control FOMTs. Temperature dependent X-ray diffraction experiments reveal a discontinuity in the lattice parameter a and the unit cell volume without the change in the crystal symmetry at the FOMT. Under applied pressure, themore » transition temperature drastically shifts downward at a remarkable rate of –122 K/GPa. It is this first-order magnetic transition that leads to a negative thermal expansion (NTE) with average ΔV/(VΔT) ≈ –15 × 10 –6 K –1 observed over a 90 K broad temperature range, which is uncommon for magnetoelastic NTE materials. Density functional theory calculations and microstructural analyses demonstrate that the unusual broadness of the FOMT originates from phase separation between ferro- and antiferromagnetic phases, which in turn is rooted in partial segregation of Hf and Nb and a peculiar microstructure. In conclusion, this new understanding of the composition-structure-property relationships in transition metal based Laves phases is an essential step toward a better control and more precise tailoring of rich functionalities in this group of material.« less
Zhang, Wei; Wang, Zhong-Sheng
2014-07-09
Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.
Elastic properties of iron-based superconductor SrFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Horikoshi, Keita; Imai, Jo; Nakanishi, Yoshiki; Nakamura, Mitsuteru; Kobayashi, Tatsuya; Adachi, Toru; Miyasaka, Shigeki; Tajima, Setsuko; Yoshizawa, Masahito
2018-05-01
We have measured the transverse elastic constants C44 and C66 of iron-based superconductor SrFe2(As1-xPx)2 (Sr122) single crystals as a function of temperature. Under-doped samples show elastic anomalies towards the structural/magnetic transition temperature. Optimal sample shows an upturn at the superconducting transition temperature in both C44 and C66. These behavior is similar to Ba122, while only C66 shows anomaly for Ba122. The elastic anomalies were analyzed by Jahn-Teller formula, and it was found that the Jahn-Teller energy of C44 is much larger than that of C66. This indicates that monoclinic structural fluctuations exist inherently in Sr122 in addition to the known tetragonal fluctuations. Co-existence of these diverse fluctuations and their cooperation are a key to investigate the mechanism and properties of superconductivity in iron based superconductors.
Ionic supramolecular networks fully based on chemicals coming from renewable sources.
Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David
2014-02-01
New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Financial Symmetry and Moods in the Market
Savona, Roberto; Soumare, Maxence; Andersen, Jørgen Vitting
2015-01-01
This paper studies how certain speculative transitions in financial markets can be ascribed to a symmetry break that happens in the collective decision making. Investors are assumed to be bounded rational, using a limited set of information including past price history and expectation on future dividends. Investment strategies are dynamically changed based on realized returns within a game theoretical scheme with Nash equilibria. In such a setting, markets behave as complex systems whose payoff reflect an intrinsic financial symmetry that guarantees equilibrium in price dynamics (fundamentalist state) until the symmetry is broken leading to bubble or anti-bubble scenarios (speculative state). We model such two-phase transition in a micro-to-macro scheme through a Ginzburg-Landau-based power expansion leading to a market temperature parameter which modulates the state transitions in the market. Via simulations we prove that transitions in the market price dynamics can be phenomenologically explained by the number of traders, the number of strategies and amount of information used by agents, all included in our market temperature parameter. PMID:25856392
Financial symmetry and moods in the market.
Savona, Roberto; Soumare, Maxence; Andersen, Jørgen Vitting
2015-01-01
This paper studies how certain speculative transitions in financial markets can be ascribed to a symmetry break that happens in the collective decision making. Investors are assumed to be bounded rational, using a limited set of information including past price history and expectation on future dividends. Investment strategies are dynamically changed based on realized returns within a game theoretical scheme with Nash equilibria. In such a setting, markets behave as complex systems whose payoff reflect an intrinsic financial symmetry that guarantees equilibrium in price dynamics (fundamentalist state) until the symmetry is broken leading to bubble or anti-bubble scenarios (speculative state). We model such two-phase transition in a micro-to-macro scheme through a Ginzburg-Landau-based power expansion leading to a market temperature parameter which modulates the state transitions in the market. Via simulations we prove that transitions in the market price dynamics can be phenomenologically explained by the number of traders, the number of strategies and amount of information used by agents, all included in our market temperature parameter.
NASA Astrophysics Data System (ADS)
Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael
2017-09-01
A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.
Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)
2002-01-01
Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyda, Marek; Wunderlich, Bernhard
2005-11-01
A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observedmore » at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).« less
Nanostructure studies of strongly correlated materials.
Wei, Jiang; Natelson, Douglas
2011-09-01
Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.
NASA Astrophysics Data System (ADS)
Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.
2016-06-01
Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.
Low Temperature Kinetics of the First Steps of Water Cluster Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgalais, J.; Roussel, V.; Capron, M.
2016-03-01
We present a combined experimental and theoretical low temperature kinetic study of water cluster formation. Water cluster growth takes place in low temperature (23-69 K) supersonic flows. The observed kinetics of formation of water clusters are reproduced with a kinetic model based on theoretical predictions for the first steps of clusterization. The temperature-and pressure-dependent association and dissociation rate coefficients are predicted with an ab initio transition state theory based master equation approach over a wide range of temperatures (20-100 K) and pressures (10(-6) - 10 bar).
Realization of High-temperature Superconductivity in Nano-carbon Materials and Its Application
2015-07-13
hottest topics in condensed matter physics and also for application to zero- emission energy system. In particular, carbon-based superconductors have...ernission energy system. In particular, carbon-based superconductors have attracted significant attention for high transition temperature (T c). In...e-based superconductors have previously shown T c > 40K among various superconductors . In particular, carbon-base new SC exhibited T c < 20K in any
Pressure induced phase transitions studies using advanced synchrotron techniques
NASA Astrophysics Data System (ADS)
Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration
2013-06-01
In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.
NASA Astrophysics Data System (ADS)
Phuong, Vu Thanh; Coltelli, Maria-Beatrice; Anguillesi, Irene; Cinelli, Patrizia; Lazzeri, Andrea
2014-05-01
In order to improve the thermal stability of PLA based materials the strategy of blending it with poly(carbonate) of bisphenol A (PC), having a higher glass transition temperature, was followed and PLA/PC blends with different compositions, obtained also in the presence of an interchange reaction catalyst, Tetrabutylammonium tetraphenylborate (TBATPB) and triacetin were prepared by melt extrusion. The dynamical mechanical characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tanδ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data, showing an interesting improvement of thermal stability above the PLA glass transition, were explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...
2017-06-13
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadiz, Fabian, E-mail: cadiz@insa-toulouse.fr; Tricard, Simon; Gay, Maxime
Developments in optoelectronics and spin-optronics based on transition metal dichalcogenide monolayers (MLs) need materials with efficient optical emission and well-defined transition energies. In as-exfoliated MoS{sub 2} MLs, the photoluminescence (PL) spectra even at low temperature consist typically of broad, overlapping contributions from neutral, charged excitons (trions) and localized states. Here, we show that in superacid treated MoS{sub 2} MLs, the PL intensity increases by up to 60 times at room temperature. The neutral and charged exciton transitions are spectrally well separated in PL and reflectivity at T = 4 K, with linewidth for the neutral exciton of 15 meV, but both transitions have similarmore » intensities compared to the ones in as-exfoliated MLs at the same temperature. Time resolved experiments uncover picoseconds recombination dynamics analyzed separately for charged and neutral exciton emissions. Using the chiral interband selection rules, we demonstrate optically induced valley polarization for both complexes and valley coherence for only the neutral exciton.« less
Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.
Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan
2017-02-10
This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.
The energy balance of the solar transition region
NASA Technical Reports Server (NTRS)
Jordan, C.
1980-01-01
It is shown how the observed distribution of the emission measure with temperature can be used to limit the range of energy deposition functions suitable for heating the solar transition region and inner corona. The minimum energy loss solution is considered in view of the work by Hearn (1975) in order to establish further scaling laws between the transition region pressure, the maximum coronal temperature and the parameter giving the absolute value of the emission measure. Also discussed is the absence of a static energy balance at the base of the transition region in terms of measurable atmospheric parameters, and the condition for a static energy balance is given. In addition, the possible role of the emission from He II in stabilizing the atmosphere by providing enhanced radiation loss is considered.
NASA Astrophysics Data System (ADS)
Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian
2017-03-01
Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.
Temperature-induced Lifshitz transition in WTe 2
Wu, Yun; Jo, Na Hyun; Ochi, Masayuki; ...
2015-10-12
In this study, we use ultrahigh resolution, tunable, vacuum ultraviolet laser-based, angle-resolved photoemission spectroscopy (ARPES), temperature- and field-dependent resistivity, and thermoelectric power (TEP) measurements to study the electronic properties of WTe 2, a compound that manifests exceptionally large, temperature-dependent magnetoresistance. The Fermi surface consists of two pairs of electron and two pairs of hole pockets along the X–Γ–X direction. Using detailed ARPES temperature scans, we find a rare example of a temperature-induced Lifshitz transition at T≃160 K, associated with the complete disappearance of the hole pockets. Our electronic structure calculations show a clear and substantial shift of the chemical potentialmore » μ(T) due to the semimetal nature of this material driven by modest changes in temperature. This change of Fermi surface topology is also corroborated by the temperature dependence of the TEP that shows a change of slope at T≈175 K and a breakdown of Kohler’s rule in the 70–140 K range. Our results and the mechanisms driving the Lifshitz transition and transport anomalies are relevant to other systems, such as pnictides, 3D Dirac semimetals, and Weyl semimetals.« less
Proton spin-lattice relaxation in low-dimensional ferromagnetic copper halides (abstract)
NASA Astrophysics Data System (ADS)
Marzke, R. F.; Haines, D. N.; Raffaelle, D. P.; Chamberlin, R. V.; Ramakrishna, B. L.
1991-04-01
1H spin-lattice relaxation times have been measured as functions of temperature and frequency in powder samples of the two-dimensional ferromagnetic compound (CH3NH3)2CuCl4 and in single crystals of the one-dimensional ferromagnets (C6H11NH3)CuB3 (CHAB), (C6H11NH3)CuCl3 (CHAC), and (C4H12N)CuCl3 (TMCuC). Sample temperatures were varied between 4.2 and 298 K, and NMR frequencies ranging from 12.6 to 54.0 MHz were used. Widths and shapes of the lines, typically several hundred Gauss broad at low temperatures, were recorded. The dependence of T1 upon magnetic field orientation was measured for the one-dimensional (1D) single crystal samples. Each compound showed basically two temperature regimes of different spin-lattice relaxation behavior, separated by a narrow transition temperature region. From 4.2 K, T1 in the compounds decreased strongly as the temperature was raised, a behavior expected for second-order Raman processes [K. M. Kopinga, A. M. C. Tinus, W. J. M. de Jonge, and G. C. de Vries, Phys. Rev. B 36, 5398 (1987)]. At the transition temperature region the decrease of T1 ceased, and T1 began to increase weakly and quasilinearly to 300 K. In the three 1D compounds, the transition regions occurred well below temperatures corresponding to 1D exchange interaction strengths in CHAC (˜70 K), CHAB (˜55 K), and TMCuC (˜30 K), and also above the compounds' 3D ordering temperatures (˜1.5 K and below). We noted a correlation between the T1 transition temperatures and temperatures at which spin dimensionality ``crossovers'' are observed in magnetic susceptibilities, going from Heisenberg to non-Heisenberg behavior as the temperature is decreased. The latter occur at approximately 10 K in CHAC. TMCuC, which has the most isotropic J tensor of these compounds and also the lowest weak-strong T1 transition, does not show a spin dimensionality crossover in susceptibility down to 2 K, but based on our NMR results one would be expected at or below this temperature. Further theoretical work appears to be necessary in order to elucidate the role of magnons and solitons in the transition behavior of the temperature dependence of T1.
NASA Astrophysics Data System (ADS)
Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Baik, Jeong Min; Yi, Kyung Soo; Kim, Gil-Ho
2014-07-01
We studied insulator-metal transitions in VO2 nanobeams for both abrupt and gradual changes in applied electric fields. Based on the observations, the Poole-Frenkel effect explained the abrupt transition, while the gradual case is found to be dominated by the Joule heating phenomenon. We also carried out power model and finite element method based simulations which supported the Joule heating phenomena for gradual transition. An in-principle demonstration of the Poole-Frenkel effect, performed using a square voltage pulse of 1 µs duration, further confirms the proposed insulator-metal transition mechanism with a switching time in the order of 100 ns. Finally, conductivity variations introduced via rapid thermal annealing at various temperatures validate the roles of both Joule heating and Poole-Frenkel mechanisms in the transitions.
NASA Astrophysics Data System (ADS)
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.
2015-11-01
Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km < h < 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal-insulator transition and compare them with the experimental seismic and geomagnetic field data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, J.B.
1987-09-01
In this report, we consider the performance of wallboard impregnated with phase change material. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. We find the diurnal heat capacity to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown thatmore » the optimal transition temperature of the PCM is strongly influenced by amount of solar flux absorbed by the PCM. 6 refs., 5 figs., 5 tabs.« less
Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin
2018-06-27
A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.
Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications
NASA Technical Reports Server (NTRS)
Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)
2008-01-01
Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.
NASA Astrophysics Data System (ADS)
Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping
2017-10-01
Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.
On the catalysis of the electroweak vacuum decay by black holes at high temperature
NASA Astrophysics Data System (ADS)
Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N.
2018-04-01
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We estimate the barrier for the transition by the ADM mass of this configuration, computed through the temperature-corrected Higgs potential. We find that the exponential suppression of the nucleation rate can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term ξ R h^2.
Yang, Fan; Chen, De; Guo, Zhe-Fei; Zhang, Yong-Ming; Liu, Yi; Askin, Sean; Craig, Duncan Q M; Zhao, Min
2017-04-30
Poly (d,l-lactic-co-glycolic) acid (PLGA) based microspheres have been extensively used as controlled drug release systems. However, the burst effect has been a persistent issue associated with such systems, especially for those prepared by the double emulsion technique. An effective approach to preventing the burst effect and achieving a more ideal drug release profile is to improve the drug distribution within the polymeric matrix. Therefore, it is of great importance to establish a rapid and robust tool for screening and optimizing the drug distribution during pre-formulation. Transition Temperature Microscopy (TTM), a novel nano-thermal and imaging technique, is an extension of nano-thermal analysis (nano-TA) whereby a transition temperature is detected at a localized region of a sample and then designated a color based on a particular temperature/color palette, finally resulting in a coded map based on transition temperatures detected by carrying out a series of nanoTA measurements across the surface of the sample. In this study, we investigate the feasibility of applying the aforementioned technique combined with other thermal, imaging and structural techniques for monitoring the drug microstructure and spatial distribution within bovine serum albumin (BSA) loaded and nimodipine loaded PLGA microspheres, with a view to better predicting the in vitro drug release performance. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
Scaling universality at the dynamic vortex Mott transition
Lankhorst, M.; Poccia, N.; Stehno, M. P.; ...
2018-01-17
The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory formore » the DMT based on the parity reflection-time reversal (PT) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class.« less
Scaling universality at the dynamic vortex Mott transition
NASA Astrophysics Data System (ADS)
Lankhorst, M.; Poccia, N.; Stehno, M. P.; Galda, A.; Barman, H.; Coneri, F.; Hilgenkamp, H.; Brinkman, A.; Golubov, A. A.; Tripathi, V.; Baturina, T. I.; Vinokur, V. M.
2018-01-01
The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory for the DMT based on the parity reflection-time reversal (P T ) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class.
NASA Astrophysics Data System (ADS)
Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie
2017-07-01
Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets
NASA Astrophysics Data System (ADS)
Varakian, Matthew; Deming, Drake
2018-01-01
The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.
NASA Astrophysics Data System (ADS)
Shestakov, V. A.; Korshunov, M. M.; Togushova, Yu N.; Efremov, D. V.; Dolgov, O. V.
2018-07-01
Irradiation of superconductors with different particles is one of many ways to investigate the effects of disorder. Here we study the disorder-induced transition between s ± and s ++ states in the two-band model for Fe-based superconductors with nonmagnetic impurities. Specifically, we investigate the important question of whether the superconducting gaps during the transition change smoothly or abruptly. We show that the behavior can be of either type and is controlled by the ratio of intraband to interband impurity scattering potentials, and by a parameter σ , that represents scattering strength and ranges from zero (Born approximation) to one (unitary limit). For the pure interband scattering potential and the scattering strength σ ≲ 0.11, the {s}+/- \\to {s}++ transition is accompanied by steep changes in the gaps, while for larger values of σ , the gaps change smoothly. The behavior of the gaps is characterized by steep changes at low temperatures, T< 0.1{T}{{c}0} with T c0 being the critical temperature in the clean limit, otherwise it changes gradually. The critical temperature T c is always a smooth function of the scattering rate in spite of the steep changes in the behavior of the gaps.
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar
2013-07-16
Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.
Transition-Metal-Free Alkynylation of Aryl Chlorides
Truong, Thanh; Daugulis, Olafs
2011-01-01
Two sets of conditions have been developed for a base-mediated, transition-metal-free alkynylation of aryl chlorides that proceeds via benzyne intermediates. The first set of conditions involves the use of TMPLi base in a pentane/THF mixture at 25 °C. The second set involves use of a metal alkoxide base in dioxane at elevated temperature. Reasonable functional group tolerance has been observed. Fluoro, trifluoromethyl, silyl, cyano, and alcohol functionalities are compatible with the reaction conditions. PMID:21786825
Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion
NASA Astrophysics Data System (ADS)
Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.
2017-12-01
The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.
Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.
Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A
2017-09-07
A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.
Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp; Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Tok, Engsoon
2013-09-01
Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the samemore » epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.« less
Structural features of single crystals of LuB{sub 12} upon a transition to the cage-glass phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotina, N. B., E-mail: nb-bolotina@mail.ru; Verin, I. A.; Shitsevalova, N. Yu.
2016-03-15
The unit-cell parameters of dodecaboride LuB{sub 12}, which undergoes a transition to the cage-glass phase, have been determined for the first time in the temperature range of 50–75 K by X-ray diffraction, and the single-crystal structure of this compound is established at 50 K. Nonlinear changes in the unit-cell parameters correspond to anomalies in the physical properties near the glass-transition temperature T* ~ 50–70 K. This compound has cubic symmetry at room temperature, and it is reduced to tetragonal symmetry at lower temperatures. Based on the X-ray diffraction data and relying on the physical properties of the crystals, the structuremore » model, in which a small part (~15%) of Lu atoms are displaced from the 2a sites at the centers of the B{sub 24} cuboctahedra to the 16n sites of sp. gr. I4/mmm, seems preferable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelhas, L. T.; Stone, K. H.; Harvey, S. P.
The interest in Cu2ZnSn(S,Se)4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a Voc deficit, where the Voc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. To directly determine the level of Cu/Zn ordering, wemore » have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. To understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less
Shear melting and high temperature embrittlement: theory and application to machining titanium.
Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J
2015-04-24
We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.
Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe
NASA Astrophysics Data System (ADS)
Grinenko, V.; Sarkar, R.; Materne, P.; Kamusella, S.; Yamamshita, A.; Takano, Y.; Sun, Y.; Tamegai, T.; Efremov, D. V.; Drechsler, S.-L.; Orain, J.-C.; Goko, T.; Scheuermann, R.; Luetkens, H.; Klauss, H.-H.
2018-05-01
A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many parent compounds of Fe-based superconductors. However, in the FeSe system with a nematic transition at Ts≈90 K, no evidence for long-range static magnetism is found down to very low temperatures. The lack of magnetism is a challenge for the theoretical description of FeSe. We investigated high-quality single crystals of FeSe using high-field (up to 9.5 T) muon spin rotation (μ SR ) measurements. The μ SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around T*˜10 -20 K, where the Knight shift exhibits a kink. In the temperature range Ts≳T ≳T* , the muon spin depolarization rate shows a quantum critical behavior Λ ∝T-0.4 . The observed critical scaling indicates that FeSe is in the vicinity of an itinerant antiferromagnetic quantum critical point. Below T* the quantum critical behavior breaks down. We argue that this breakdown is caused by a temperature-induced Lifschitz transition.
Heat Transfer in a Superelliptic Transition Duct
NASA Technical Reports Server (NTRS)
Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven
2008-01-01
Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.
NASA Astrophysics Data System (ADS)
Aróztegui, Juan J.; Urcola, José J.; Fuentes, Manuel
1989-09-01
Commercial electric arc melted low-carbon steels, provided as I beams, were characterized both microstructurally and mechanically in the as-rolled, copper precipitation, and plastically pre-deformed conditions. Inclusion size distribution, ferrite grain size, pearlite volume fraction, precipitated volume fraction of copper, and size distribution of these precipitates were deter-mined by conventional quantitative optical and electron metallographic techniques. From the tensile tests conducted at a strain rate of 10-3 s-1 and impact Charpy V-notched tests carried out, stress/strain curves, yield stress, and impact-transition temperature were obtained. The spe-cific fractographic features of the fracture surfaces also were quantitatively characterized. The increases in yield stress and transition temperature experienced upon either aging or work hard-ening were related through empirical relationships. These dependences were analyzed semi-quantitatively by combining microscopic and macroscopic fracture criteria based on measured fundamental properties (fracture stress and yield stress) and observed fractographic parameters (crack nucleation distance and nuclei size). The rationale developed from these fracture criteria allows the semiquantitative prediction of the temperature transition shifts produced upon aging and work hardening. The values obtained are of the right order of magnitude.
Tunneling anisotropic magnetoresistance driven by magnetic phase transition.
Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F
2017-09-06
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.
Multi-color Long Wavelength Infrared Detectors Based On III-V Semiconductors
2010-07-30
both interband and intersubband transitions that form the basis of may optoelectronic devices. The research performed under this grant made it...based on interband and intersubband transitions in InAs and InGaAs QDs as a means for room temperature, multi-color photodetection in the visible...AM1.5 standard solar simulator. DOPING EFFECT ON INTERBAND AND INTERSUBBAND MULTICOLOR INFRARED PHOTODETECTORS: First, many samples and devices
NASA Astrophysics Data System (ADS)
Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2017-07-01
The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C. Q.; Peng, L.; Jiang, K.
2015-06-15
The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′more » softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; Nichols III, A L
The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as wellmore » with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.« less
Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal
NASA Astrophysics Data System (ADS)
Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.
1999-02-01
We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.
Estimation of thermodynamic parameters for Au- and Mg-based metallic glasses
NASA Astrophysics Data System (ADS)
Gaur, Jitendra; Mishra, R. K.
2017-10-01
The study of temperature dependent thermodynamic parameters; Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled liquid and the corresponding equilibrium solid phases has been proved to be extremely advantageous in the study of the thermodynamic behaviour of Metallic glass (MG) forming melts. In last two decades, Au- and Mg-based alloys were found to form glass phases. In present study, the three thermodynamic parameters viz., ΔG, ΔS and ΔH are calculated theoretically in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for both Au- and Mg-based five samples of MGs; Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 on the basis of Taylor's series expansion. A relative study is also made between the present result and the result obtained experimentally as well as on the basis of expressions projected by the earlier researchers. An attempt is also been made to narrate the reduced glass transition temperature with glass forming ability for all five MGs.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less
Estimates of Stellar Weak Interaction Rates for Nuclei in the Mass Range A=65-80
NASA Astrophysics Data System (ADS)
Pruet, Jason; Fuller, George M.
2003-11-01
We estimate lepton capture and emission rates, as well as neutrino energy loss rates, for nuclei in the mass range A=65-80. These rates are calculated on a temperature/density grid appropriate for a wide range of astrophysical applications including simulations of late time stellar evolution and X-ray bursts. The basic inputs in our single-particle and empirically inspired model are (i) experimentally measured level information, weak transition matrix elements, and lifetimes, (ii) estimates of matrix elements for allowed experimentally unmeasured transitions based on the systematics of experimentally observed allowed transitions, and (iii) estimates of the centroids of the GT resonances motivated by shell model calculations in the fp shell as well as by (n, p) and (p, n) experiments. Fermi resonances (isobaric analog states) are also included, and it is shown that Fermi transitions dominate the rates for most interesting proton-rich nuclei for which an experimentally determined ground state lifetime is unavailable. For the purposes of comparing our results with more detailed shell model based calculations we also calculate weak rates for nuclei in the mass range A=60-65 for which Langanke & Martinez-Pinedo have provided rates. The typical deviation in the electron capture and β-decay rates for these ~30 nuclei is less than a factor of 2 or 3 for a wide range of temperature and density appropriate for presupernova stellar evolution. We also discuss some subtleties associated with the partition functions used in calculations of stellar weak rates and show that the proper treatment of the partition functions is essential for estimating high-temperature β-decay rates. In particular, we show that partition functions based on unconverged Lanczos calculations can result in errors in estimates of high-temperature β-decay rates.
NASA Astrophysics Data System (ADS)
Yamamuro, O.; Kofu, M.
2017-05-01
Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.
Crystal structure and phase transition of thermoelectric SnSe.
Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo
2016-06-01
Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
NASA Technical Reports Server (NTRS)
Zhao, J.; Seehra, M. S.
1991-01-01
The recently observed variations of the transition temperature (T sub c) with oxygen content in the Bi based (2212) and (2223) superconductors are analyzed in terms of p+, the hole concentration per CuO2 sheet. This analysis shows that in this system, T sub c increases with p+ initially, reaching maxima at p+ = 0.2 approx. 0.3, followed by monotonic decrease of T sub c with p+. The forms of these variations are similar to those observed in the La(2-x)Sr(x)CuO4 and YBa2Cu3Oy systems, suggesting that p+ may be an important variable governing superconductivity in the cuprate superconductors.
Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
Magoń, A; Pyda, M
2011-11-29
The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.
Intersubband Transitions in InAs/AlSb Quantum Wells
NASA Technical Reports Server (NTRS)
Li, J.; Koloklov, K.; Ning, C. Z.; Larraber, D. C.; Khodaparast, G. A.; Kono, J.; Ueda, K.; Nakajima, Y.; Sasa, S.; Inoue, M.
2003-01-01
We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k-p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.
NASA Astrophysics Data System (ADS)
Honda, Z.; Sato, S.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.
2016-07-01
A simple method for the preparation of bulk quantities of magnetic carbon materials, which contain uniformly dispersed transition metals (M = Fe, Co, Ni, and Cu) as the magnetic components, is presented. By using highly chlorinated metal phthalocyanine as the building block and potassium as the coupling reagent, phthalocyanine-based carbon materials (PBCMs) containing transition metals were obtained. Our experiments demonstrate the structure of these PBCMs consists of transition metals embedded in graphitic carbon that includes a square planar MN4 magnetic core and the Fe and Co-PBCM possess spontaneous magnetization at room temperature. In addition, carbon-coated transition metal particles were obtained by the Wurtz-type reaction with excess amount of potassium coupling agent. The large transition metal surface area and magnetization of these M-PBCMs are useful for spintronic and catalytic applications.
Self-assembly in Dipolar Fluids
NASA Astrophysics Data System (ADS)
Ronti, Michela; Kantorovich, Sofia
We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).
Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi
2014-10-20
The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.
NASA Astrophysics Data System (ADS)
Heeter, Ann E.
Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
NASA Astrophysics Data System (ADS)
Grein, C. H.; John, Sajeev
1989-01-01
The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.
Computing the Viscosity of Supercooled Liquids: Markov Network Model
Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C.; Diep, Phong; Yip, Sidney
2011-01-01
The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or “terrain” is needed for low-temperature viscosity (of order 107 Pa·s) from that associated with high-temperature viscosity (10−5 Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent “terrain” characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988
Thermomagnetic phenomena in the mixed state of high temperature superconductors
NASA Technical Reports Server (NTRS)
Meilikhov, E. Z.
1995-01-01
Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.
Hill, Robert G; Brauer, Delia S
2011-10-01
A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Infrared reflectivity investigation of the phase transition sequence in Pr0.5Ca0.5MnO3
NASA Astrophysics Data System (ADS)
Ribeiro, J. L.; Vieira, L. G.; Gomes, I. T.; Araújo, J. P.; Tavares, P.; Almeida, B. G.
2016-06-01
This work reports an infrared reflectivity study of the phase transition sequence observed in Pr0.5Ca0.5MnO3. The need to measure over an extended spectral range in order to properly take into account the effects of the high frequency polaronic absorption is circumvented by adopting a simple approximate method, based on the asymmetry present in the Kramers Kronig inversion of the phonon spectrum. The temperature dependence of the phonon optical conductivity is then investigated by monitoring the behavior of three relevant spectral moments of the optical conductivity. This combined methodology allows us to disclose subtle effects of the orbital, charge and magnetic orders on the lattice dynamics of the compound. The characteristic transition temperatures inferred from the spectroscopic measurements are compared and correlated with those obtained from the temperature dependence of the induced magnetization and electrical resistivity.
Verwey transition in a magnetite ultrathin film by resonant x-ray scattering
NASA Astrophysics Data System (ADS)
Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.
2018-03-01
We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.
Demonstrating the Curie Temperature in the Classroom
ERIC Educational Resources Information Center
Williams, David; Banks, Octavia; Eichmeyer, Livia; Wu, Cherrin
2018-01-01
Recent GCSE and IGCSE specifications include reference to both permanent and induced magnetism, giving the opportunity for novel classroom demonstrations based on ferromagnetism and paramagnetism, and the transition between these phases. Ferromagnetic materials lose their magnetism if raised above their Curie Temperature, a specific temperature…
NASA Astrophysics Data System (ADS)
Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu
2017-10-01
Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.
1994-01-01
An investigation of the effect of various metallurgical parameters such as interfaces, allowing additions, test temperature, and strain rate on the flow and fracture behavior of polycrystalline NiAl is summarized. From this study, a more complete understanding of the deformation and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition temperature has been developed. A mechanism for the BDTT is proposed that is based on the operation of localized dislocation climb processes that operate within the vicinity of the grain boundaries and provide the additional deformation mechanisms necessary for grain-to-grain compatibility during plastic deformation. Finally, methods for improving the low temperature mechanical behavior of NiAl were considered and reviewed within the context of the present knowledge of NiAl-based materials and the operative deformation and fracture mechanisms determined in this study. Special emphasis was placed on the use of second phases for improving low temperature properties.
Nonlinear Dynamics of the Superfluid Transition: What may We learn on orbit?
NASA Technical Reports Server (NTRS)
Duncan, Rob
2003-01-01
Linear response (specifically, Fourier's Law) in He-4 has been observed to fail in heat flow experiments near the superfluid transition. A detailed analysis of the data suggests that the hydrostatic pressure gradient across the helium column limits the divergence of the correlation length in our earth-based experiments. This is consistent with other observations, such as the surprising lack of mutual friction and hysteresis near the superfluid transition, and a 'rounding' of the transition that appears to be independent of heat flux in the low heat flux limit. I will discuss these unusual results from earth-based measurements, and will show predictions for the very different results that may result when we make our measurements on orbit as part of the M1 Mission of the Low- Temperature, Microgravity Physics Facility. This work has been funded by the Fundamental Physics Discipline within the Physical Sciences Research Office of NASA, and is conducted by the DYNAMX (UNM) and CQ (Caltech) Groups, with assistance from the Low Temperature Science and Quantum Sensors Group at JPL.
NASA Astrophysics Data System (ADS)
Fritsch, A. R.; Tavares, P. E. S.; Vivanco, F. A. J.; Telles, G. D.; Bagnato, V. S.; Henn, E. A. L.
2018-05-01
We present an alternative method for determining the sound velocity in atomic Bose–Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase transition, at constant volume. It allowed us to evaluate the sound velocity resulting in consistent values from the quantum to classical regime, in good agreement with previous results found in literature. We also provide some insight about the dominant sound mode (thermal or superfluid) across a wide temperature range.
Liquid-gas phase transition in asymmetric nuclear matter at finite temperature
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi
2010-03-01
Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.
NASA Astrophysics Data System (ADS)
Choi, Jung Bum
Far infrared (FIR) magneto-transmission studies of n-type Hg_{1-x}Cd _{x}Te (x = 0.198, 0.204, 0.224, 0.237, 0.270) for temperatures down to 1.5K and magnetic fields up to 9T in Voigt and Faraday geometries have been performed. Magneto-optical transitions of donor bound electrons are observed; including the (000) --> (001) and (010) --> (01k_{z}) in the Voigt geometry, and the (000) --> (110) in the Faraday geometry. These identifications are confirmed by their resonance positions, selection rules, and temperature dependence. The experimental observations are consistent with calculations of resonance positions and lineshapes based on the hydrogenic donor model including central cell effects. This work confirms the donor bound electronic ground state for Hg_{1-x}Cd_{x} Te. The magneto-transport and FIR spectroscopy have been combined to probe the nature of the impurity band in the vicinity of the magnetic field induced metal-insulator transition. The results obtained in Hg_ {1-x}Cd_{x}Te and InSb show the persistance of the (000) --> (110) impurity transition through the metal-insulator critical field. This observation demonstrates the existence of the metallic impurity band which is split off from the conduction band. In the studies of the critical behavior of InSb, the conductivity measured for temperatures down to 0.45K shows a dominant linear dependence on temperature near the transition field. Furthermore, the zero-temperature extrapolated conductivity was found to drop continuously to zero at the transition field with a critical exponent of nu = 1.07 +/- 0.07.
Pansare, Swapnil K; Patel, Sajal Manubhai
2016-08-01
Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.
ARPES studies of the electronic structure of Fe-based superconductors
NASA Astrophysics Data System (ADS)
Lu, Donghui
2009-03-01
The recent discovery of superconductivity in Fe-based layered compounds has created renewed interest in high temperature superconductivity. With a superconducting transition temperature as high as 55 K, this discovery provides a new direction to understand the essential ingredients for achieving a high superconducting transition temperature. In this talk, I will present our recent angle-resolved photoemission spectroscopy (ARPES) studies on LaOFeP and (Ba,K)Fe2As2 systems, with special emphasis on the basic electronic structure of the parent compounds. For LaOFeP, quantitative agreement can be found between our ARPES data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound [1]. On the other hand, the picture for (Ba,K)Fe2As2 system is more complicated. I will discuss two important issues in these FeAs compounds: 1) the unexpected Fermi surface topology in both undoped and doped compounds; 2) the peculiar signature of the SDW transition in ARPES spectra for the parent compound. [4pt] [1] D. H. Lu, M. Yi, S.-K. Mo, A. S. Erickson, J. Analytis, J.-H. Chu, D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher & Z.-X. Shen, Nature 455, 81 (2008).
Exploratory Phase Transition-Based Switches Using Functional Oxides
2011-02-02
TECHNICAL REPORT Abstract Vanadium dioxide ( VO2 ) undergoes a sharp metal-insulator transition (MIT) in the vicinity of room temperature and there is...18 The mechanisms governing metal-insulator transition (MIT) in vanadium dioxide ( VO2 ) is an intensively explored subject in condensed matter...textured vanadium dioxide films were grown on single crystal Al2O3 (0001) substrates by RF-sputtering from a VO2 target (99.5%, AJA International Inc
Zhu, Jingting; Zhou, Yijie; Wang, Bingbing; Zheng, Jianyun; Ji, Shidong; Yao, Heliang; Luo, Hongjie; Jin, Ping
2015-12-23
An annealing-assisted preparation method of well-crystallized VxW1-xO2(M)@SiO2 core-shell nanoparticles for VO2-based thermochromic smart coatings (VTSC) is presented. The additional annealing process reduces the defect density of the initial hydrothermally prepared VxW1-xO2(M) nanoparticles and enhances their crystallinity so that the thermochromic film based on VxW1-xO2(M)@SiO2 nanoparticles can exhibit outstanding thermochromic performance with balanced solar regulation efficiency (ΔTsol) of 17.3%, luminous transmittance (Tlum) up to 52.2%, and critical phase transition temperature (Tc) around 40.4 °C, which is very promising for practical application. Furthermore, it makes great progress in reducing Tc of VTSC to near room temperature (25.2 °C) and simutaneously maintaining excellent optical properties (ΔTsol = 14.7% and Tlum = 50.6%). Such thermochromic performance is good enough to make VTSC applicable to practical architecture.
Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.
Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less
Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime
Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.; ...
2017-12-08
Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less
Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith
2015-03-01
In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.
Magnetic Phase Transition in Spark-Produced Ternary LaFeSi Nanoalloys.
Feng, Jicheng; Geutjens, Ruben; Thang, Nguyen V; Li, Junjie; Guo, Xiaoai; Kéri, Albert; Basak, Shibabrata; Galbács, Gábor; Biskos, George; Nirschl, Hermann; Zandbergen, Henny W; Brück, Ekkes; Schmidt-Ott, Andreas
2018-02-21
Using the magnetocaloric effect in nanoparticles holds great potential for efficient refrigeration and energy conversion. The most promising candidate materials for tailoring the Curie temperature to room temperature are rare-earth-based magnetic nanoalloys. However, only few high-nuclearity lanthanide/transition-metal nanoalloys have been produced so far. Here we report, for the first time, the observation of magnetic response in spark-produced LaFeSi nanoalloys. The results suggest that these nanoalloys can be used to exploit the magnetocaloric effect near room temperature; such a finding can lead to the creation of unique multicomponent materials for energy conversion, thus helping toward the realization of a sustainable energy economy.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Gross, K. P.
1980-01-01
A laser induced fluorescence technique, suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide is described. Temperatures below 300 K may be resolved with signal to noise ratios greater than 50 to 1 using high peak power, tunable dye lasers. The method relies on the two photon excitation of selected ro-vibronic transitions. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. Signal to noise ratio estimates are based on a preliminary measurement of the two photon absorptivity for a selected rotational transition in the NO gamma (0,0) band.
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-01
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
NASA Astrophysics Data System (ADS)
Li, Y.; Robertson, C.
2018-06-01
The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
Morales, Miguel A; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D M
2010-07-20
Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmowski, W.; Gierlotka, S.; Wang, Z.
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less
Liquid-solid phase transition of hydrogen and deuterium in silica aerogel
NASA Astrophysics Data System (ADS)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-01
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ˜85%-porous base-catalyzed silica aerogel. We find that liquid-solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ˜4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.
NASA Astrophysics Data System (ADS)
Drake, J. B.
1987-09-01
The performance of wallboard impregnated with phase change material (PCM) is considered. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. The diurnal heat capacity was found to be to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown that the optimal transition temperature of the PCM is strongly influenced by the amount of solar flux absorbed.
Garrahan, Juan P
2014-03-01
A key open question in the glass transition field is whether a finite temperature thermodynamic transition to the glass state exists or not. Recent simulations of coupled replicas in atomistic models have found signatures of a static transition as a function of replica coupling. This can be viewed as evidence of an associated thermodynamic glass transition in the uncoupled system. We demonstrate here that a different interpretation is possible. We consider the triangular plaquette model, an interacting spin system which displays (East model-like) glassy dynamics in the absence of any static transition. We show that when two replicas are coupled, there is a curve of equilibrium phase transitions, between phases of small and large overlap, in the temperature-coupling plane (located on the self-dual line of an exact temperature-coupling duality of the system) which ends at a critical point. Crucially, in the limit of vanishing coupling the finite temperature transition disappears, and the uncoupled system is in the disordered phase at all temperatures. We discuss an interpretation of atomistic simulations in light of this result.
Chen, Wei; Liu, Xiao-Yang; Yu, Han-Qing
2017-03-01
Temperature variation caused by climate change, seasonal variation and geographic locations affects the physicochemical compositions of chromophoric dissolved organic matter (CDOM), resulting in difference in the fates of CDOM-related environmental pollutants. Exploration into the thermal induced structural transition of CDOM can help to better understand their environmental impacts, but information on this aspect is still lacking. Through integrating fluorescence excitation-emission matrix coupled parallel factor analysis with synchronous fluorescence two-dimensional correlation spectroscopy, this study provides an in-depth insight into the temperature-dependent conformational transitions of CDOM and their impact on its hydrophobic interaction with persistent organic pollutants (with phenanthrene as an example) in water. The fluorescence components in CDOM change linearly to water temperature with different extents and different temperature regions. The thermal induced transition priority in CDOM is protein-like component → fulvic-like component → humic-like component. Furthermore, the impact of thermal-induced conformational transition of CDOM on its hydrophobic interaction with phenanthrene is observed and explored. The fluorescence-based analytic results reveal that the conjugation degree of the aromatic groups in the fulvic- and humic-like substances, and the unfolding of the secondary structure in the protein-like substances with aromatic structure, contribute to the conformation variation. This integrated approach jointly enhances the characterization of temperature-dependent conformational variation of CDOM, and provides a promising way to elucidate the environmental behaviours of CDOM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi
2015-12-24
Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.
NASA Astrophysics Data System (ADS)
Farooq, A.; Jeffries, J. B.; Hanson, R. K.
2008-03-01
A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...
2017-01-04
In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Zhao, Shijun; Jin, Ke
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less
NASA Astrophysics Data System (ADS)
Cutiongco, Eric C.; Chung, Yip-Wah
1994-07-01
A method for predicting scuffing failure based on the competitive kinetics of oxide formation and removal has been developed and applied to the sliding of AISI 52100 steel on steel with poly-alpha-olefin as the lubricant. Oxide formation rates were determining using static oxidation tests on coupons of 52100 steel covered with poly-alpha-olefin at temperatures of 140 C to 250 C. Oxide removal rates were determined at different combinations of initial average nominal contact pressures (950 MPa to 1578 MPa) and sliding velocities (0.4 m/s to 1.8 m/s) using a ball-on-disk vacuum tribotester. The nominal asperity flash temperatures generated during the wear tests were calculated and the temperatures corresponding to the intersection of the the Arrhenius plots of oxide formation and removal rates were determined and taken as the critical failure temperatures. The pressure-velocity failure transition diagram was constructed by plotting the critical failure temperatures along isotherms of average nominal asperity flash temperatures calculated at different combinations of contact stress and sliding speed. The predicted failure transition curve agreed well with experimental scuffing data.
Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment
NASA Astrophysics Data System (ADS)
Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin
2015-12-01
The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.
NASA Astrophysics Data System (ADS)
Fukuichi, Masayuki; Momida, Hiroyoshi; Geshi, Masaaki; Michiuchi, Masato; Sogabe, Koichi; Oguchi, Tamio
2018-04-01
Much is not systematically known about the origin of mechanical properties among 5d transition metal carbides including tungsten carbide. In order to understand the microscopic origin of hardness, the mechanical properties and electronic structures of 5d transition metal monocarbides MC (M = Hf, Ta, W, Re, Os, Ir, and Pt) in five different structures (NaCl, WC, ZnS, CsCl, and NiAs type) are analyzed using first-principles calculations based on the density functional theory. Our results would indicate that WC-type WC and NiAs-type ReC have the highest and second highest hardness among all of the MC, respectively, in terms of the Debye temperature. By examining the Debye temperature in the series, it is found that MC in the range of less and more than half filled 5d shells are brittle and ductile, respectively. Our results would indicate that filling in the bonding and anti-bonding states contributes to brittleness and ductility. The Debye temperature could be a key to understanding hardness in terms of bulk and shear moduli. In addition, we evaluate some other structural properties such as equilibrium volume, formation enthalpy, and elastic constant to investigate structural stability. Based on the theoretical findings, the microscopic mechanisms of hardness and brittleness in the transition metal carbides are discussed.
2015-01-01
TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING
Organization versus frustration: low temperature transitions in a gelatine-based gel
NASA Astrophysics Data System (ADS)
Philipp, M.; Müller, U.; Sanctuary, R.; Baller, J.; Krüger, J. K.
2008-09-01
A commercial physical gel composed of gelatine, water and glycerol shows a sol-gel transition which has been resolved by optical rotation measurements by step-wise heating the gel. This transition is not observable in the longitudinal acoustic mode measured at hypersonic frequencies with Brillouin spectroscopy. Depending on the thermal treatment of the investigated material during the sol-gel transition and within the gel state, Brillouin spectroscopy reflects tremendously different hypersonic dynamics. These distinct dynamics are responsible for the formation of different glassy states at low temperatures including that of a glass-ceramic. The large variety of super-cooled and glassy states is attributed to distinct distributions of the gel's constituents within the samples. Surprisingly, the same gel state can be produced either by annealing the gel over months or by the non-equilibrium effect of thermo-diffusion (Soret effect) in the course of some minutes.
Electrical properties and Raman studies of phase transitions in ferroelectric [N(CH3)4]2CoCl2Br2
NASA Astrophysics Data System (ADS)
Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2018-03-01
The present paper accounted for the synthesis, electric properties and vibrational spectroscopy of [N(CH3)4]2CoCl2Br2. The dielectric spectra were measured in the frequency range 10-1-105 Hz and temperature interval from 223 to 393 K. The dielectical properties confirm the ferroelectric-paraelectric phase transition at 290 K, which is reported by Abdallah Ben Rhaiem et al. (2013). The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I and non-overlapping small polaron tunneling model (NSPT) in phases II and III. Raman spectra as function temperature have been used to characterize the phase transitions and their nature, which indicates a change of the some peak near the transitions phase.
Revealing the glass transition in shape memory polymers using Brillouin spectroscopy.
Steelman, Zachary A; Weems, Andrew C; Traverso, Andrew J; Szafron, Jason M; Maitland, Duncan J; Yakovlev, Vladislav V
2017-12-11
Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (T g ) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the T g obtained from Brillouin scattering with DMA- and DSC-measured T g to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.
Revealing the glass transition in shape memory polymers using Brillouin spectroscopy
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Weems, Andrew C.; Traverso, Andrew J.; Szafron, Jason M.; Maitland, Duncan J.; Yakovlev, Vladislav V.
2017-12-01
Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (Tg) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the Tg obtained from Brillouin scattering with DMA- and DSC-measured Tg to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.
Thórólfsson, Matthías; Ibarra-Molero, Beatriz; Fojan, Peter; Petersen, Steffen B; Sanchez-Ruiz, Jose M; Martínez, Aurora
2002-06-18
Human phenylalanine hydroxylase (hPAH) is a tetrameric enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine; a dysfunction of this enzyme causes phenylketonuria. Each subunit in hPAH contains an N-terminal regulatory domain (Ser2-Ser110), a catalytic domain (Asp112-Arg410), and an oligomerization domain (Ser411-Lys452) including dimerization and tetramerization motifs. Two partially overlapping transitions are seen in differential scanning calorimetry (DSC) thermograms for wild-type hPAH in 0.1 M Na-Hepes buffer, 0.1 M NaCl, pH 7.0. Although these transitions are irreversible, studies on their scan-rate dependence support that the equilibrium thermodynamics analysis is permissible in this case. Comparison with the DSC thermograms for truncated forms of the enzyme, studies on the protein and L-Phe concentration effects on the transitions, and structure-energetic calculations based on a modeled structure support that the thermal denaturation of hPAH occurs in three stages: (i) unfolding of the four regulatory domains, which is responsible for the low-temperature calorimetric transition; (ii) unfolding of two (out of the four) catalytic domains, which is responsible for the high-temperature transition; and (iii) irreversible protein denaturation, which is likely responsible for the observed exothermic distortion in the high-temperature side of the high-temperature transition. Stages 1 and 2 do not appear to be two-state processes. We present an approach to the analysis of ligand effects on DSC transition temperatures, which is based on the general binding polynomial formalism and is not restricted to two-state transitions. Application of this approach to the L-Phe effect on the DSC thermograms for hPAH suggests that (i) there are no binding sites for L-Phe in the regulatory domains; therefore, contrary to the common belief, the activation of PAH by L-Phe seems to be the result of its homotropic cooperative binding to the active sites. (ii) The regulatory domain appears to be involved in cooperativity through its interactions with the catalytic and oligomerization domains; thus, upon regulatory domain unfolding, the cooperativity in the binding of L-Phe to the catalytic domains seems to be lost and the value of the L-Phe concentration corresponding to half-saturation is increased. Overall, our results contribute to the understanding of the conformational stability and the substrate-induced cooperative activation of this important enzyme.
Pathways for tailoring the magnetostructural behavior of FeRh-based systems
NASA Astrophysics Data System (ADS)
Barua, Radhika
2014-03-01
The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).
Creation of a Data Base on Energetic Materials
1987-08-10
Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition
NASA Astrophysics Data System (ADS)
Kanjilal, Baishali; Iram, Samreen; Das, Atreyee; Chakrabarti, Haimanti
2018-05-01
This work reports a novel two dimensional approach to the theoretical computation of the glass transition temperature in simple hypothetical icosahedral packed structures based on Thin Film metallic glasses using liquid state theories in the realm of transport properties. The model starts from Navier-Stokes equation and evaluates the statistical average velocity of each different species of atom under the condition of ensemble equality to compute diffusion lengths and the diffusion coefficients as a function of temperature. The additional correction brought in is that of the limited states due to tethering of one nodule vis -a-vis the others. The movement of the molecules use our Twin Cell Model a typical model pertinent for modeling chain motions. A temperature viscosity correction by Cohen and Grest is included through the temperature dependence of the relaxation times for glass formers.
NASA Astrophysics Data System (ADS)
Politova, E. D.; Ivanov, S. A.; Kaleva, G. M.; Mosunov, A. V.; Rusakov, V. S.
2008-10-01
The paper presents a review of works on the synthesis, structural composition effects, phase transitions, and electrical conductivity properties of multicomponent solid solutions based on heterosubstituted lanthanum gallate (La,A)(Ga,M)O3 - y . High-temperature phase transitions and structural and charge ordering effects were studied. The presence of iron cations in different valence states was proved; the relative contents of these cations depended on the x parameter and nonstoichiometry parameter y of the base composition. For M = Fe, antiferromagnetic ordering was observed; its temperature interval was determined by the concentration of iron cations in the high-spin state. The total conductivity was found to increase as the concentration of transition metal cations grew because of an increase in the electronic conductivity component. The data on structural parameters and dc and ac conductivity substantiated the conclusion that the highest ionic conductivity and permeability to oxygen were characteristic of iron-containing oxides. The results obtained are evidence that crystal chemical factors play a determining role in the formation of the ion-conducting properties of anion-deficient perovskite-like oxides.
Fabrication of large tungsten structures by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.
1971-01-01
Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.
A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.
Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A
2018-03-01
Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.
A simplified model for glass formation
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.; Onorato, P. I. K.; Scherer, G. W.
1979-01-01
A simplified model of glass formation based on the formal theory of transformation kinetics is presented, which describes the critical cooling rates implied by the occurrence of glassy or partly crystalline bodies. In addition, an approach based on the nose of the time-temperature-transformation (TTT) curve as an extremum in temperature and time has provided a relatively simple relation between the activation energy for viscous flow in the undercooled region and the temperature of the nose of the TTT curve. Using this relation together with the simplified model, it now seems possible to predict cooling rates using only the liquidus temperature, glass transition temperature, and heat of fusion.
NASA Astrophysics Data System (ADS)
Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle
2016-10-01
In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.
NASA Astrophysics Data System (ADS)
Ritter, Nils C.; Sowa, Roman; Schauer, Jan C.; Gruber, Daniel; Goehler, Thomas; Rettig, Ralf; Povoden-Karadeniz, Erwin; Koerner, Carolin; Singer, Robert F.
2018-06-01
We prepared 41 different superalloy compositions by an arc melting, casting, and heat treatment process. Alloy solid solution strengthening elements were added in graded amounts, and we measured the solidus, liquidus, and γ'-solvus temperatures of the samples by DSC. The γ'-phase fraction increased as the W, Mo, and Re contents were increased, and W showed the most pronounced effect. Ru decreased the γ'-phase fraction. Melting temperatures (i.e., solidus and liquidus) were increased by addition of Re, W, and Ru (the effect increased in that order). Addition of Mo decreased the melting temperature. W was effective as a strengthening element because it acted as a solid solution strengthener and increased the fraction of fine γ'-precipitates, thus improving precipitation strengthening. Experimentally determined values were compared with calculated values based on the CALPHAD software tools Thermo-Calc (databases: TTNI8 and TCNI6) and MatCalc (database ME-NI). The ME-NI database, which was specially adapted to the present investigation, showed good agreement. TTNI8 also showed good results. The TCNI6 database is suitable for computational design of complex nickel-based superalloys. However, a large deviation remained between the experiment results and calculations based on this database. It also erroneously predicted γ'-phase separations and failed to describe the Ru-effect on transition temperatures.
ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect
NASA Astrophysics Data System (ADS)
Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A.
2018-01-01
In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90 °C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6 μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.
NASA Astrophysics Data System (ADS)
Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.
2018-05-01
Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.
Large magnetocaloric effect of NdGa compound due to successive magnetic transitions
NASA Astrophysics Data System (ADS)
Zheng, X. Q.; Xu, J. W.; Shao, S. H.; Zhang, H.; Zhang, J. Y.; Wang, S. G.; Xu, Z. Y.; Wang, L. C.; Chen, J.; Shen, B. G.
2018-05-01
The magnetic behavior and MCE property of NdGa compound were studied in detail. According to the temperature dependence of magnetization (M-T) curve at 0.01 T, two sharp changes were observed at 20 K (TSR) and 42 K (TC), respectively, corresponding to spin reorientation and FM-PM transition. Isothermal magnetization curves up to 5 T at different temperatures were measured and magnetic entropy change (ΔSM) was calculated based on M-H data. Temperature dependences of -ΔSM for a field change of 0-2 T and 0-5 T show that there are two peaks on the curves corresponding to TSR and TC, respectively. The value of the two peaks is 6.4 J/kg K and 15.5 J/kg K for the field change of 0-5 T. Since the two peaks are close, the value of -ΔSM in the temperature range between TSR and TC keeps a large value. The excellent MCE performance of NdGa compound benefits from the existence of two successive magnetic transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.
In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba 0.5Sr 0.5Fe 2As 2 and Ba(Fe 0.9Ru 0.1) 2As 2 samples are presented to 10more » K and 41 GPa. The collapsed tetragonal phase was observed at a pressure of 14 GPa in Ba 0.5Sr 0.5Fe 2As 2 at ambient temperature. The highest superconducting transition temperature in Ba 0.5Sr 0.5Fe 2As 2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less
Mars Science Laboratory Heatshield Aerothermodynamics: Design and Reconstruction
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Hollis, Brian R.; Johnston, Christopher O.; Bose, Deepak; White, Todd R.; Mahzari, Milad
2013-01-01
The Mars Science Laboratory heatshield was designed to withstand a fully turbulent heat pulse based on test results and computational analysis on a pre-flight design trajectory. Instrumentation on the flight heatshield measured in-depth temperatures in the thermal protection system. The data indicate that boundary layer transition occurred at 5 of 7 thermocouple locations prior to peak heating. Data oscillations at 3 pressure measurement locations may also indicate transition. This paper presents the heatshield temperature and pressure data, possible explanations for the timing of boundary layer transition, and a qualitative comparison of reconstructed and computational heating on the as-flown trajectory. Boundary layer Reynolds numbers that are typically used to predict transition are compared to observed transition at various heatshield locations. A uniform smooth-wall transition Reynolds number does not explain the timing of boundary layer transition observed during flight. A roughness-based Reynolds number supports the possibility of transition due to discrete or distributed roughness elements on the heatshield. However, the distributed roughness height would have needed to be larger than the pre-flight assumption. The instrumentation confirmed the predicted location of maximum turbulent heat flux near the leeside shoulder. The reconstructed heat flux at that location is bounded by smooth-wall turbulent calculations on the reconstructed trajectory, indicating that augmentation due to surface roughness probably did not occur. Turbulent heating on the downstream side of the heatshield nose exceeded smooth-wall computations, indicating that roughness may have augmented heating. The stagnation region also experienced heating that exceeded computational levels, but shock layer radiation does not fully explain the differences.
Thermodynamic Assessment of Cr-Rare Earth Systems
2009-02-01
alloys. These disadvantages are high ductile-to-brittle transition temperature (DBTT – 150°C for unalloyed recrystallized chromium of commercial purity... eutectic temperature. Data from Kobzenko et al. [7] show appreciable scatter for both solidus and liquidus lines with temperatures ranging from 1790...0.56-0.75 at.% to 2.72 at.% [6]. The eutectic temperature was determined to be 780°C based on thermal analysis of cerium-rich alloys [6]. The phase
NASA Astrophysics Data System (ADS)
Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko
The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2014-09-01
Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.
NASA Astrophysics Data System (ADS)
Manghnani, M. H.; Hushur, A.; Williams, Q. C.; Dingwell, D. B.
2010-12-01
The density, compressibility and viscosity of silicate melts are important in understanding the thermodynamic and fluid dynamic properties of magmatic systems. Knowledge of the compressibility of silicate melts at 1 bar is an important component in the construction of accurate pressure-volume-temperature equations of state. In light of this, the velocity (nVp, Vp, Vs) and refractive index n of four anhydrous haplogranitic glasses and liquids with similar alkali abundances, but different cations, are measured at high temperature by Brillouin scattering spectroscopy through the glass transition temperature (Tg) in both platelet and back scattering geometry. The compositions of four haplogranites are 5 wt% of the components Li2O, Na2O, K2O and F each added to a base of haplogranitic (HPG8) composition. The glass transition temperature Tg of different haplogranite samples at the GHz frequency of the Brillouin probe are determined from the change in slope of the temperature-dependent longitudinal or transverse sound velocity. HPG8-Li5 has the lowest glass transition temperature (466°C), while HPG8-K5 has the highest glass transition temperature (575°C). Our Brillouin results, when compared with DSC measurements, show lower Tg values. This raises the possibility of a role of either heating rates or a frequency dependence of the glass transition in explaining the discrepancies in Tg values derived from the two methods. The sound velocity (nVp, Vp, Vs) shows markedly different temperature dependences (including differences in sign) below Tg depending on their different alkali contents. The unrelaxed elastic moduli of three haplogranitic glasses with added Li2O, Na2O and F components have been obtained as a function of temperature. The unrelaxed bulk modulus, shear modulus and Poisson’s ratio show strong compositional dependences at ambient temperature. On heating, The K initially decreases with increasing temperature up to ~ 135°C, then increases up to Tg, and then shows negative temperature dependences for HPG8-Na5. The slope changes from -0.0043(18) GPa/°C below 135°C to 0.0040(5) GPa/°C between 135°C and Tg. In the case of HPG8-Li5, both K and G decrease with increasing temperature.. For HPG8-F5, the K shows a markedly positive temperature dependence below Tg, and a very small temperature dependence above Tg. The shear modulus G shows a slight positive temperature dependence below Tg, and a larger negative temperature dependence above Tg. The Poisson’s ratios of HPG8-Li5 and HPG8-F5 glasses increase monotonically in the measured temperature range, while the Poisson’s ratio of HPG8-Na5 shows a distinct minimum at 135°C. Our results thus provide constraints on the visco-elastic properties of model granitic systems at a range of temperatures above and below their glass transition temperature.
NASA Astrophysics Data System (ADS)
Chi, W. S.; Lin, D. Y.; Huang, Y. S.; Qiang, H.; Pollak, F. H.; Mathine, D. L.; Maracas, G. N.
1996-03-01
Photoreflectance (PR), contactless electroreflectance (CER) and piezoreflectance (PzR) measurements of an InGaAs/GaAs strained asymmetric triangular quantum well (ATQW) heterostructure as a function of temperature in the range of 20 to 300 K have been carried out. The structure was fabricated by molecular beam epitaxy using the digital alloy compositional grading method. A careful analysis of the PR, CER and PzR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy(light)-hole band state. Comparison of the observed intersubband transitions with a theoretical calculation based on the envelope function model, including the effects of strain, provide a self-consistent check of the ATQW composition profile. The detailed study of the temperature dependence of the excitonic transition energies indicates that the potential profile of the ATQW varies at different temperatures. The parameters that describe the temperature dependence of 0268-1242/11/3/012/img8 are evaluated. The anomalous behaviour of the temperature dependence of the linewidth of 11H, 0268-1242/11/3/012/img9, is compared with recent results for GaAs/AlGaAs and InGaAs/GaAs symmetric rectangular quantum wells of comparable dimensions.
A universal reduced glass transition temperature for liquids
NASA Technical Reports Server (NTRS)
Fedors, R. F.
1979-01-01
Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.
Phase transition temperatures and magnetic entropy change in Ni-Mn-In-B based Heusler alloys
NASA Astrophysics Data System (ADS)
Pathak, Arjun; Gautam, Bhoj; Dubenko, Igor; Ali, Naushad
2008-03-01
One of the aspects of great attention of Heusler alloys is the large value of magnetic entropy change (δSM) and their possible application as a working material in magnetocaloric effect based magnetic refrigerators. It was reported earlier that Ni50Mn34.8In15.2 has first order martensitic transition temperature TM 212K, Curie temperature of austenitic phase TC 328K and δSM value associated with TM and TC are respectively 13 and -7 J/kg K [1]. In the present study, we are reporting the effect of partial substitution of In by B in Ni50Mn34.8In15.2 by AC susceptibility, thermal expansion, and magnetization measurements. We observed that substitution of boron sharply increase TM, and significantly enhance the δSM peak value higher than 30 J/kg K at TM 296K; however the δSM value remains almost same at TC. Therefore, the Ni-Mn-In-B based Heusler alloys will be potential material for the study of room temperature magnetic refrigerator materials. Reference: [1] A. K. Pathak, M. Khan, I. Dubenko, S. Stadler, and N. Ali, Appl. Phys. Lett. 90, 262504 (2007).
Choi, Kisuk; Olsen, Zakai; Hwang, Taeseon; Nam, Jae-Do
2018-01-01
Ionic polymer-metal composites (IPMCs) are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C) than precursor Nafion (200 °C) and a larger glass transition range (32–65 °C compared with 21–45 °C). The two have the same thermal degradation temperature (~400 °C). Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes. PMID:29693584
High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ
NASA Astrophysics Data System (ADS)
Krusin-Elbaum, L.; Tsuei, C. C.; Gupta, A.
1995-02-01
THE recent discovery1,2 of a family of mercury-based copper oxide superconductors having transition temperatures1-3 above 130 K is of considerable technological interest. But the viability of high-temperature superconductors for many applications will ultimately depend on the size of the current density, Jc, that they are able to support, not only at high temperatures, but also in high magnetic fields. For the cuprate superconductors, and in particular for Hg-based materials, the combination of high transition temperature1-3 and large mass anisotropy implies that the transport properties will be intrinsically limited by large thermal fluctuations and short superconducting coherence lengths4. Here we report that high-quality c-axis-oriented epitaxial films of the compound HgBa2CaCu6O6+δ (Hg-1212; ref. 5) can support large in-plane current densities at temperatures higher than has been achieved for other superconductors. In low magnetic fields oriented normal to the film surface, we find Jc>~107 A cm-2 at 5 K and Jc~ 105 A cm-2 at 110 K, at least an order of magnitude larger than for Bi- or Tl-based films6-11. For in-plane magnetic fields, the critical current (~108 A cm-2) is close to the theoretical limit even at high fields, indicative of strong intrinsic pinning in this compound.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-29
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Dubrovinsky, L. S.; Potapkin, V.; Glazyrin, K.; Prescher, C.; Kupenko, I.; Chumakov, A.; Rüffer, R.; Kantor, A.; Kantor, I.; Smirnov, G. V.; Popov, S.
2011-12-01
57Fe Mössbauer spectroscopy measured in the energy domain remains one of the best methods to determine iron valence and the nature of spin transitions in lower mantle phases, but up until now measurements at high P,T using a diamond anvil cell (DAC) could only be made using external heating and hence were limited to a maximum of around 800 K. Higher temperatures are possible through laser heating; however conventional radioactive sources have limited intensity and essentially no possibilities for focusing in a laboratory setting. To overcome these limitations we have developed an energy domain synchrotron Mössbauer source (SMS) on beamline ID18 at the European Synchrotron Radiation Facility, enabling rapid collection of high quality energy domain Mössbauer spectra. Combined with a portable double-sided laser heating system, SMS spectra can be collected on iron-containing phases at P,T conditions up to those close to the base of the lower mantle in less than one hour. In the current study we performed SMS measurements on several compositions of (Mg,Fe)(Si,Al)O3 perovskite (Pv) as well as Mg0.8Fe0.2O (Fp) up to 122 GPa and 2500 K. All Mössbauer spectra at high pressure and room temperature are consistent with previous observations: a high-spin (HS) to intermediate-spin (IS) transition of Fe2+(Pv) starting at around 30 GPa, a HS to low-spin (LS) transition of Fe2+(Fp) starting at around 50 GPa, and no spin transition in Fe3+(Pv) up to at least 100 GPa. At high temperature all Fe2+ components show the expected strong decrease in both centre shift and quadrupole splitting, which provides an independent measure of temperature based on the Debye model, and shows clearly the strong temperature gradient in one-sided versus double-sided laser heating experiments. Preliminary fitting of the high P,T Mössbauer spectra is consistent with predominantly IS Fe2+ (Pv), HS Fe3+ (Pv) and mixed HS-LS Fe2+ (Fp). The relative proportion of Fe3+ (Pv) does not appear to change significantly on heating, and all of the original Mössbauer spectra are recovered after cooling. Based on our results, Fe2+ in silicate perovskite is inferred to be predominantly in the IS state throughout the lower mantle while Fe3+ remains in the HS state, implying that seismic velocity anomalies in the main part of the lower mantle cannot be attributed to iron spin transitions in silicate perovskite.
Predicting the enthalpies of melting and vaporization for pure components
NASA Astrophysics Data System (ADS)
Esina, Z. N.; Korchuganova, M. R.
2014-12-01
A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.
Variations in VLT/UVES-based OH rotational temperatures for time scales from hours to 15 years
NASA Astrophysics Data System (ADS)
Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Kausch, Wolfgang; Unterguggenberger, Stefanie; Jones, Amy M.
2017-04-01
Hydroxyl (OH) emission is an important tracer of the climate, chemistry, and dynamics of the Earth's mesopause region. However, the relation of intensity variations in different OH lines is not well understood yet. This is critical for the most popular use of OH lines: the estimate of ambient temperatures based on transitions at low rotational levels of the same band. It is possible that the measured variability of the derived rotational temperature does not coincide with changes in the ambient temperature. Such differences can be caused by varying deviations from the local thermodynamic equilibrium (LTE) for the population distribution over the considered rotational levels. The non-LTE effects depend on the ratio of the thermalising collisions (mostly related to molecular oxygen) and competing radiative transitions or collisions without thermalisation of the rotational level distribution. Therefore, significant changes in the vertical structure of excited OH and its main quenchers can affect the temperature measurements. We have investigated the variability of OH rotational temperatures and the corresponding contributions of non-LTE effects for different OH bands and time scales up to 15 years based on data of the high-resolution echelle spectrograph UVES at the Very Large Telescope at Cerro Paranal in Chile. In order to link the measured rotational temperatures with the structure of the OH emission layer, we have also studied OH emission and kinetic temperature profiles from the multi-channel radiometer SABER on the TIMED satellite taken between 2002 and 2015. The results show that non-LTE contributions can significantly affect the OH rotational temperatures. Their variations can be especially strong during the night and for high upper vibrational levels of the transitions, where amplitudes of several Kelvins can be measured. They appear to be weak if long-term variations such as those caused by the solar cycle are investigated. These differences in the response correlate with changes in the effective height of the OH emission layer and the effective air density in the layer. The latter confirms the expected important role of molecular oxygen for the thermalisation of the OH rotational level populations.
Pressure-induced metal-insulator transitions in chalcogenide NiS2-xSex
NASA Astrophysics Data System (ADS)
Hussain, Tayyaba; Oh, Myeong-jun; Nauman, Muhammad; Jo, Younjung; Han, Garam; Kim, Changyoung; Kang, Woun
2018-05-01
We report the temperature-dependent resistivity ρ(T) of chalcogenide NiS2-xSex (x = 0.1) using hydrostatic pressure as a control parameter in the temperature range of 4-300 K. The insulating behavior of ρ(T) survives at low temperatures in the pressure regime below 7.5 kbar, whereas a clear insulator-to-metallic transition is observed above 7.5 kbar. Two types of magnetic transitions, from the paramagnetic (PM) to the antiferromagnetic (AFM) state and from the AFM state to the weak ferromagnetic (WF) state, were evaluated and confirmed by magnetization measurement. According to the temperature-pressure phase diagram, the WF phase survives up to 7.5 kbar, and the transition temperature of the WF transition decreases as the pressure increases, whereas the metal-insulator transition temperature increases up to 9.4 kbar. We analyzed the metallic behavior and proposed Fermi-liquid behavior of NiS1.9Se0.1.
Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J
2013-04-01
The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic thermal expansivity of liquids near the glass transition.
Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C
2012-04-01
Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.
Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Hyatt, Andrew J.
2010-01-01
Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.
Synthesis, kinetics and characterizations of polyimide based semi-IPN systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, H.J.
1992-01-01
The PMR-15 polyimide is the leading matrix resin for high performance composites for use in high temperature and thermo-oxidative environments. This resin has superior mechanical properties, good processability and a high working temperature at around 300[degrees]C. It has the disadvantages of being brittle and high susceptibility to microcracking from thermal cycling that limit its widespread application. To improve the fracture toughness, a thermoplastic polyimide, LARC-TPI, and a thermoplastic poly (amide imide), Amoco AI-10, were added individually to PMR-15 resin to form sequential semi-interpenetrating polymer networks (semi-2-IPNs). the kinetics of imidization of LARC-TPI were studied using TGA technique. Both the solventmore » and the glass transition temperature were found to greatly affect the imidization kinetics. The kinetics could be well modeled by a two-step reaction: the first step being a second order reaction followed by a first order diffusion controlled reaction as the second step. The curing of PMR-15 and PMR-15/LARC-TPI semi-IPN was investigated by DSC. A first order reaction kinetics could describe the curing process adequately, implying that the reverse Diels-Alder reaction of the Norbornene end group was the rate controlling step. The glass transition temperature played an important role. The higher the fraction LARC-TPI, the higher the glass transition temperature of the semi-IPN prepolymer, and the slower the cure reaction. From a knowledge of kinetics, the molding cycle of PMR-15 and PMR-15/LARC-TPI semi-IPNs were determined. Both PMR-15/LARC-TPI and PMR-15/AI-10 semi-IPN systems exhibited much higher fracture toughness than PMR-15, but at the compromise of a reduction in the glass transition temperature. A single glass transition temperature for each semi-IPN was observed but there was presence of special intermolecular interaction. Tg measurements and IR spectroscopy indicated that both semi-IPN systems were compatible polymer pairs.« less
Tunable 0-π transition by interband coupling in iron-based superconductor Josephson junctions
NASA Astrophysics Data System (ADS)
Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.
2016-01-01
An extended four-component Bogoliubov-de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0-π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0-π transition is also presented. The 0-π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.
Counting defects in an instantaneous quench.
Ibaceta, D; Calzetta, E
1999-09-01
We consider the formation of defects in a nonequilibrium second-order phase transition induced by an instantaneous quench to zero temperature in a type II superconductor. We perform a full nonlinear simulation where we follow the evolution in time of the local order parameter field. We determine how far into the phase transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium phase transition.
Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-30
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H 2 and D 2 in an ~85%-porous base-catalyzed silica aerogel. In this work, we find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ~4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H 2 and D 2 confined inside the aerogel monolith. Lastly, results formore » H 2 and D 2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
Morales, Miguel A.; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D. M.
2010-01-01
Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics. PMID:20566888
NASA Astrophysics Data System (ADS)
Bina, C. R.
An optimization algorithm based upon the method of simulated annealing is of utility in calculating equilibrium phase assemblages as functions of pressure, temperature, and chemical composi tion. Operating by analogy to the statistical mechanics of the chemical system, it is applicable both to problems of strict chemical equilibrium and to problems involving metastability. The method reproduces known phase diagrams and illustrates the expected thermal deflection of phase transitions in thermal models of subducting lithospheric slabs and buoyant mantle plumes. It reveals temperature-induced changes in phase transition sharpness and the stability of Fe-rich γ phase within an α+γ field in cold slab thermal models, and it suggests that transitions such as the possible breakdown of silicate perovskite to mixed oxides can amplify velocity anomalies.
Antiferromagnetic inclusions in lunar glass
Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine
1974-01-01
The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.
Irradiation embrittlement characterization of the EUROFER 97 material
NASA Astrophysics Data System (ADS)
Kytka, M.; Brumovsky, M.; Falcnik, M.
2011-02-01
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV. Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation. Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm 3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the "Master curve" approach. Moreover, J- R dependencies were determined and analyzed. The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given. Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
NASA Astrophysics Data System (ADS)
Fauzi, A. D.; Majidi, M. A.; Rusydi, A.
2017-04-01
We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.
Critical temperature for shape transition in hot nuclei within covariant density functional theory
NASA Astrophysics Data System (ADS)
Zhang, W.; Niu, Y. F.
2018-05-01
Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myeongsoon; Kim, Don, E-mail: donkim@pknu.ac.kr
2014-03-01
The clear insulator (monoclinic-VO{sub 2}) to metal (rutile-VO{sub 2}) transition (IMT) was observed in electrical conductivity and differential scanning calorimeter (DSC) measurements at around 340 K, which is IMT temperature (T{sub H}), in the hydrothermally prepared VO{sub 2} crystals. The occurrence of metal to insulator transition (MIT) temperature (T{sub C}) was observed below 333 K during the first resistance measurement cycle in the most of cases. The sudden jump of the electrical resistance at IMT and MIT points was amplified several times than that of the first cycle during the repeated successive thermal cycles (heating and cooling across the IMTmore » and MIT temperatures). T{sub C} and T{sub H} shifted to higher temperature by the repeated successive thermal cycles. This shift and the amplified jump might be related to the mechanical stress between the VO{sub 2} crystals, i.e. extrinsic properties. However, the starting point of MIT, T{sub CS} = ∼ 336 K, and the starting point of IMT, T{sub HS} = ∼ 338 K, kept almost constant during the repeated thermal cycles (< 10 times). These two temperatures may be related to the intrinsic properties of the VO{sub 2}: the phase transitions initiated at these temperatures regardless of the number of the repeated thermal cycles. The neat surface of the VO{sub 2} crystals was severely damaged and the average size of particles reduced from 110 nm to 70–90 nm after extensively repeated thermal cycles (> 70 times). The damaged surface and the smaller particles, which would be originated from the mechanical stress caused by crystal volume change during the first order transition of the VO{sub 2}, would weaken the electrical conduction path (loosen grain boundaries) between the VO{sub 2} single crystals and would result in the amplified jump at the following MIT. This report may boost the study for the improved stability and lifetime of the VO{sub 2} based electronic devices. - Highlights: • The sharp phase transition in cluster of VO{sub 2} crystals depends on repeated thermal cycles. • Two intrinsic and two extrinsic temperatures are observed during the phase transition. • The mechanical stress change and surface damage may cause the extrinsic properties in transport measurement.« less
Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.
Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J
2017-11-21
Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.
Transition edge sensors for quench localization in SRF cavity tests
NASA Astrophysics Data System (ADS)
Furci, H.; Kovács, Z.; Koettig, T.; Vandoni, G.
2017-12-01
Transition Edge Sensors (TES) are bolometers based on the gradual superconducting transition of a thin film alloy. In the frame of improvement of non-contact thermal mapping for quench localisation in SRF cavity tests, TES have been developed in-house at CERN. Based on modern photolithography techniques, a fabrication method has been established and used to produce TES from Au-Sn alloys. The fabricated sensors superconducting transitions were characterised. The sensitive temperature range of the sensors spreads over 100 mK to 200 mK and its centre can be shifted by the bias current applied between 1.5 K and 2.1 K. Maximum sensitivity being in the range of 0.5 mV/mK, it is possible to detect fast temperature variations (in the 50 μs range) below 1 mK. All these characteristics are an asset for the detection of second sound. Second sound was produced by heaters and the TES were able to distinctively detect it. The value of the speed of second sound was determined and corresponds remarkably with literature values. Furthermore, there is a clear correlation between intensity of the signal and distance, opening possibilities for a more precise signal interpretation in quench localisation.
Mott-to-Goodenough insulator-insulator transition in LiVO2
NASA Astrophysics Data System (ADS)
Subedi, Alaska
2017-06-01
I critically examine Goodenough's explanation for the experimentally observed phase transition in LiVO2 using microscopic calculations based on density functional and dynamical mean field theories. The high-temperature rhombohedral phase exhibits both magnetic and dynamical instabilities. Allowing a magnetic solution for the rhombohedral structure does not open an insulating gap, and an explicit treatment of the on-site Coulomb U interaction is needed to stabilize an insulating rhombohedral phase. The non-spin-polarized phonon dispersions of the rhombohedral phase show two unstable phonon modes at the wave vector (1/3 ,-1/3 ,0 ) that corresponds to the experimentally observed trimer forming instability. A full relaxation of the supercell corresponding to this instability yields a nonmagnetic state containing V3 trimers. These results are consistent with Goodenough's suggestion that the high-temperature phase is in the localized-electron regime and the transition to the low-temperature phase in the itinerant-electron regime is driven by V-V covalency.
Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties
NASA Astrophysics Data System (ADS)
Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain
2017-04-01
Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.
NASA Astrophysics Data System (ADS)
Lock, S. S. M.; Lau, K. K.; Lock Sow Mei, Irene; Shariff, A. M.; Yeong, Y. F.; Bustam, A. M.
2017-08-01
A sequence of molecular modelling procedure has been proposed to simulate experimentally validated membrane structure characterizing the effect of CO2 plasticization, whereby it can be subsequently employed to elucidate the depression in glass transition temperature (Tg ). Based on the above motivation, unswollen and swollen Polysulfone membrane structures with different CO2 loadings have been constructed, whereby the accuracy has been validated through good compliance with experimentally measured physical properties. It is found that the presence of CO2 constitutes to enhancement in polymeric chain relaxation, which consequently promotes the enlargement of molecular spacing and causes dilation in the membrane matrix. A series of glass transition temperature treatment has been conducted on the verified molecular structure to elucidate the effect of CO2 loadings to the depression in Tg induced by plasticization. Subsequently, a modified Michealis-Menten (M-M) function has been implemented to quantify the effect of CO2 loading attributed to plasticization towards Tg .
The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.
NASA Astrophysics Data System (ADS)
Aziz, M. S.; Mohammed, Z.; Alip, R. I.
2018-03-01
The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).
Linear and nonlinear mechanical properties of a series of epoxy resins
NASA Technical Reports Server (NTRS)
Curliss, D. B.; Caruthers, J. M.
1987-01-01
The linear viscoelastic properties have been measured for a series of bisphenol-A-based epoxy resins cured with the diamine DDS. The linear viscoelastic master curves were constructed via time-temperature superposition of frequency dependent G-prime and G-double-prime isotherms. The G-double-prime master curves exhibited two sub-Tg transitions. Superposition of isotherms in the glass-to-rubber transition (i.e., alpha) and the beta transition at -60 C was achieved by simple horizontal shifts in the log frequency axis; however, in the region between alpha and beta, superposition could not be effected by simple horizontal shifts along the log frequency axis. The different temperature dependency of the alpha and beta relaxation mechanisms causes a complex response of G-double-prime in the so called alpha-prime region. A novel numerical procedure has been developed to extract the complete relaxation spectra and its temperature dependence from the G-prime and G-double-prime isothermal data in the alpha-prime region.
Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.
Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain
2017-04-14
Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Lewis, Mark
2010-01-01
A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.
Djemour, A; Sanctuary, R; Baller, J
2015-04-07
Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.
NASA Astrophysics Data System (ADS)
Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.
2016-12-01
Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of representations of large-scale moisture transport, cloud microphysics, ice nucleation, and cumulus detrainment in order to improve the mixed-phase transition in GCMs.
Spin injection and spin transport in paramagnetic insulators
Okamoto, Satoshi
2016-02-22
We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
Radiation and annealing response of WWER 440 beltline welding seams
NASA Astrophysics Data System (ADS)
Viehrig, Hans-Werner; Houska, Mario; Altstadt, Eberhard
2015-01-01
The focus of this paper is on the irradiation response and the effect of thermal annealing in weld materials extracted from decommissioned WWER 440 reactor pressure vessels of the nuclear power plant Greifswald. The characterisation is based on the measurement of the hardness, the yield stress, the Master Curve reference temperature, T0, and the Charpy-V transition temperature through the thickness of multi-layer beltline welding seams in the irradiated and the thermally annealed condition. Additionally, the weld bead structure was characterised by light microscopic studies. We observed a large variation in the through thickness T0 values in the irradiated as well as in thermally annealed condition. The T0 values measured with the T-S-oriented Charpy size SE(B) specimens cut from different thickness locations of the multilayer welding seams strongly depend on the intrinsic weld bead structure along the crack tip. The Master Curve, T0, and Charpy-V, TT47J, based ductile-to-brittle transition temperature progressions through the thickness of the multi-layer welding seam do not correspond to the forecast according to the Russian code. In general, the fracture toughness values at cleavage failure, KJc, measured on SE(B) specimens from the irradiated and large-scale thermally annealed beltline welding seams follow the Master Curve description, but more than the expected number lie outside the curves for 2% and 98% fracture probability. In this case the test standard ASTM E1921 indicates the investigated multi-layer weld metal as not uniform. The multi modal Master Curve based approach describes the temperature dependence of the specimen size adjusted KJc-1T values well. Thermal annealing at 475 °C for 152 h results in the expected decrease of the hardness and tensile strength and the shift of Master Curve and Charpy-V based ductile-to-brittle transition temperatures to lower values.
Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya
2018-05-01
The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pressure-temperature phase diagrams of CaK(Fe1 -xNix)4As4 superconductors
NASA Astrophysics Data System (ADS)
Xiang, Li; Meier, William R.; Xu, Mingyu; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.
2018-05-01
The pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK (Fe1-xNix) 4As4 , the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x =0.033 ,0.050 ) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures TN are suppressed upon applying pressure; the superconducting transition temperatures Tc are suppressed by pressure as well, except for x =0.050 in the pressure region where TN and Tc cross. Furthermore, the pressure associated with the crossing of the TN and Tc lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Finally, at p ˜4 GPa, both Ni-substituted CaK (Fe1-xNix) 4As4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe4As4 .
High count-rate study of two TES x-ray microcalorimeters with different transition temperatures
NASA Astrophysics Data System (ADS)
Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.
2017-10-01
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.
Thermal properties of zirconium diboride -- transition metal boride solid solutions
NASA Astrophysics Data System (ADS)
McClane, Devon Lee
This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.
Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. J.; He, H. Y.; Xie, Y.
2014-11-21
The effect of the doped boron on the phase transition temperature between the monoclinic phase and the rutile phase of VO{sub 2} has been studied by performing first-principles calculations. It is found that the phase transition temperature decreases linearly with increasing the doping level of B in each system, no matter where the B atom is in the crystal. More importantly, the descent of the transition temperature is predicted to be as large as 83 K/at. % B, indicating that the boron concentration of only 0.5% can cause the phase transition at room temperature. These findings provide a new routinemore » of modulating the phase transition of VO{sub 2} and pave a way for the practicality of VO{sub 2} as an energy-efficient green material.« less
Okazaki, Kei-ichi; Koga, Nobuyasu; Takada, Shoji; Onuchic, Jose N.; Wolynes, Peter G.
2006-01-01
Biomolecules often undergo large-amplitude motions when they bind or release other molecules. Unlike macroscopic machines, these biomolecular machines can partially disassemble (unfold) and then reassemble (fold) during such transitions. Here we put forward a minimal structure-based model, the “multiple-basin model,” that can directly be used for molecular dynamics simulation of even very large biomolecular systems so long as the endpoints of the conformational change are known. We investigate the model by simulating large-scale motions of four proteins: glutamine-binding protein, S100A6, dihydrofolate reductase, and HIV-1 protease. The mechanisms of conformational transition depend on the protein basin topologies and change with temperature near the folding transition. The conformational transition rate varies linearly with driving force over a fairly large range. This linearity appears to be a consequence of partial unfolding during the conformational transition. PMID:16877541
Heat Stable Polymers: Polyphenylene and Other Aromatic Polymers
1977-01-01
crystalline transition temperature . Model reactions on 4- and 6-phienyl-2-pyrones show that this monomer type is unsuitable for the syntheses of... temperature to a rod-like molecule with a high glass transition temperature . The polymerization reaction is acid catalyzed, but is carried out most...Polymerization Reactions...................24 Solution Properties......................27 Phase Transition Temperatures , Thermal Stability and Thermomechanical
Dynamic mechanical analysis and organization/storage of data for polymetric materials
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Buckley, W.
1982-01-01
Dynamic mechanical analysis was performed on a variety of temperature resistant polymers and composite resin matrices. Data on glass transition temperatures and degree of cure attained were derived. In addition a laboratory based computer system was installed and data base set up to allow entry of composite data. The laboratory CPU termed TYCHO is based on a DEC PDP 11/44 CPU with a Datatrieve relational data base. The function of TYCHO is integration of chemical laboratory analytical instrumentation and storage of chemical structures for modeling of new polymeric structures and compounds
2015-12-01
different incubation periods for the cell lines (1 hour and overnight). We found that room temperature incubation provided the optimal temperature ...properties, either directly (through modification of residues in the complementarity determining region (CDR)) or indirectly through allosteric effects ...showed that the reduction in antigen binding affinity is associated with handling the antibody (e.g. temperature , buffer, purification steps) rather
Ordering transition in salt-doped diblock copolymers
Qin, Jian; de Pablo, Juan J.
2016-04-26
Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, whichmore » we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. Lastly, in the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.« less
NASA Astrophysics Data System (ADS)
Lakhera, Nishant
Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.
NASA Astrophysics Data System (ADS)
Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.
2017-12-01
Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.
NASA Astrophysics Data System (ADS)
Sobczyk, Marcin
2013-04-01
Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm laser host as well as an optical sensor for temperature measurements.
Light-scattering study of the glass transition in lubricants
NASA Technical Reports Server (NTRS)
Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.
1977-01-01
The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less
Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P
2013-03-01
Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mao, Chen-Yu; Liao, Wei-Qiang; Wang, Zhong-Xia; Zafar, Zainab; Li, Peng-Fei; Lv, Xing-Hui; Fu, Da-Wei
2016-08-01
Molecular optical-electrical duple switches (switch "ON" and "OFF" bistable states) represent a class of highly desirable intelligent materials because of their sensitive switchable physical and/or chemical responses, simple and environmentally friendly processing, light weights, and mechanical flexibility. In the current work, the phase transition of 1 (general formula R2MX5, [C5N2H16]2[SbBr5]) can be triggered by the order-disorder transition of the organic cations at 278.3 K. The temperature-induced phase transition causes novel bistable optical-electrical duple characteristics, which indicates that 1 might be an excellent candidate for a potential switchable optical-electrical (fluorescence/dielectric) material. In the dielectric measurements, remarkable bistable dielectric responses were detected, accompanied by striking anisotropy along various crystallographic axes. For the intriguing fluorescence emission spectra, the intensity and position changed significantly with the occurrence of the structural phase transition. We believe that these findings might further promote the application of halogenoantimonates(III) and halogenobismuthates(III) in the field of optoelectronic multifunctional devices.
Mass fractionation processes of transition metal isotopes
NASA Astrophysics Data System (ADS)
Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.
2002-06-01
Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata; Staśkiewicz, Anna
2017-07-01
Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.
Investigation of low glass transition temperature on COTS PEM's reliability for space applications
NASA Technical Reports Server (NTRS)
Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.
2003-01-01
Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.
Methods Development for Spectral Simplification of Room-Temperature Rotational Spectra
NASA Astrophysics Data System (ADS)
Kent, Erin B.; Shipman, Steven
2014-06-01
Room-temperature rotational spectra are dense and difficult to assign, and so we have been working to develop methods to accelerate this process. We have tested two different methods with our waveguide-based spectrometer, which operates from 8.7 to 26.5 GHz. The first method, based on previous work by Medvedev and De Lucia, was used to estimate lower state energies of transitions by performing relative intensity measurements at a range of temperatures between -20 and +50 °C. The second method employed hundreds of microwave-microwave double resonance measurements to determine level connectivity between rotational transitions. The relative intensity measurements were not particularly successful in this frequency range (the reasons for this will be discussed), but the information gleaned from the double-resonance measurements can be incorporated into other spectral search algorithms (such as autofit or genetic algorithm approaches) via scoring or penalty functions to help with the spectral assignment process. I.R. Medvedev, F.C. De Lucia, Astrophys. J. 656, 621-628 (2007).
Superconductivity at 43K in SmFeAsO1-xFx
NASA Astrophysics Data System (ADS)
Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.
2008-06-01
Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40K (about the theoretical maximum predicted from Bardeen-Cooper-Schrieffer theory), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La-Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26K in the iron-based LaO1-xFxFeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xFx, which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43K. This provides a new material base for studying the origin of high-temperature superconductivity.
Speculation and replication in temperature accelerated dynamics
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
2018-02-12
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
Speculation and replication in temperature accelerated dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory
Zhang, Wei; Niu, Yi-Fei
2017-11-10
The shape evolutions of the pear-shaped nucleimore » $$^{224}$$Ra and even-even $$^{144-154}$$Ba with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. We study the free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum. For $$^{224}$$Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV, and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at $N$=136 and $Z$=88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at $$T\\sim$$0.5 MeV and shape transitions at $T$=0.5-2.2 MeV are found for even-even $$^{144-154}$$Ba. Finally, the transition temperatures are roughly proportional to the corresponding deformations at the ground states.« less
NASA Astrophysics Data System (ADS)
Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.
2015-02-01
The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10-10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.
Magnetic behavior of R 2Co 14B hydrides (R = La, Pr, Sm, Gd, Tb and Y)
NASA Astrophysics Data System (ADS)
Zhang, L. Y.; Pourarian, F.; Wallace, W. E.
1988-08-01
The structure and magnetic properties of R 2Co 14B sysstems(R = La, Pr, Nd, Sm, Gd, Tb and Y) and their hydrides were studied by means of bulk magnetometry. All R 2Co 14B hydrides presently studied occur in the tetragonal Nd 2Fe 14B-type crystal structure. The composition-temperature isotherms measured fro selected Gd- and Nd- containing systems exhibit some indication of a platuau pressure at higher hydrogen concentrations. Hydrogenation expands the unit volume, Vc, by 1.5 to 3.0%, depending on the nature of R and the content of hydrogen. It was found that introduction of hydrogen into the lattice decreases Ms of the Co sublittice. This is attributed to the effect of electron charge transfer from Hto Co-3d sublittice. Hydrogennation significantly decreases the anistropy fields, HA, and the spin-reorientation transition temperatur, TSR, for Prand Tb-based intermetallics. The results indicates that the hydrogen makes the compounds magnetically softer, which is attributed to the influence of hydrogen on both the 3d and R sublittices. Two types of spin-reorientation transition for the Nd 2Co 14B system were observed. Hydrogenaration reduces both the low transition temperature, TSR 1, and the high transition temperature, TSR 2, which is explained using the Boltich-Wallace mechanism.
NASA Astrophysics Data System (ADS)
Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri
2018-01-01
Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.
NASA Astrophysics Data System (ADS)
Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra
2018-03-01
The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was followed while determining the Master Curve and cumulative damage law. The purpose of a Master Curve was to determine the variation of compliance with respect to increase in time and temperature of the specimen. The shift factors at any reference temperature were determined by Arrhenius activation energy method at a far lower temperature than Tg (Glass transition temperature) and by manual shift method at a temperature near Tg (Glass transition temperature).
Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.
Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2012-06-01
Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.
The effect of electron collisions on rotational populations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley during the Giotto spacecraft encounter. In the case of the 0(00)-1(11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral molecules, and the rotational temperature retrieved from high-resolution IR spectra of water in Comet Halley may reflect electron temperatures rather than neutral gas temperatures in the intermediate coma.
Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z
2018-04-30
Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.
Temperature dependence of luminescence behavior in Er3+-doped BaY2F8 single crystal
NASA Astrophysics Data System (ADS)
Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Tong, Hongshuang; Wang, Youfa; Zhang, Shouchao
2013-12-01
BaY2F8 single crystals doped with Er3+ ions have been grown by the temperature gradient method. The absorption, excitation and emission spectra for Er3+-doped BaY2F8 crystals were measured at room temperature (297 K) and 12 K. The effect of temperature on the luminescence intensity and effective bandwidth was investigated in the range of 12-297 K. The temperature dependence of the fluorescence intensity ratio (FIR) for the 522 nm emission (2H11/2→4I15/2 transition) and the 552 nm emission (4S3/2→4I15/2 transition) was also studied in the range of 12-297 K. Based on the fitting FIR curve, the value of the constant term B (2.25) was obtained. The fitting FIR curve and FIR equation may have a potential application in the temperature measurement. In addition, the up-conversion spectrum at room temperature was recorded under excitation of 980 nm and the up-conversion mechanism was analyzed in detail.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
NASA Astrophysics Data System (ADS)
Liang, F. X.; Shen, F. R.; Liu, Y.; Li, J.; Qiao, K. M.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.
2018-05-01
Polycrystalline MnCoGe0.99In0.01 with magnetostructural transition temperature (Tmstr) around 330 K has been prepared by arc-melting technique, and the pressure-tuned magnetostructural transition as well as the magnetocaloric effect (MCE) has been investigated. The experimental results indicate that a pressure (P) smaller than 0.53 GPa can shift Tmstr to lower temperature at a considerable rate of 119 K/GPa with the coupled nature of magnetostructural transition unchanged. However, as P reaches 0.53 GPa, the martensitic structural transition temperature (TM) further shifts to 254 K while the magnetic transition temperature of austenitic phase (TCA) occurs at around 282 K, denoting the decoupling of magnetostructural transition. Further increasing P to 0.87 GPa leads the further shift of TM to a lower temperature while the TCA keeps nearly unchanged. Therefore, the entropy change (ΔS) of the MnCoGe0.99In0.01 under different magnetic fields can be tailored by adjusting the hydrostatic pressure.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
Seismic Velocity Gradients Across the Transition Zone
NASA Astrophysics Data System (ADS)
Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.
2006-12-01
One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be included. earth.org/2006/workshop.html
NASA Astrophysics Data System (ADS)
Dwivedi, Akansha
Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM) performed on these compositions show subdomain modulation contrast suggesting the presence of localized and correlated spatial fluctuations in the spontaneous strain. In the xBMT-yBZT-zPT system, very small rhombohedral region in the room temperature phase diagram has been observed. Owing to the limited solid solubility, only a part of the phase diagram could be explored. Compositions on pseudobinary xPT-(1-x)[0.9BMT-0.1BZT] has been successfully fabricated and characterized. High c/a ratio of 1.04 has been observed for a surprisingly low tolerance factor of 0.9732. Transition temperature trends have been established from DSC and dielectric data along this pseudobinary line. The following trend in the TC has been observed with the increase in non PT end member that has been divided into three zones: in Zone I TC increases, in Zone II it decreases, and in the Zone III, two transition temperatures are observed. From the TEM investigation, it has been noted that these compositions exhibit subdomain modulations which reflects the presence of spontaneous strain. These modulations increase with the increase in non PT end member, and at certain composition along pseudobinary, both macro and micro domains structure can be observed. Compositions in the rhombohedral phase of xBMT-yBZT-zPT show dramatic changes in dielectric and piezoelectric properties when quenched from high temperature. Samples quenched from temperature range 650°C-900°C show classical ferroelectric switching behavior, which is not observed on either side of this temperature range. These quenched states are however, unstable in nature and lose their ferroelectric properties when heated to a temperature as low as 400°C. Structural analysis by TEM shows varied domain structures for samples quenched from different temperatures. Evidences of tilt transitions and intermediate phases have also been observed in the TEM study. New insights into solid solution development and defect metastability are gained and discussed in relation to relaxor based ferroelectric phenomena. Complex domains and intermediate displacive phase transitions are all considered to consistently account for the structure-property-process relations in these novel systems.
Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji
2010-04-01
Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelhas, L. T.; Stone, K. H.; Harvey, S. P.
We report that the interest in Cu 2ZnSn(S,Se) 4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se 2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a V oc deficit, where the V oc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. Tomore » directly determine the level of Cu/Zn ordering, we have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. Finally, to understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, K. C.; Tran, T. M.; Langer, J. S.
The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Here, our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.
Stellar model chromospheres. III - Arcturus /K2 III/
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Linsky, J. L.
1975-01-01
Models are constructed for the upper photosphere and chromosphere of Arcturus based on the H, K, and IR triplet lines of Ca II and the h and k lines of Mg II. The chromosphere model is derived from complete redistribution solutions for a five-level Ca II ion and a two-level Mg II ion. A photospheric model is derived from the Ca II wings using first the 'traditional' complete-redistribution limit and then the more realistic partial-redistribution approximation. The temperature and mass column densities for the temperature-minimum region and the chromosphere-transition region boundary are computed, and the pressure in the transition region and corona are estimated. It is found that the ratio of minimum temperature to effective temperature is approximately 0.77 for Arcturus, Procyon, and the sun, and that mass tends to increase at the temperature minimum with decreasing gravity. The pressure is found to be about 1 percent of the solar value, and the surface brightness of the Arcturus transition region and coronal spectrum is estimated to be much less than for the sun. The partial-redistribution calculation for the Ca II K line indicates that the emission width is at least partially determined by damping rather than Doppler broadening, suggesting a reexamination of previous explanations for the Wilson-Bappu effect.
Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios
NASA Technical Reports Server (NTRS)
Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.
2003-01-01
UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic
Phase behavior of mixtures of DPPC and POPG.
Wiedmann, T; Salmon, A; Wong, V
1993-04-07
The phase relation of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) has been determined by measurement of the endothermic transitions of mixtures of DPPC and POPG in 100 mM NaCl, 50 mM PIPES (pH 7.0). With the use of differential scanning calorimetry, the gel-liquid crystalline phase transitions of pure POPG and DPPC were estimated to be 274 K and 315.8 K, respectively. With mixtures, there was considerable broadening of the endotherms, but there was no evidence of immiscibility. At high and low mole fractions of DPPC, the observed transition regions are not different from that calculated assuming ideal behavior. However in the central region of the phase diagram, there were deviations from both the ideal liquidus and solidus curves. The chemical shift anisotropy of the 13C-labelled carbonyl carbon of pure DPPC was determined as a function of temperature. At 298 K, a broad peak characteristic of axially symmetric motional averaging of the shielding tensor was observed. At a temperature of 300 K, a narrow peak at 173 ppm was superimposed upon the broad peak. The magnitude of the narrow resonance increased with temperature over the range of 300 to 315 K with the spectrum obtained at the latter point almost completely devoid of any broad features. Spectra obtained with a 9:1 mole ratio of DPPC/POPG was very similar to that obtained with pure DPPC. However, with increasing amounts of POPG, both the temperature at which the narrow resonance appeared and the temperature at which only a narrow resonance was observed were reduced. Over the range of 0 to 50 mol % POPG, there was no major change in the width or shape of the spectra which contained only a broad or narrow resonance. Also for mol % of POPG of 20% and less, there was agreement between the temperature at which only the narrow component was observed and the completion of the main phase transition based on the DSC scans. However, at the two higher mol % of 33 and 50%, the temperature at which only the narrow component was observed was lower than the temperature established for the completion of the main phase transition.
NASA Astrophysics Data System (ADS)
Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang
2017-12-01
We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.
NASA Astrophysics Data System (ADS)
Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui
2016-04-01
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao; Huang, Xuhui, E-mail: xuhuihuang@ust.hk
2016-04-21
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kineticsmore » are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulec, Ahmet; Phelan, Daniel; Leighton, Chris
Perovskite cobaltites have been studied for years as some of the few solids to exhibit thermally driven spin-state crossovers. The unanticipated first-order spin and electronic transitions recently discovered in Pr-based cobaltites are notably different from these conventional crossovers, and are understood in terms of a unique valence transition. In essence, the Pr valence is thought to spontaneously shift from 3+ toward 4+ on cooling, driving subsequent transitions in Co valence and electronic/magnetic properties. Here, we apply temperature-dependent transmission electron microscopy and spectroscopy to study this phenomenon, for the first time with atomic spatial resolution, in the prototypical (Pr 0.85Y 0.15)(0.70)more » Ca 0.30CoO 3-δ. In addition to the direct spectroscopic observation of charge transfer between Pr and Co at the 165 K transition (on both the Pr and O edges), we also find a simultaneous order/disorder transition associated with O vacancies. Remarkably, the first-order valence change drives a transition between ordered and random O vacancies, at constant O vacancy density, demonstrating reversible crystallization of such vacancies even at cryogenic temperatures.« less
Polyimides based on 4,4'-bis (4-aminophenoxy)-2,2'or 2,2', 6,6'-substituted biphenyl
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua K. (Inventor)
1999-01-01
This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua K. (Inventor)
2000-01-01
This invention relates the novel diamines. the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature. good mechanical properties and improved processability in the manufacture of adhesives. electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2.2',6.6substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides. while retaining a relatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang
2015-05-20
The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.
The pressure coefficient of the Curie temperature of ferromagnetic superconductors
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.
2012-12-01
The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.
On the nature of a glassy state of matter in a hydrated protein: Relation to protein function.
Teeter, M M; Yamano, A; Stec, B; Mohanty, U
2001-09-25
Diverse biochemical and biophysical experiments indicate that all proteins, regardless of size or origin, undergo a dynamic transition near 200 K. The cause of this shift in dynamic behavior, termed a "glass transition," and its relation to protein function are important open questions. One explanation postulated for the transition is solidification of correlated motions in proteins below the transition. We verified this conjecture by showing that crambin's radius of gyration (Rg) remains constant below approximately 180 K. We show that both atom position and dynamics of protein and solvent are physically coupled, leading to a novel cooperative state. This glassy state is identified by negative slopes of the Debye-Waller (B) factor vs. temperature. It is composed of multisubstate side chains and solvent. Based on generalization of Adam-Gibbs' notion of a cooperatively rearranging region and decrease of the total entropy with temperature, we calculate the slope of the Debye-Waller factor. The results are in accord with experiment.
Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang
2015-01-01
Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911
Yuan, Zeng-Nian; Chen, Hua; Li, Jing-Ming; Dai, Bin; Zhang, Wei-Bin
2018-05-04
In order to study the fracture behavior and structure evolution of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)-based polymer bonded explosive in thermal-mechanical loading, in-situ studies were performed on X-ray computed tomography system using quasi-static Brazilian test. The experiment temperature was set from −20 °C to 70 °C. Three-dimensional morphology of cracks at different temperatures was obtained through digital image process. The various fracture modes were compared by scanning electron microscopy. Fracture degree and complexity were defined to quantitatively characterize the different types of fractures. Fractal dimension was used to characterize the roughness of the crack surface. The displacement field of particles in polymer bonded explosive (PBX) was used to analyze the interior structure evolution during the process of thermal-mechanical loading. It was found that the brittleness of PBX reduced, the fracture got more tortuous, and the crack surface got smoother as the temperature rose. At lower temperatures, especially lower than glass transition temperature of binders, there were slipping and shear among particles, and particles tended to displace and disperse; while at higher temperatures, especially above the glass transition temperature of binders, there was reorganization of particles and particles tended to merge, disperse, and reduce sizes, rather than displacing.
Kumar Mahata, Manoj; Koppe, Tristan; Kumar, Kaushal; Hofsäss, Hans; Vetter, Ulrich
2016-01-01
A dual mode rare-earth based vanadate material (YVO4: Ho3+/Yb3+), prepared through ethylene glycol assisted hydrothermal method, demonstrating both downconversion and upconversion, along with systematic investigation of the luminescence spectroscopy within 12–300 K is presented herein. The energy transfer processes have been explored via steady-state and time-resolved spectroscopic measurements and explained in terms of rate equation description and temporal evolution below room temperature. The maximum time for energy migration from host to rare earth (Ho3+) increases (0.157 μs to 0.514 μs) with the material’s temperature decreasing from 300 K to 12 K. The mechanism responsible for variation of the transients’ character is discussed through thermalization and non-radiative transitions in the system. More significantly, the temperature of the nanocrystals was determined using not only the thermally equilibrated radiative intra-4f transitions of Ho3+ but also the decay time and rise time of vanadate and Ho3+ energy levels. Our studies show that the material is highly suitable for temperature sensing below room temperature. The maximum relative sensor sensitivity using the rise time of Ho3+ energy level (5F4/5S2) is 1.35% K−1, which is the highest among the known sensitivities for luminescence based thermal probes. PMID:27805060
NASA Technical Reports Server (NTRS)
Jerebets, Sergei
2004-01-01
We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.
Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites**
Hribar, Kolin C.; Metter, Robert B.; Ifkovits, Jamie L.; Troxler, Thomas
2010-01-01
Shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape.[1, 2] Shape memory polymers are finding use in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components.[3–5] For many applications, it would be beneficial to initiate heating with an external trigger (e.g., transdermal light exposure). In this work, we formulated composites of gold nanorods (<1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity and the nanorods did not alter the cytotoxicity or in vivo tissue response to the networks. PMID:19408258
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O., E-mail: kucheyev@llnl.gov
2014-10-28
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H{sub 2} and D{sub 2} in an ∼85%-porous base-catalyzed silica aerogel. We find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ∼4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H{sub 2} and D{sub 2} confined inside the aerogel monolith. Results for H{sub 2} and D{sub 2}more » are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces
NASA Astrophysics Data System (ADS)
Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.
2001-11-01
We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.
NASA Astrophysics Data System (ADS)
Ishii, T.; Huang, R.; Fei, H.; Koemets, I.; Liu, Z.; Maeda, F.; Yuan, L.; Wang, L.; Druzhbin, D.; Yamamoto, T.; Bhat, S.; Farla, R. J.; Kawazoe, T.; Tsujino, N.; Kulik, E.; Higo, Y.; Tange, Y.; Katsura, T.
2017-12-01
It has been accepted that the 660-km discontinuity (D660) is caused by the post-spinel (Psp) transition, which is decomposition of ringwoodite (Rw) to bridgmanite (Brg) + ferropericlase. Nevertheless, all of in-situ X-ray diffraction studies with multi-anvil presses (MAP) gave distinctively lower transition pressures than that of the D660 (23.4 GPa). Although Fei et al. (2004) claimed that their Psp transition pressure explains the D660, it is still 0.5 GPa lower by considering the geotherm. If these results were accepted, the Psp would not account for the D660. In this study, we re-investigated the Psp transition pressure in Mg2SiO4 by in-situ X-ray diffraction using a MAP. A fine-grained mixture of forsterite, enstatite and periclase (Pc) and an MgO pressure marker were placed at the center of a furnace. The sample was compressed to 6-7 MN and heated to 1100 K to synthesize a mixture of Rw, akimotoite and Pc. After that, more press load was applied to obtain sample pressures of ca. 23 GPa, and the sample was then heated to 1700 K, keeping this temperature for 1-2 hours. During keeping the temperature, the press load was first rapidly, and then gradually increased to prevent pressure drop. Phase identification and pressure determination were conducted with alternatively accumulated diffraction patterns of the sample and pressure maker. We bracketed the transition pressures by 23.7 and 24.0 GPa at 1700 K based on the third-order Birch-Murnaghan and Vinet EOSs of MgO given by Tange et al. (2009), respectively. The transition pressure at 2000 K is estimated to be 23.2-23.5 GPa by applying the Psp transition slope based on Fei et al. (2004). Thus, the present transition pressure completely agrees with the D660 depth. The reason for the lower transition pressures by the previous studies is pressure drop during heating. Although the transition completes at the beginning of target temperature, pressure significantly drops during or even before accumulating a diffraction pattern for 3-5 minutes. We obtained the correct transition pressure by preventing the pressure drop by pumping. This problem should be omnipresent in high P-T in-situ X-ray diffraction experiments to determine a phase boundary.
Effects of Varying CDS, Drying and Cooling Temperatures on Glass Transition Temperature of DDGS
USDA-ARS?s Scientific Manuscript database
Distillers dried grains with solubles (DDGS), a co product of the corn-based fuel ethanol industry, is used widely as an animal feed. Due to increased demand for DDGS in livestock markets it has become essential to transport DDGS over long distances. Flowability problems in DDGS, due to particle cak...
Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.
Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur
2015-07-02
Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.
Zhang, Shanshan; Alvarez, Daniel J; Sofroniew, Michael V; Deming, Timothy J
2015-04-13
Polypeptide-based formulations that undergo liquid to hydrogel transitions upon change in temperature have become desirable targets since they can be mixed with cells or injected into tissues as liquids, and subsequently transform into rigid scaffolds or depots. Such materials have been challenging to prepare using synthetic polypeptides, especially when reversible gelation and tunable physical properties are desired. Here, we designed and prepared new nonionic diblock copolypeptide hydrogels (DCH) containing hydrophilic poly(γ-[2-(2-methoxyethoxy)ethyl]-rac-glutamate) and hydrophobic poly(l-leucine) segments, named DCHEO, and also further incorporated copolypeptide domains into DCHEO to yield unprecedented thermoresponsive DCH, named DCHT. Although previous attempts to prepare nonionic hydrogels composed solely of synthetic polypeptides have been unsuccessful, our designs yielded materials with highly reversible thermal transitions and tunable properties. Nonionic, thermoresponsive DCHT were found to support the viability of suspended mesenchymal stem cells in vitro and were able to dissolve and provide prolonged release of both hydrophilic and hydrophobic molecules. The versatility of these materials was further demonstrated by the independent molecular tuning of DCHT liquid viscosity at room temperature and DCHT hydrogel stiffness at elevated temperature, as well as the DCHT liquid to hydrogel transition temperature itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Wujie; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; Lu, Ping
Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu{sub 2}Se, originating from the relatively rigid Se framework and “soft” Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu{sub 2}Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu{sub 2}Se at the temperature below the phase-transition point (∼400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-likemore » layered framework but nearly random site occupancy of atoms from the “soft” Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu{sub 2}Se at increasing temperature. Those are all consistent with experimental observations.« less
NASA Astrophysics Data System (ADS)
Han, Shan; Luan, Ye-Mei; Pang, Shu-Feng; Zhang, Yun-Hong
2015-03-01
The conformational change of poly(vinyl alcohol) has been studied by Fourier transform infrared spectroscopy at various temperatures in the 4000-400 cm-1 region. The molecular motion and the trans/gauche content are sensitive to the Csbnd H, Csbnd C stretching modes. FTIR spectra show that the I2920/I2849 decreases from 1.84 to 1.0 with increasing temperature, companying the decrease in I1047/I1095 from 0.78 to 0.58, implying the conformational transition from trans to gauche in alkyl chain. Based on the van't Hoff relation, the enthalpies and entropies have been calculated in different temperatures, which are 4.61 kJ mol-1 and 15.23 J mol-1 K-1, respectively, in the region of 80-140 °C. From the Cdbnd O stretching mode and Osbnd H band, it can be concluded that the intermolecular hydrogen bonds decrease owing to elevating temperature, which leads to more gauche conformers.
Framework for analyzing hyper-viscoelastic polymers
NASA Astrophysics Data System (ADS)
Trivedi, Akash; Siviour, Clive
2017-06-01
Hyper-viscoelastic polymers have multiple areas of application including aerospace, biomedicine, and automotive. Their mechanical responses are therefore extremely important to understand, particularly because they exhibit strong rate and temperature dependence, including a low temperature brittle transition. Relationships between the response at various strain rates and temperatures are investigated and a framework developed to predict response at rates where experiments are unfeasible. A master curve of the storage modulus's rate dependence at a reference temperature is constructed using a DMA test of the polymer. A frequency sweep spanning two decades and a temperature range from pre-glass transition to pre-melt is used. A fractional derivative model is fitted to the experimental data, and this model's parameters are used to derive stress-strain relationships at a desired strain rate. Finite element simulations with this constitutive model are used for verification with experimental data. This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-15-1-0448.
Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wooram; Park, Sin-Jung; Cho, Soojeong
2016-08-17
A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.
2016-05-01
We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.
Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F
2013-09-01
The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the cryotolerance of Lb. delbrueckii ssp. bulgaricus CFL1 cells. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).
Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B
2011-02-09
The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.
Phonsri, Wasinee; Macedo, David S; Vignesh, Kuduva R; Rajaraman, Gopalan; Davies, Casey G; Jameson, Guy N L; Moubaraki, Boujemaa; Ward, Jas S; Kruger, Paul E; Chastanet, Guillaume; Murray, Keith S
2017-05-23
A family of halogen-substituted Schiff base iron(II) complexes, [Fe II (qsal-X) 2 ], (qsal-X=5-X-N-(8-quinolyl)salicylaldimines)) in which X=F (1), Cl (2), Br (3) or I (4) has been investigated in detail. Compound 1 shows a temperature invariant high spin state, whereas the others all show abrupt spin transitions, at or above room temperature, namely, 295 K (X=I) up to 342 K (X=Br), these being some of the highest T 1/2 values obtained, to date, for Fe II N/O species. We have recently reported subtle symmetry breaking in [Fe II (qsal-Cl) 2 ] 2 with two spin transition steps occurring at 308 and 316 K. A photomagnetic study reveals almost full HS conversion of [Fe II (qsal-I) 2 ] 4 at low temperature (T(LIESST)=54 °K). The halogen substitution effects on the magnetic properties, as well as the crystal packing of the [Fe II (qsal-X) 2 ] compounds and theoretical calculations, are discussed in depth, giving important knowledge for the design of new spin crossover materials. In comparison to the well known iron(III) analogues, [Fe III (qsal-X) 2 ] + , the two extra π-π and P4AE interactions found in [Fe II (qsal-X) 2 ] compounds, are believed to be accountable for the spin transitions occurring at ambient temperatures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for preparing high-transition-temperature superconductors in the Nb-Al-Ge system
Giorgi, A.L.; Szklarz, E.G.
1973-01-30
The patent describes a process for preparing superconducting materials in the Nb-Al-Ge system having transition temperatures in excess of 19K. The process comprises premixing powdered constituents, pressing them into a plug, heating the plug to 1,450-1,800C for 30 minutes to an hour under vacuum or an inert atmosphere, and annealing at moderate temperatures for reasonably long times (approximately 50 hours). High transition-temperature superconductors, including those in the Nb3(Al,Ge) system, prepared in accordance with this process exhibit little degradation in the superconducting transition temperature on being ground to -200 mesh powder. (GRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
1988-05-01
This deformation gives an increase in friction stress without much further reduction in grain size. Solid solution and precipitation strengthening are...finishing temperatures because of the measured effect of Mo on lowering the ferrite transformation temperature (I). The precipitation of NbC in the...unchanged. Very probably, Mo, through its solid solution strengthening of ferrite, particularly at 760°C in the austenite-ferrite region, caused the
NASA Astrophysics Data System (ADS)
Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.
2018-05-01
The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, S.P.; Sonwalkar, N.
1991-04-01
The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between {minus}10 and 5{degree}C (low-temperature transition), 10 and 22{degree}C (middle-temperature transition), and 32 and 40{degree}C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14{degree}C). Second, the middle-temperature transition shifts up to the range of about 20-32{degree}C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of aboutmore » 15-40{degree}C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties.« less
Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud
2018-01-01
In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel
2018-04-01
Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.
Folding thermodynamics of model four-strand antiparallel beta-sheet proteins.
Jang, Hyunbum; Hall, Carol K; Zhou, Yaoqi
2002-01-01
The thermodynamic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration R(g)(2), the root-mean-squared pair separation fluctuation Delta(B), the specific heat C(v), the internal energy of the system E, and the Lindemann disorder parameter Delta(L). Despite these models' simplicity, they exhibit a complex set of protein transitions, consistent with those observed in experimental studies on real proteins. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. The high temperature transitions, i.e., the collapse transition and the disordered-to-ordered globule transition, exist for all three beta-strand proteins, although the native-state geometry of the three model proteins is different. However the low temperature transitions, i.e., the folding transition and the liquid-to-solid transition, strongly depend on the native-state geometry of the model proteins and the size of the bias gap. PMID:11806908
Ab initio computation of the transition temperature of the charge density wave transition in TiS e2
NASA Astrophysics Data System (ADS)
Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian
2015-12-01
We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Huang, Rong; Wei, Fenfen
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
Superconductivity between standard types: Multiband versus single-band materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vagov, A.; Shanenko, A. A.; Milošević, M. V.
In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the systemmore » has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.« less
Unconventional iron-based superconductor CsCa2Fe4As4F2: A first-principle study
NASA Astrophysics Data System (ADS)
Singh, Birender; Kumar, Pradeep
2018-05-01
In the present work, we have investigated the structural and electronic properties of newly discovered iron based superconductor CsCa2Fe4As4F2 using first principles calculations. Analysis of the density of states at the Fermi level suggests that Fe-3d states have dominating contribution, and within these 3d states contribution of eg states is significant suggesting multi-band nature of this superconductor. The upper bound of superconducting transition temperature, estimated using electron-phonon coupling constant is found to be ˜2.6 K. To produce the experimental value of transition temperature (28.2 K), a 4-5 times increase in the electron-phonon constant is necessary, hinting that conventional electron-phonon coupling is not enough to explain the origin of superconductivity.
Shock-to-detonation transition of nitromethane: Time-resolved emission spectroscopy measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouyer, Viviane; Darbord, Isabelle; Herve, Philippe
2006-01-01
The objective of this work is to improve the knowledge of the shock-to-detonation transition of nitromethane. The study is based on a spectral analysis in the range 0.3-0.85 {mu}m, with a 28-nm resolution, during experiments of plane shock impacts on explosive targets at 8.6 GPa. The time-resolved radiant spectra show that the detonation front, the reaction products produced during the superdetonation, and the detonation products are semitransparent. The temperature and absorption coefficient profiles are determined from the measured spectra by a mathematical inversion method based on the equation of radiative transfer with Rayleigh scattering regime. Shocked nitromethane reaches at leastmore » 2500 K, showing the existence of local chemical reactions after shock entrance. Levels of temperature of superdetonation and steady-state detonation are also determined.« less
Wang, Yonggang; Ying, Jianjun; Zhou, Zhengyang; Sun, Junliang; Wen, Ting; Zhou, Yannan; Li, Nana; Zhang, Qian; Han, Fei; Xiao, Yuming; Chow, Paul; Yang, Wenge; Struzhkin, Viktor V; Zhao, Yusheng; Mao, Ho-Kwang
2018-05-15
The discovery of iron-based superconductors (FeSCs), with the highest transition temperature (T c ) up to 55 K, has attracted worldwide research efforts over the past ten years. So far, all these FeSCs structurally adopt FeSe-type layers with a square iron lattice and superconductivity can be generated by either chemical doping or external pressure. Herein, we report the observation of superconductivity in an iron-based honeycomb lattice via pressure-driven spin-crossover. Under compression, the layered FePX 3 (X = S, Se) simultaneously undergo large in-plane lattice collapses, abrupt spin-crossovers, and insulator-metal transitions. Superconductivity emerges in FePSe 3 along with the structural transition and vanishing of magnetic moment with a starting T c ~ 2.5 K at 9.0 GPa and the maximum T c ~ 5.5 K around 30 GPa. The discovery of superconductivity in iron-based honeycomb lattice provides a demonstration for the pursuit of transition-metal-based superconductors via pressure-driven spin-crossover.
Premartensitic transition and relevant magnetic effects in Ni50Mn34In15.5Al0.5 alloy
Wu, Yuqin; Guo, Shaopu; Yu, Shuyun; Cheng, Hui; Wang, Ruilong; Xiao, Haibo; Xu, Lingfang; Xiong, Rui; Liu, Yong; Xia, Zhengcai; Yang, Changping
2016-01-01
Resistance measurement, in situ optical microscopic observation, thermal and magnetic measurements have been carried out on Ni50Mn34In15.5Al0.5 alloy. The existence of a pronounced premartensitic transition prior to martensitic transition can be characterized by microstructure evolution as well as exothermic peak and smooth decrease of resistance and magnetization with obvious hysteresis over a wide temperature range upon cooling. Consequently, the alloy undergoes two successive magneto-structural transitions consisting of premartensitic and martensitic transitions. Magnetoelastic coupling between magnetic and structural degrees of freedom would be responsible for the appearance of premartensitic transition, as evinced by the distinct shift of transitions temperatures to lower temperature with external applied field of 50 kOe. The inverse premartensitic transition induced by magnetic field results in large magnetoresistance, and contributes to the enhanced inverse magnetocaloric effect through enlarging the peak value and temperature interval of magnetic entropy change ΔSm. PMID:27183331
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2017-11-01
A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.
You, Jun; Zhou, Jinping; Li, Qian; Zhang, Lina
2012-03-20
As a weak base, β-glycerophosphate (β-GP) was used to spontaneously initiate gelation of quaternized cellulose (QC) solutions at body temperature. The QC/β-GP solutions are flowable below or at room temperature but gel rapidly under physiological conditions. In order to clarify the sol-gel transition process of the QC/β-GP systems, the complex was investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G″) as a function of (1) concentration of β-GP (c(β-GP)), (2) concentration of QC (c(QC)), (3) degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the anhydroglucose unit) of QC, (4) viscosity-average molecular weight (M(η)) of QC, and (5) solvent medium were studied by the oscillatory rheology. The sol-gel transition temperature of QC/β-GP solutions decreased with an increase of c(QC) and c(β-GP), the M(η) of QC, and a decrease of the DS of QC and pH of the solvent. The sol-gel transition temperature and time could be easily controlled by adjusting the concentrations of QC and β-GP, M(η) and DS of QC, and the solvent medium. Gels formed after heating were irreversible; i.e., after cooling to lower temperature they could not be dissolved to become liquid again. The aggregation and entanglement of QC chains, electrostatic interaction, and hydrogen bonding between QC and β-GP were the main factors responsible for the irreversible sol-gel transition behavior of QC/β-GP systems.
Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations
NASA Astrophysics Data System (ADS)
González-Castro, Carlos A.; Ramírez-Santiago, Guillermo
2015-03-01
We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5
Properties of sugar-based low-melting mixtures
NASA Astrophysics Data System (ADS)
Fischer, Veronika; Kunz, Werner
2014-05-01
Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmlid, Leif, E-mail: holmlid@chem.gu.se; Kotzias, Bernhard
Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) andmore » H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.« less
NASA Astrophysics Data System (ADS)
O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.
2015-12-01
Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Chromy, Brett A; Henderson, Paul; Hoeprich, Jr., Paul D
2014-12-09
Provided herein are methods and systems for assembling, solubilizing and/or purifying a membrane associated protein in a nanolipoprotein particle, which comprise a temperature transition cycle performed in presence of a detergent, wherein during the temperature transition cycle the nanolipoprotein components are brought to a temperature above and below the gel to liquid crystalling transition temperature of the membrane forming lipid of the nanolipoprotein particle.
Chromy, Brett A.; Henderson, Paul; Hoeprich, Jr, Paul D.
2016-10-04
Provided herein are methods and systems for assembling, solubilizing and/or purifying a membrane associated protein in a nanolipoprotein particle, which comprise a temperature transition cycle performed in presence of a detergent, wherein during the temperature transition cycle the nanolipoprotein components are brought to a temperature above and below the gel to liquid crystalling transition temperature of the membrane forming lipid of the nanolipoprotein particle.
NASA Astrophysics Data System (ADS)
Basu, Raktima; Dhara, Sandip
2018-04-01
Vanadium is a transition metal with multiple oxidation states and V2O5 is the most stable form among them. Besides catalysis, chemical sensing, and photo-chromatic applications, V2O5 is also reported to exhibit a semiconductor to metal transition (SMT) at a temperature range of 530-560 K. Even though there are debates in using the term "SMT" for V2O5, the metallic behavior above the transition temperature and its origin are of great interest in the scientific community. In this study, V2O5 nanostructures were deposited on a SiO2/Si substrate by the vapour transport method using Au as a catalyst. Temperature dependent electrical measurement confirms the SMT in V2O5 without any structural change. Temperature dependent photoluminescence analysis proves the appearance of oxygen vacancy related peaks due to reduction of V2O5 above the transition temperature, as also inferred from temperature dependent Raman spectroscopic studies. The newly evolved defect levels in the V2O5 electronic structure with increasing temperature are also understood from the downward shift of the bottom most split-off conduction bands due to breakdown of pdπ bonds leading to metallic behavior in V2O5 above the transition temperature.
Hydrocracking of carbohydrates making glycerol, glycols and other polyols
Andrews, Mark A.; Klaeren, Stephen A.
1991-01-01
A homogeneous process for hydrocracking of carbohydrates in the presence of soluble transition metal hydrogenation catalyst with the production of lower polyhydric alcohols. A carbohydrate is contacted with hydrogen in the presence of a soluble transition metal catalyst and a strong base at a temperature of from about 25.degree. C. to about 200.degree. C. and a pressure of from about 15 to about 3000 psi.
Applications of a New England stream temperature model to ...
We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa
Transition temperature and fracture mode of as-castand austempered ductile iron.
Rajnovic, D; Eric, O; Sidjanin, L
2008-12-01
The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay
2008-10-01
One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.
Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K.
2017-10-01
The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by anglemore » dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.« less
Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai
2018-06-13
Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.
NASA Astrophysics Data System (ADS)
Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin
To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.
Frydel, Derek; Levin, Yan
2018-01-14
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
NASA Astrophysics Data System (ADS)
Frydel, Derek; Levin, Yan
2018-01-01
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
Kinetic Equations for Describing the Liquid-Glass Transition in Polymers
NASA Astrophysics Data System (ADS)
Aksenov, V. L.; Tropin, T. V.; Schmelzer, J. V. P.
2018-01-01
We present a theoretical approach based on nonequilibrium thermodynamics and used to describe the kinetics of the transition from the liquid to the glassy state (glass transition). In the framework of this approach, we construct kinetic equations describing the time and temperature evolution of the structural parameter. We discuss modifications of the equations required for taking the nonexponential, nonlinear character of the relaxation in the vitrification region into account. To describe the formation of polymer glasses, we present modified expressions for the system relaxation time. We compare the obtained results with experimental data, measurements of the polystyrene glass transition for different cooling rates using the method of differential scanning calorimetry. We discuss prospects for developing a method for describing the polymer glass transition.
The study of glass transition temperature in Sb-V2O5-TeO2 glasses at different heating rates
NASA Astrophysics Data System (ADS)
Souri, Dariush
2015-12-01
The glass transition of xSb-(60 - x)V2O5-40TeO2 glasses with 0 < x <15 (in mol%) at different heating rates ( φ = 3-12 K/min) has been studied using differential scanning calorimetry. The glass transition temperature ( T g) and crystallization temperature ( T cr) of these glasses have been determined. The effects of the heating rate and the Sb content on T g have been discussed. It has been observed that the transition region shifts to higher temperatures when the measuring time is reduced. The compositional dependence of T g has been determined and so an empirical equation has been deduced relating the glass transition temperature with the Sb concentration. Also, the value of glass-forming tendency has been studied for the present glasses.
Climatology of winter transition days for the contiguous USA, 1951-2007
NASA Astrophysics Data System (ADS)
Hondula, David M.; Davis, Robert E.
2011-01-01
In middle and high latitudes, climate change could impact the frequency and characteristics of frontal passages. Although transitions between air masses are significant features of the general circulation that influence human activities and other surface processes, they are much more difficult to objectively identify than single variables like temperature or even extreme events like fires, droughts, and floods. The recently developed Spatial Synoptic Classification (SSC) provides a fairly objective means of identifying frontal passages. In this research, we determine the specific meteorological patterns represented by the SSC's Transition category, a "catch-all" group that attempts to identify those days that cannot be characterized as a single, homogeneous air mass type. The result is a detailed transition climatology for the continental USA. We identify four subtypes of the Transition category based on intra-day sea level pressure change and dew point temperature change. Across the contiguous USA, most transition days are identified as cold fronts and warm fronts during the winter season. Among the two less common subtypes, transition days in which the dew point temperature and pressure both rise are more frequently observed across the western states, and days in which both variables fall are more frequently observed in coastal regions. The relative frequencies of wintertime warm and cold fronts have changed over the period 1951-2007. Relative cold front frequency has significantly increased in the Northeast and Midwest regions, and warm front frequencies have declined in the Midwest, Rocky Mountain, and Pacific Northwest regions. The overall shift toward cold fronts and away from warm fronts across the northern USA arises from a combination of an enhanced ridge over western North America and a northward shift of storm tracks throughout the mid-latitudes. These results are consistent with projections of climate change associated with elevated greenhouse gas concentrations.
Zhang, Linji; Ren, Yang; Liu, Xiuru; Han, Fei; Evans-Lutterodt, Kenneth; Wang, Hongyan; He, Yali; Wang, Junlong; Zhao, Yong; Yang, Wenge
2018-03-14
Amorphous sulfur was prepared by rapid compression of liquid sulfur at temperatures above the λ-transition for to preserve the high-temperature liquid structure. We conducted synchrotron high-energy X-ray diffraction and Raman spectroscopy to diagnose the structural evolution of amorphous sulfur from room temperature to post-λ-transition temperature. Discontinuous changes of the first and second peaks in atomic pair-distribution-function, g(r), were observed during the transition from amorphous to liquid sulfur. The average first-neighbor coordination numbers showed an abrupt drop from 1.92 to 1.81. The evolution of the chain length clearly shows that the transition was accompanied by polymeric chains breaking. Furthermore, a re-entry of the λ-transition structure was involved in the heating process. The amorphous sulfur, which inherits the post-λ-transition structure from its parent melts, transformed to the pre-λ-transition liquid structure at around 391 K. Upon further heating, the pre-λ-transition liquid transformed to a post-λ-transition structure through the well-known λ-transition process. This discovery offers a new perspective on amorphous sulfur's structural inheritance from its parent liquid and has implications for understanding the structure, evolution and properties of amorphous sulfur and its liquids.
Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate
NASA Technical Reports Server (NTRS)
Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)
2002-01-01
Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.
Temperature Dependence Of Elastic Constants Of Polymers
NASA Technical Reports Server (NTRS)
Simha, Robert; Papazoglou, Elisabeth
1989-01-01
Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.
Method and Apparatus of Implementing a Magnetic Shield Flux Sweeper
NASA Technical Reports Server (NTRS)
Sadleir, John E. (Inventor)
2018-01-01
The present invention relates to a method and apparatus of protecting magnetically sensitive devices with a shield, including: a non-superconducting metal or lower transition temperature (T.sub.c) material compared to a higher transition temperature material, disposed in a magnetic field; means for creating a spatially varying order parameter's |.PSI.(r,T)|.sup.2 in a non-superconducting metal or a lower transition temperature material; wherein a spatially varying order parameter is created by a proximity effect, such that the non-superconducting metal or the lower transition temperature material becomes superconductive as a temperature is lowered, creating a flux-free Meissner state at a center thereof, in order to sweep magnetic flux lines to the periphery.
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
NASA Astrophysics Data System (ADS)
Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai
2018-03-01
For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in the BF-x BT system. While our results on the two spin-glass transitions support the theoretical predictions, they also raise several open questions, which need to be addressed by revisiting the existing theories of spin-glass transitions after taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.
Phase transformation of GaAs at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, Shigeaki; Kikegawa, Takumi
2018-02-01
The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).
Ueno, Kazuhide; Angell, C Austen
2011-12-08
To support a new interpretation of the origin of the dynamic heterogeneity observed pervasively in fragile liquids as they approach their glass transition temperatures T(g), we demonstrate that the introduction of ~2 nm structural inhomogeneities into a homogeneous glass former leads to a decoupling of diffusion from viscosity similar to that observed during the cooling of orthoterphenyl (OTP) below T(A,) where Arrhenius behavior is lost. Further, the decoupling effect grows stronger as temperature decreases (and viscosity increases). The liquid is cresol, and the ~2 nm inhomogeneities are cresol-soluble asymmetric derivatized tetrasiloxy-based (polyhedral oligomeric silsesquioxane (POSS)) molecules. The decoupling is the phenomenon predicted by Onsager in discussing the approach to a liquid-liquid phase separation with decreasing temperature. In the present case the observations support the notion of a polyamorphic transition in fragile liquids that is hidden below the glass transition. A similar decoupling can be expected as a globular protein is dissolved in dilute aqueous solutions or in protic ionic liquids. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Sajid, M. B.; Javed, T.; Farooq, A.
2015-04-01
The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.
Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5
Zhang, Yan; Wang, Chenlu; Yu, Li; Liu, Guodong; Liang, Aiji; Huang, Jianwei; Nie, Simin; Sun, Xuan; Zhang, Yuxiao; Shen, Bing; Liu, Jing; Weng, Hongming; Zhao, Lingxiao; Chen, Genfu; Jia, Xiaowen; Hu, Cheng; Ding, Ying; Zhao, Wenjuan; Gao, Qiang; Li, Cong; He, Shaolong; Zhao, Lin; Zhang, Fengfeng; Zhang, Shenjin; Yang, Feng; Wang, Zhimin; Peng, Qinjun; Dai, Xi; Fang, Zhong; Xu, Zuyan; Chen, Chuangtian; Zhou, X. J.
2017-01-01
The topological materials have attracted much attention for their unique electronic structure and peculiar physical properties. ZrTe5 has host a long-standing puzzle on its anomalous transport properties manifested by its unusual resistivity peak and the reversal of the charge carrier type. It is also predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. Here we report high-resolution laser-based angle-resolved photoemission measurements on the electronic structure and its detailed temperature evolution of ZrTe5. Our results provide direct electronic evidence on the temperature-induced Lifshitz transition, which gives a natural understanding on underlying origin of the resistivity anomaly in ZrTe5. In addition, we observe one-dimensional-like electronic features from the edges of the cracked ZrTe5 samples. Our observations indicate that ZrTe5 is a weak topological insulator and it exhibits a tendency to become a strong topological insulator when the layer distance is reduced. PMID:28534501
Two-dimensional H2 in Si: Raman scattering and modeling study
NASA Astrophysics Data System (ADS)
Melnikov, V. V.; Hiller, M.; Lavrov, E. V.
2018-03-01
Molecular hydrogen trapped within {111}-oriented platelets in silicon is studied by means of Raman scattering and first principles theory. The rotational transition S0(0 ) (J =0 →J =2 ) of para-H2 (nuclear spin I =0 ) at 353 cm-1 is used as a probe. We find that for temperatures below 100 K the S0(0 ) Raman line starts to broaden asymmetrically, which is interpreted as the onset of a phase transition from a state with a short-range order ("gaseous" or "liquid" phase) to a two-dimensional molecular crystal lying in the {111} plane of silicon. The shape of the S0(0 ) line at helium temperatures strongly depends on the relative content of ortho- (nuclear spin I =1 ) and para-H2 revealing the details of the intermolecular interaction. A comprehensive theoretical analysis based on ab initio calculations, molecular dynamics simulations, and rotational spectra modeling reveals that the phase transition to the crystalline state of the two-dimensional hydrogen does occur at temperatures substantially higher compared to those of bulk H2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.
1989-01-01
In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
Pressure-temperature phase diagrams of CaK ( Fe 1 – x Ni x ) 4 As 4 superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Meier, William R.; Xu, Mingyu
Here, the pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK(Fe 1–xNi x) 4As 4, the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x = 0.033,0.050) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures T N are suppressed upon applying pressure; the superconducting transition temperatures T c are suppressed by pressure as well, except for x = 0.050more » in the pressure region where T N and T c cross. Furthermore, the pressure associated with the crossing of the T N and T c lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Lastly, at p ~ 4 GPa, both Ni-substituted CaK(Fe 1–xNi x) 4As 4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe 4As 4.« less
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon
2010-12-01
Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.
Pressure-temperature phase diagrams of CaK ( Fe 1 – x Ni x ) 4 As 4 superconductors
Xiang, Li; Meier, William R.; Xu, Mingyu; ...
2018-05-22
Here, the pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK(Fe 1–xNi x) 4As 4, the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x = 0.033,0.050) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures T N are suppressed upon applying pressure; the superconducting transition temperatures T c are suppressed by pressure as well, except for x = 0.050more » in the pressure region where T N and T c cross. Furthermore, the pressure associated with the crossing of the T N and T c lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Lastly, at p ~ 4 GPa, both Ni-substituted CaK(Fe 1–xNi x) 4As 4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe 4As 4.« less
Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.
2010-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.
Ionic Ckonductivity and Glass Transition of Phosphoric Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan
2013-01-01
Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.
Ionic conductivity and glass transition of phosphoric acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan
2013-01-01
Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.
Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan
2014-01-28
We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.
Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4
NASA Astrophysics Data System (ADS)
Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu
2018-05-01
We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.
NASA Astrophysics Data System (ADS)
de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.
2018-03-01
The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.
Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2
NASA Astrophysics Data System (ADS)
Zhou, W.; Xu, C. Q.; Li, B.; Sankar, R.; Zhang, F. M.; Qian, B.; Cao, C.; Dai, J. H.; Lu, Jianming; Jiang, W. X.; Qian, Dong; Xu, Xiaofeng
2018-05-01
Heavy fermions represent an archetypal example of strongly correlated electron systems which, due to entanglement among different interactions, often exhibit exotic and fascinating physics involving Kondo screening, magnetism, and unconventional superconductivity. Here we report a comprehensive study on the transport and thermodynamic properties of a cerium-based heavy-fermion compound CeBi2 which undergoes an antiferromagnetic transition at TN˜3.3 K . Its high-temperature paramagnetic state is characterized by an enhanced heat capacity with Sommerfeld coefficient γ over 200 mJ mol-1K-2 . The magnetization in the magnetically ordered state features a metamagnetic transition. Remarkably, a large negative magnetoresistance associated with the magnetism was observed in a wide temperature and field-angle range. Collectively, CeBi2 may serve as an intriguing system to study the interplay between the f electrons and the itinerant Fermi sea.
Magnetic properties and magnetocaloric effect of HoCo3B2 compound
NASA Astrophysics Data System (ADS)
Zheng, X. Q.; Xu, J. W.; Zhang, H.; Zhang, J. Y.; Wang, S. G.; Zhang, Y.; Xu, Z. Y.; Wang, L. C.; Shen, B. G.
2018-05-01
A sample of HoCo3B2 compound was synthesized, and the magnetic and MCE properties were investigated. Compound shows a change corresponding to R-R (R = rare earth) sublattice magnetic order transition and the transition temperature is determined to be 11.8 K (TC). The characteristic of Arrott plots with positive slope around TC was observed, indicating a second-order phase transition. Based on isothermal magnetization data, together with Maxwell's relationship, the magnetic entropy change (-ΔSM) was calculated. The maximum -ΔSM reaches 7.8, 12.7 and 14.4 J/kg K for field range of 0-2 T, 0-5 T and 0-7 T, respectively. Accordingly, the value of RC (refrigerant capacity) is 99, 289 and 432 J/kg for above field ranges. The large MCE of HoCo3B2 compound indicates its potential application for magnetic refrigeration in low temperature range.
NASA Astrophysics Data System (ADS)
Vlasenko, V. A.; Sobolevskiy, O. A.; Sadakov, A. V.; Pervakov, K. S.; Gavrilkin, S. Yu.; Dik, A. V.; Eltsev, Yu. F.
2018-01-01
The vortex pinning and liquid-glass transition have been studied in BaFe2-x Ni x As2 single crystals with different doping levels (x = 0.065; 0.093; 0.1; 0.14; 0.18). We found that Ni-doped Ba-122 has rather narrow vortex-liquid state region. Our results show that the temperature dependence of the resistivity as well as I-V characteristics of Ni-doped Ba-122 is consistent with 3D vortex-glass model. It was found that δl-pinning gives the main contribution to overall pinning in 122 Ni-doped system. The vortex phase diagrams for different doping levels were built based on the obtained data of temperature of the vortex-glass transition T g and the upper critical magnetic field H c2.
Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe
Böhmer, A. E.; Taufour, V.; Straszheim, W. E.; ...
2016-07-29
The study of the iron-based superconductor FeSe has blossomed with the availability of high-quality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T≈450°C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature T c, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between T c and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transitionmore » is also found to be quite strongly disorder dependent (T s≈72–90K) and linearly correlated with T c.« less
An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator
NASA Astrophysics Data System (ADS)
Ren, Kailiang; Bortolin, Robert S.; Zhang, Q. M.
2016-02-01
This paper investigates the thermal response of a hybrid actuator composed of an electroactive polymer (EAP) and a shape memory polymer (SMP). This study introduces the concept of using the large strain from a phase transition (ferroelectric to paraelectric phase) induced by temperature change in a poly(vinylidene fluoride-trifluoroethylene) film to tune the shape of an SMP film above its glass transition temperature (Tg). Based on the material characterization data, it is revealed that the thickness ratio of the EAP/SMP films plays a critical role in the displacement of the actuator. Further, it is also demonstrated that the displacement of the hybrid actuator can be tailored by varying the temperature, and finite element method simulation results fit well with the measurement data. This specially designed hybrid actuator shows great promise for future morphing aircraft applications.
Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR
NASA Astrophysics Data System (ADS)
Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko
2018-01-01
We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).
Finite-density transition line for QCD with 695 MeV dynamical fermions
NASA Astrophysics Data System (ADS)
Greensite, Jeff; Höllwieser, Roman
2018-06-01
We apply the relative weights method to SU(3) gauge theory with staggered fermions of mass 695 MeV at a set of temperatures in the range 151 ≤T ≤267 MeV , to obtain an effective Polyakov line action at each temperature. We then apply a mean field method to search for phase transitions in the effective theory at finite densities. The result is a transition line in the plane of temperature and chemical potential, with an end point at high temperature, as expected, but also a second end point at a lower temperature. We cannot rule out the possibilities that a transition line reappears at temperatures lower than the range investigated, or that the second end point is absent for light quarks.
NASA Astrophysics Data System (ADS)
Spearing, Dane R.; Farnan, Ian; Stebbins, Jonathan F.
1992-12-01
Relaxation times (T1) and lineshapes were examined as a function of temperature through the α-β transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the α-β transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, α1 and α2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in β-quartz being a time and space average of α1 and α2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the α-β transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter (η) of 0.125 at room T, which decreases to <0.040 at the transition temperature. The electric field gradient (EFG) and chemical shift anisotropy (CSA), however, remain the same, suggesting that the decrease in η is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the α-β phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the β-phase is characterized by a dynamical average of the twin domains on a unit cell scale.
Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.
2013-01-01
High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumenyuk, Regina; Okhotnikov, Oleg G.; Golant, Konstantin
2011-05-09
The experimental evidence of laser transition type in bismuth-doped silica fibers operating at different spectral bands is presented. Spectrally resolved transient (relaxation) oscillations studied for a Bi-doped fiber laser at room and liquid-nitrogen temperatures allow to identify the three- and four-level energy bands. 1.18 {mu}m short-wavelength band is found to be a three-level system at room temperature with highly populated terminal energy level of laser transition. The depopulation of ground level by cooling the fiber down to liquid-nitrogen temperature changes the transition to four-level type. Four-level energy transition distinguished at 1.32 {mu}m exhibits the net gain at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
NASA Astrophysics Data System (ADS)
Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.
2015-12-01
The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1998-04-28
Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1998-04-28
Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.
NASA Astrophysics Data System (ADS)
Ewan, B. C. R.; Ireland, S. N.
2000-12-01
Acoustic pyrometry uses the temperature dependence of sound speed in materials to measure temperature. This is normally achieved by measuring the transit time for a sound signal over a known path length and applying the material relation between temperature and velocity to extract an "average" temperature. Sources of error associated with the measurement of mean transit time are discussed in implementing the technique in gases, one of the principal causes being background noise in typical industrial environments. A number of transmitted signal and processing strategies which can be used in the area are examined and the expected error in mean transit time associated with each technique is quantified. Transmitted signals included pulses, pure frequencies, chirps, and pseudorandom binary sequences (prbs), while processing involves edge detection and correlation. Errors arise through the misinterpretation of the positions of edge arrival or correlation peaks due to instantaneous deviations associated with background noise and these become more severe as signal to noise amplitude ratios decrease. Population errors in the mean transit time are estimated for the different measurement strategies and it is concluded that PRBS combined with correlation can provide the lowest errors when operating in high noise environments. The operation of an instrument based on PRBS transmitted signals is described and test results under controlled noise conditions are presented. These confirm the value of the strategy and demonstrate that measurements can be made with signal to noise amplitude ratios down to 0.5.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
2011-03-01
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.
Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5
NASA Technical Reports Server (NTRS)
Brinich, Paul F.
1961-01-01
Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.
Aoki, Y; Endrodi, G; Fodor, Z; Katz, S D; Szabó, K K
2006-10-12
Quantum chromodynamics (QCD) is the theory of the strong interaction, explaining (for example) the binding of three almost massless quarks into a much heavier proton or neutron--and thus most of the mass of the visible Universe. The standard model of particle physics predicts a QCD-related transition that is relevant for the evolution of the early Universe. At low temperatures, the dominant degrees of freedom are colourless bound states of hadrons (such as protons and pions). However, QCD is asymptotically free, meaning that at high energies or temperatures the interaction gets weaker and weaker, causing hadrons to break up. This behaviour underlies the predicted cosmological transition between the low-temperature hadronic phase and a high-temperature quark-gluon plasma phase (for simplicity, we use the word 'phase' to characterize regions with different dominant degrees of freedom). Despite enormous theoretical effort, the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover) remains ambiguous. Here we determine the nature of the QCD transition using computationally demanding lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities. No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.
Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.
Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan
2017-09-28
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Metal-Insulator Transition in W-doped VO2 Nanowires
NASA Astrophysics Data System (ADS)
Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao
2010-03-01
We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.
Method And Apparatus For Evaluatin Of High Temperature Superconductors
Fishman, Ilya M.; Kino, Gordon S.
1996-11-12
A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.
Molecule signatures in photoluminescence spectra of transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Feierabend, Maja; Berghäuser, Gunnar; Selig, Malte; Brem, Samuel; Shegai, Timur; Eigler, Siegfried; Malic, Ermin
2018-01-01
Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It was recently predicted that a certain class of molecules exhibiting a large dipole moment can be detected through the activation of optically inaccessible (dark) excitonic states in absorption spectra of tungsten-based TMDs. In this paper, we investigate the molecule signatures in photoluminescence spectra in dependence of a number of different experimentally accessible quantities, such as excitation density, temperature, as well as molecular characteristics including the dipole moment and its orientation, molecule-TMD distance, molecular coverage, and distribution. We show that under certain optimal conditions even room-temperature detection of molecules can be achieved.
Characterization of Hybrid Epoxy Nanocomposites
Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna
2012-01-01
This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313
Temperature decline thermography for laminar-turbulent transition detection in aerodynamics
NASA Astrophysics Data System (ADS)
von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.
2017-09-01
Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.
Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites
NASA Astrophysics Data System (ADS)
Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo
2016-06-01
Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.